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Menu

1 Abundant evidence on universal KPZ 2-point functions for heat-peak
of Noether-charge transport in non-abelian integrable models!

2 Anomalous fluctuations (lack of scaled cumulants in FCS)!
3 Exactly solvable interacting deterministic model of FCS.
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ρ(t = 0) = (1 + µσz)⊗L/2 ⊗ (1− µσz)⊗L/2

function via Green–Kubo linear response theory. In case of
diffusive transport, the spin density satisfies the diffusion
equation. This notion of diffusion does not necessarily
correspond to De Gennes phenomenological theory of spin
diffusion which, under much stronger assumptions, in 1D
implies 1/

ffiffi
t
p

dependence of local spin density autocorrelation
function23,24.

We evolved the initial state r(0) (3) up to long times
(of order tE160) and set large enough n so that there was no
significant finite size effects. From the data we then infer the
exponent a using equation (4), see Fig. 2a,b for representative
plots. Dependence of the exponent a on D is summarized in
Fig. 2c. While the transport is found to be ballistic for Do1,
expectedly so for the integrable system, also known rigorously16,
at DZ1 we find rather clear non-ballistic relaxation. In particular,
at D¼ 1 it is super-diffusive while for D41 the transport is
diffusive, observed in driven steady-state setting25,26 as well as in
the Hamiltonian one24,27–30. At D¼ 1 we also observe small
dependence of a on m. While for small m, that is, small deviations

from an infinite temperature state rB1, the exponent is close to
2/3, closer to pure state m¼ 1 it appears to be closer to E3/5
(we note that a different numerical procedure is used in the two
regimes, see Methods).

Scaling functions. The scaling of the transferred magnetization
unequivocally shows a surprising non-ballistic transport in an
integrable system which, however, has been observed and
discussed before in related contexts, namely within local quench
and linear response theory24,27–30 and boundary driven Lindblad
approach25,26. But here we can do still more. In Fig. 3 we
demonstrate that the spin profiles can be described by a function
of a single-scaling variable x/ta—profiles at large times collapse
to a single curve. In addition, the profiles of current and
magnetization are proportional to each other at different times
(Fig. 3c,d), therefore validating Fick’s law j¼ "Drs where the
behaviour of the diffusion constant D with respect to the
anisotropy D is shown in the inset of Fig. 2c. This comes as no
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Figure 1 | Dynamics of spin and current densities. Time evolution of spin density sðx; tÞ¼ trðrðtÞsð3Þx Þ (a,b) and current (c,d) profile j(x, t)¼ tr(r(t)jx) for
the isotropic point D¼ 1 (a,c), and D¼ 2 (b,d), following an inhomogeneous quench. One can see that the spreading is much faster for D¼ 1, in both cases
though it is slower than ballistic. Dashed green curves guide the eye towards scaling xBt2/3 in a, and xBt1/2 in (b). Data are shown for n¼ 320 and small
initial polarization m¼ p/1,800.
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∆sz(t) =

∫ t

0

dt′j(x = L/2, t′) ∝ tα

surprise in the diffusive regime D41 where the scaling function
of the magnetization (Fig. 3b) is simply the error function
sðx; tÞ¼$ m

2 erf x=
ffiffiffiffiffiffiffiffi
4Dt
p" #

. However, the same can not be said for
the isotropic point D¼ 1. Proportionality between the
magnetization gradient and the current profile (Fig. 3c), this
time with a time-dependent ratio D ’ K

3 t1=3, suggests a diffusion
equation in a scaled time

@sðx; tÞ
@t

¼K
4
@2sðx; tÞ
@x2 ; where t¼t4=3; ð5Þ

which again yields error function profile with a different scaling
variable sðx; tÞ¼$ m

2 erf K $ 1=2x=t2=3
" #

with K¼ 2.33±0.03. In
Fig. 3a we compare numerical profiles with the error function,
again finding good agreement within accuracy of our simulations.
Therefore, the scaling function is, in both cases, D¼ 1 and D41,
the error function, the difference being only in the scaling variable
which is x/t2/3 at the super-diffusive isotropic point. This result
is surprising, as anomalous diffusion is usually associated with
Levy processes and hence long (non-Gaussian) tails in the
profiles. Here it seems it all amounts to a nonlinear rescaling of
time. Theoretical explanation of this effect is urgent.

Entanglement entropy and simulation complexity. Finally, we
mention a numerical observation that explains why we can
simulate dynamics to such long times, and is an interesting
property on its own. We use a time-dependent density
matrix renormalization group method (tDMRG), see Methods.

The efficiency of tDMRG depends on the entanglement entropy,
that is, for pure state evolution on the Von Neumann entropy
S¼$ tr rA lnrA½ & of the reduced state rA¼ trA|CihC|, whereas
for mixed states evolution on an analogous operator space
entanglement entropy S#, (ref. 31) of a vectorised density operator
r. When starting with a typical product initial state both
entropies typically grow linearly with time, regardless of the
system being integrable or not32,33, causing exponentially fast
growth of complexity and with it a failure of these numerical
methods. In our case though, see Fig. 4, entropies grow much
slower, namely in a power-law fashion

S' tb; or S # ' tb; ð6Þ

with b being o1. The most efficient simulations have been
possible with density operators for small m where the exponent
b is typically between 0.3 and 0.5.

Discussion
Our numerical results can be interpreted as an evidence of normal
spin diffusion and spin Fick’s law in the easy-axis anisotropic
Heisenberg chain (for anisotropy D41), with spin density
satisfying the diffusion equation on large scales. Besides the case
D¼ 2 shown here, we provide additional data for D¼ 1.05, 1.1, 1.3,
1.5 demonstrating a clear convergence of the diffusive scaling
exponents a¼ 1/2 in all massive cases (Supplementary Note 1), and
data for massless cases D¼ 0, 0.5, 0.7, 0.9 which indicate
convergence to ballistic exponent a¼ 1 (Supplementary Note 2).
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Figure 2 | Scaling exponents of magnetization spreading. (a,b) Local exponent a(t) calculated as a numerical log-derivative d log Ds(t)/d log t for D¼ 1
(a) and D¼ 2 (b) (dashed lines indicate exponents 2/3 and 1/2, respectively, while dashed lines in the insets show best power-law fits to Ds(t)—red
curve), both for m¼p/1,800. (c) Conjecture for the dependence a(D) at high temperatures and small m. The inset shows the diffusion constant obtained
from Fick’s law for various values of D in the diffusive regime, converging to a finite value at large D (agreeing with ref. 28). (d) Dependence on m for D¼ 1
shows a small but significant change in the behaviour: for mE1 it is closer to a¼ 3/5 while for small m it becomes close to a¼ 2/3 (dashed). The blue
(circles) and red (crosses) symbols represent wave function and density operator evolutions respectively. We average over samples of 10–130 random
initial wave-functions for each blue data point. For intermediate m the error-bars (denoting the estimated s.d.) are larger since the simulation is less efficient
in that regime (Methods section).
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Preliminary evidence for super-diffusion with z = 3/2 from studies of:
boundary driven Lindblad [M. Žnidarič, PRL 106, 220601 (2011)],
classical limit (lattice Landau-Lifshifz) [TP and B. Žunkovič, PRL 111,
040602 (2013)]
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Kardar-Parisi-Zhang Physics in the Quantum Heisenberg Magnet
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Equilibrium spatiotemporal correlation functions are central to understanding weak nonequilibrium
physics. In certain local one-dimensional classical systems with three conservation laws they show
universal features. Namely, fluctuations around ballistically propagating sound modes can be described by
the celebrated Kardar-Parisi-Zhang (KPZ) universality class. Can such a universality class be found also in
quantum systems? By unambiguously demonstrating that the KPZ scaling function describes magneti-
zation dynamics in the SUð2Þ symmetric Heisenberg spin chain we show, for the first time, that this is so.
We achieve that by introducing new theoretical and numerical tools, and make a puzzling observation that
the conservation of energy does not seem to matter for the KPZ physics.

DOI: 10.1103/PhysRevLett.122.210602

Introduction.—Universality—where different systems
can be described by the same underlying mathematical
structure—is at the core of our understanding of nature. For
instance, the properties of any thermalizing system can be
described by the same equilibrium ensembles of statistical
physics. Out of equilibrium less is known in general, in a
way justifiably so, simply because the world of nonequili-
brium is much richer. One of the more famous universality
classes that can (among other) describe various nonequili-
brium phenomena [1] is that of the Kardar-Parisi-Zhang
(KPZ) equation. The KPZ equation was originally intro-
duced to describe stochastic growth of surfaces [2], and is a
diffusion equation with the simplest possible nonlinearity
(relevant at large scales) and an additional white noise
term (equivalently, the surface’s slope is described by the
stochastic Burgers equation). Besides describing surface
dynamics it can be found in various contexts, ranging from
exclusion processes to random matrix theory; for a review
see Ref. [3]. The KPZ equation itself harbors rich math-
ematical problems [4].
Nonequilibrium physics is one of the more propulsive

areas of today’s theoretical physics. Close to equilibrium
one can use Green-Kubo formulas and express nonequili-
brium properties in terms of equilibrium correlation func-
tions [5]. A downside to such an approach is that the
calculation of spatiotemporal correlation functions is often
very complicated. Any possible universality in their long-
time behavior would therefore be highly appreciated. For
classical fluids in one dimension such a picture has in fact
been put forward [6,7] in a form of nonlinear fluctuating
hydrodynamics [8], which describes (anomalous) fluctua-
tions around sound peaks due to nonlinearity in one-
dimensional systems that have 3 conservation laws
(momentum, energy and mass), and are in general non-
integrable. That fluctuations are indeed described by the

KPZ scaling function [9] has been verified in a number
of classical systems [10–14]. So far there has been no
observation of the KPZ universality class scaling function
in quantum systems.
In this Letter we observe the KPZ scaling functions in an

integrable quantum model that does not have any ballistic
component. Namely, we show with an unprecedented
accuracy (an order of magnitude larger than in simulations
of classical systems) that an infinite temperature spin-spin
correlation function in a paradigmatic SU(2) symmetric
quantum Heisenberg chain has a KPZ form. Such accuracy
is a result of two novelties: (i) using a linear response
formulation we show that one can calculate the equilibrium
correlation function as an expectation value in a particular
nonequilibrium state whose time evolution is easier to
calculate; (ii) we directly treat an ensemble evolution,
avoiding statistical averaging (as done in classical simu-
lations), and which is, even more importantly, structurally
stable. In addition, to discern the role played by conserved
quantities, we show that in an integrable trotterized Floquet
generalization [15] of the model, which does not conserve
the energy, the same KPZ scaling is observed. We note that
the KPZ scaling exponents have been observed in various
stochastic quantum settings, like random quantum circuits
[16,17] or noisy evolution [18].
The model.—In classical systems the KPZ scaling

function describes fluctuations around a sound mode,
whose width scales as ∼t1=z with a dynamical exponent
z ¼ 3

2. Therefore, to observe it one has to move to a
ballistically moving reference frame, which, if the velocity
is not known analytically, can introduce numerical inac-
curacies. We are therefore going to look for KPZ physics at
infinite temperature in the one-dimensional Heisenberg
spin-12 chain at zero magnetization (half-filling) where
the ballistic contribution is zero due to the spin-flip

PHYSICAL REVIEW LETTERS 122, 210602 (2019)

0031-9007=19=122(21)=210602(6) 210602-1 © 2019 American Physical Society

In the thermodynamic limit L → ∞ the second term
vanishes as there are no correlations across infinite dis-
tances, and using the cyclic property of the trace we get

hsz0ð0ÞszrðtÞi ¼ lim
μ→0

hszr−1ðtÞiμ − hszrðtÞiμ
2μ

: ð7Þ

This is our first main result. It shows that a weak domain
wall initial state can be seen as a trick that allows us to
calculate the infinite-temperature spin-spin correlation. We
next recall [8] why the left-hand side of Eq. (7) is in certain
classical systems described by the KPZ scaling function.
Kardar-Parisi-Zhang equation.—The KPZ stochastic

partial differential equation was initially suggested to
model the growth of surface hðr; tÞ through random
deposition [2]

∂th ¼ 1

2
λð∂rhÞ2 þ ν∂2

rhþ
ffiffiffi
Γ

p
ζ; ð8Þ

where ζðr; tÞ is a space-time uncorrelated noise.

Of particular interest to us will be the correlation function
Cðr; tÞ ¼ h½hðr; tÞ − hð0; 0Þ − th∂thi&2i—representing the
fluctuations of the height around the expected value—and
its second derivative 1

2 ∂2
rCðr; tÞ ¼ h∂rhð0; 0Þ∂rhðr; tÞi—

describing the slope correlations (here brackets denote noise
averaging). In terms of scaling functions gðφÞ and fðφÞ
one has

gðφÞ ¼ lim
t→∞

C(ð2λ2t2Γν−1Þ−1=3φ; t)
ð12 λtΓ

2ν−2Þ2=3
;

fðφÞ ¼ 1

4
g00ðφÞ ∼ ∂2

rCðr; tÞ: ð9Þ

These can be obtained from the exact solution of the
polynuclear growth model [9] (a model in the KPZ
universality class), and have been tabulated with high
precision in Ref. [26]. Nonlinear fluctuating hydrodynam-
ics predicts that the correlation function of a conserved
quantity, in our case hsz0ð0ÞszrðtÞi, should be given by the
so-called KPZ scaling function fðφÞ.

FIG. 2. Scaling functions and numerical data: the left column corresponds to the continuous-time model while the right corresponds to
the discrete-time model. We show data for the spin current density hjiμ and the discrete spin derivative Δz, defined as Δz ¼
−ðhszriμ − hszr−1iμÞ in the continuous-time model and Δz ¼ − 1

4 ðhs
z
rþ1iμ þ hszriμ − hszr−1iμ − hszr−2iμÞ in the discrete-time model. All

numerical data (yellow and red points) are appropriately scaled to the KPZ scaling functions, see Eqs. (10) and (11). The blue curves
represent the KPZ scaling functions while the green ones are the best-fitting Gaussian profiles. We note that relatively long times are
needed in order to observe the KPZ scaling, namely, t⪆50 for the continuous-time model and t⪆600 for the discrete-time model.
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Kardar-Parisi-Zhang equation: C(r, t) = 〈[h(r, t)− h(0, 0)− t〈∂th〉]2〉
random surface growth and scaling:
Non-Equilibrium

2

matrices) at site r 2 {�L
2 , . . . , L

2 �1}. Theoretical expla-
nation of the scaling exponent z = 3

2 is still lacking, but
consistent derivations within assumptions of generalized
hydrodynamics were recently given [21]. In particular, it
is possible to estimate the di↵usion constant [21–23] and
prove its divergence, i.e. z < 2 [24].

Here, in order to observe precise spatio-temporal pro-
files of spin and current densities, we will consider two
dynamical setings: continuous time evolution U t = e�iHt

generated by H =
PL/2�2

r=�L/2 hr,r+1 (where we set J = 1)

or discrete time evolution with one step propagator U =
UeUo, with Uo = e�i

P
r h2r�1,2r and Ue = e�i

P
r h2r,2r+1

(where we use J = ⇡
2 , and where one also observes the

superdi↵usive scaling z = 3
2 [25]). Both settings are char-

acterized by both a global SU(2) symmetry and integra-
bility.

In order to study transport we must derive the expres-
sions for the local spin current density operators for both
the continuous-time and discrete-time models. The for-
mer is the standard spin current in the Heisenberg model
jr = sx

rs
y
r+1 � sy

rsx
r+1 which fulfills the continuity equa-

tion
dsz

r

dt = jr�1 � jr. The current in the discrete-time
model turns out to be slightly more complicated, with
the operator being di↵erent on odd and even sites due
to the staggered nature of the propagator U . The two
currents densities satisfy a pair of continuity equations

U†M2rU � M2r = jo
2r�1 � jo

2r+1 ,

U†M2r�1U � M2r�1 = je
2r�2 � je

2r ,
(2)

where Mr = sz
r +sz

r+1. The simpler odd current can then
be seen to take the form

jo
2r�1 = 2 sin(J)j2r�1 �

1

2
sin2(J/2)(sz

2r � sz
2r�1) , (3)

whereas the even current is simply the odd current prop-
agated by half a time step je

2r = U †
e jo

2rUe and acts on 4
adjacent sites.

We begin by preparing our system in a weakly polar-
ized domain-wall mixed initial state [20]

⇢(t = 0) / ⇢µ =
⇣
eµsz

⌘⌦L/2

⌦
⇣
e�µsz

⌘⌦L/2

. (4)

An example of time evolution for both models is shown in
Fig. 1, using the scaling variable ⇠ = r

t1/z , z = 3
2 . While

this choice of the initial state provides a numerically sta-
ble and e�cient way to study spin transport [20], we
emphasize that for our purposes it provides us with an
e�cient way to study the infinite-temperature spin-spin
correlation function hsz

0s
z
r(t)i, where A(t) ⌘ U�tAU t and

h · i ⌘ 2�Ltr(·) denotes the infinite-temperature expecta-
tion value. We explain that in the following section.

Linear response.– We start by expanding the initial
state (4) to linear order in µ, evolving it in time, and
writing down the expectation value for a single spin,

hsz
r(t)iµ = �µ

X

r0

✓r0hsz
r(t)s

z
r0i + O(µ2) , (5)

FIG. 1. Collapse of spin profiles for the continuous-time (top)
and discrete-time (bottom) model in terms of the scaling pa-

rameter ⇠ = x/t2/3 shown for several times. The continuous-
time simulation was performed on a spin chain of length
L = 400 with bond dimension � = 400 and polarization
µ = 0.0017. The discrete-time simulation was performed with
L = 7200, � = 256 and µ = 0.0005. The same parameters are
used in other figures. In the discrete case there is an addi-
tional Floquet even-odd splitting whose size decays as t�1/3

(the inset).

where we introduced h · iµ = tr[(·)⇢µ]/tr⇢µ as the expec-
tation value in the weak domain-wall initial state (4) and
✓r ⌘ 1(�1) for r � 0(< 0). Accounting for the transla-
tional invariance of the infinite-temperature expectation
value we obtain

hsz
r�1(t)iµ � hsz

r(t)iµ ⇡ µhsz
r(t)

P
r0 ✓r0(sz

r0 � sz
r0+1)i

= 2µhsz
r(t)s

z
0i � 2µhsz

r(t)s
z
�L/2i. (6)

In the thermodynamic limit L ! 1 the second term van-
ishes as there are no correlations across infinite distances,
and using the cyclic property of the trace we get

hsz
0(0)sz

r(t)i = lim
µ!0

hsz
r�1(t)iµ � hsz

r(t)iµ
2µ

. (7)

This is our first main result. It shows that a weak domain
wall initial state can be seen as a trick that allows us to
calculate the infinite-temperature spin-spin correlation.
We next recall [8] why the LHS of Eq.(7) is in certain
classical systems described by the KPZ scaling function.

Kardar-Parisi-Zhang equation.– The KPZ
stochastic partial di↵erential equation was initially
suggested to model the growth of surface h(r, t) through
random deposition [2]

@th =
1

2
� (@rh)

2
+ ⌫@2

rh +
p
�⇣ , (8)

3

FIG. 2. Scaling functions and numerical data: the left column corresponds to the continuous-time model while the right
corresponds to the discrete-time model. We show data for the spin current density h j iµ and the discrete spin derivative
�z, defined as �z = �(hsz

riµ � hsz
r�1iµ) in the continuous-time model and �z = � 1

4
(hsz

r+1iµ + hsz
riµ � hsz

r�1iµ � hsz
r�2iµ) in

the discrete-time model. All numerical data (yellow and red points) are appropriately scaled to the KPZ scaling functions,
see Eq. (10) and Eq. (11). The blue curves represent the KPZ scaling functions while the green ones are the best fitting
Gaussian profiles. We note that relatively long times are needed in order to observe the KPZ scaling, namely t ' 50 for the
continuous-time model and t ' 600 for the discrete-time model.

where ⇣(r, t) is a space-time uncorrelated noise.
Of particular interest to us will be the correlation

function C(r, t) = h[h(r, t) � h(0, 0) � th@thi]2i – repre-
senting the fluctuations of the height around the ex-
pected value – and its second derivative 1

2@
2
rC(r, t) =

h@rh(0, 0)@rh(r, t)i – describing the slope correlations
(here brackets denote noise averaging). In terms of scal-
ing functions g(') and f(') one has

g(') = lim
t!1

C
�
(2�2t2�⌫�1)�1/3', t

�
�

1
2�t�2⌫�2

�2/3
,

f(') =
1

4
g00(') ⇠ @2

rC(r, t) .

(9)

These can be obtained from the exact solution of the
polynuclear growth model [9] (a model in the KPZ uni-
versality class), and have been tabulated with high pre-
cision in Ref. [26]. Nonlinear fluctuating hydrodynam-
ics predicts that the correlation function of a conserved
quantity, in our case hsz

0(0)sz
r(t)i, should be given by the

so-called KPZ scaling function f(').
Using Eq.(7) this correlation function is equal to the

magnetization di↵erence on consecutive sites in the state
⇢(t) / U t⇢µU�t (see Fig. 1). However, taking the dis-
crete derivative increases numerical errors, so alterna-
tively, one can also look at the scaling form of the current
j(r, t) = hjr(t)iµ. In a di↵usive process, the scaling forms
of both the current as well as of the magnetization di↵er-
ence are Gaussian. Relation between the two in a general
non-di↵usive situation can be derived from the continuity
equation.

Defining a shorthand notation z(r, t) = hsz
r(t)iµ, and

' = b⇠, we write an ansatz

@rz(r, t) =
aµ

t2/3
f

✓
br

t2/3

◆
, (10)

where we introduced two system-dependent parameters a
and b, and use continuum notation for the magnetization
di↵erence. Taking into account the continuity equation
@tz = �@rj, one may obtain the shape of the spin current
profile. Expressing everything in terms of g(') (using

Equilibrium high-T spin dynamics in Heisenberg model (z ≡ sz):
〈z(0, 0)z(r, t)〉 = limµ→∞ 1

2µ
(〈z(r − 1, t)〉 − 〈z(r, t)〉) ⇒ ∂rh↔ z

3

FIG. 2. Scaling functions and numerical data: the left column corresponds to the continuous-time model while the right
corresponds to the discrete-time model. We show data for the spin current density h j iµ and the discrete spin derivative
�z, defined as �z = �(hsz

riµ � hsz
r�1iµ) in the continuous-time model and �z = � 1

4
(hsz

r+1iµ + hsz
riµ � hsz

r�1iµ � hsz
r�2iµ) in

the discrete-time model. All numerical data (yellow and red points) are appropriately scaled to the KPZ scaling functions,
see Eq. (10) and Eq. (11). The blue curves represent the KPZ scaling functions while the green ones are the best fitting
Gaussian profiles. We note that relatively long times are needed in order to observe the KPZ scaling, namely t ' 50 for the
continuous-time model and t ' 600 for the discrete-time model.

where ⇣(r, t) is a space-time uncorrelated noise.
Of particular interest to us will be the correlation

function C(r, t) = h[h(r, t) � h(0, 0) � th@thi]2i – repre-
senting the fluctuations of the height around the ex-
pected value – and its second derivative 1

2@
2
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(here brackets denote noise averaging). In terms of scal-
ing functions g(') and f(') one has
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�
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1
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4
g00(') ⇠ @2
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(9)

These can be obtained from the exact solution of the
polynuclear growth model [9] (a model in the KPZ uni-
versality class), and have been tabulated with high pre-
cision in Ref. [26]. Nonlinear fluctuating hydrodynam-
ics predicts that the correlation function of a conserved
quantity, in our case hsz

0(0)sz
r(t)i, should be given by the

so-called KPZ scaling function f(').
Using Eq.(7) this correlation function is equal to the

magnetization di↵erence on consecutive sites in the state
⇢(t) / U t⇢µU�t (see Fig. 1). However, taking the dis-
crete derivative increases numerical errors, so alterna-
tively, one can also look at the scaling form of the current
j(r, t) = hjr(t)iµ. In a di↵usive process, the scaling forms
of both the current as well as of the magnetization di↵er-
ence are Gaussian. Relation between the two in a general
non-di↵usive situation can be derived from the continuity
equation.

Defining a shorthand notation z(r, t) = hsz
r(t)iµ, and

' = b⇠, we write an ansatz

@rz(r, t) =
aµ

t2/3
f

✓
br

t2/3

◆
, (10)

where we introduced two system-dependent parameters a
and b, and use continuum notation for the magnetization
di↵erence. Taking into account the continuity equation
@tz = �@rj, one may obtain the shape of the spin current
profile. Expressing everything in terms of g(') (using

4

FIG. 3. Plotting the ratio between the gradient of spin den-
sity and spin current density in scaled units, we can observe
that the numerical results for both models clearly do not obey
Fick’s law. Instead, they are well described by the prediction
from KPZ. Numerical data are plotted for maximum simula-
tions times (t = 200 for continuous and t = 3600 for discrete
time cases). The ratios are rescaled to 1 at ' = 0.

per-partes integration and Eq. (9)) we get

j(r, t) =
2aµ

3b2t1/3
h

✓
br

t2/3

◆

h(') =
g(') � 'g0(')

4
.

(11)

The form of j(r, t), i.e. the function h('), is therefore
uniquely determined by the form of @rz(r, t), i.e., the
KPZ function f(').

We employ extensive numerical simulations [27] us-
ing the time-evolving block decimation algorithm [28–
30] for matrix-product density operator in order to study
the time evolution of a domain-wall like initial state in
both the continuous and discrete time Heisenberg mod-
els. This allows us to compute the infinite-temperature
spin-spin correlations (7) in a numerically stable way
with manageable bond dimensions �. Fig. 2 shows the
results and the best-fitting KPZ profile for both the spin
and spin current. Due to higher numerical accuracy we
only fit the data for the current, obtaining a and b (11),
which automatically fixes the spin di↵erence profiles (10).
In order to avoid even-odd staggering in the discrete-time
model we take the di↵erence of two consecutive pairs of
spins, rather than a di↵erence of two spins, and appropri-
ately scale the continuity equation. For comparison we
also show best-fitting Gaussians. Because the KPZ scal-
ing functions f(') and h(') are rather close to Gaussians
for not too large arguments, one in fact needs at least
two decades of accuracy to be able to distinguish the
two. With our numerics we have accuracy over about
three decades in the continuous model and about four in
the discrete one. We can clearly confirm that the KPZ
scaling functions emerge at su�ciently long times.

Free parameters a and b are found to be a = b ⇡ 0.67,
conjectured to be 2

3J2/3 , for the continuous-time model.

FIG. 4. Dependence on bond dimension of the current pro-
files in a domain-wall state and for continuous (t = 200) and
discrete-time simulations (t = 3600). Results are stable to
increasing � and converge to the KPZ scaling functions. We
apply a moving average to the leftmost and rightmost 20% of
the data so that it is easier to see the decreasing truncation
error in the tails.

Similarly, for the discrete-time model we find a = b ⇡
0.43, data for other values of J are well described by the

formula a = b ⇡ 21/3

3| tan(J/2)2/3| .

Because the KPZ f(') and h(') are not Gaussian,
their ratio h/f ⌘ w(br/t2/3) which appears in a relation
j(r, t) = [2t1/3/(3b2)]w(br/t2/3) @rz(r, t) is not a con-
stant. Therefore, Fick’s law, even with a time-dependent
di↵usion constant [31], is violated (Fig. 3).

We also show the dependence of current profiles on
the bond dimension � used in simulations, Fig. 4. In
the discrete-time case we use slightly smaller �, however
the acquired times are larger (Fig. 2), as well as the sizes
(L = 7200 vs. L = 400). As a net result the wall-times of
discrete model simulations are about half as long as for
a continuous one despite about a decade better accuracy
(Fig. 4). We stress that in the best classical simulations
(hard-point gas [11]) slightly less than two decades of
agreement with KPZ are achieved. What distinguishes
our quantum simulations is that we directly work with
an ensemble, encoded in the many-body density matrix
⇢(t), so no averaging is needed. It is an interesting open
problem how to do such e�cient ensemble simulations for
classical many-body models, in particular since for con-
tinuous variables the local function spaces are infinitely
dimensional.

In the thermodynamic limit L → ∞ the second term
vanishes as there are no correlations across infinite dis-
tances, and using the cyclic property of the trace we get

hsz0ð0ÞszrðtÞi ¼ lim
μ→0

hszr−1ðtÞiμ − hszrðtÞiμ
2μ

: ð7Þ

This is our first main result. It shows that a weak domain
wall initial state can be seen as a trick that allows us to
calculate the infinite-temperature spin-spin correlation. We
next recall [8] why the left-hand side of Eq. (7) is in certain
classical systems described by the KPZ scaling function.
Kardar-Parisi-Zhang equation.—The KPZ stochastic

partial differential equation was initially suggested to
model the growth of surface hðr; tÞ through random
deposition [2]

∂th ¼ 1

2
λð∂rhÞ2 þ ν∂2

rhþ
ffiffiffi
Γ

p
ζ; ð8Þ

where ζðr; tÞ is a space-time uncorrelated noise.

Of particular interest to us will be the correlation function
Cðr; tÞ ¼ h½hðr; tÞ − hð0; 0Þ − th∂thi&2i—representing the
fluctuations of the height around the expected value—and
its second derivative 1

2 ∂2
rCðr; tÞ ¼ h∂rhð0; 0Þ∂rhðr; tÞi—

describing the slope correlations (here brackets denote noise
averaging). In terms of scaling functions gðφÞ and fðφÞ
one has

gðφÞ ¼ lim
t→∞

C(ð2λ2t2Γν−1Þ−1=3φ; t)
ð12 λtΓ

2ν−2Þ2=3
;

fðφÞ ¼ 1

4
g00ðφÞ ∼ ∂2

rCðr; tÞ: ð9Þ

These can be obtained from the exact solution of the
polynuclear growth model [9] (a model in the KPZ
universality class), and have been tabulated with high
precision in Ref. [26]. Nonlinear fluctuating hydrodynam-
ics predicts that the correlation function of a conserved
quantity, in our case hsz0ð0ÞszrðtÞi, should be given by the
so-called KPZ scaling function fðφÞ.

FIG. 2. Scaling functions and numerical data: the left column corresponds to the continuous-time model while the right corresponds to
the discrete-time model. We show data for the spin current density hjiμ and the discrete spin derivative Δz, defined as Δz ¼
−ðhszriμ − hszr−1iμÞ in the continuous-time model and Δz ¼ − 1

4 ðhs
z
rþ1iμ þ hszriμ − hszr−1iμ − hszr−2iμÞ in the discrete-time model. All

numerical data (yellow and red points) are appropriately scaled to the KPZ scaling functions, see Eqs. (10) and (11). The blue curves
represent the KPZ scaling functions while the green ones are the best-fitting Gaussian profiles. We note that relatively long times are
needed in order to observe the KPZ scaling, namely, t⪆50 for the continuous-time model and t⪆600 for the discrete-time model.
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From 2019, several works appeared discussing further evidence and/or
possible mechanisms for KPZ physics in Heisenberg spin chain and related
models:

A. Das, M. Kulkarni, H. Spohn and A. Dhar, PRE 100, 042116 (2019),
S. Gopalakrishnan and R.Vasseur, PRL 122, 127202 (2019),
J. De Nardis, M. Medenjak, C. Karrasch and E. Ilievski, PRL 123, 186601
(2019),
M. Dupont, J. E. Moore, PRB 101, 121106 (2020),
V. B. Bulchandani, Phys. Rev. B 101, 041411 (2020),
F. Weiner, P. Schmitteckert, S. Bera and F. Evers, PRB 101, 045115
(2020),
Ž. Krajnik, T. Prosen, JSP 179, 110 (2020),
E. Ilievski, J. De Nardis, S. Gopalakrishnan, R. Vasseur, B. Ware, PRX
11, 031023 (2021),
. . .
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Kinetic Theory of Spin Diffusion and Superdiffusion in XXZ Spin Chains
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We address the nature of spin transport in the integrable XXZ spin chain, focusing on the isotropic
Heisenberg limit. We calculate the diffusion constant using a kinetic picture based on generalized
hydrodynamics combined with Gaussian fluctuations: we find that it diverges, and show that a self-
consistent treatment of this divergence gives superdiffusion, with an effective time-dependent diffusion
constant that scales as DðtÞ ∼ t1=3. This exponent had previously been observed in large-scale numerical
simulations, but had not been theoretically explained. We briefly discuss XXZ models with easy-axis
anisotropy Δ > 1. Our method gives closed-form expressions for the diffusion constant D in the infinite-
temperature limit for all Δ > 1. We find thatD saturates at large anisotropy, and diverges as the Heisenberg
limit is approached, as D ∼ ðΔ − 1Þ−1=2.

DOI: 10.1103/PhysRevLett.122.127202

Integrable models play a central role in our under-
standing of quantum dynamics. These models not only
allow exact calculations of otherwise intractable aspects of
many-body dynamics, but also exhibit distinctive phenom-
ena, such as their failure to thermalize from generic initial
conditions [1,2]. Nonequilibrium dynamics, transport, and
entanglement in integrable and nearly integrable models
have been topics of considerable recent interest, from both
theoretical [3–15] and experimental [16–20] points of view.
There are two complementary ways of thinking about

one-dimensional quantum integrable systems: these sys-
tems have stable, ballistically propagating quasiparticles;
they also have a complete set of local and quasilocal
conserved charges [4–6,8], which can be related to the
moments of the quasiparticle distribution. The presence of
ballistic quasiparticles might suggest that transport of the
conserved charges should be ballistic, even at high temper-
ature; however, this is not always the case. In many
systems, such as the isotropic and easy-axis XXZ spin
chains, the Drude weight for certain charges (in this case,
magnetization) vanishes [21–25]. In these cases, the bal-
listic motion of quasiparticles (and thus of energy and
quantum information) coexists with sub-ballistic spin
transport. Depending on the parameters, spin transport
can be either diffusive or superdiffusive [24,26–28].
Direct calculations of transport in interacting integrable

models are challenging; however, the theory of generalized
hydrodynamics (GHD) [29,30] has emerged as a descrip-
tion of the long-wavelength, long-time dynamics of these
systems [29–41]. The main assumption of GHD is that the
system is locally in a generalized Gibbs ensemble, with
parameters that vary smoothly in space. This reduces the
problem of computing dynamics in integrable systems to

the considerably simpler one of computing thermodynam-
ics in these systems. GHD has been successfully used
to compute Drude weights in integrable models [32,34,
35,39,42], and was recently generalized to account for
Gaussian fluctuation effects [40,41], which give rise to
diffusive corrections [40,41,43–57] to ballistic quasiparti-
cle motion. However, these diffusive corrections suggest no
obvious mechanism for superdiffusion, which occurs in the
isotropic XXX spin chain [26,27].
The present work offers a self-consistent theory of

superdiffusion in the isotropic limit of the XXZ spin-12
chain. The general XXZ spin chain is described by the
Hamiltonian

H ¼
X

i

Sxi S
x
iþ1 þ Syi S

y
iþ1 þ ΔSziSziþ1: ð1Þ

We primarily consider the infinite temperature limit, and
work at half-filling. In this limit, transport coefficients are,
strictly speaking, zero; however, autocorrelation functions
remain well defined, and one can classify the high-temper-
ature limit of transport based on their asymptotics. In the
XXZ model, energy transport is purely ballistic regardless
of Δ, as the energy current is conserved under the
dynamics. Spin transport, however, depends much more
nontrivially on Δ [58]. In the easy-plane regime Δ < 1,
spin transport has a ballistic component, with a Drude
weight that varies nontrivially with Δ [4,32]. When Δ ≥ 1,
the spin Drude weight vanishes, so spin transport must be
sub-ballistic. In the easy-axis regime Δ > 1, spin transport
is believed to be diffusive [24,27,59,60]. Thus an unusual
high-temperature dynamical phase transition takes place in
the XXZ spin chain, between an easy-plane “phase” with a
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Anomalous finite-temperature transport has recently been observed in numerical studies of various
integrable models in one dimension; these models share the feature of being invariant under a continuous
non-Abelian global symmetry. This work offers a comprehensive group-theoretic account of this elusive
phenomenon. For an integrable quantum model with local interactions, invariant under a global non-
Abelian simple Lie group G, we find that finite-temperature transport of Noether charges associated with
symmetry G in thermal states that are invariant under G is universally superdiffusive and characterized by
the dynamical exponent z ¼ 3=2. This conclusion holds regardless of the Lie algebra symmetry, local
degrees of freedom (on-site representations), Lorentz invariance, or particular realization of microscopic
interactions: We accordingly dub it “superuniversal.” The anomalous transport behavior is attributed to
long-lived giant quasiparticles dressed by thermal fluctuations. We provide an algebraic viewpoint on the
corresponding dressing transformation and elucidate formal connections to fusion identities amongst the
quantum-group characters. We identify giant quasiparticles with nonlinear soliton modes of classical field
theories that describe low-energy excitations above ferromagnetic vacua. Our analysis of these field
theories also provides a complete classification of the low-energy (i.e., Goldstone-mode) spectra of
quantum isotropic ferromagnetic chains.

DOI: 10.1103/PhysRevX.11.031023 Subject Areas: Statistical Physics

I. INTRODUCTION

A complete characterization and classification of
dynamical properties of isolated interacting many-body
systems remains one of the central unsettled problems in
statistical mechanics. Especially in one-dimensional sys-
tems, a range of exotic dynamical phenomena have been
demonstrated, both theoretically and experimentally. Two
prominent examples are integrable and many-body local-
ized quantum systems [1–3], which feature extensively
many conserved quantities and therefore can persist in
nonthermal “generalized Gibbs states” that are measurably
different from the orthodox thermal ensemble [4–9].
Because these extensive conservation laws lead to non-
standard equilibrium states, and because hydrodynamics
begins with an assumption of local thermal equilibrium, it
follows that hydrodynamics is also modified for integrable

systems. Thus, instead of normal diffusion, nondisordered
integrable systems typically exhibit ballistic transport with
finite Drude weights [10,11], whereas in localized models,
transport is entirely absent [2].
Integrable systems feature coherent quasiparticle exci-

tations with an infinite lifetime [12,13] that propagate
through the system in a ballistic manner while scattering
elastically off one another. The same picture remains valid
in thermal ensembles at finite temperature, where one can
think of quasiparticles being “dressed” due to interactions
with a macroscopic thermal environment [14]. Thermal
fluctuations are responsible for screening, and thus con-
served charges carried by quasiparticles can be appreciably
different from the bare values. This effect is captured by the
versatile framework of generalized hydrodynamics (GHD)
[15,16]. Among other results, GHD has enabled the explicit
characterization of ballistic transport [17–20] and analytic
treatments of various other nonequilibrium protocols
[21–25]. Remarkably, despite the ballistic motion of
individual excitations, there are situations in which certain
integrable models do not exhibit ballistic transport on
macroscopic scales but instead display normal diffusion
or even anomalous diffusion; this happens specifically for a

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.
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z = 3/2: universal prediction based on kinematics of giant quasiparticles
within generalised hydrodynamics framework
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Experiments (cold atoms):
D. Wei, A. Rubio-Abadal, B. Ye, F. Machado, J. Kemp, K. Srakaew,
S. Hollerith, J. Rui, S. Gopalakrishnan, N. Yao, I. Bloch, J. Zeiher,
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FIG. 1. Hydrodynamic transport in Heisenberg chains and schematic of the experimental system. (A) Dy-
namical exponents for finite-temperature Heisenberg chains. Whereas integrable systems typically display ballistic transport
(magnetized chains, � > 0), non-integrable systems are generically di↵usive (2D Heisenberg model, J? > 0). For unmagnetized
Heisenberg chains, transport is expected to fall into the KPZ universality class with a superdi↵usive exponent z = 3/2. (Inset)
By measuring polarization transfer P (t) across a domain wall, we directly observe these transport regimes: superdi↵usion in the
unmagnetized case (green), ballistic transport at finite net magnetization (blue), and di↵usion in 2D (orange). Exponents are

extracted by fitting P (t) / t1/z; for the ballistic case we additionally fit a vertical intercept to account for transient initial-time
dynamics. Error bars denote the standard deviation (s.d.) of the fit. (B) In each experimental run, we measure the spin states
of a Heisenberg chain (top) by removing one spin species (center) and imaging the atomic site occupation (bottom). (C) The
Heisenberg chains are realized in a 2D atomic Mott insulator (analysis region depicted) with controllable inter-chain coupling.
Our setup allows us to prepare domain walls with high purity ⌘ (left, center column) and low purity ⌘ (right). We measure the
time evolution of both |"i (top) and |#i (center, bottom row) atoms to extract the polarization transfer.

model with on-site interaction U and tunnel coupling t̃.
At unit filling and in the limit of strong interactions,
the direct tunneling between lattice sites is suppressed
and spin dynamics occur via second-order spin-exchange.
The system can be mapped to the spin-1/2 XXZ model
for |"i and |#i [35, 36], and, in one dimension (1D), is
described by the Hamiltonian

Ĥ = �J
X

j

⇣
Ŝx

j Ŝx
j+1 + Ŝy

j Ŝy
j+1 + �Ŝz

j Ŝz
j+1

⌘
, (1)

where � quantifies the interaction anisotropy and J =
4 t̃2/U characterizes the spin-exchange coupling. In our
system, the atomic scattering properties yield � ⇡ 1 and
the system maps to the isotropic ferromagnetic Heisen-
berg model [37].

We began our experiment by loading a spin-polarized
2D degenerate gas of approximately 2000 atoms into a
square optical lattice with a spacing of a = 532 nm. We
realized a homogeneous box potential over 50 ⇥ 22 sites
by additionally projecting light at a wavelength of 670 nm
with a digital micromirror device (DMD), preparing a
Mott insulator with a filling of n0 = 0.93(1) in this box
(see details in [37]). Local spin control was realized using
light at a wavelength of 787 nm on the DMD [38] to apply
a site-resolved di↵erential light shift between |"i and |#i;
subsequent microwave driving allows for local flips of the
spatially addressed spins.

Such quantum control enabled us to prepare spin do-
main walls [14, 15, 39, 40] by spatially addressing half the
system. Subsequently, we prepared high-entropy states

by globally rotating the spins away from the Sz-axis
using a resonant microwave pulse and then locally de-
phasing them by projecting a site-to-site random spin-
dependent potential, which we modified from shot to
shot [37] (Fig. 1C). More precisely, our experiments fo-
cused on tracking spin dynamics starting from a class of
initial states comprising a spin domain wall with mag-
netization di↵erence 2⌘ in the middle of the spin chain:
i.e., one half of the system has magnetization ⌘ and the
other half of the system has magnetization �⌘. In the
infinite-temperature limit, ⌘ ! 0, the relaxation of such
states yields linear response transport coe�cients, as the
derivative of the spin profile is precisely the dynamical
spin structure factor [14, 15].

In order to probe 1D spin dynamics in our system,
we rapidly quenched the lattice depth along 1D tubes
comprising 50 sites, which suddenly increased the spin-
exchange coupling from zero to J/~ = 64(1) s�1. After
tracking the spin dynamics for up to ⇠ 45 spin-exchange
times ⌧ = ~/J , we removed one spin component and mea-
sured the remaining occupation via fluorescence imaging
(Fig. 1B).

Superdi↵usive spin transport

To explore the nature of anomalous spin transport in
the 1D Heisenberg model, we initialize the spins in a
high-entropy domain-wall state with ⌘ = 0.22. We char-
acterize the subsequent spin transport by measuring the
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Experiments (solid state, neutron scattering):
A. Scheie, N. E. Sherman, M. Dupont, S. E. Nagler, M. B. Stone,
G. E. Granroth, J. E. Moore, D. A. Tennant, Nature Phys. (2021)
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Abstract

We introduce a class of integrable dynamical systems of interacting classical matrix-
valued fields propagating on a discrete space-time lattice, realized as many-body circuits
built from elementary symplectic two-body maps. The models provide an efficient inte-
grable Trotterization of non-relativistic�-models with complex Grassmannian manifolds
as target spaces, including, as special cases, the higher-rank analogues of the Landau–
Lifshitz field theory on complex projective spaces. As an application, we study transport
of Noether charges in canonical local equilibrium states. We find a clear signature of
superdiffusive behavior in the Kardar–Parisi–Zhang universality class, irrespectively of
the chosen underlying global unitary symmetry group and the quotient structure of the
compact phase space, providing a strong indication of superuniversal physics.
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Two-matrix map

Consider a pair of complex matrices M1,M2 ∈ End(CN ), a formal
parameter τ , and define a map over End(CN )× End(CN ):

(M ′1,M
′
2) = Φτ (M1,M2)

via

M ′1 = (M1 +M2 + iτ1)M2 (M1 +M2 + iτ1)−1,

M ′2 = (M1 +M2 + iτ1)M1 (M1 +M2 + iτ1)−1.
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Two-matrix map

Consider a pair of complex matrices M1,M2 ∈ End(CN ), a formal
parameter τ , and define a map over End(CN )× End(CN ):

(M ′1,M
′
2) = Φτ (M1,M2)

via

M ′1 = (M1 +M2 + iτ1)M2 (M1 +M2 + iτ1)−1,

M ′2 = (M1 +M2 + iτ1)M1 (M1 +M2 + iτ1)−1.

The map has several cute properties:
1 Φ−1

τ = Φ−τ
2 M2

j = 1 ⇔ (M ′j)
2 = 1, j = 1, 2

3 Mj Hermitian ⇔ M ′j Hermitian, j = 1, 2, for τ ∈ R
4 M1 +M2 = M ′1 +M ′2
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Phase-space

A convenient local phase space for the map is the Complex Grassmannian

M1 ≡ GrC(k,N) :=
{
M ∈ GL(N ;C);M† = M,M2 = 1,TrM = N − 2k

}
.

which can be naturally parametrised via

M = gΣ(k,N) g†, g ∈ SU(N)

where:
Σ(k,N) = diag(−1,−1, . . . ,−1︸ ︷︷ ︸

k

, 1, . . . , 1︸ ︷︷ ︸
N−k

).
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Phase-space

A convenient local phase space for the map is the Complex Grassmannian

M1 ≡ GrC(k,N) :=
{
M ∈ GL(N ;C);M† = M,M2 = 1,TrM = N − 2k

}
.

which can be naturally parametrised via

M = gΣ(k,N) g†, g ∈ SU(N)

where:
Σ(k,N) = diag(−1,−1, . . . ,−1︸ ︷︷ ︸

k

, 1, . . . , 1︸ ︷︷ ︸
N−k

).

Hence:

M1 ≡ GrC(k,N) ' U(N)

U(k)× U(N − k)
∼= SU(N)

S(U(k)× U(N − k))
.

dimM1 = 2(N − k)k.

Tomaž Prosen Superuniversality of superdiffusion



Many-body matrix dynamical system

Space-time discrete dynamics x ∈ ZL, t ∈ Z:

(M2t+2
2`−1 ,M

2t+2
2` ) = Φτ (M2t+1

2`−1 ,M
2t+1
2` ), (M2t+1

2` ,M2t+1
2`+1 ) = Φτ (M2t

2` ,M
2t
2`+1).

SciPost Phys. 9, 038 (2020)
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Figure 2: Fabric of discrete space-time: the physical space-time lattice, comprising
matrix degrees of freedom M t

`
(blue circles), coexisting with the light-cone square lat-

tice depicted by a tilted checkerboard. A two-body symplectic map �⌧ (red square),
which is attached to the middle of each tile, provides the time-propagator for every
pair of adjacent physical variables.

2.2 Dynamical map

The solution to the zero-curvature condition (5), supplemented with nonlinear constraint
(3), admits a unique solution of ‘difference form’ as one-parameter family of symplectic maps,
�⌧ : M1 ⇥M1!M1 ⇥M1,

�
M 01, M 02
�
= �⌧(M1, M2), ⌧ := µ�� 2 R, (7)

representing diffeomorphisms on the product of two manifolds M1 of involutory matrices. An
explicit realization of �⌧ is an adjoint mapping

M 01 = AdFS⌧(M2), M 02 = AdFS⌧(M1), (8)

generated by an invertible1 matrix

S⌧ ⌘ M1 +M2 + i⌧1, (9)

where the ‘twist field’ F can be any constant invertible GL(N ;C) matrix. For the proof with
a derivation we refer the reader to Appendix A. Note that the map is well defined even for
arbitrary complex ⌧, while we require ⌧ to be real in this paper in order to allow for its inter-
pretation as a Trotter time step of a Hamiltonian flow.

The above mapping plays a role of the two-site time-propagator (with time-step ⌧) which
provides the basic building block of the many-body symplectic circuit (shown in Figure 2)
which, moreover, manifestly preserves the non-linear constraint (3). The above construction
is arguably the simplest integrable many-body dynamical system of non-commuting variables
in discrete space-time.

1Non-degeneracy of S⌧ for |⌧| > 0 follows from showing Det(S⌧)Det(S†
⌧
) > 0, which is a consequence of her-

miticity of M1,2, commutativity [M1M2, M2M1] = 0, kM1,2k2 = 1, and sub-multiplicativity of the operator norm.

6
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Many-body phase-spaceML =M×L1 and one time-step many-body map:

Φfull
τ :ML →ML

defined via brick-work functional circuit:

Φfull
τ = Φeven

τ ◦ Φodd
τ ,

where
Φ(j)
τ = I ⊗ · · · ⊗ I︸ ︷︷ ︸

j−1

⊗Φτ ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
L−j−1

,

Φodd
τ =

L/2∏
`=1

Φ(2`−1)
τ , Φeven

τ =

L/2∏
`=1

Φ(2`)
τ .
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Discrete zero-curvature formulation of dynamics and integrability

Minimal set of assumptions:
1 Symmetric parallel transport L+(λ,M) ≡ L−(λ,M) =: L(λ,M)

2 Linearity of Lax operator L(λ,M) = λ1 +M .
3 Nonlinear constraint M2 = 1. SciPost Phys. 9, 038 (2020)

t

`

M1 M2

M 01 M 02

+

�

�

+

�

+

+

�

�⌧

L(�)(µ; M1) L(+)(�; M2)

L(+)(�; M 01) L(�)(µ; M 02)

Figure 1: Elementary plaquette of the discrete light-cone lattice: matrix-valued clas-
sical fields (blue circles), which belong to a certain manifold, are attached to vertices
of the discrete space-time lattice. Primed variables M 01,2 pertain to M1,2 time-shifted
by one unit by application of propagator �⌧. Yellow circles implement local twists
of either positive or negative orientation represented by conjugations with constant
invertible matrices F1/2 and F�1/2, respectively.

Obtaining and classifying all physically admissible solutions to Eq. (2) is likely a difficult
task and we shall not undertake it in this work. With a more modest goal in mind, we will
attempt to find first the simplest solutions by making the following restrictions:

1. We set both light-cone Lax operators to be equal, L(+) ⌘ L(�).

2. Lax matrix L(�; M) is assumed to be a linear function of the spectral parameter �.

3. Lax matrix L(�; M) is assumed to have a linear dependence on the matrix variable M .

We shall interpret a local physical variable M as a classical matrix field which takes values
in GL(N ;C) or a submanifold thereof. The third requirement can then be naturally satisfied
(without loss of generality) by imposing the non-linear constraint

M2 = 1. (3)

We make the following ansatz for the Lax matrix complying with (1.-3.),

L(±)(�; M) �! L(�; M) = �1+ i M , (4)

and proceed to look for the solutions of the discrete zero-curvature condition of the form

F L(�; M2)L(µ; M1) = L(µ; M 02)L(�; M 01)F. (5)

It remarkably turns out that this matrix equation admits a unique non-trivial solution of the
difference type, i.e. that there exist a map (M1, M2) 7! (M 01, M 02) depending solely on the
difference of the two spectral parameters µ��. As subsequently demonstrated, the difference
condition naturally implies a dynamical conservation law

M 01 +M 02 = F(M1 +M2)F
�1 ⌘ AdF (M1 +M2), (6)

which in the absence of twist (F = 1) implies a global conservation law
P
` M t

`
= const when

extended to the space-time lattice, see Figure 2.

5

Assumptions (1-3) imply that a discrete zero-curvature condition

F 1/2L(+)(λ;M2)L(−)(µ;M1)F−1/2 = F−1/2L(−)(µ;M ′2)L(+)(λ;M ′1)F 1/2

is equivalent to our two-matrix map, generalised by a twist F ∈ GL(N):

M ′1 = AdFSτ (M2), M ′2 = AdFSτ (M1), Sτ ≡M1 +M2 + iτ 1.
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Poisson structure and invariant measure

1 There is a natural Poisson bracket onM1:{
M ⊗, M

}
= − i

2

[
Π,M ⊗ 1N − 1N ⊗M

]
, Π(a⊗ b) ≡ b⊗ a,

extending toML by {M`
⊗, M`′} = δ`,`′{M`

⊗, M`}.
2 There is a natural maximum entropy measure overM1, and overML

by extension, which in suitable affine coordinates zj , z̄j reads:

dΩ(M) =
1

V
n∏
j=1

dzjdz̄j , n = k(N − k), dimM1 = 2n.
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Poisson structure and invariant measure

1 There is a natural Poisson bracket onM1:{
M ⊗, M

}
= − i

2

[
Π,M ⊗ 1N − 1N ⊗M

]
, Π(a⊗ b) ≡ b⊗ a,

extending toML by {M`
⊗, M`′} = δ`,`′{M`

⊗, M`}.
2 There is a natural maximum entropy measure overM1, and overML

by extension, which in suitable affine coordinates zj , z̄j reads:

dΩ(M) =
1

V
n∏
j=1

dzjdz̄j , n = k(N − k), dimM1 = 2n.

The following can be straightorwardly shown:
1 The matrix map Φτ is symplectic overM2, hence Φfull defines

symplectic dynamics overML, i.e. the map preserves the above
Poisson bracket.

2 The measure Ω×L is invariant under the map Φfull.
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Monodromy matrix and Transfer map

Claim: Dynamical system (Φfull,ML,Ω
×L) is completely integrable.
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Monodromy matrix and Transfer map

Claim: Dynamical system (Φfull,ML,Ω
×L) is completely integrable.

Proof: Define the monodromy matrix Mτ : C×ML → End(CN ):

Mτ (λ|{M`}) = L(λ;ML)L(λ+ τ ;ML−1) · · ·L(λ;M2)L(λ+ τ ;M1).

and consequently, the transfer map Tτ : C×ML → C:

Tτ (λ|{M`}) = TrMτ

(
λ|{M`}

)
.
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Monodromy matrix and Transfer map

Claim: Dynamical system (Φfull,ML,Ω
×L) is completely integrable.

Proof: Define the monodromy matrix Mτ : C×ML → End(CN ):

Mτ (λ|{M`}) = L(λ;ML)L(λ+ τ ;ML−1) · · ·L(λ;M2)L(λ+ τ ;M1).

and consequently, the transfer map Tτ : C×ML → C:

Tτ (λ|{M`}) = TrMτ

(
λ|{M`}

)
.

Directly telescoping the discrete zero curvature condition, and using
definition of the Poisson bracket, we have:

Tτ (λ) ◦ Φfull
τ = Tτ (λ),{

Tτ (λ|{M`}), Tτ (λ′|{M`})
}

= 0, ∀ λ, λ′ ∈ C.

Tomaž Prosen Superuniversality of superdiffusion



Monodromy matrix and Transfer map

Claim: Dynamical system (Φfull,ML,Ω
×L) is completely integrable.

Proof: Define the monodromy matrix Mτ : C×ML → End(CN ):

Mτ (λ|{M`}) = L(λ;ML)L(λ+ τ ;ML−1) · · ·L(λ;M2)L(λ+ τ ;M1).

and consequently, the transfer map Tτ : C×ML → C:

Tτ (λ|{M`}) = TrMτ

(
λ|{M`}

)
.

Directly telescoping the discrete zero curvature condition, and using
definition of the Poisson bracket, we have:

Tτ (λ) ◦ Φfull
τ = Tτ (λ),{

Tτ (λ|{M`}), Tτ (λ′|{M`})
}

= 0, ∀ λ, λ′ ∈ C.

Tτ (λ) generates an extensive set of independent constants of motions. For
rank-1 Grassmannians (k = 1),

(d/dλ)m log Tτ (λ)|
λ∈
{
±i,±i−τ

}
are local conservation laws.
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Continuous time and continuous space-time limits

Writing F = exp(−iτB/2) and letting the limit τ → 0, we obtain

dM`

dt
=
{
M`, Hlattice

}
= −i

[
M`, (M`−1 +M`)

−1 + (M` +M`+1)−1 +B
]
,

with

Hlattice =

L∑
`=1

(
Tr
(
M`B

)
− Re Tr log(M` +M`+1)

)
.

Tomaž Prosen Superuniversality of superdiffusion



Continuous time and continuous space-time limits

Writing F = exp(−iτB/2) and letting the limit τ → 0, we obtain

dM`

dt
=
{
M`, Hlattice

}
= −i

[
M`, (M`−1 +M`)

−1 + (M` +M`+1)−1 +B
]
,

with

Hlattice =

L∑
`=1

(
Tr
(
M`B

)
− Re Tr log(M` +M`+1)

)
.

Further, introducing a matrix field M`(t)→M(x = `∆, t) with
B → (∆2/2)B and letting the lattice spacing ∆→ 0, we obtain a
Hamiltonian field theory:

∂tM = {M(x, t),H} =
1

2i

[
M,∂2

xM
]

+ i[B,M ]

with
H =

∫
dx

[
1

4
Tr
(
∂xM

)2
+ Tr(M B)

]
.

Generalised (Grassmannian/SU(N)) (lattice) Landau-Lifshitz models!
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The simplest nontrivial example (N = 2, k = 1)

[Krajnik & P, J. Stat. Phys. 2020]

M` = ~S` · ~σ, ~S` · ~S` = 1,

Φτ (~S1, ~S2) =
1

τ2 + %2

(
%2 ~S1 + τ2 ~S2 + τ ~S1 × ~S2, %

2 ~S2 + τ2 ~S1 + τ ~S2 × ~S1

)
,

where %2 ≡ (1 + ~S1 · ~S2). In the continuous time limit τ → 0

Hlattice = HLLL = −
L∑
`=1

log(1 + ~S` · ~S`+1).
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Transport of Noether charges — Numerics

Define charge density qa` (t) ≡ Tr(XaM t
` ), and the corresponding correlator

Cqa(`, t) = 〈qa` (t) qa0 (0)〉 − 〈qa` (0)〉〈qa0 (0)〉
where 〈•〉 defines expectation w.r.t. invariant (maximum entropy) state Ω.

SciPost Phys. 9, 038 (2020)

(Heisenberg) magnet (with the spin-field belonging to the coset G/H = S2) which uncovered
superdiffusive transport of the KPZ universality class, both in the quantum and classical set-
ting [24, 66–69, 76, 77]. The aim of the subsequent analysis is to systematically analyze the
role of isometry and isotropy groups G = SU(N) and H = S(U(k)⇥U(N�k)), respectively. We
shall also consider a distinct case of symplectic symmetry with G = USp(2N) and H = U(N).

Figure 5: Space-time profiles of the charge autocorrelation function C (`, t)
(shown the absolute value in logarithmic scale) for various local variables
M 2M1 = GrC(k, N): (a) (k, N) = (1, 2), (b) (k, N) = (1, 3), (c) (k, N) = (1,4),
(d) (k, N) = (2,4), (e) (k, N) = (1, 5) and (f) (k, N) = (2, 5). The data shown for
parameters ⌧= 1, Ns = 105 and L = 210.

The Noether charge represents a G-valued dynamical observable whose local densities are
provided by the momentum map

fX (M
t
` ) = Tr(X M t

` ). (108)

We will subsequently use notation qa
`
(t)⌘ fX a(M t

`
) for components of the Noether charge.

Exact computation of time-dependent correlation functions in equilibrium states lies be-
yond the capabilities of available analytic techniques. We thus have to fully rely on numerical
simulations. The main object of study in our simulations are connected spatio-temporal auto-
correlation functions of charge densities,

Cqa(`, t) = hqa
` (t)q

a
0(0)i � hqa

` (0)ihqa
0(0)i. (109)

Presently, the ‘equilibrium expectation value’ h·i pertains to averaging with respect to a uni-
form Liouville measure on ML . The latter is an analogue of the canonical Gibbs state at
‘infinite temperature’ and is invariant under unit time and space shifts t ! t+1 and `! `+1,
respectively. Indeed, since G acts transitively on GrC(k, N), the G-invariant measure on Grass-
mannian manifolds is naturally inherited from the invariant (Haar) measure on G. In practice

23
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Figure 6: Algebraic dynamical exponents ↵ = 1/z characterizing the asymptotic de-
cay of correlators C (0, t) ⇠ |t|�↵ (for the corresponding datasets shown in Fig. 5)
obtained by least square fit.

one can therefore first sample uniformly over the group G (see e.g. [110]) and then generate
the invariant distribution on GrC(k, N) through the mapping M = g⌃(k,N) g†, see Eq. (16).

We have numerically computed the dynamical correlator defined in Eq. (109) using the
following scheme. First, we generated Ns initial matrix ensembles E ⌘ {M t=0

`
}Ns
↵=1 by drawing

each sample set from the Liouville probability density⇢(k,N). Next, we computed the connected
longitudinal dynamical correlators with the following prescription

bCqa(x , t) =
1
Ns

X
E

2
(tmax � t + 1)N

tmax�tX
t 0=0

L/2X
`0=1

qa
`+2`0(t + 2t 0)qa

2`0(2t 0)� hqai2, (110)

which can be efficiently performed using the convolution theorem. The maximal simulation
time tmax can be adjusted so as to eliminate any spurious effect due to periodic boundary
conditions.12 To smear out the even-odd effect of staggering (see Figure 2), it is better to
compute the autocorrelation function of the Noether charges by averaging over adjacent pairs
of variables, ` := 1

2(q`+q`+1). The corresponding ‘smoothened’ correlation function is given
by

C (`, t) = h `(t) 0(0)i � h i2 =
1
4
bC(`� 1,2t) +

1
2
bC(`, 2t) +

1
4
bC(`+ 1, 2t). (111)

Lastly, by virtue of the global G-invariance we are allowed to average over all the components
a = 1,2, . . . , dimg.

3.1 Uniform equilibrium states

In Figure 5 we display the time-dependent correlation functions (109) for the few smallest di-
mensions N 2 {2, 3, 4,5} and all inequivalent signature specifications
(i.e. k = 1,2, . . . bN/2c). To study transport, twist fields must be set to identity, F = 1.

Assuming an algebraic decay at large times,

C (`, t)⇠ t�1/z g
�
(�B t)�1/z`
�
, (112)

12Despite an extra sum over t 0 in Eq. (110), there is no additional time averaging or any assumption of ergodicity
involved; the purpose of this prescription is to extract the maximal amount of statistics from the data.
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Figure 7: Convergence to the stationary cross sections of the scaled dynamical struc-
ture factors eC (⇠, t), fitted with the KPZ universal function gPS (black dashed curve),
for the corresponding datasets shown in Fig. 5. In comparison, the red dashed lines
display the best fit with a Gaussian profile (red dashed curve), showing systematic
deviations in the tails.

we first extract the dynamical exponent z from the numerical data. We find, uniformly for
all the instances with k  N/2 and N = 2, . . . , 5, excellent agreement with the Kardar–Parisi–
Zhang superdiffusive universal algebraic exponent zKPZ = 3/2, cf. Figure 6.

To further corroborate the presence of KPZ physics, we proceed with the extraction of the
scaled dynamical structure factor

eC (⇠, t) = t1/zC (`, t), ⇠ := ` t�1/z . (113)

In Figure 7 we display the stationary cross sections which are expected to collapse onto a
universal scaling function gPS tabulated in [111],

lim
t!1
eC(⇠, t) = A gPS

�
�
�1/z
B ⇠
�
, (114)

where �B 2 R is the Burger’s field coupling constant and A is the amplitude. Agreement with
the universal KPZ profile is very solid and there are clearly visible systematic deviations from
the Gaussian form which is characteristic of normal diffusion, see Figure 7. The non-Gaussian
behaviour of the scaling function gPS is most pronounced in the tails, i.e. at large values of
the scaling variable ⇠. The extracted numerical values of constants �B and A are reported in
Table 1.
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Figure 9: Effect of an applied magnetic field F⌧ = exp (�i⌧ (h/2)
P

a naX a) (cf.
Eq. (115)) on the correlation function of the Noether charges perpendicular to the
polarization direction n, shown for (a) N = 2, h = 10�3, (b) N = 2, h = 10�2, (c)
N = 3, h= 10�2 (with parameters Ns = 103, and L = 210).

(N , k) �B ⇥ 102 A f ⇥ 102 A i ⇥ 102

(2, 1) 8.41 8.29 8.38
(3, 1) 7.45 3.99 3.85
(4, 1) 6.33 2.27 2.14
(4, 2) 8.44 3.33 3.14
(5, 1) 5.42 1.44 1.33
(5, 2) 8.13 2.47 2.30

L(2) 9.18 3.43 3.31

Table 1: Numerical values of the Burger’s coupling constant �B (profile width) and
amplitude (height) A, characterizing stationary KPZ profiles computed for several
lowest dimensions N and ranks k. Parameters (�B, A f ) were obtained by fitting the
scaling function (114). Amplitudes A i were read off from the horizontal axis inter-
cepts of the equal-space correlator C(0, t) shown in Figure 6. The last line pertains
to the unitary symplectic case (see Figure 8).

Such a staggered structure is still compatible with integrability of the many-body dynamics.
This is a corollary of the fact that �⌧ acts as a conjugation in G⇥G which preserves the the total
signature by swapping the signature of two adjacent incidence matrices M and M 0, allowing to
‘scatter’ degrees of freedom from different adjoint orbits. As a consequence, the total signatureP
`⌃
(k`,N) is conserved under time evolution.

Staggered phase space. As an illustration of the above construction we consider a special
case of a staggered phase space with an alternating sequence of inequivalent phase spaces of
rank k = 1 and k0 = 2, specializing to the lowest-dimensional instance N = 4. As shown in
Figure 10, staggering induces a chiral structure in the problem causing an asymmetric spread-
ing of correlations. The dynamical correlations of Noether charges experience a linear drift,
combined with superdiffusive spreading with a dynamical exponent indistinguishable from
zKPZ = 3/2. This time, however, stationary profiles do not appear to converge towards the
KPZ scaling function. In fact, we find an asymmetric profile with discernible deviations in the
left tail which seem unrelated to finite-time effects.

Owing to an intrinsic chiral structure of this model, we have also tried a two-sided fit by
fitting the KPZ scaling function for each chiral component (left and right movers) separately.
Doing this however did not appreciably improve upon the fit in Figure 10. We postpone a more
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Absence of Normal Fluctuations in an Integrable Magnet
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We investigate dynamical fluctuations of transferred magnetization in the one-dimensional lattice
Landau-Lifshitz magnet with uniaxial anisotropy, representing an emblematic model of interacting spins.
We demonstrate that the structure of fluctuations in thermal equilibrium depends radically on the
characteristic dynamical scale. In the ballistic regime, typical fluctuations are found to follow a normal
distribution and scaled cumulants are finite. In stark contrast, on the diffusive and superdiffusive timescales,
relevant, respectively, for the easy-axis and isotropic magnet at vanishing total magnetization, typical
fluctuations are no longer Gaussian and, remarkably, scaled cumulants are divergent. The observed
anomalous features disappear upon breaking integrability, suggesting that the absence of normal
fluctuations is intimately tied to the presence of soliton modes. In a nonequilibrium setting of the
isotropic magnet with weakly polarized step-profile initial state we find a slow drift of dynamical exponent
from the superdiffusive towards the diffusive value.

DOI: 10.1103/PhysRevLett.128.090604

Introduction.—Explaining how phenomenological laws
of physics emerge on macroscopic scales from reversible
microscopic dynamics underneath presents a formidable
task. The challenge only grows in many-body interacting
systems, both in and out of equilibrium, where analytic
results without resorting to assumptions or uncontrolled
approximations are rarely available. This explains, at least
in part, the perpetual fascination with exactly solvable
models and stimulates our quest for nontrivial exact results.
It has long been known that one-dimensional systems

occupy a very special place in this regard, hosting a wide
range of unorthodox phenomena such as lack of conven-
tional thermalization [1–6], anomalous transport behavior
[7–9], and unconventional entanglement properties [10,11].
Integrable models defy ordinary hydrodynamics [12–16]
due to ballistically propagating quasiparticles stabilized by
infinitely many conservation laws. This readily explains
why many of their dynamical properties are markedly
different from generic (i.e., ergodic) systems, such as
nonzero finite-temperature Drude weights [17–22] or
superdiffusive spin transport in models with non-Abelian
symmetries that has sparked great theoretical interest both
in quantum [23–32] and classical [24,33–35] integrable
models; see Ref. [9] for a review. Understanding these
aspects goes beyond just theoretical interest. Experimental
techniques with cold atoms have now finally advanced to the
point to enable the fabrication of various low-dimensional
paradigms [36–43], thereby offering a great opportunity to
directly probe many different facets of nonequilibrium
phenomena.
A more refined information about dynamical processes,

extending beyond hydrodynamics, can be inferred by
inspecting the structure of fluctuating macroscopic

quantities. In this respect, large deviation (LD) theory
[44–46] has cemented itself as a versatile theoretical
apparatus designed to quantify the probability of rare
events. It is quite remarkable that in certain scenarios
the large deviation rate function can be deduced analyti-
cally, including the Levitov-Lesovik formula [47,48], free
fermionic systems [49,50] and field theories [51,52], non-
interacting [53,54] and interacting [55,56] systems with
dissipative boundary driving, conformal field theories
[57,58], in conjunction with a body of exact results from
the domain of classical stochastic gases [59–63]. While in
classical diffusive systems the rate function can be, in
principle, deduced within the framework of macroscopic
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For comparison:

Previously observed Baik-Rains (KPZ) fluctuations for sound peaks in
non-integrable classical anharmonic chains
[Mendl and Spohn, JSTAT (2015) P03007]
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Figure 7: (Color online) Standard deviation of the normal-mode currents integrated along
the path (5.12) with end points y = �ct, 0, ct. The dashed lines show the theoretically
predicted scaling t1/3 for the sound peaks and t3/10 for the heat peak as in Eqs. (5.19) and
(5.20), respectively, with �s = 2 and �h = 0.94878.
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Figure 8: (Color online) Statistical distribution (blue) of the normal-mode currents inte-
grated along the path (5.12) with end points y = �ct, 0, ct. The theoretically predicted
Baik-Rains distribution (dashed magenta curves) matches the sound peaks reasonably
well. The gray thin curves show a normal distribution for comparison. The integrated
current for the heat peak has a perfect normal distribution (red dashed in the center).

7 Summary and conclusions

We performed MD simulations for anharmonic chains with three distinct hard collision
potentials and specifically studied the long-time decay of the total current-current corre-
lations. This is a 3⇥3 matrix, for which only the 2, 3 block is non-constant in time. In the
many previous studies only the energy current correlations were investigated, a notable
exception being the recent work by van Beijeren and Posch [10], who in addition study
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Divergence of scaled cumulants

Large deviation principle: P
(
t−1/zJ(t) = j

)
' e−t1/zI(j)

Legendre–Fenchel transform of rate function I(j) = maxλ[λ j − F (λ)]
yields scaled cumulant generating function

F (λ) = lim
t→∞

t−1/z log
〈
eλJ(t)

〉
.

However, in general:

sn(t) = t−1/z 〈[J(t)]n〉c , lim
t→∞

sn(t) 6= ∂nλF (λ).
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Going out-of-equilibrium

Bi-partitioning protocol at finite magnetization bias µ,

ρ(t = 0) ∼ exp

(
−µ
∑
x<0

S3
x + µ

∑
x>0

S3
x

)
〈J(t)〉 ∼ t1/κ
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9 We analytically compute the full counting statistics of charge transfer in a classical automaton of
10 interacting charged particles. Deriving a closed-form expression for the moment generating function with
11 respect to a stationary equilibrium state, we employ asymptotic analysis to infer the structure of charge
12 current fluctuations for a continuous range of timescales. The solution exhibits several unorthodox features.
13 Most prominently, on the timescale of typical fluctuations the probability distribution of the integrated
14 charge current in a stationary ensemble without bias is distinctly non-Gaussian despite diffusive behavior of
15 dynamical charge susceptibility. While inducing a charge imbalance is enough to recover Gaussian
16 fluctuations, we find that higher cumulants grow indefinitely in time with different exponents, implying
17 singular scaled cumulants. We associate this phenomenon with the lack of a regularity condition on
18 moment generating functions and the onset of a dynamical critical point. In effect, the scaled cumulant
19 generating function does not, irrespectively of charge bias, represent a faithful generating function of the
20 scaled cumulants, yet the associated Legendre dual yields the correct large-deviation rate function. Our
21 findings hint at novel types of dynamical universality classes in deterministic many-body systems.

DOI:22

23 Introduction.—The central limit theorem (CLT) is one of
24 the bedrock accomplishments of probability theory. In the
25 standard formulation, the CLT asserts that sums of random,
26 independent, identically distributed variables converge
27 towards the normal distribution when the sample size
28 becomes large. Validity of the CLT however transcends
29 uncorrelated processes, as it applies for macroscopic
30 fluctuating observables in a wide array of dynamical
31 processes in nature, including classical or quantum deter-
32 ministic dynamical systems which typically exhibit highly
33 nontrivial temporal correlations. It appears as though the
34 CLT only ceases to hold away from equilibrium, i.e., upon
35 breaking reversibility at the microscopic level.
36 Another hallmark result of statistical analysis is the large
37 deviation principle (LDP) [1–3], stipulating that atypically
38 large (rare) fluctuations are exponentially unlikely. In this
39 regard, the main object of interest is a dynamical partition
40 sum, the moment generating function (MGF) of the process
41 also known as the full counting statistics (FCS). The rate
42 function describing large deviations can be inferred from
43 the logarithm of MGF. In spite of many important cases
44 where MGF can be computed explicitly [4–14], there are
45 virtually no explicit results available when it comes to
46 genuinely interacting many-particle systems governed by
47 deterministic and reversible microscopic evolution laws,
48 whether in or out of equilibrium.
49 A recent numerical study [15] has found robust signature
50 of anomalous dynamical fluctuations in the integrable

51Landau-Lifshitz ferromagnet, hinting that lack of ergodic-
52ity can play a pivotal role and may lead to inapplicability of
53the CLT. The precise microscopic mechanism leading to
54such an unconventional behavior has not been identified
55however. In this Letter, we report major progress on this
56question. We compute the exact FCS for a simple model of
57interacting charged degrees of freedom governed by a
58reversible deterministic equation of motion in a stationary
59equilibrium state. By deducing the late-time behavior of
60cumulants in a closed analytic form, we encounter two
61novel regimes of dynamical behavior characterized by
62divergent scaled cumulants of transferred charge.
63Current fluctuations on typical and large scale.—We
64consider an infinitely extended deterministic dynamical
65many-body system with charge conservation. The time-
66integrated current density, JðtÞ ¼

R
t
0 dτjðτÞ, where jðτÞ is

67the charge-current density (at the origin) propagated by
68time τ, can be viewed as a dynamical fluctuating observ-
69able, measuring the net transferred charge between two
70halves of the system in the time interval t for each particular
71initial configuration. Obtaining the FCS of JðtÞ amounts to
72computing the MGF [3,16]

GðλjtÞ≡ heλJðtÞi≡
Z

dJPðJjtÞeλJ; ð1Þ

7374corresponding to a Laplace transformation of the normal-
75ized (time-dependent) current distribution PðJjtÞ of JðtÞ,
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(∅, ∅)↔ (∅, ∅), (∅, q)↔ (q, ∅), (q, q′)↔ (q, q′), for q, q′ ∈ {+,−}.2

-2t+1 -1 0 1 2 2t
0
1
2

2t

FIG. 1. Coordinate frame (time vertical, space horizontal) of a deterministic charged hardcore lattice gas (red: + particles,
blue: � particles, while thin black lines indicate vacancies). Example of a pyramid section of a typical trajectory, for which
initial data on a saw of 4t subsequent links uniquely determine the transport through the mid-point (dashed line) for all times
from 0 to 2t.

II. EXACTLY SOLVED FULL COUNTING STATISTICS

A. Time integrated current

We shall consider the total charge which is transferred between the left and right half of the system (through the
origin ` = 0) in time 2t (after t full time steps)

J(t) =
X

`>0

q2t
` �

X

`>0

q0
` . (3)

This is exactly equal to the the time integrated current

J(t) =

t�1X

t0=0

j2t0
0 =

2t�1X

t0=0

(�1)t0+1qt0
0 , (4)

where j is the local current that satisfies a pair (due to even-odd staggering) of continuity relations

q2t+2
2` � q2t

2` + j2t+1
2`+1 � j2t

2` = 0, q2t+2
2`+1 � q2t

2`+1 + j2t
2`+2 � j2t+1

2`+1 = 0. (5)

A valid expression for the local current is a discrete forward di↵erence, which was used in the second equality in (4)

jt
` = qt+1

` � qt
`. (6)

B. Exact moment generating function

Our aim is to compute the moment generating function (MGF)

G(�|t) ⌘ he�J(t)i ⌘
X

J

P(J|t)e�J, (7)

P({q`}) =
∏
`

p(q`), p(±) = ρ
1± b

2
, p(∅) = ρ̄ = 1− ρ
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Exact finite-time Moment Generating Function (µ± ≡ coshλ∓ b sinhλ):

G(λ|t) = ρ2t
t∑
l=0

t∑
r=0

(
t

l

)(
t

r

)
νl+rµ

|Λ−|
− µ

|Λ+|
+ , |Λ±| = |l − r| ± (l − r)

2

Divergence of (scaled) cumulants, z[b 6=0] = 1, z[b=0] = 2:

c
[b]
2 (t) ∼ t, c

[b]
2n>2(t) ∼ tn−1/2 and c

[0]
2n(t) ∼ tn/2.

Exact PDFs of typical fluctuations:

P [b]
typ(j) =

1√
2πσ2

exp

[
− j2

2σ2

]
,

P [0]
typ(j) =

1√
2π∆

∫
R

du exp

[
−
( u2

2∆

)2

− j2

2u2

]
.

254255 Explicitly, P½0"
typðjÞ ¼ ð2ΔÞ−1=2M1=4ð

ffiffiffiffiffiffiffiffiffi
2=Δ

p
jjjÞ, where

256 MνðxÞ≡
P∞

k¼0ð−xÞk=fk!Γ½ð1 − νÞ − νk"g is the M-
257 Wright function [32]. The associated MGF reads explicitly
258 G½0"ðηÞ ¼ ew

4ð1þ erfw2Þ ¼ E1=2ðw2Þ, where w2 ¼ η2Δ=2
259 and EνðxÞ ¼

P∞
k¼0 x

k=Γð1þ νkÞ is the Mittag-Leffler
260 function [note that G½0"ðηÞ ¼ exp ½F ½0"ðηt−1=4Þ"].
261 Large deviation principle.—What remains is to charac-
262 terize fluctuations on the largest scale ζ ¼ 1. Since FðλÞ is
263 strictly convex and differentiable in its entire domain λ ∈ R
264 for all values of b, the Gärtner-Ellis theorem ensures that
265 the Legendre transform is involutive [3], and that IðjÞ
266 corresponds to a unique strictly convex and differentiable
267 LD rate function IðjÞ [whose Legendre transform yields
268 back FðλÞ].
269 In the general case with finite bias, the leading-order
270 behavior near λ ¼ 0 reads F½b"ðλÞ ¼ ðbΔÞλ2 þOðjλj3Þ,
271 implying a quadratic rate function for perturbatively small
272 j, I½b"ðjÞ ¼ ðj=2bΔÞ2 þOðj4Þ. At b ¼ 0, the behavior is
273 markedly different; owing to the absence of the leading
274 order terms in SCGF, F½0"ðλÞ ¼ ðΔ=2Þ2λ4 þOðλ6Þ, we find
275 I½0"ðjÞ ¼ ð3=4Þðj2=ΔÞ2=3 þOðj2Þ. Unlike I½b"ðjÞ, I½0"ðjÞ is
276 not twice differentiable at j ¼ 0. On the other hand, at large
277 jλj we have FðλÞ ∼ jλj, implying that j is confined within
278 the compact interval ½−1; 1", cf. Refs. [8,33]. This is a direct
279 manifestation of causality: owing to the fact that charges
280 propagate with unit velocity and interact locally, the
281 maximal transferred charge in a time interval t is upper
282 bounded by t. The near-horizon behavior can be found
283 analytically [26].
284 We have also computed a family of rate functions
285 associated with the “moderate deviation principle” for a
286 continuous range of timescales (1=2z < ζ < 1) [26].
287 Singular scaled cumulants and criticality.—Lack of
288 analyticity of scaled CGF FðλÞ is often found in

289Markovian stochastic systems driven away from equilib-
290rium by means of boundary reservoirs, where it is attributed
291to a first-order dynamical phase transition (DPT), see
292Refs. [33–39]. We are not aware of similar dynamical
293features taking place in equilibrium. Despite that, we can
294observe certain conspicuous similarities.
295Significance of divergent scaled cumulants is most
296transparently discussed in the complex fugacity plane in
297the framework of the Lee-Yang theory [40] of phase
298transitions [41,42]. Presently, we find that OðtÞ Lee-
299Yang zeros of GðλjtÞ condense along certain contours in
300the λ plane. By fourfold symmetry, there are four zeros of
301GðλjtÞ closest to the origin λ ¼ 0, at a distance rðtÞ,
302corresponding to the convergence radius of a complex
303Taylor series logGðλjtÞ ¼

P
n cnðtÞλn=n!. Applying the

304standard analysis (see Refs. [35,43–45]), and using the
305known asymptotics of cnðtÞ, we deduce the scaling
306r½b"ðtÞ ∼ t−1=2, r½0"ðtÞ ∼ t−1=4 (see Ref. [26] for details).
307The vanishing convergence radius, r∞ ≡ limt→∞ rðtÞ ¼ 0,
308signifies that λc ¼ 0 is a dynamical critical point. Based on
309this, one might draw an incorrect conclusion that scaled
310CGF FðλÞ develops a nonanalyticity at the critical point. In
311reality, only F½b"ðλÞ is found to be nonanalytic, owing to the
312discontinuities in its odd-order derivatives at the origin.
313Conversely, F½0"ðλÞ, which depends on μ0ðλÞ ¼ cosh λ and
314is derived via Eq. (3), represents a real analytic function;
315while its expansion coefficients are unrelated to cumulants,
316F½0"ðλÞ is the Legendre dual of the LD rate function I½0"ðjÞ.
317In contrast to first-order DPTs seen in out-of-equilibrium
318stochastic processes [where both the scaled CGF FðλÞ and
319LD rate function exhibit a cusp], we encounter, in the
320biased case b > 0, a cusp only in the second derivative,
321ðd=dλÞ2F½b"ðλÞ. This indicates, at a formal level,
322a DPT of third order at λ ¼ λc, with the value at the cusp
323being the dynamical charge-current susceptibility, s2 ¼
324limt→∞ t−1c2ðtÞ ¼

R
t
0 dτhjðτÞjð0Þic. Note that result (5)

325can be reinterpreted as a Curie-Weiss like partition sum
326[46], where b plays the role of a magnetic field with
327a line of first order phase transitions at bc ¼ 0, ending
328at λ ¼ λc.
329The Lee-Yang theory permits us to establish that
330divergent scaled cumulants, with an extra assumption that
331cnðtÞ=cnþ2ðtÞ ∼ t−γn with limn→∞ γn > 0, imply r∞ ¼ 0
332(i.e., λc ¼ 0), and vice versa. In this scenario “Bryc’s
333regularity conditions” ensuring applicability of CLT are
334violated. Indeed, in the present model Lebesgue’s criterion
335of dominated convergence is not satisfied by the time
336sequence of real analytic functions FðλjtÞ, irrespectively, of
337bias b. One should, however, be cautious, as neither
338divergent sn nor nonanalytic FðλÞ automatically imply a
339departure from Gaussianity. The fate of PtypðjÞ is instead
340predicated on the asymptotic scaling of the higher cumu-
341lants cnðtÞ ¼ ðd=dλÞn logGðλjtÞjλ¼0: writing cn>2ðtÞ ∼ tνn ,
342one finds a Gaussian PtypðjÞ if and only if the exponents νn

F2:1 FIG. 2.1 Rescaled current distribution for unbiased b ¼ 0, half-
F2:2 filled ρ ¼ 0.5 charged hard-core lattice gas in normal or log scale
F2:3 (lower or upper data). Colored dashed lines show convergence of

F2:4 exact distributions P½0"
1=4ðJ jtÞ to the asymptotic form (9) (solid

F2:5 black line). Estimated current distribution (dots), agrees with
F2:6 exact solution within statistical errors (Nsample ¼ 109).
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Conclusions

Conjecture (superuniversality of superdiffusion):
all 1+1D integrable models with non-abelian global symmetries exhibit
superdiffusion of Noether charges of KPZ type with z = 3/2 in
equilibrium states with unbroken symmetry.
Quantum and classical.
Conjecture: Fluctuations in integrable systems on sub-ballistic scales
are anomalous (scaled cumulants diverge).
Abundance of numerical and experimental evidence.
Proofs?
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