Randomness, Integrability and Universality Arcetri, Firenze; May 13, 2022

Stationary half-space last passage percolation

Patrik L. Ferrari with D. Betea and A. Occelli Comm. Math. Phys. 377 (2020), 421-467 (one-point) Stoch. Process. Appl. 146 (2022), 207-263 (multi-point)

http://wt.iam.uni-bonn.de/ferrari

KPZ stationary models in full-space

1

TASEP in full-space

• TASEP: Totally Asymmetric Simple Exclusion Process

• Configurations

$$\eta = \{\eta_x\}_{x \in \mathbb{Z}}, \ \eta_x = \begin{cases} 1, & \text{if } x \text{ is occupied,} \\ 0, & \text{if } x \text{ is empty.} \end{cases}$$

• Dynamics

Independently, particles jump on the right site with rate 1, provided the right is empty.

⇒ Particles are ordered: position of particle n is $x_n(t)$ with $x_n(t) > x_{n+1}(t)$ for all n, t.

___ 7

Last passage percolation (LPP)

• Consider independent random variables $\{\omega_{i,j}\}_{(i,j)\in\mathbb{Z}^2}$ with $\omega_{i,j} \sim \operatorname{Exp}(1)$

Last passage percolation (LPP)

- Consider independent random variables $\{\omega_{i,j}\}_{(i,j)\in\mathbb{Z}^2}$ with $\omega_{i,j}\sim \mathrm{Exp}(1)$
- \bullet The line-to-point LPP from a line ${\cal L}$ to the point (m,n) is given by

$$L_{m,n} = \max_{\pi: \mathcal{L} \to (m,n)} \sum_{(i,j) \in \pi} \omega_{i,j}$$

where the maximum is over up-right paths from \mathcal{L} to (m, n), i.e. paths with increments in $\{(0, 1), (1, 0)\}$.

TASEP and LPP

• The well-known connection between TASEP and LPP is

 $\mathbb{P}(L_{m,n} \le t) = \mathbb{P}(x_n(t) \ge m - n).$

TASEP and LPP

• The well-known connection between TASEP and LPP is

$$\mathbb{P}(L_{m,n} \le t) = \mathbb{P}(x_n(t) \ge m - n).$$

where $\mathcal{L} = \{(x_k(0) + k, k), k \in \mathbb{Z} \text{ or } \mathbb{N}\}.$

• Example: Step-initial condition $x_k(0) = -k + 1$, $k \ge 1$, $\mathcal{L} = \{(1, k), k \ge 1\}$, equivalent to reduce \mathcal{L} to one point.

Point-to-point and stationary LPP

• Point-to-point LPP:

$$\omega_{i,j} = \begin{cases} \text{Exp}(1), & i, j \ge 1, \\ 0, & \text{otherwise.} \end{cases}$$

• Stationary LPP: fix $\alpha \in (-1/2, 1/2)$

$$\omega_{i,j} = \begin{cases} \exp\left(\frac{1}{2} + \alpha\right) & i = 0, j \ge 1, \\ \exp\left(\frac{1}{2} - \alpha\right) & j = 0, i \ge 1, \\ 0 & \text{if } i = j = 0, \\ \exp(1) & \text{otherwise.} \end{cases}$$

• Point-to-point LPP: GUE Tracy-Widom distribution

$$\lim_{t \to \infty} \mathbb{P}(L_{N,N} \le 4N + s2^{4/3}N^{1/3}) = F_{\text{GUE}}(s)$$

with

$$F_{\text{GUE}}(s) = \det(\mathbb{1} - K_{\text{Ai}})_{L^2(s,\infty)}$$

with $K_{Ai}(x,y) = \int_{\mathbb{R}_+} d\lambda \operatorname{Ai}(x+\lambda) \operatorname{Ai}(y+\lambda)$ is the Airy kernel.

• Stationary initial condition: (stated for $\alpha = 0$) Baik-Rains distribution

$$\lim_{t \to \infty} \mathbb{P}(L_{N+w(2N)^{2/3}, N-w(2N)^{2/3}}^{\text{stat}} \le 4N + s2^{4/3}N^{1/3}) = F_{\text{BR}, w}(s),$$

with $F_{\text{BR},w}(s) = \frac{d}{ds}[F_{\text{GUE}}(s+w^2)g(s,w)].$

• w measures the distance from the characteristic line.

TASEP in full-space

• The Baik-Rains distribution function is

$$F_{\mathrm{BR},w}(s) = \frac{d}{ds} [F_{\mathrm{GUE}}(s+w^2)g(s,w)].$$

• Let
$$\widehat{K}_{\mathrm{Ai}}(x,y) = K_{\mathrm{Ai}}(x+w^2,y+w^2)$$
, and

$$\begin{split} \mathcal{R} &= s + e^{-\frac{2}{3}w^3} \int_s^\infty dx \int_0^\infty dy \mathrm{Ai}(x+y+w^2) \, e^{-w(x+y)}, \\ \Psi(y) &= e^{\frac{2}{3}w^3 + wy} - \int_0^\infty dx \mathrm{Ai}(x+y+w^2) \, e^{-wx}, \\ \Phi(x) &= e^{-\frac{2}{3}w^3} \int_0^\infty d\lambda \int_s^\infty dy \mathrm{Ai}(x+w^2+\lambda) \mathrm{Ai}(y+w^2+\lambda) \, e^{-wy} - \int_0^\infty dy \mathrm{Ai}(y+x+w^2) \, e^{wy}. \end{split}$$

• Let P_s be the projection operator $P_s(x) = \mathbbm{1}_{\{x > s\}}$, then the function g is given by

$$g(w,s) = \mathcal{R} - \left\langle (\mathbb{1} - P_s \widehat{K}_{\mathrm{Ai}} P_s)^{-1} P_s \Phi, P_s \Psi \right\rangle.$$

Origin of the structure of $F_{BR,w}$

Step 1: An integrable model with a random shift τ .

• For $\alpha, \beta \in (-1/2, 1/2]$ with $\alpha + \beta > 0$:

Step 2: Shift argument.

$$\mathbb{P}(L_{m,n}^{\tau} - \tau \le s) = \left(1 + \frac{1}{\alpha + \beta} \frac{d}{ds}\right) \mathbb{P}(L_{m,n}^{\tau} \le s).$$

Origin of the structure of $F_{BR,w}$

Step 3: $K_{\alpha,\beta}$ is a rank-one perturbation:

$$K_{\alpha,\beta}(x,y) = \overline{K}(x,y) + (\alpha + \beta)f_{\alpha}(x)g_{\beta}(y)$$

gives

$$\det(\mathbb{1} - K_{\alpha,\beta}) = \det(\mathbb{1} - \overline{K})[1 - (\alpha + \beta)\langle (\mathbb{1} - \overline{K})^{-1} f_{\alpha}, g_{\beta}\rangle)].$$

Thus

$$\mathbb{P}(L_{m,n}^{\text{stat}} \le s) = \lim_{\beta \to -\alpha} \frac{d}{ds} \left[\det(\mathbb{1} - \overline{K}) \left(\frac{1}{\alpha + \beta} - \langle (\mathbb{1} - \overline{K})^{-1} f_{\alpha}, g_{\beta} \rangle \right) \right].$$

Step 4: Analytic continuation for $\alpha, \beta \in (-1/2, 1/2)$.

$$\frac{1}{\alpha+\beta} - \langle (\mathbb{1} - \overline{K})^{-1} f_{\alpha}, g_{\beta} \rangle) = \left[\frac{1}{\alpha+\beta} - \langle f_{\alpha}, g_{\beta} \rangle \right] - \langle (\mathbb{1} - \overline{K})^{-1} \overline{K} f_{\alpha}, g_{\beta} \rangle.$$

Step 5: Large time limit:

- \overline{K} converges to \widehat{K}_{Ai} ,
- the term $\lim_{eta
 ightarrow -lpha} rac{1}{lpha + eta} \langle f_lpha, g_eta
 angle$ converges to $\mathcal R$,
- $\overline{K}f_{\alpha}$ and $g_{-\alpha}$ converge to Φ and Ψ .

Determinantal systems: one-point distribution

- Polynuclear growth model Baik, Rains'00, Imamura, Sasamoto'04
- TASEP / last passage percolation Ferrari, Spohn'05

Determinantal systems: multi-point distributions

- TASEP Baik, Ferrari, Péché'09
- One-sided reflecting Brownian motion (low density limit of TASEP) Ferrari, Spohn, Weiss'15

Integrable but not determinantal models (only one-point distribution)

KPZ equation

Imamura, Sasamoto'13

Borodin, Corwin, Ferrari, Veto'14

- ASEP and stochastic six-vertex model Aggarwal'16
- q-TASEP and Semi-discrete directed polymer

Imamura, Sasamoto'17

Half-space stationary models

Half-space LPP

• Fix $\alpha \in (-1/2, 1/2)$ and consider independent random variables $\{\omega_{i,j}\}_{(i,j)\in \mathcal{D}}$, $\mathcal{D} = \{(i,j)\in \mathbb{N}^2 | 1\leq j\leq i\}$ and

Half-space LPP

• Fix $\alpha \in (-1/2, 1/2)$ and consider independent random variables $\{\omega_{i,j}\}_{(i,j)\in \mathcal{D}}$, $\mathcal{D} = \{(i,j)\in \mathbb{N}^2 | 1\leq j\leq i\}$ and

$$\omega_{i,j} = \begin{cases} \exp\left(\frac{1}{2} + \alpha\right) & i = j \ge 1, \\ \exp\left(\frac{1}{2} - \alpha\right) & j = 0, i \ge 1, \\ 0 & \text{if } i = j = 0, \\ \exp(1) & \text{otherwise.} \end{cases}$$

• A stationary half-space LPP time to the point (m,n) (for $n \le m$), denoted $L_{m,n}^{\rm stat}$, is given by

$$L_{m,n}^{\text{stat}} = \max_{\pi:(0,0)\to(m,n)} \sum_{(i,j)\in\pi} \omega_{i,j}$$

where the maximum is over up-right paths in \mathcal{D} from (1,1) to (m,n), i.e. paths with increments in $\{(0,1), (1,0)\}$.

• For TASEP, the boundary random variables are the injection waiting times at the origin.

Half-space LPP: stationarity

- Why is this model called stationary?
- Increments $\{L_{m+1,n}^{\text{stat}} L_{m,n}^{\text{stat}}, m \ge n\}$ are iid. $\operatorname{Exp}(\frac{1}{2} \alpha)$.
- Also $\{L_{m,n}^{\text{stat}} L_{m,n-1}^{\text{stat}}, m \ge n\}$ are iid. $\text{Exp}(\frac{1}{2} + \alpha)$

Balázs, Cator, Seppäläinen'06

Scaling

- Case $\alpha < 0$: large diagonal weights
- Characteristic lines have slopes $\left((\frac{1}{2} + \alpha)/(\frac{1}{2} \alpha)\right)^2 < 1$
- \bullet End-point on characteristics from (0,0): diagonal visited only ${\cal O}(N^{2/3})$ around the origin: like full-space
- End-point $(N,N)\colon$ maximizer visits O(N) times the diagonal: Gaussian fluctuations

Scaling

- Characteristic lines have slopes $\left((\frac{1}{2} + \alpha) / (\frac{1}{2} \alpha) \right)^2 > 1$
- \bullet End-point $(N,N)\colon$ maximizer visits O(N) times the first row: Gaussian fluctuations in $N^{1/2}$ scale

Scaling

• Critical scaling:

$$\alpha = \delta 2^{-4/3} N^{-1/3}$$

and end-point $(N,N-\eta N)$ with

$$\eta = u2^{5/3}N^{-1/3}.$$

• Law of large number gives:

 $L_{N,N-\eta N}^{\rm stat} \simeq 4N - 4u(2N)^{2/3} + \delta(2u+\delta)2^{4/3}N^{1/3}.$

Theorem

Let $\delta \in \mathbb{R}$, u > 0 be fixed. Set

$$\alpha = \delta 2^{-4/3} N^{-1/3}, \quad \eta N = u 2^{5/3} N^{2/3}.$$

Then

$$\lim_{N \to \infty} \mathbb{P}\left(\frac{L_{N,N-\eta N}^{\text{stat}} - (4N - 4u(2N)^{2/3})}{2^{4/3}N^{1/3}} \le S\right) = F_{u,\delta}(S),$$

where
$$F_{u,\delta}(S) = \frac{d}{dS} \left\{ \Pr(J - \mathcal{A}) G_{\delta,u}(S) \right\}$$
 with $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

$$G_{\delta,u}(S) = \mathfrak{e}^{\delta,u}(S) - \left\langle -g_1^{\delta,u} \quad g_2^{\delta,u} \left| (\mathbb{1} - J^{-1}\overline{\mathcal{A}})^{-1} \begin{pmatrix} -\mathfrak{h}_1^{\delta,u} \\ \mathfrak{h}_2^{\delta,u} \end{pmatrix} \right\rangle.$$

- The 2×2 matrix kernel $\overline{\mathcal{A}}$ is the one arising from the model with $\operatorname{Exp}(1)$ also for j = 0, instead of $\operatorname{Exp}(\frac{1}{2} - \alpha)$. Away from the diagonal: Imamura, Sasamoto'04 General and rigorous case: Baik, Barraquand, Corwin, Suidan'18
- For moment computations the derivative is not a problem: denote $F_{u,\delta}(S) = \frac{d}{dS}T(S)$ and $\xi \sim F_{u,\delta}$, then:

• by stationarity:
$$\mathbb{E}(\xi) = \delta(2u + \delta)$$
,

integrating by parts gives

$$\mathbb{E}(\xi^{\ell}) = \ell(\ell-1) \int_{\mathbb{R}_{+}} dS S^{\ell-2}(T(S)-S) + \ell(\ell-1) \int_{\mathbb{R}_{-}} dS S^{\ell-2}T(S).$$

• The inverse of the operator is not a numerical issue either:

$$\Pr(J-K)\left\langle c \quad d \left| (\mathbb{1} - J^{-1}K)^{-1} \begin{pmatrix} a \\ b \end{pmatrix} \right\rangle$$
$$= \Pr(J-K) - \Pr\left(J-K- \left|\begin{array}{c} b \\ -a \end{array}\right\rangle \left\langle c \quad d \right| - \left|\begin{array}{c} c \\ d \end{array}\right\rangle \left\langle -b \quad a \right| \right).$$

• Then use Bornemann's method to evaluate the Fredholm determinants (Pfaffians) Bornemann'08

Step 1: An integrable model. Consider the model

• The process $L_{N,1}, L_{N,2}, \ldots, L_{N,N}$ is the marginal of a Pfaffian Schur process. Baik, Barraquand, Corwin, Suidan'18

Half-space geometry: proof - sketch

• For $\alpha + \beta > 0$ and $\beta > 0$ we a Fredholm Pfaffian expression on (s, ∞) $\mathbb{P}(L_{N,N-n} \leq s) = Pf(J - K)$

with

$$\begin{split} \kappa_{11}(x,y) &= -\oint \frac{dz}{2\pi \mathrm{i}} \oint \frac{dw}{2\pi \mathrm{i}} \frac{\Phi(x,z)}{\Phi(y,w)} \left[(\frac{1}{2} - z)(\frac{1}{2} + w) \right]^n \frac{(z+\beta)(w-\beta)}{(z-\beta)(w+\beta)} \frac{(z+\alpha)(w-\alpha)(z+w)}{4zw(z-w)}, \\ \kappa_{12}(x,y) &= -\oint \frac{dz}{2\pi \mathrm{i}} \oint \frac{dw}{2\pi \mathrm{i}} \frac{\Phi(x,z)}{\Phi(y,w)} \left[\frac{\frac{1}{2} - z}{\frac{1}{2} - w} \right]^n \frac{z+\alpha}{w+\alpha} \frac{z+\beta}{z-\beta} \frac{w-\beta}{w+\beta} \frac{z+w}{2z(z-w)} \\ &= -\kappa_{21}(y,x), \\ \kappa_{22}(x,y) &= \oint \frac{dz}{2\pi \mathrm{i}} \oint \frac{dw}{2\pi \mathrm{i}} \frac{\Phi(x,z)}{\Phi(y,w)} \frac{1}{\left[(\frac{1}{2} + z)(\frac{1}{2} - w) \right]^n} \frac{1}{(z-\alpha)(w+\alpha)} \frac{z+\beta}{z-\beta} \frac{w-\beta}{w+\beta} \frac{z+w}{z-w} + \varepsilon(x,y), \\ \text{with } \Phi(x,z) &= e^{-xz} [(\frac{1}{2} + z)/(\frac{1}{2} - z)]^{N-1} \text{ and} \\ \varepsilon(x,y) &= -\operatorname{sgn}(x-y) \oint_{\Gamma_{1/2,\alpha}} \frac{dz}{2\pi \mathrm{i}} \frac{2ze^{-z|x-y|}}{(z^2-\alpha^2)(\frac{1}{4} - z^2)^n}. \end{split}$$

Step 2: Shift argument. We want to get the limit of $\beta = -\alpha$ conditioned on $\omega_{0,0} = 0$.

• For $\alpha + \beta > 0$, we have

$$\mathbb{P}(L_{N,N-n} \le s | \omega_{0,0} = 0) = \left(1 + \frac{1}{\alpha + \beta} \frac{d}{ds}\right) \mathbb{P}(L_{N,N-n} \le s).$$

Step 3: Rank one decomposition.

• By deforming contours such that the expressions are analytic at $\alpha+\beta=0$ we get

$$K = \overline{K} + (\alpha + \beta)R$$

with R of the form

$$R = \begin{pmatrix} |g_1\rangle \langle f^\beta| - |f^\beta\rangle \langle g_1| & |f^\beta\rangle \langle g_2| \\ -|g_2\rangle \langle f^\beta| & 0 \end{pmatrix}$$

with $f^{\beta}(x) \sim e^{-\beta x}$.

Thus we have

$$\mathbb{P}(L_{N,N-n}^{\text{stat}} \le s) = \lim_{\beta \to -\alpha} \frac{d}{ds} \left[\Pr(J - \overline{K}) \left(\frac{1}{\alpha + \beta} - \left\langle Y \left| (\mathbb{1} - \overline{G})^{-1} X \right\rangle \right) \right]$$

with
$$X = \left| \begin{array}{c} 0 \\ f^{\beta} \end{array} \right\rangle$$
 and $Y = \langle -g_1 \quad g_2 |$ and $\overline{G} = J^{-1} \overline{K}$.

Half-space geometry: proof - sketch

Step 4: Analytic continuation.

• Let $G = J^{-1}K$, then the idea is to use

$$\frac{1}{\alpha+\beta} - \left\langle Y \left| (\mathbb{1} - \overline{G})^{-1} X \right\rangle = \frac{1}{\alpha+\beta} - \left\langle Y \left| X \right\rangle - \left\langle Y \left| (\mathbb{1} - \overline{G})^{-1} \overline{G} X \right\rangle \right.$$

- Problem: $\langle Y | \overline{G}X \rangle$ is a sum of 4 terms, some of which diverge for $\beta \leq 0$, due to the f^{β} term. A term-by-term limit $\beta \rightarrow -\alpha$ for $\alpha \geq 0$ is not possible.
- Solution: The diverging terms exactly cancels for any $\beta>0,$ namely we show that

$$\left\langle Y \left| (\mathbb{1} - \overline{G})^{-1} \overline{G} X \right\rangle = \left\langle Y \left| (\mathbb{1} - \overline{G})^{-1} \widetilde{G} X \right\rangle \right.$$

where \widetilde{G} is without the problematic terms. The result is then analytic on $(\alpha, \beta) \in (-1/2, 1/2)^2$.

Step 5: Large time asymptotics. Standard steep descent method.

Full-space vs. half-space stationary models

Full-space	Half-space
One-parameter family	Two-parameter family
Determinantal structure	Pfaffian structure
Simple analytic continuation	Tricky analytic continuation

• Is the full-space distribution a limit of half-space one?

• Taking $\delta \to -\infty$, the characteristic line has direction far away from the diagonal. Thus the maximizer of the LPP will touch less and less the diagonal away from a $O(N^{2/3})$ -neighborhood of the origin, so one might expect to recover the Baik-Rains distribution.

Theorem

Let $S = s + \delta(2u + \delta)$ and $u = w - \delta$ (for w = 0 we are on the characteristic line). Then,

$$\lim_{u \to \infty} F_{u,\delta}(S) = F_{\mathrm{BR},w}(s).$$

- In arXiv:2012.10337 we extended the result to multi-point distributions
- In arXiv:2204.06782 we get some results on the time-time covariance close to the characteristic direction (compare with Alessandra Occelli's talk a few weeks ago).
- The general stationary process in TASEP has two parameters: one for the input rate and one for the density at infinity.

Liggett'75

This is reflected into the LPP setting as well (see (maybe) Barraquand's talk next week)

Barraquand-Krajenbrink-Le Doussal'22;Barraquand-Corwin'22