Integrable complexity: Hofstadter Butterfly
 AND Representation Theory

P. Wiegmann,

University of Chicago

Based on works with A. Zabrodin, A. Abanov, J. Talstra

May 10, 2022

Almost Mathieu equation (aka Harper equation, Hofstadter problem)

$$
\psi_{n+1}+\psi_{n-1}+2 \lambda \cos (k+2 \pi n \Phi) \psi_{n}=E \psi_{n}
$$

One of the most celebrated problem of the spectral theory, with applications to localization theory, quasicrystals, chaos (kicked rotator), quantum Hall effect, etc.

Incomplete list of works:
Before 1990:
Zak 1964, Azbel 1964, Hofstadter 1976, Wannier 1978, Aubry-Andre 1980, Zak-Avron 1985, Bellissard-Simon 1980-1990, Thouless-Kohmoto 1982, Wilkinson 1987

After 1990:

Fadeev-Kashaev, Hatsugai-Kohmoto, Jitomirskaya, Last, Avila

- If the flux is a rational number $\Phi=P / Q$, the spectrum consists of Q bands (absolutely continuous): $E_{m}\left(k, k^{\prime}\right), m=1, \ldots, Q$
$\psi_{n+1}+\psi_{n-1}+2 \lambda \cos (k+2 \pi n \Phi) \psi_{n}=E \psi_{n}$
Flux: $\Phi=\frac{P}{Q}$
- $\psi_{n}=\psi_{n+Q} e^{i Q k^{\prime}}\left(k^{\prime}\right.$ is Flouquet parameter)

The spectrum is symmetric (Andre-Aubry)

$$
E\left(k, k^{\prime}\right) \underset{k \rightarrow k^{\prime}, \lambda \rightarrow \lambda^{-1}}{=} E\left(k^{\prime}, k\right)
$$

The Butterfly

If $\Phi=$ irrational

- $\lambda>1$: the spectrum is an infinite pure point set: an insulator: all bands reduce to isolated points - Anderson localization, an insulator;
- $\lambda<1$: the spectrum consists of infinitely many bands (absolutely continuous), a metal;

$$
\text { the total bandwidth : } 4|\lambda-1| \rightarrow \text { zero }
$$

- $\lambda=1$: the spectrum is a peculiar Cantor-type set - singular continuous

An uncountable set without isolated points but with zero measure. Neither a metal nor insulator

$$
\lambda=1
$$

- Almost Mathieu equation is related to the cyclic representation of $U_{q}(s l(2))$ (a quantum deformation of $\left.s l(2)\right)$
- Scaling hypothesis and Hierarchical structure of the spectrum (topology of the set)

Hierarchical tree and scaling

- Generations: A specially chosen sequence of rational approximants P_{j} / Q_{j} with increasing Q_{j} to an irrational flux Φ so that

$$
\left|\frac{P_{j}}{Q_{j}}-\Phi\right|<\text { const } Q_{j}^{-2}
$$

- Parent and daughter bands: Connect the k-th band of the generation j (the daughter generation) to a certain band k^{\prime} of a certain previous (parent) generation $j^{\prime}<j$
- Spectrum of scaling dimensions The energies $E_{k}^{(J)}$ of a branch \mathbf{J} of the tree form a sequence converging to the point $E^{(J)}$ of the spectrum in such a way that the sequence

$$
\left|E_{j}^{(J)}-E^{(J)}\right| \sim Q_{j}^{-2+\epsilon_{J}} \quad \text { is bounded but does not converge to zero }
$$

The Tree: $\Phi=\frac{1}{2}(\sqrt{13}-3)=[3,1,3]$

Fibonacci tree: $\Phi=\frac{1}{2}(\sqrt{5}-1)$

Known scaling dimensions of

$$
\begin{gathered}
\epsilon^{\text {uppermost }}=-0.374 \\
\epsilon^{\text {central }}=+0.171
\end{gathered}
$$

Lattice electrons in magnetic field

$$
\sum_{\mathrm{m}=\mathrm{n} \pm 1} t_{\mathrm{nm}} \psi_{\mathrm{m}}=E \psi_{\mathrm{n}}, \quad\left|t_{\mathrm{nm}}\right|=1
$$

$$
\prod_{\text {plaquette }} t_{\mathrm{nm}}=e^{\mathrm{i} 2 \pi \Phi}:=q^{2}
$$

- Magnetic translation

$$
\begin{aligned}
& T_{\mathbf{n}} T_{\mathrm{m}}=q^{-\mathbf{n} \times \mathrm{m}} T_{\mathrm{n}+\mathbf{m}} \\
& H=T_{x}+T_{x}^{-1}+T_{y}+T_{y}^{-1}
\end{aligned}
$$

- Landau gauge:

$$
T_{x}|\mathbf{n}\rangle=\left|\mathbf{n}+\mathbf{1}_{\mathbf{x}}\right\rangle, T_{y}=q^{2}, \quad \psi_{\mathbf{n}}=e^{\mathrm{i} k^{\prime} n_{y}} \psi_{n_{x}}(k)
$$

$$
\psi_{n+1}+\psi_{n-1}+2 \cos (k+2 \pi n \Phi) \psi_{n}=E \psi_{n}
$$

Hall conductance or the First Chern number - the topological characteristic of the spectrum

$$
\sigma_{m}-\sigma_{m-1}=\frac{1}{2 \pi i} \oint_{\left(k, k^{\prime}\right)} \psi_{m}^{*} d \psi_{m}
$$

The Hall conductance σ_{m} of the m-th gap is the solution of the Diophantine equation (Thouless)

$$
P \sigma_{m}=m(\bmod Q)
$$

Example: $\frac{P}{Q}=\frac{4}{15}$,

$$
\sigma_{m}=4,-7,-3,1,5,-6,-2,2,6,-5,-1,3,7,4
$$

$$
\psi_{n+1}+\psi_{n-1}+2 \cos (k+2 \pi n \Phi) \psi_{n}=E \psi_{n}
$$

Equations for the mid band energy $k, k^{\prime}=0$,

$$
\begin{gathered}
q=e^{\mathrm{i} \pi \Phi}, \quad \Phi=\frac{P}{Q} \\
E=2(-1)^{P} \sin (\pi \Phi) \sum_{l=1}^{Q-1} z_{l}
\end{gathered}
$$

Roots $z_{1}, \ldots z_{Q-1}$ obeys the Bethe Ansatz equations

$$
\frac{z_{l}^{2}+q}{q z_{l}^{2}+1}=(-1)^{P} \prod_{m \neq l}^{Q-1} \frac{q z_{l}-z_{m}}{z_{l}-q z_{m}}
$$

Polynomials

$$
\Psi(z)=\prod_{l=1}^{Q-1}\left(z-z_{l}\right)
$$

play a special role. Some of them have names: $\Psi_{E=0}(z)$ - is q-Legendre polynomial.
The wave function

$$
\psi_{n}=\left.\sum_{m=1}^{Q-1} c_{n m} \Psi(z)\right|_{z=q^{m}}
$$

The coefficients are quantum di-logarithms

$$
c_{n m}=q^{2 n m+\frac{m}{2}} \prod_{j=0}^{m-1} \frac{1+q^{-j-\frac{1}{2}}}{1-q^{j+\frac{1}{2}}}
$$

- The Bethe Ansatz is equivalent to a Heisenberg spin chain on only two sites but with large spin equal to the number of bands $Q-1$

$$
\frac{z_{l}^{2}+q}{q z_{l}^{2}+1}=(-1)^{P} \prod_{m \neq l}^{Q-1} \frac{q z_{l}-z_{m}}{z_{l}-q z_{m}}
$$

\checkmark How to obtain these equations?

- How to solve them in the limit $Q \rightarrow \infty, P \rightarrow \infty, \Phi(=P / Q) \rightarrow$ irrational \checkmark How to construct the hierarchical tree?

How to compute the dimensions $\epsilon^{\text {J }}$? - Analytically unclear, limited numerical results

Lattice electrons in magnetic field

$$
\begin{gathered}
\sum_{\mathrm{m}=\mathrm{n} \pm \mathbf{1}} t_{\mathrm{nm}} \psi_{\mathrm{m}}=E \psi_{\mathrm{n}}, \quad\left|t_{\mathrm{nm}}\right|=1 \\
\prod_{\text {plaquette }} t_{\mathrm{nm}}=e^{\mathrm{i} 2 \pi \Phi}:=q^{2}
\end{gathered}
$$

- Magnetic translation

$$
\begin{aligned}
& T_{\mathbf{n}} T_{\mathrm{m}}=q^{-\mathbf{n} \times \mathbf{m}} T_{\mathrm{n}+\mathrm{m}} \\
& H=T_{x}+T_{x}^{-1}+T_{y}+T_{y}^{-1}
\end{aligned}
$$

Landau gauge:

$$
T_{x}|\mathbf{n}\rangle=\left|\mathbf{n}+\mathbf{1}_{\mathbf{x}}\right\rangle, T_{y}=q^{2}, \quad \psi_{\mathbf{n}}=e^{i k^{\prime} n_{y}} \psi_{n_{x}}(k)
$$

$$
e^{i k^{\prime}} \psi_{n+1}+e^{-i k^{\prime}} \psi_{n-1}+2 \cos (k+2 \pi n \Phi) \psi_{n}=E \psi_{n}
$$

- Chiral gauge $\quad t_{\mathrm{n}, \mathrm{n}+1_{\mathrm{x}}}=e^{-i \frac{\phi}{2} n_{+}}, \quad t_{\mathrm{n}, \mathrm{n}+\mathrm{l}_{\mathrm{y}}}=e^{+\mathrm{i} \frac{\phi}{2}\left(n_{+}+1\right)}, \quad n_{+}=n_{x}+n_{y}, \quad \Psi_{\mathrm{n}}=e^{\mathrm{ikn}{ }_{n}} \Psi_{n_{+}}$

$$
\mathrm{i} q^{-1 / 2}\left(1+q^{2 n+1}\right) \Psi_{n+1}-\mathrm{i} q^{1 / 2}\left(1+q^{-2 n+1}\right) \Psi_{n-1}=E \Psi_{n} \quad\left(k, k^{\prime}\right)=\left(\frac{\pi}{2}, \frac{\pi}{2}\right), q^{2}=e^{i \Phi} .
$$

- What is the advantage this gauge?

Consider a difference equation, such that $\Psi_{n}=\left.\Psi(z)\right|_{z=q^{n}}$

$$
i\left(z^{-1}+q z\right) \Psi(q z)-i\left(z^{-1}+q^{-1} z\right) \Psi\left(q^{-1} z\right)=E \Psi(z)
$$

- A set of solutions of this difference equation are polynomials

$$
\Psi(z)=\prod_{l=1}^{Q-1}\left(z-z_{l}\right)
$$

- Comparing singularities we obtain equations for the roots

$$
\frac{z_{l}^{2}+q}{q z_{l}^{2}+1}=(-1)^{P} \prod_{m \neq l}^{Q-1} \frac{q z_{l}-z_{m}}{z_{l}-q z_{m}}
$$

- Q: When a class of solutions of the 2nd order ODE are polynomials?

$$
H \Psi=\left[a(z) \frac{d^{2}}{d z^{2}}+b(z) \frac{d}{d z}+c(z)\right] \Psi(z)=E \Psi(z)
$$

A: If the operator is equivalent to the Euler top

$$
H=\sum_{i, j=1,2,3} \alpha_{i j} S_{i} S_{j}+\sum_{i=1,2,3} \beta_{i} S_{i}
$$

where

$$
S_{3}=z \frac{d}{d z}-j, S_{+}=z\left(2 j-z \frac{d}{d z}\right), S_{-}=\frac{d}{d z}
$$

are finite dimension representation of $S L(2)$ (A. Turbiner 1988)

- Q: When a class of solutions of the difference equation are polynomials?

$$
\begin{gathered}
a(z) \Psi\left(q^{2} z\right)+d(z) \Psi\left(q^{-2} z\right)+v(z) \Psi(z)=E \Psi(z) \\
\Psi(z)=\prod_{l}\left(z-z_{l}\right)
\end{gathered}
$$

Setting $z=q^{n}$ we obtain solvable discrete equation

$$
a_{n} \psi_{n+1}+d_{n} \psi_{n-1}+v_{n} \psi_{n}=E \psi_{n}
$$

- Lie group \rightarrow quantum deformation $\quad S L(2) \rightarrow U_{q}(S L(2))$ (A. Zabrodin \& P.W.)

$$
\begin{array}{lll}
\left\{1, S_{+}, S_{-}, S_{3}\right\} \rightarrow & \{A, B, C, D\} \\
& & A B=q B A, B D=q D B, \\
{\left[S_{3}, S_{ \pm}\right]= \pm S_{ \pm},} \\
{\left[S_{+}, S_{-}\right]=S_{3}} & & D C=q C D, C A=q A C, \\
& A D=1,[B, C]=\frac{A^{2}-D^{2}}{q-q^{-1}}
\end{array}
$$

$U_{q}(S L(2))$

- Universal R-matrix, obeying Yang-Baxter equation

$$
R(u)=\left[\begin{array}{cc}
\frac{u A-u^{-1} D}{q-q^{-1}} & C \\
B & \frac{u D-u^{-1} A}{q-q^{-1}}
\end{array}\right]
$$

Magnetic translations embedded into $U_{q}(S L(2))$

- Hamiltonian happens to be equal

$$
H=T_{x}+T_{-x}+T_{y}+T_{-y}=B+C
$$

- Embedding

$$
\begin{gather*}
T_{\mathrm{n}} T_{\mathrm{m}}=q^{-\mathrm{n} \times \mathrm{m}} T_{\mathrm{n}+\mathrm{m}} \\
A B=q B A, B D=q D B, \\
D C=q C D, C A=q A C, \\
A D=1,[B, C]=\frac{A^{2}-D^{2}}{q-q^{-1}} \\
T_{-x}+T_{-y}=B, \quad T_{x}+T_{y}=C, \\
T_{-y} T_{x}=q^{-1} A^{2}, \quad T_{-x} T_{y}=q D^{2} \tag{1}
\end{gather*}
$$

Hierarchical tree

Is it possible to solve the Bethe Ansatz equations

$$
\frac{z_{l}^{2}+q}{q z_{l}^{2}+1}=(-1)^{P} \prod_{m \neq l}^{Q-1} \frac{q z_{l}-z_{m}}{z_{l}-q z_{m}}
$$

- At large Q solutions consist of collections of strings

A string of $\operatorname{spin} l$ centered at x_{l} is a set roots of unity $z^{(l)}=x_{l} \times\left\{e^{\mathrm{i} \pi k / l}\right\}, \quad k=1, \ldots, l$

$$
\Phi=34 / 55
$$

- The length of the longest string of a given band is the Hall conductance of the band:

$$
\begin{aligned}
& (2 l+1)_{\max }=\mid \text { Chern number }|=|\sigma(m)| \\
& P \sigma_{m}=m(\bmod Q), \quad \sigma(m)=\sigma_{m}-\sigma_{m-1}
\end{aligned}
$$

- Each solution is labeled by a content of strings $\left\{l_{j}, l_{j-1}, \ldots\right\}$
- The length of the longest string of a given band is the Hall conductance of the band:

$$
(2 l+1)_{\max }=\mid \text { Chern number of the band }|=|\sigma(k)|
$$

- The remaining roots of the state is a solution of the Bethe equation for the parent state

$$
\Psi^{\text {daugther }}(z) \approx \prod_{m=-l}^{l}\left(z-x_{l} q_{l}^{m}\right) \Psi^{\text {parent }}(z)
$$

Fibonacci Tree: Example

- Golden mean $\Phi=\frac{\sqrt{5}-1}{2}$
- The sequence of rational approximants is given by ratios of subsequent Fibonacci numbers

$$
\Phi_{i}=\frac{F_{i-1}}{F_{i}}: \quad F_{i}=F_{i-2}+F_{i-1}=1,1,2,3,5,8,13,21,34,55,89, \ldots
$$

- The set of Hall conductances (lengths of strings) are again Fibonacci numbers: F_{k-1}. The wave function of this state is

$$
\Psi\left(z \left\lvert\, \Phi_{k}=\frac{F_{3 k-1}}{F_{3 k}}\right.\right) \approx \prod_{n=0}^{k-1} \prod_{j=-\frac{1}{2}\left(F_{3 n}-1\right)}^{\frac{1}{2}\left(F_{3 n}-1\right)}\left(z-e^{i \pi \frac{F_{3 n-1}}{F_{3 n}} j}\right)^{2}
$$

$$
\Phi_{n}=\frac{F_{n-1}}{F_{n}} \rightarrow \frac{1}{2}(\sqrt{5}-1)
$$

Known scaling dimensions of

$$
\begin{gathered}
\epsilon^{\text {uppermost }}=-0.374 \\
\epsilon^{\text {central }}=+0.171
\end{gathered}
$$

V. Nabokov "GifT" Chapter 4

Truth bends her head to fingers curved cupwise;
And with a smile and care
Examines something she is holding there
Concealed by her from our eyes.

Увы! Что б ни сказал потомок просвещенный, все так же на ветру, в одежде оживленной, к своим же Истина склоняется перстам,

с улыбкой женскою и детскою заботой, как будто в пригоршне рассматривая что-то, из-за плеча ее невидимое нам.

