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Topological Expansion

We begin with a brief review of the topological expansion in
unitary ensembles of random matrices.
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Unitary Ensemble of Random Matrices

Let us consider a real polynomial V (x) =
d∑

j=1

tjx
j , where d is even

and tj ∈ R, j = 1, . . . , d , with td > 0. The corresponding unitary
ensemble of random matrices is the probability distribution

dµN(M) =
1

ZN
e−NTr V (M)dM,

on the space of Hermitian N × N random matrices M ∈ HN ,
where

ZN =

∫
HN

e−NTr V (M)dM

is the partition function.
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Quartic Ensemble

As an example, let us consider the quartic polynomial

V (x) =
x2

2
+ ux4 , u = t4 > 0.

The partition function of the quartic ensemble is equal to

ZN(u) =

∫
HN

e
−N
“

Tr M2

2
+uTr M4

”
dM.

In particular, ZN(0) is the partition function of the Gaussian
unitary ensemble (GUE),

ZN(0) =

∫
HN

e−
NTr M2

2 dM = ZGUE
N =

( π

N

)N2

2

(
1

2

)N(N−1)
2

.

Pavel Bleher Topological Expansion and Phase Diagram in Random Matrices



Normalized Partition Function

The normalized partition function is the quotient,

ZN(u)

ZN(0)
=

∫
HN

e−
NTr M2

2
−NuTr M4

dM∫
HN

e−
NTr M2

2 dM
.

It is convenient to make the change of variable, M ′ = M
√

N.
Then denoting M ′ back by M, we obtain that

ZN(u)

ZN(0)
=

∫
HN

e−
Tr M2

2
− uTr M4

N dM∫
HN

e−
Tr M2

2 dM
.
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Normalized Partition Function

Thus,

ZN(u)

ZN(0)
=

∫
HN

e−
Tr M2

2
− uTr M4

N dM∫
HN

e−
Tr M2

2 dM
=

〈
e−

uTr M4

N

〉
GUE

,

where

〈f (M)〉GUE =

∫
HN

f (M)e−
Tr M2

2 dM∫
HN

e−
Tr M2

2 dM
.
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Evaluation of ZN(u)
ZN(0)

Expanding exp into the Taylor series, we obtain that

ZN(u)

ZN(0)
=

〈 ∞∑
p=0

1

p!

(
− u

N

)p (
Tr M4

)p〉
GUE

.

Observe that
〈MijMkl〉GUE = δilδjk .

Let us evaluate

Ep =
〈(

Tr M4
)p〉

GUE
, p = 1, 2, . . .
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Evaluation of Ep

Let us start with

E1 =
〈
Tr M4

〉
GUE

=

〈
N∑

i ,j ,k,l=1

MijMjkMklMli

〉
GUE

.

By the Wick Theorem,

〈MijMjkMklMli 〉GUE = 〈MijMjk〉GUE 〈MklMli 〉GUE

+ 〈MijMkl〉GUE 〈MjkMli 〉GUE

+ 〈MijMli 〉GUE 〈MjkMkl〉GUE

= δik + δilδjkδij + δkl ,

hence

E1 =
N∑

i ,j ,k,l=1

(δik + δilδjkδij + δkl) = N3 + N + N3 = 2N3 + N.
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Feynman’s Diagrams

The three terms (pairings) in the Wick Theorem,

〈MijMjkMklMli 〉GUE = 〈MijMjk〉GUE 〈MklMli 〉GUE

+ 〈MijMkl〉GUE 〈MjkMli 〉GUE

+ 〈MijMli 〉GUE 〈MjkMkl〉GUE ,

can be represented by the three Feynman diagrams with one
vertex. The first and third diagrams are planar, of the genus
g = 0, and the second one is toroidal, of the genus g = 1.
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Feynman’s Diagrams
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The Powers of N as the Number of Faces in the Feynman
Diagram

We have

E1 =
〈
Tr M4

〉
GUE

= N3 + N + N3 = 2N3 + N.

The N3 terms correspond to the two Feynman diagrams (graphs)
on the plane (or sphere), and the power 3 is the number of faces in
these graphs. The N term corresponds to the Feynman diagram on
the torus, and the number of faces in this graph on the torus is 1.
Thus,

E1 =
∑
π

N f (π).

where f (π) is the number of faces in the Feynman graph π
realized without self-intersections on a Riemann surface of a
minimal genus g .
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Evaluation of E2

Consider now

E2 =
〈(

Tr M4
)2〉

GUE

=

〈
N∑

i ,j ,k,l=1

N∑
p,q,r ,s=1

MijMjkMklMliMpqMqrMrsMsp

〉
GUE

.

By the Wick Theorem,

〈MijMjkMklMliMpqMqrMrsMsp〉GUE

=
∑
π∈Π

∏
(αβ,γδ)∈π

〈MαβMγδ〉GUE ,

where Π = {π} is the set of all partitions π of the set

V = {(ij), (jk), . . . , (sp)}

into pairs.
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Connected Part of E2

The set Π = {π} of all partitions π of the set

V = {(ij), (jk), . . . , (sp)}

into pairs is divided into two parts:

1. Π0, of partitions π, with pairs in the set
{(i , j), (j , k), (k, l), (l , i)} and separately in the set
{(p, q), (q, r), (r , s), (s, p)}, and

2. Πc , of partitions π, such that at least one pair connects the
sets {(i , j), (j , k), (k, l), (l , i)} and {(p, q), (q, r), (r , s), (s, p)}.
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Connected Part of E2

Then
E2 = (E1)

2 + E c
2 ,

where
E c

2 =
∑
π∈Πc

∏
(αβ,γδ)∈π

〈MαβMγδ〉GUE ,

with the sum over connected regular Feynman diagrams of degree
4 with two vertices.

Pavel Bleher Topological Expansion and Phase Diagram in Random Matrices



Examples of Regular Connected Feynman’s Diagrams of
Degree 4 with 2 Vertices
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Connected Part of Ep

Thus,

E c
2 =

〈(
Tr M4

)2〉c

GUE
=
∑
π∈Πc

∏
(αβ,γδ)∈π

〈MαβMγδ〉GUE =
∑
π∈Πc

N f (π),

where f (π) is the number of faces of the Feynman diagram π
realized on the Riemann surface of a smallest possible genus.
This can be extended to the connected parts of the subsequent
moments,

E c
p =

〈(
Tr M4

)p〉c

GUE
=
∑
π∈Πp

c

N f (π),

where Πp
c is the set of connected regular Feynman diagrams of

degree 4 with p vertices.
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The Second Wick Theorem

The (normalized) free energy is defined as

FN(u) =
1

N2
ln

ZN(u)

ZN(0)
.

By the second Wick theorem,

FN(u) =
1

N2

∞∑
p=0

1

p!
(−N−1u)p

〈(
Tr M4

)p〉c

GUE
.

Since 〈(
Tr M4

)p〉c

GUE
=
∑
π∈Πp

c

N f (π),

we obtain that

FN(u) =
1

N2

∞∑
p=0

1

p!
(−u)p

∑
π∈Πp

c

N f (π)−p.
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The Euler Formula

In the formula

FN(u) =
1

N2

∞∑
p=0

(−u)p

p!

∑
π∈Πp

c

N f (π)−p.

the Feynman diagram π ∈ Πp
c is a regular connected graph of

degree 4 with p vertices. The number of edges in π is equal to
l = 4p

2 = 2p. By the Euler characteristic formula,

v − l + f = 2− 2g =⇒ p− 2p + f = 2− 2g =⇒ f − p = 2− 2g .

hence

FN(u) =
∞∑

p=0

(−u)p

p!

∑
π∈Πp

c

N−2g .
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1
N2 -Expansion of the Free Energy

Interchanging the order of summation, we obtain that

FN(u) =
∞∑

p=0

(−u)p

p!

∑
π∈Πp

c

N−2g

∼
∞∑

g=0

1

N2g

∞∑
p=0

(−u)p

p!
Ag (p),

where Ag (p) is the number of connected regular Feynman
diagrams of degree 4 with p vertices on a closed oriented
Riemannian surface of genus g .

Pavel Bleher Topological Expansion and Phase Diagram in Random Matrices



The Topological Expansion of the Free Energy

The
1

N2
-expansion of the free energy,

FN(u) ∼
∞∑

g=0

1

N2g
Fg (u),

is called the topological expansion, and its coefficients Fg (u) are
the generating functions for the numbers Ag (p) of connected
regular Feynman diagrams of degree 4 with p vertices on a closed
oriented Riemannian surface of genus g ,

Fg (u) =
∞∑

p=0

(−u)p

p!
Ag (p).
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The Riemann–Hilbert Approach to the Topological
Expansion

The Riemann–Hilbert approach to an evaluation of the topological
expansion is based on the eigenvalue representation of the free
energy,

FN(u) =
1

N2
ln
ZN(u)

ZN(0)
,

where

ZN(u) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∏
1≤j<k≤n

(xj − xk)2

×
n∏

j=1

exp

[
−N

(
x2
j

2
+

ux4
j

4

)]
dx1 · · · dxN

is the partition function of the ensemble of eigenvalues. (We
replace u by u

4 to simplify some formulae.)
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Reduction to Orthogonal Polynomials

The partition function of the ensemble of eigenvalues ZN(u) can
be expressed in terms of associated orthogonal polynomials.
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Associated Orthogonal Polynomials

Consider monic orthogonal polynomials Pn(x) = xn + . . . such that∫ ∞

−∞
Pm(x)Pn(x) exp

[
−N

(
x2

2
+

ux4

4

)]
dx = hnδmn .

The polynomials Pn(x) = Pn(x ; u,N) satisfy the three term
recurrence relation

xPn(x) = Pn+1(x) + RnPn−1(x), Rn =
hn

hn−1
, n = 1, 2, . . . ,

and the recurrence coefficients Rn = Rn(u,N) satisfy the string
equation,

Rn(1 + uRn−1 + uRn + uRn+1) =
n

N
.
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ZN in Terms of Associated Orthogonal Polynomials

The partition function of the ensemble of eigenvalues ZN is
expressed in terms of the normalizing constants hn of the
associated orthogonal polynomials as

ZN = N!
N−1∏
n=0

hn.

This formula is not convenient for the topological 1
N2 expansion

because it contains hn with small n. We use a different approach
based on the recurrence coefficients and deformation equations for
the free energy.
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Topological Expansion of Recurrence Coefficients

By using the Riemann–Hilbert approach (nonlinear steepest
descent method) to orthogonal polynomials, we obtain a uniform
topological expansion of the recurrence coefficient Rn = Rn(u,N),
such that for some constants 0 < C1 < 1 < C2 < ∞,

Rn(u) ∼
∞∑

g=0

rg (η, u)

N2g
, η =

n

N
, C1 ≤ η ≤ C2,

where the coefficients rg (η, u) are analytic functions of η and u at
the point η = 1, u = 0.
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Leading Order of the Recurrence Coefficients

Substituting the topological expansion of the recurrence
coefficients into the string equation, we obtain recursively the
coefficients rg = rg (η, u) of the topological expansion of the
recurrence coefficients. In particular, the zeroth order equation is

r0(1 + 3ur0) = η,

whose solution is

r0 =
−1 +

√
1 + 12ηu

6u
.
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Higher Orders of the Recurrence Coefficients

Higher order coefficients rg , g = 1, 2, . . ., are calculated recursively
by the formula

rg = − 1

1 + 3ur0

g∑
`=1

rg−`

[
3ur` + 2u

`−1∑
k=0

1

(2`− 2k)!

∂2`−2k rk
∂η2`−2k

]

In particular,

r1 =
u
(
−1 +

√
1 + 12ηu

)
(1 + 12ηu)2

,

r2 =
63u3

(
−3− 8ηu + 3

√
1 + 12ηu

)
(1 + 12ηu)9/2

,

and so on.
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The Deformation Equation for the Free Energy

To obtain the topological expansion of the free energy,

FN(u) =
1

N2
ln
ZN(u)

ZN(0)
,

we derive and use the deformation equation

F ′N(u) = RN(u)

[
1

u
+ RN−1(u)RN+1(u)

]
− 1

4u
.

This gives a topological expansion first for F ′N(u) and then for
FN(u).
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The Topological Expansion of the Free Energy

Theorem 1. We have the topological expansion of the free energy,

FN(u) ∼
∞∑

g=0

1

N2g
Fg (u),

where

F0(u) =
∞∑
j=1

(−1)j12j(2j − 1)!

(j)!(j + 2)!
uj ,

F1(u) =
1

24

∞∑
j=1

(−1)j12j

j

[
1− (2j)!

4j(j!)2

]
uj ,

F2(u) =
1

2304

∞∑
j=3

(−1)j12j

j

[
8(2j)!(28j + 9)

15 · 4j(j − 2)!j!
− 13j(j − 1)

]
uj ,

and so on.
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The Number of Regular Feynman Graphs of Degree 4 on
the Riemannian Surface

Comparing formulae of Theorem 1 to the Feynman diagram
expansion,

FN(u) ∼
∞∑

g=0

1

N2g
Fg (u),

where

Fg (u) =
∞∑

p=0

(−u)p

4pp!
Ag (p),

and Ag (p) is the number of 4 valent Feynman diagrams with p
vertices on a closed oriented Riemannian surface of genus g , we
obtain formulae for Ag (p).
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Large p Asymptotics of the Coefficients of the Topological
Expansion

For g larger than 2 the formulae for the coefficients of the
topological expansion of the free energy Fg (u) become rather
complicated. We can nevertheless find the asymptotic behavior of
their Taylor coefficients,

Fg (u) =
∞∑

p=0

(−u)p

4pp!
Ag (p),

as p →∞. Namely, we have
Theorem 2. As p →∞,

Ag (p) =
Cgp5g−7

up
c

(
1 +O

(
1

p

))
,

with uc = − 1
12 and some constants Cg > 0.
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Painlevé I Equation

The constants Cg > 0 in Theorem 2 are related to the Boutroux
tritronquée solution of the Painlevé I equation. Namely, consider
the Painlevé I equation,

u′′(x) = 6u2(x) + x .

Let u(x) be the Boutroux tritronquée solution of this equation
and y(x) a scaling of u(x) such that

y(x) = −2
8
5 3

2
5 u
(
−2

9
5 3

6
5 x
)

.

Then as x →∞ the function y(x) admits the asymptotic
expansion

y(x) =
∞∑

g=0

Ygx
1−5g

2 .
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Painlevé I Asymptotics

Theorem 2’. The constants Cg > 0 in Theorem 2 coincide with
the coefficients Yg > 0 of the asymptotic expansion of the rescaled
Boutroux tritronquée solution y(t) at infinity, so that

Cg = Yg .
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Analytic Continuation of the Quartic Partition Function to
the Complex u-Plane

To better understand the asymptotics of the coefficients of the
topological expansion and the appearance of the Painlevé I
equation, we consider an analytic continuation of the partition
function

ZN(u) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∏
1≤j<k≤N

(zj − zk)2
N∏

j=1

e
−N

 
z2
j
2

+
uz4

j
4

!
dz1 · · · dzN

to the complex u-plane. The integral is well-defined for <u > 0,
but it diverges for <u < 0. To define a regularization of the
integral, we can either rotate the real axis of integration or make a
change of variables. We will use a change of variables.
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Change of Variables in ZN(u)

We define
ζ = u1/4z , σ = u−1/2,

and

V (ζ;σ) =
σζ2

2
+

ζ4

4
.

Then the corresponding partition function of eigenvalues is given
by

ZN(σ) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∏
1≤j<k≤N

(ζj−ζk)2
N∏

j=1

e
−N

 
σζ2

j
2

+
ζ4
j
4

!
dζ1 · · · dζn,

which converges for all σ ∈ C. Note that

ZN(u) = σ
N2

2 ZN(σ).
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Asymptotics of ZN(σ)

In what follows I present results of my joint work with Ken
McLaughlin and Roozbeh Gharakhloo.
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The Phase Diagram of the Quartic Model on the Complex
σ-Plane
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√

12 i (PI) (F. David).
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The Equilibrium Measure

The phase regions are described in terms of max-min equilibrium
measures on the complex plane. We use here the works of
Kuijlaars and Silva, 2015. A contour Γ on the complex plane is
called admissible if it goes from (−∞) to (+∞), and it is a finite
union of analytic arcs. Let P(Γ) the space of probability measures
ν on Γ. Consider the following real-valued functional on P(Γ):

IΓ(ν) :=
x

Γ× Γ

log
1

|z − s|
dν(z)dν(s) +

∫
Γ
<V (s) dν(s).

By results of the potential theory, there exists a unique minimizer
νΓ of the functional IΓ(ν), so that

min
ν∈P(Γ)

IΓ(ν) = IΓ(νΓ).
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The Euler–Lagrange Variational Conditions

The support of the minimizer νΓ is a compact set JΓ ⊂ Γ. An
important fact is that the equilibrium measure is uniquely
determined by the Euler–Lagrange variational conditions. Namely,
νΓ is the unique probability measure ν on Γ such that there exists a
constant l , a Lagrange multiplier, such that

Uν(z) +
1

2
<V (z) = l , z ∈ supp ν,

Uν(z) +
1

2
<V (z) ≥ l , z ∈ Γ \ supp ν,

where

Uν(z) =

∫
Γ
log

1

|z − s|
dν(s)

is the logarithmic potential of the measure ν.
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The Max-Min Equilibrium Measures

Now we maximize I (νΓ) over the set of admissible contours,
Γ ∈ T . Kuijlaars and Silva prove that

1. The maximizing contour Γ0 ∈ T exists.

2. The equilibrium measure ν0 = νΓ0 is supported by a set J ⊂ Γ0

which is a finite union of analytic arcs (cuts) Γ0[ak , bk ],

J =

q⋃
k=1

Γ0[ak , bk ], a1 < b1 ≤ a2 < b2 ≤ . . . ≤ aq < bq,

that are critical trajectories of a quadratic differential
(−R(z)) dz2, where R(z) is a polynomial.

3. The set J =
⋃q

k=1 Γ0[ak , bk ] is unique.
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Support of the Equilibrium Measure

The fact that the arcs Γ0[ak , bk ], k = 1, . . . , q, are critical
trajectories of the quadratic differential (−R(z)) dz2 means that

1.
R(a1) = R(b1) = . . . = R(aq) = R(bq) = 0,

and

2.

−R(z) dz2 > 0, ∀ z ∈
q⋃

k=1

(ak , bk).
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A Formula for the Polynomial R(z)

Furthermore, Kuijlaars and Silva prove that the polynomial R(z) is
equal to

R(z) =

(
−ω(z) +

V ′(z)

2

)2

,

where

ω(z) =

∫
J

dν0(s)

z − s
=

1

z
+

m1

z2
+ . . . , mk =

∫
J
skdν0(s),

is the resolvent of the measure ν0.
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The Density of the Equilibrium Measure

In addition, the equilibrium measure ν0 is absolutely continuous
with respect to the arc length, and

dν0(s) =
1

πi
R+(s)1/2ds,

where R+(s)1/2 is the limiting value of the function

R(z)1/2 = −
∫

J

dν0(s)

z − s
+

V ′(z)

2
,

as z → s ∈ J from the left-hand side of J with respect to the
orientation of the contour Γ0 from (−∞) to ∞.
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Regular and Singular Equilibrium Measures

An equilibrium measure ν0 is called regular if the following three
conditions hold:

1. The arcs Γ0[ak , bk ], k = 1, . . . , q, of the support of ν0 (the
cuts) are disjoint.

2. The end-points {ak , bk , k = 1, . . . , q} are simple zeros of the
polynomial R(s).

3. There is a contour Γ0 containing the support J of ν0 such
that

Uν(z) +
1

2
<V (z) > l , ∀ z ∈ Γ0 \ supp ν0,

An equilibrium measure ν0 is called singular (or critical) if it is not
regular.
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Equilibrium Measures of the Quartic Polynomial V (z ; σ)

For the quartic polynomial in hand, V (ζ;σ) = σζ2

2 + ζ4

4 , we have
that

R(z) =

(
−ω(z) +

z3 + σz

2

)2

, ω(z) =

∫
J

dν0(s)

z − s
.

Since the polynomial V (z) is even, the uniqueness of the
equilibrium measure ν0 implies that

1. ν0 is even as well, ν0(−s) = ν0(s),

2. The resolvent ω(z) is odd, ω(−z) = −ω(z), and

3. The polynomial R(z) is even, R(−z) = R(z).
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One-Cut Equilibrium Measure

When q = 1 (a one-cut equilibrium measure), we have that

R(z) =
1

4
(z2 − z2

0 )2(z2 − b2
1),

where ±b1 are the end-points of the equilibrium measure and ±z0

are double zeroes. Equating this expression to

R(z) =

(
−ω(z) +

V ′(z)

2

)2

,

we obtain that

(z2 − z2
0 )2(z2 − b2

1) = z6 + 2σz4 + (σ2 − 4)z2 − 4(σ + m2).

Comparing the coefficients at z4 and z2, we obtain the system of
equations, {

b2
1 + 2z2

0 = −2σ,

2b2
1z

2
0 + z4

0 = σ2 − 4.
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Zeros of R(z)

Solving the above system of equations we obtain that

b2
1 =

2

3

(
−σ +

√
12 + σ2

)
,

z2
0 =

1

3

(
−2σ −

√
12 + σ2

)
.
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An Example of the Equilibrium Measure with One-Cut
Support

Figure: σ = 1 + i
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Two-Cut Equilibrium Measure

When q = 2 (a two-cut equilibrium measure), we have that

R(z) =
1

4
z2(z2 − a2

1)(z
2 − b2

1),

where ±a1, ±b1 are the end-points of the equilibrium measure.
Equating this expression to

R(z) =

(
−ω(z) +

V ′(z)

2

)2

,

we obtain the system of equations

a2
2 + b2

2 + 2σ = 0,

a4
2 − 2a2

2b
2
2 + b4

2 = 16,

which yields
a2
2 = −2− σ, b2

2 = 2− σ.
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An Example of the Equilibrium Measure with Two-Cut
Support

- b2

b2

- a2

a2

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3

Re z

Im
z

Figure: σ = −3 + i
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The three-cut regime

In the three-cut regime the support of the equilibrium measure
consists of three cuts,

J = [−c3,−b3] ∪ [−a3, a3] ∪ [b3, c3].

The algebraic end-point equations are

a2
3 + b2

3 + c2
3 + 2σ = 0,

a4
3 + b4

3 + c4
3 − 2a2

3b
2
3 − 2a2

3c
2
3 − 2b2

3c
2
3 = 16.

In addition, we have the two real equations,

<
(∫ b3

a3

√
R(s)ds

)
= 0, <

(∫ b3

c3

√
R(s)ds

)
= 0.
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An Example of the Equilibrium Measure with Three-Cut
Support

Figure: σ = −3 + 2i
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Analytical Dependence of the Equilibrium Measure on σ

Theorem 3.

1. In the one-cut and two-cut regions the equilibrium measure
νeq(σ) depends analytically on the parameter σ.

2. In the three-cut region the equilibrium measure νeq(σ)
depends analytically on <σ and =σ, but not on σ (so that the
Cauchy–Riemann equations fail).
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Critical Points

Theorem 4. (Bleher–Eynard) At the critical point σ = −2 the
free energy exhibits a third order phase transition on the real line.
Theorem 5. (Bleher–Its) At the critical point σ = −2 the double
scaling limit is PII.
Theorem 6. (Duits–Kuijlaars) At the critical point σ = 12i the
double scaling limit is PI.
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An Equation of the Critical Curve on the Complex β-Plane

Theorem 7. Let

σ = −3

4
β +

4

β
,

Then the set of the critical parameters σ is mapped onto critical
trajectories of the quadratic differential

S(β)dβ2 =
(16− β2)(16 + 3β2)3

1024β6
dβ2.
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The Main Results on the Complex Quartic Model

Theorem 4 (Bleher, Gharakhloo, and McLaughlin). We have that

1. The critical curves of the complex quartic model are
determined by the quadratic differentials and they do separate
one-, two-, and three cut phases.

2. The associated orthogonal polynomials admit
1

N2
-expansion

in the one-cut and two-cut phase regions.

3. The free energy admits a topological
1

N2
-expansion in the

one-cut region.
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Topological Expansion for the Cubic Ensemble

The cubic ensemble with

V (x) =
x2

2
+ ux3 , u > 0.

is very interesting because in this case the topological expansion
gives generating functions for the number of regular Feynman
graphs of degree 3 on Riemannian surfaces, or equivalently the
number of triangulations of the surface. The phase diagram of the
cubic ensemble was described in the physical work of David, and it
was rigorously investigated in the works of Barhoumi, Bleher,
Deaño, and Yattselev.
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Thank you!

The End

Thank you!
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