DIMER MODEL ON MINIMAL GRAPHS: THE ELLIPTIC CASE AND BEYOND

Béatrice de Tilière
Université Paris-Dauphine

joint works with
Cédric Boutillier (Sorbonne U.) \& David Cimasoni (Geneva)

Randomness, Integrability and Universality, GGI, Florence May 12, 2022

Outline

- Dimer model
- Dimer model and Harnack curves
- Minimal graphs and immersions
- Dimer model on minimal graphs
- Results

Dimer model: definition

- Planar, bipartite graph $\mathrm{G}=(\mathrm{V}=\mathrm{B} \cup \mathrm{W}, \mathrm{E})$.

- Dimer configuration M: subset of edges s.t. each vertex is incident to exactly one edge of $\mathrm{M} \leadsto \mathcal{M}(\mathrm{G})$.
- Positive weight function on edges: $v=\left(v_{\mathrm{e}}\right)_{\mathrm{e} \in \mathrm{E}}$.
- Dimer Boltzmann measure (G finite):

$$
\forall \mathrm{M} \in \mathcal{M}(\mathrm{G}), \quad \mathbb{P}_{\text {dimer }}(\mathrm{M})=\frac{\prod_{\mathrm{e} \in \mathrm{M}} v_{\mathrm{e}}}{Z_{\mathrm{dimer}}(\mathrm{G}, v)}
$$

where $Z_{\text {dimer }}(\mathrm{G}, v)$ is the dimer partition function.

Dimer model: definition

- Planar, bipartite graph $\mathrm{G}=(\mathrm{V}=\mathrm{B} \cup \mathrm{W}, \mathrm{E})$.

- Dimer configuration M: subset of edges s.t. each vertex is incident to exactly one edge of $\mathrm{M} \leadsto \mathcal{M}(\mathrm{G})$.
- Positive weight function on edges: $v=\left(v_{\mathrm{e}}\right)_{\mathrm{e} \in \mathrm{E}}$.
- Dimer Boltzmann measure (G finite):

$$
\forall \mathrm{M} \in \mathcal{M}(\mathrm{G}), \quad \mathbb{P}_{\text {dimer }}(\mathrm{M})=\frac{\prod_{\mathrm{e} \in \mathrm{M}} v_{\mathrm{e}}}{Z_{\mathrm{dimer}}(\mathrm{G}, v)}
$$

where $Z_{\text {dimer }}(\mathrm{G}, v)$ is the dimer partition function.

Dimer model: Kasteleyn matrix

- Kasteleyn matrix (Percus-Kuperberg version)
- Edge $w b \leadsto$ angle $\phi_{w b}$ s.t. for every face $w_{1}, b_{1}, \ldots, w_{k}, b_{k}$:

$$
\sum_{j=1}^{k}\left(\phi_{w_{j} b_{j}}-\phi_{w_{j+1} b_{j}}\right) \equiv(k-1) \pi \bmod 2 \pi
$$

- K is the corresponding twisted adjacency matrix.

$$
\mathrm{K}_{w, b}= \begin{cases}v_{w b} \mathrm{e}^{i \phi_{w b}} & \text { if } w \sim b \\ 0 & \text { otherwise }\end{cases}
$$

Dimer model: founding results

- Assume G finite.

Theorem ([Kasteleyn'6i] [Kuperberg'98])

$$
Z_{\operatorname{dimer}}(\mathrm{G}, v)=|\operatorname{det}(\mathrm{K})| .
$$

Theorem (Kenyon'97)
Let $\mathcal{E}=\left\{\mathrm{e}_{1}=w_{1} b_{1}, \ldots, \mathrm{e}_{n}=w_{n} b_{n}\right\}$ be a subset of edges of G , then:

$$
\mathbb{P}_{\text {dimer }}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{n}\right)=\left|\left(\prod_{j=1}^{n} \mathrm{~K}_{w_{j}, b_{j}}\right) \operatorname{det}\left(\mathrm{K}^{-1}\right) \varepsilon\right|,
$$

where $\left(\mathrm{K}^{-1}\right)_{\mathcal{E}}$ is the sub-matrix of K^{-1} whose rows/columns are indexed by black/white vertices of \mathcal{E}.

- G infinite: Boltzmann measure $\leadsto \rightarrow$ Gibbs measure
- Periodic case [Cohn-Kenyon-Propp'01], [Ke.-Ok.-Sh.'06]
- Non-periodic [dT'07], [Boutillier-dT'10], [B-dT-Raschel'19]

Dimer model: periodic case

- Assume G is bipartite, infinite, \mathbb{Z}^{2}-periodic.

- Exhaustion of G by toroidal graphs: $\left(G_{n}\right)=\left(G / n \mathbb{Z}^{2}\right)$.

Dimer model: periodic case

- Fundamental domain: G_{1}

- Let K_{1} be the Kasteleyn matrix of fundamental domain G_{1}.
- Multiply edge-weights by $\mathrm{z}, \mathrm{z}^{-1}, \mathrm{w}, \mathrm{w}^{-1} \rightarrow \mathrm{~K}_{1}(\mathrm{z}, \mathrm{w})$.
- The characteristic polynomial is:

$$
P(\mathrm{z}, \mathrm{w})=\operatorname{det} \mathrm{K}_{1}(\mathrm{z}, \mathrm{w}) .
$$

Example: weight function $v \equiv 1, P(\mathrm{z}, \mathrm{w})=5-\mathrm{z}-\frac{1}{\mathrm{z}}-\mathrm{w}-\frac{1}{\mathrm{w}}$.

Dimer model: periodic case

- Fundamental domain: G_{1}

- Let K_{1} be the Kasteleyn matrix of fundamental domain G_{1}.
- Multiply edge-weights by $\mathrm{z}, \mathrm{z}^{-1}, \mathrm{w}, \mathrm{w}^{-1} \rightarrow \mathrm{~K}_{1}(\mathrm{z}, \mathrm{w})$.
- The characteristic polynomial is:

$$
P(\mathrm{z}, \mathrm{w})=\operatorname{det} \mathrm{K}_{1}(\mathrm{z}, \mathrm{w}) .
$$

Example: weight function $v \equiv 1, P(\mathrm{z}, \mathrm{w})=5-\mathrm{z}-\frac{1}{\mathrm{z}}-\mathrm{w}-\frac{1}{\mathrm{w}}$.

Dimer model: spectral curve

- The spectral curve:

$$
\mathcal{C}=\left\{(\mathrm{z}, \mathrm{w}) \in\left(\mathbb{C}^{*}\right)^{2}: P(\mathrm{z}, \mathrm{w})=0\right\} .
$$

- Amoeba: image of \mathcal{C} through the $\operatorname{map}(\mathrm{z}, \mathrm{w}) \mapsto(\log |\mathrm{z}|, \log |\mathrm{w}|)$.

Amoeba of the square-octagon graph

Dimer model and Harnack curves

Theorems

- Spectral curves of bipartite dimers [Ke.-Ok.-Sh.'O6] [Ke.-Ok.'O6] Harnack curves with points on ovals.
- Spectral curves of isoradial, bipartite dimer models with critical weights [Kenyon '02] [Kenyon-Okounkov'06]

Explicit (\longleftarrow) map.

- Spectral curves of minimal, bipartite dimers $\stackrel{\text { [Goncharov-Kenyon '13] }}{\longleftrightarrow}$ Harnack curves with points on ovals.

Explicit (\longrightarrow) map

- [Fock'15] Explicit (\longleftarrow) map for all algebraic curves. (no check on positivity).

Gibbs measures for bipartite dimer models

Theorems (Kenyon-Okounkov-Sheffield’o6)

- The dimer model on a \mathbb{Z}^{2}-periodic, bipartite graph has a two-parameter family of ergodic Gibbs measures.
- The latter are obtained as weak limits of Boltzmann measures with magnetic field coordinates $\left(B_{\chi}, B_{y}\right)$.
- The phase diagram is given by the amoeba of the spectral curve \mathcal{C}.

Goal of our work

- Find explicit (\longleftarrow) map for general genus Harnack curves.
- [Kenyon'02] proves "local" formula for the maximal entropy Gibbs measure in the case of the critical dimer model on isoradial graphs.
\leadsto Extension to the two-parameter family of Gibbs measures in the general genus case.
- Extension to the case of non-periodic graphs.

Quad-graph, train-tracks

- Infinite, planar, embedded graph G; embedded dual graph G^{*}.
- Corresponding quad-graph G°, train-tracks.

Quad-graph, train-tracks

- Infinite, planar, embedded graph G; embedded dual graph G^{*}.
- Corresponding quad-graph G°, train-tracks.

Quad-graph, train-tracks

- Infinite, planar, embedded graph G; embedded dual graph G^{*}.
- Corresponding quad-graph G°, train-tracks.

Quad-graph, train-tracks

- Infinite, planar, embedded graph G; embedded dual graph G^{*}.
- Corresponding quad-graph G°, train-tracks.

Quad-graph, train-tracks

- Infinite, planar, embedded graph G; embedded dual graph G^{*}.
- Corresponding quad-graph G°, train-tracks.

Quad-graph, train-tracks

- Infinite, planar, embedded graph G; embedded dual graph G^{*}.
- Corresponding quad-graph G°, train-tracks.

Isoradial graphs

- An isoradial embedding of an infinite, planar graph G is an embedding such that all of its faces are inscribed in a circle of radius 1 , and such that the center of the circles are in the interior of the faces [Duffin] [Mercat] [Kenyon].
- Equivalent to: the quad-graph G° is embedded so that of all its faces are rhombi.

Theorem (Kenyon-Schlencker’o4)
An infinite planar graph G has an isoradial embedding iff

Isoradial embeddings

Isoradial embeddings

Isoradial embeddings

Minimal graphs

- If the graph G is bipartite, train-tracks are naturally oriented (white vertex of the left, black on the right) $\rightsquigarrow \rightarrow \overrightarrow{\mathcal{T}}$

Minimal graphs

- If the graph G is bipartite, train-tracks are naturally oriented (white vertex of the left, black on the right) $\rightsquigarrow \rightarrow \overrightarrow{\mathcal{T}}$
- A bipartite, planar graph G is minimal if

[Thurston'04] [Gulotta'08] [Ishii-Ueda'11] [Goncharov-Kenyon'13]

Immersions of minimal graphs

- A minimal immersion of an infinite planar graph G is an immersion of the quadgraph $\mathrm{G}^{\triangleright}$ such that:
- all faces are rhombi (flat or reversed)

- the immersion is flat: sum of rhombus angles around every vertex and every face is equal to 2π.

Theorem (Boutillier-Cimasoni-dT'ig)

- An infinite, planar, bipartite graph G has a minimal immersion iff it is minimal.
- The space of minimal immersions of G is an explicit subset of the angle maps $\{(\alpha): \overrightarrow{\mathfrak{T}} \rightarrow \mathbb{R} / \pi \mathbb{Z}\}$ (preserves cyclic order).

Dimer version of Fock's weights

- Tool 1. Geometric data and theta functions.
- Genus 1.
- Parameter $q=e^{i \pi \tau}, \tau \in i \mathbb{R}, \Lambda(q)=\pi \mathbb{Z}+\pi \tau \mathbb{Z}$
- $\mathbb{T}(q)=\mathbb{C} / \Lambda:=\Sigma$
- Jacobi's (first) theta function on \mathbb{C}

$$
\theta(z)=2 q^{\frac{1}{4}} \sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1)} \sin (2 n+1) z
$$

- Building block of meromorphic functions on Σ.
- $\theta(z) \sim 2 q^{\frac{1}{4}} \sin (z)$ as $q \rightarrow 0$.

Dimer version of Fock's weights

- Tool 1. Geometric data and theta functions.
- Genus $g \geq 1$.
- Maximal curve Σ of genus g. Riemann surface with σ, anti-holomorphic involution; Real locus: $g+1$ top. circles $C_{0}, C_{1}, \ldots, C_{g}$, fixed by σ.

- Jacobian variety: $\operatorname{Jac}(\Sigma)=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$
Ω is pure imaginary period matrix constructed from Σ.
- Theta function on \mathbb{C}^{g}

$$
\theta(z)=\sum_{n \in \mathbb{Z}^{g}} \exp (-i \pi\langle n, \Omega n\rangle+2 i \pi\langle z, n\rangle),
$$

- Abel map: $\Sigma \rightarrow \operatorname{Jac}(\Sigma) \rightsquigarrow$ theta function on Σ.
- Prime form E on $\Sigma \times \Sigma$

Building block of meromorphic functions on Σ.

- Genus 1: $\Sigma \simeq \operatorname{Jac}(\Sigma)$ (easier!)

Dimer version of Fock's weights

- Tool 2. Another type of geometric data.
- Minimal graph G.
- Angle map $(\alpha): \overrightarrow{\mathcal{T}} \rightarrow C_{0}$ preserving cyclic order.
- Tool 3. Discrete Abel map η
- Function η on vertices of $\mathrm{G}^{\circ}: \eta\left(f_{0}\right)=0$ for given face f_{0}, then local rule

- Well chosen point $t \in \operatorname{Jac}(\Sigma): t \in(\mathbb{R} / \mathbb{Z})^{g}$.

Dimer version of Fock's weights

- Fock's adjacency matrix

$$
\mathrm{K}_{w, b}= \begin{cases}\frac{E(\beta-\alpha)}{\theta(t+\eta(f)) \theta\left(t+\eta\left(f^{\prime}\right)\right)} & \text { if } w \sim b \\ 0 & \text { otherwise }\end{cases}
$$

Theorem (B-C-dT)
If the following conditions hold:

- Σ is a maximal-curve,
- angle map $(\alpha): \overrightarrow{\mathcal{T}} \rightarrow C_{0}$ preserves cyclic order,
- parameter $t \in \operatorname{Jac}(\Sigma)$ well chosen,
then, Fock's adjacency matrix is a Kasteleyn matrix for a dimer model on \mathbf{G} (positive weights).
\leadsto Good framework for doing probability.

Inverse(s) of Kasteleyn operator

Theorem (BCdT)

For any $u_{0} \in$ upper half of Σ, the following local formula defines an inverse of the Kasteleyn operator K

$$
\forall b, w \quad A_{b, w}^{u_{0}}:=\frac{1}{2 i \pi} \int_{C_{b, w}^{u_{0}}} g_{b, w}(u)
$$

where $g_{b, w}=g_{b, x_{1}} g_{x_{1}, x_{2}} \ldots g_{x_{n}, w}$ for $b, x_{1}, x_{2}, \ldots, x_{n}, w$ path in G^{\triangleright}

$$
\begin{aligned}
g_{f, w}(u) & =\frac{\theta(u+t+\eta(w))}{E(u, \beta)}=g_{w, f}(u)^{-1} \\
g_{b, f}(u) & =\frac{\theta(u-t-\eta(b))}{E(u, \alpha)}=g_{f, b}(u)^{-1}
\end{aligned}
$$

Inverse(s) of Kasteleyn operator

Theorem (BCdT)

For any $u_{0} \in$ upper half of Σ, the following local formula defines an inverse of the Kasteleyn operator K

$$
\forall b, w \quad A_{b, w}^{u_{0}}:=\frac{1}{2 i \pi} \int_{C_{b, w}^{u_{0}}} g_{b, w}(u)
$$

where $g_{b, w}=g_{b, x_{1}} g_{x_{1}, x_{2}} \ldots g_{x_{n}, w}$ for $b, x_{1}, x_{2}, \ldots, x_{n}, w$ path in G^{\triangleleft}

$$
\begin{aligned}
& g_{f, w}(u)=\frac{\theta(u+t+\eta(w))}{E(u, \beta)}=g_{w, f}(u)^{-1} \\
& g_{b, f}(u)=\frac{\theta(u-t-\eta(b))}{E(u, \alpha)}=g_{f, b}(u)^{-1}
\end{aligned}
$$

Inverse(s) of Kasteleyn operator

Theorem (BCdT)

For any $u_{0} \in$ upper half of Σ, the following local formula defines an inverse of the Kasteleyn operator K

$$
\forall b, w \quad A_{b, w}^{u_{0}}:=\frac{1}{2 i \pi} \int_{C_{b, w}^{u_{0}}} g_{b, w}(u)
$$

where $g_{b, w}=g_{b, x_{1}} g_{x_{1}, x_{2}} \ldots g_{x_{n}, w}$ for $b, x_{1}, x_{2}, \ldots, x_{n}, w$ path in G^{\diamond}

$$
\begin{aligned}
g_{f, w}(u) & =\frac{\theta(u+t+\eta(w))}{E(u, \beta)}=g_{w, f}(u)^{-1} \\
g_{b, f}(u) & =\frac{\theta(u-t-\eta(b))}{E(u, \alpha)}=g_{f, b}(u)^{-1}
\end{aligned}
$$

Inverse(s) of Kasteleyn operator

Theorem (BCdT)

For any $u_{0} \in$ upper half of Σ, the following local formula defines an inverse of the Kasteleyn operator K

$$
\forall b, w \quad A_{b, w}^{u_{0}}:=\frac{1}{2 i \pi} \int_{C_{b, w}^{u_{0}}} g_{b, w}(u)
$$

where $g_{b, w}=g_{b, x_{1}} g_{x_{1}, x_{2}} \ldots g_{x_{n}, w}$ for $b, x_{1}, x_{2}, \ldots, x_{n}, w$ path in G^{\diamond}

$$
\begin{aligned}
g_{f, w}(u) & =\frac{\theta(u+t+\eta(w))}{E(u, \beta)}=g_{w, f}(u)^{-1} \\
g_{b, f}(u) & =\frac{\theta(u-t-\eta(b))}{E(u, \alpha)}=g_{f, b}(u)^{-1}
\end{aligned}
$$

Idea of proof

- Show the identity $\mathrm{K} A^{u_{0}}=\mathrm{Id}$.
- Use Fay's trisecant identity:

$$
\begin{aligned}
& \frac{\theta(s+u-\alpha-\beta)}{E(\alpha, u) E(\beta, u)} \frac{E(\alpha, \beta)}{\theta(s-\alpha) \theta(s-\beta)}= \\
& \frac{\theta(s+u-\beta-\gamma)}{E(\beta, u) E(\gamma, u)} \frac{E(\gamma, \beta)}{\theta(s-\beta) \theta(s-\gamma)}-\frac{\theta(s+u-\alpha-\gamma)}{E(\alpha, u) E(\gamma, u)} \frac{E(\gamma, \alpha)}{\theta(s-\alpha) \theta(s-\gamma)}
\end{aligned}
$$

- Show that the contours of integrations are such that one has 1's on the diagonal.

Gibbs measures and phase diagram

- Assume that the minimal graph G satisfies:
(*) any finite connected subgraph $\mathrm{G}_{0} \subset \mathrm{G}$ is contained in a periodic minimal graph.

Theorem (BCdT)

For any u_{0} in the upper half of Σ, there is a Gibbs measure $\mathbb{P}^{u_{0}}$ on $\mathcal{M}(\mathrm{G})$ such that for $\mathrm{e}_{1}=w_{1} b_{1}, \cdots, \mathrm{e}_{k}=w_{k} b_{k}$ distinct edges of G ,

$$
\mathbb{P}^{u_{0}}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{k}\right)=\left(\prod_{i=1}^{k} \mathrm{~K}_{w_{i}, b_{i}}\right) \operatorname{det}_{1 \leq i, j \leq k}\left[A_{b_{i}, w_{j}}^{u_{0}}\right] .
$$

Moreover, we have the phase diagram:

- $u_{0} \in C_{j}, 1 \leq j \leq g$, \Leftrightarrow gaseous (expon. decay)
- $u_{0} \in C_{0} \Leftrightarrow$ frozen (no decay of correlations)
- $u_{0} \notin C_{0} \cup \cdots \cup C_{g} \Leftrightarrow$ liquid (polynomial decay)

Remarks

- Periodic case: explicit local expression for the two parameter family of Gibbs measures of [KOS'06].
- Non-periodic case: better understanding of possible phase diagram (upper half of the maximal curve Σ).

Explicit parameterization of the spectral curve

- Assume G is \mathbb{Z}^{2}-periodic. Define the map ψ,

$$
\begin{aligned}
\psi: \Sigma & \rightarrow \mathbb{C}^{2} \\
u & \mapsto \psi(u)=(\mathrm{z}(u), \mathrm{w}(u))
\end{aligned}
$$

where $\mathrm{z}(u)=g_{b_{0}, b_{0}+(1,0)}(u), \mathrm{w}(u)=g_{b_{0}, b_{0}+(0,1)}(u)^{1}$.

${ }^{1}$ with additional assumption to ensure periodicity

Explicit parameterization of the spectral curve

Proposition ([B-C-dT])

The map ψ is an explicit birational parameterization of the spectral curve \mathcal{C}, mapping C_{1}, \ldots, C_{g} to the ovals of \mathcal{C} and C_{0} to the unbounded real component of \mathfrak{C}, implying in particular that \mathcal{C} has geometric genus g.

Dimer model and Harnack curves of genus g

Theorem ([B-C-dT])
Fix a Harnack curve with a standard divisor. Then there exists Σ, G, (α), t such that \mathcal{C} is the corresponding spectral curve.

Connection to previous work

- Genus 0. (as limit of genus 1 case) [Kenyon'02].
- Genus 1. Two specific cases were handled before:
- the bipartite graph arising from the Ising model [Boutillier-dT-Raschel'20]
- the Z-Dirac operator [dT'18] $\leadsto \rightarrow$ massive discrete holomorphic functions.

Perspectives

- Prove the (*) condition.
- Explore higher genus analogue of the massive Laplacian [George].
- Link with t-embeddings for dimers [Kenyon-Lam-Ramassamy-Russkikh].

