Randomness, Integrability and Universality Arcetri, Firenze; May 13, 2022

Stationary half-space last passage percolation

Patrik L. Ferrari
with D. Betea and A. Occelli
Comm. Math. Phys. 377 (2020), 421-467 (one-point) Stoch. Process. Appl. 146 (2022), 207-263 (multi-point)

http://wt.iam.uni-bonn.de/ferrari

KPZ stationary models in full-space

- TASEP: Totally Asymmetric Simple Exclusion Process
- Configurations

$$
\eta=\left\{\eta_{x}\right\}_{x \in \mathbb{Z}}, \eta_{x}= \begin{cases}1, & \text { if } x \text { is occupied } \\ 0, & \text { if } x \text { is empty }\end{cases}
$$

$\bullet-1 \perp \mathbb{Z}$
$1001 \quad \eta$

- Dynamics

Independently, particles jump on the right site with rate 1 , provided the right is empty.

\Rightarrow Particles are ordered: position of particle n is $x_{n}(t)$ with $x_{n}(t)>x_{n+1}(t)$ for all n, t.

- Consider independent random variables $\left\{\omega_{i, j}\right\}_{(i, j) \in \mathbb{Z}^{2}}$ with $\omega_{i, j} \sim \operatorname{Exp}(1)$

- Consider independent random variables $\left\{\omega_{i, j}\right\}_{(i, j) \in \mathbb{Z}^{2}}$ with $\omega_{i, j} \sim \operatorname{Exp}(1)$
- The line-to-point LPP from a line \mathcal{L} to the point (m, n) is given by

$$
L_{m, n}=\max _{\pi: \mathcal{L} \rightarrow(m, n)} \sum_{(i, j) \in \pi} \omega_{i, j}
$$

where the maximum is over up-right paths from \mathcal{L} to (m, n), i.e. paths with increments in $\{(0,1),(1,0)\}$.

- The well-known connection between TASEP and LPP is

$$
\mathbb{P}\left(L_{m, n} \leq t\right)=\mathbb{P}\left(x_{n}(t) \geq m-n\right)
$$

where $\mathcal{L}=\left\{\left(x_{k}(0)+k, k\right), k \in \mathbb{Z}\right.$ or $\left.\mathbb{N}\right\}$.

- The well-known connection between TASEP and LPP is

$$
\mathbb{P}\left(L_{m, n} \leq t\right)=\mathbb{P}\left(x_{n}(t) \geq m-n\right)
$$

where $\mathcal{L}=\left\{\left(x_{k}(0)+k, k\right), k \in \mathbb{Z}\right.$ or $\left.\mathbb{N}\right\}$.

- Example: Step-initial condition $x_{k}(0)=-k+1, k \geq 1$, $\mathcal{L}=\{(1, k), k \geq 1\}$, equivalent to reduce \mathcal{L} to one point.

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \bullet |
| \bullet |
| \bullet |
| \bullet |
| \bullet |
| \bullet |
| \bullet |

- Point-to-point LPP:

$$
\omega_{i, j}= \begin{cases}\operatorname{Exp}(1), & i, j \geq 1 \\ 0, & \text { otherwise }\end{cases}
$$

- Stationary LPP: fix $\alpha \in(-1 / 2,1 / 2)$

$$
\omega_{i, j}= \begin{cases}\operatorname{Exp}\left(\frac{1}{2}+\alpha\right) & i=0, j \geq 1 \\ \operatorname{Exp}\left(\frac{1}{2}-\alpha\right) & j=0, i \geq 1 \\ 0 & \text { if } i=j=0 \\ \operatorname{Exp}(1) & \text { otherwise }\end{cases}
$$

- Point-to-point LPP: GUE Tracy-Widom distribution

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(L_{N, N} \leq 4 N+s 2^{4 / 3} N^{1 / 3}\right)=F_{\mathrm{GUE}}(s)
$$

with

$$
F_{\mathrm{GUE}}(s)=\operatorname{det}\left(\mathbb{1}-K_{\mathrm{Ai}}\right)_{L^{2}(s, \infty)}
$$

with $K_{\mathrm{Ai}}(x, y)=\int_{\mathbb{R}_{+}} d \lambda \operatorname{Ai}(x+\lambda) \operatorname{Ai}(y+\lambda)$ is the Airy kernel.

- Stationary initial condition: (stated for $\alpha=0$) Baik-Rains distribution $\lim _{t \rightarrow \infty} \mathbb{P}\left(L_{N+w(2 N)^{2 / 3}, N-w(2 N)^{2 / 3}}^{\text {stat }} \leq 4 N+s 2^{4 / 3} N^{1 / 3}\right)=F_{\mathrm{BR}, w}(s)$, with $F_{\mathrm{BR}, w}(s)=\frac{d}{d s}\left[F_{\mathrm{GUE}}\left(s+w^{2}\right) g(s, w)\right]$.
- w measures the distance from the characteristic line.
- The Baik-Rains distribution function is

$$
F_{\mathrm{BR}, w}(s)=\frac{d}{d s}\left[F_{\mathrm{GUE}}\left(s+w^{2}\right) g(s, w)\right]
$$

- Let $\widehat{K}_{\mathrm{Ai}}(x, y)=K_{\mathrm{Ai}}\left(x+w^{2}, y+w^{2}\right)$, and

$$
\begin{aligned}
\mathcal{R} & =s+e^{-\frac{2}{3} w^{3}} \int_{s}^{\infty} d x \int_{0}^{\infty} d y \mathrm{Ai}\left(x+y+w^{2}\right) e^{-w(x+y)}, \\
\Psi(y) & =e^{\frac{2}{3} w^{3}+w y}-\int_{0}^{\infty} d x \mathrm{Ai}\left(x+y+w^{2}\right) e^{-w x}, \\
\Phi(x) & =e^{-\frac{2}{3} w^{3}} \int_{0}^{\infty} d \lambda \int_{s}^{\infty} d y \mathrm{Ai}\left(x+w^{2}+\lambda\right) \mathrm{Ai}\left(y+w^{2}+\lambda\right) e^{-w y}-\int_{0}^{\infty} d y \mathrm{Ai}\left(y+x+w^{2}\right) e^{w y} .
\end{aligned}
$$

- Let P_{s} be the projection operator $P_{s}(x)=\mathbb{1}_{\{x>s\}}$, then the function g is given by

$$
g(w, s)=\mathcal{R}-\left\langle\left(\mathbb{1}-P_{s} \widehat{K}_{\mathrm{Ai}} P_{s}\right)^{-1} P_{s} \Phi, P_{s} \Psi\right\rangle .
$$

Origin of the structure of $F_{\mathrm{BR}, w}$

Step 1: An integrable model with a random shift τ.

- For $\alpha, \beta \in(-1 / 2,1 / 2]$ with $\alpha+\beta>0$:

$$
\omega_{i, j}= \begin{cases}\operatorname{Exp}\left(\frac{1}{2}+\alpha\right) & i=0, j \geq 1, \\ \operatorname{Exp}\left(\frac{1}{2}+\beta\right) & j=0, i \geq 1, \\ \tau=\operatorname{Exp}(\alpha+\beta) & \text { if } i=j=0, \\ \operatorname{Exp}(1) & \text { otherwise. }\end{cases}
$$

Using a Schur process:

$$
\mathbb{P}\left(L_{m, n}^{\tau} \leq s\right)=\operatorname{det}\left(\mathbb{1}-K_{\alpha, \beta}\right)_{L^{2}(s, \infty)} \cdot \operatorname{Exp}(\alpha+\beta)
$$

$$
L_{m, n}^{\text {stat }}=\lim _{\beta \rightarrow-\alpha}\left(L_{m, n}^{\tau}-\tau\right)
$$

Step 2: Shift argument.

$$
\mathbb{P}\left(L_{m, n}^{\tau}-\tau \leq s\right)=\left(1+\frac{1}{\alpha+\beta} \frac{d}{d s}\right) \mathbb{P}\left(L_{m, n}^{\tau} \leq s\right)
$$

Origin of the structure of $F_{\mathrm{BR}, w}$

Step 3: $K_{\alpha, \beta}$ is a rank-one perturbation:

$$
K_{\alpha, \beta}(x, y)=\bar{K}(x, y)+(\alpha+\beta) f_{\alpha}(x) g_{\beta}(y)
$$

gives

$$
\left.\operatorname{det}\left(\mathbb{1}-K_{\alpha, \beta}\right)=\operatorname{det}(\mathbb{1}-\bar{K})\left[1-(\alpha+\beta)\left\langle(\mathbb{1}-\bar{K})^{-1} f_{\alpha}, g_{\beta}\right\rangle\right)\right] .
$$

Thus
$\left.\mathbb{P}\left(L_{m, n}^{\text {stat }} \leq s\right)=\lim _{\beta \rightarrow-\alpha} \frac{d}{d s}\left[\operatorname{det}(\mathbb{1}-\bar{K})\left(\frac{1}{\alpha+\beta}-\left\langle(\mathbb{1}-\bar{K})^{-1} f_{\alpha}, g_{\beta}\right\rangle\right)\right)\right]$
Step 4: Analytic continuation for $\alpha, \beta \in(-1 / 2,1 / 2)$.
$\left.\frac{1}{\alpha+\beta}-\left\langle(\mathbb{1}-\bar{K})^{-1} f_{\alpha}, g_{\beta}\right\rangle\right)=\left[\frac{1}{\alpha+\beta}-\left\langle f_{\alpha}, g_{\beta}\right\rangle\right]-\left\langle(\mathbb{1}-\bar{K})^{-1} \bar{K} f_{\alpha}, g_{\beta}\right\rangle$.
Step 5: Large time limit:

- \bar{K} converges to $\widehat{K}_{\mathrm{Ai}}$,
- the term $\lim _{\beta \rightarrow-\alpha} \frac{1}{\alpha+\beta}-\left\langle f_{\alpha}, g_{\beta}\right\rangle$ converges to \mathcal{R},
- $\bar{K} f_{\alpha}$ and $g_{-\alpha}$ converge to Φ and Ψ.

Determinantal systems: one-point distribution

- Polynuclear growth model Baik,Rains'00,Imamura,Sasamoto'04
- TASEP / last passage percolation

Determinantal systems: multi-point distributions

- TASEP

Baik,Ferrari, Péché'09

- One-sided reflecting Brownian motion (low density limit of TASEP)

Ferrari, Spohn, Weiss'15
Integrable but not determinantal models (only one-point distribution)

- KPZ equation
- ASEP and stochastic six-vertex model
- q-TASEP and Semi-discrete directed polymer

Half-space stationary models

- Fix $\alpha \in(-1 / 2,1 / 2)$ and consider independent random variables $\left\{\omega_{i, j}\right\}_{(i, j) \in \mathcal{D}}, \mathcal{D}=\left\{(i, j) \in \mathbb{N}^{2} \mid 1 \leq j \leq i\right\}$ and

$$
\omega_{i, j}= \begin{cases}\operatorname{Exp}\left(\frac{1}{2}+\alpha\right) & i=j \geq 1 \\ \operatorname{Exp}\left(\frac{1}{2}-\alpha\right) & j=0, i \geq 1 \\ 0 & \text { if } i=j=0 \\ \operatorname{Exp}(1) & \text { otherwise }\end{cases}
$$

- Fix $\alpha \in(-1 / 2,1 / 2)$ and consider independent random variables $\left\{\omega_{i, j}\right\}_{(i, j) \in \mathcal{D}}, \mathcal{D}=\left\{(i, j) \in \mathbb{N}^{2} \mid 1 \leq j \leq i\right\}$ and

$$
\omega_{i, j}= \begin{cases}\operatorname{Exp}\left(\frac{1}{2}+\alpha\right) & i=j \geq 1 \\ \operatorname{Exp}\left(\frac{1}{2}-\alpha\right) & j=0, i \geq 1 \\ 0 & \text { if } i=j=0 \\ \operatorname{Exp}(1) & \text { otherwise }\end{cases}
$$

- A stationary half-space LPP time to the point (m, n) (for $n \leq m)$, denoted $L_{m, n}^{\text {stat }}$, is given by

$$
L_{m, n}^{\mathrm{stat}}=\max _{\pi:(0,0) \rightarrow(m, n)} \sum_{(i, j) \in \pi} \omega_{i, j}
$$

where the maximum is over up-right paths in \mathcal{D} from $(1,1)$ to (m, n), i.e. paths with increments in $\{(0,1),(1,0)\}$.

- For TASEP, the boundary random variables are the injection waiting times at the origin.
- Why is this model called stationary?
- Increments $\left\{L_{m+1, n}^{\text {stat }}-L_{m, n}^{\text {stat }}, m \geq n\right\}$ are iid. $\operatorname{Exp}\left(\frac{1}{2}-\alpha\right)$.
- Also $\left\{L_{m, n}^{\text {stat }}-L_{m, n-1}^{\text {stat }}, m \geq n\right\}$ are iid. $\operatorname{Exp}\left(\frac{1}{2}+\alpha\right)$

Balázs, Cator, Seppäläinen'06

- Case $\alpha<0$: large diagonal weights
- Characteristic lines have slopes $\left(\left(\frac{1}{2}+\alpha\right) /\left(\frac{1}{2}-\alpha\right)\right)^{2}<1$
- End-point on characteristics from $(0,0)$: diagonal visited only $O\left(N^{2 / 3}\right)$ around the origin: like full-space
- End-point (N, N) : maximizer visits $O(N)$ times the diagonal: Gaussian fluctuations

$$
Q=N\left(1,\left(\frac{1}{2}+\alpha\right)^{2} /\left(\frac{1}{2}-\alpha\right)^{2}\right)
$$

- Case $\alpha>0$: small diagonal weights
- Characteristic lines have slopes $\left(\left(\frac{1}{2}+\alpha\right) /\left(\frac{1}{2}-\alpha\right)\right)^{2}>1$
- End-point (N, N) : maximizer visits $O(N)$ times the first row: Gaussian fluctuations in $N^{1 / 2}$ scale

- Critical scaling:

$$
\alpha=\delta 2^{-4 / 3} N^{-1 / 3}
$$

and end-point $(N, N-\eta N)$ with

$$
\eta=u 2^{5 / 3} N^{-1 / 3}
$$

- Law of large number gives:

$$
L_{N, N-\eta N}^{\text {stat }} \simeq 4 N-4 u(2 N)^{2 / 3}+\delta(2 u+\delta) 2^{4 / 3} N^{1 / 3}
$$

Theorem

Let $\delta \in \mathbb{R}, u>0$ be fixed. Set

$$
\alpha=\delta 2^{-4 / 3} N^{-1 / 3}, \quad \eta N=u 2^{5 / 3} N^{2 / 3}
$$

Then

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\frac{L_{N, N-\eta N}^{\text {stat }}-\left(4 N-4 u(2 N)^{2 / 3}\right)}{2^{4 / 3} N^{1 / 3}} \leq S\right)=F_{u, \delta}(S)
$$

where $F_{u, \delta}(S)=\frac{d}{d S}\left\{\operatorname{Pf}(J-\overline{\mathcal{A}}) G_{\delta, u}(S)\right\}$ with $J=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$

$$
G_{\delta, u}(S)=e^{\delta, u}(S)-\left\langle\begin{array}{cc}
-g_{1}^{\delta, u} & g_{2}^{\delta, u}
\end{array} \left\lvert\,\left(\mathbb{1}-J^{-1} \overline{\mathcal{A}}\right)^{-1}\binom{-f_{1}^{\delta, u}}{f_{2}^{\delta, u}}\right.\right\rangle .
$$

- The 2×2 matrix kernel $\overline{\mathcal{A}}$ is the one arising from the model with $\operatorname{Exp}(1)$ also for $j=0$, instead of $\operatorname{Exp}\left(\frac{1}{2}-\alpha\right)$. Away from the diagonal: Imamura, Sasamoto'04
General and rigorous case: Baik, Barraquand, Corwin, Suidan'18
- For moment computations the derivative is not a problem: denote $F_{u, \delta}(S)=\frac{d}{d S} T(S)$ and $\xi \sim F_{u, \delta}$, then:
- by stationarity: $\mathbb{E}(\xi)=\delta(2 u+\delta)$,
- integrating by parts gives

$$
\mathbb{E}\left(\xi^{\ell}\right)=\ell(\ell-1) \int_{\mathbb{R}_{+}} d S S^{\ell-2}(T(S)-S)+\ell(\ell-1) \int_{\mathbb{R}_{-}} d S S^{\ell-2} T(S)
$$

- The inverse of the operator is not a numerical issue either:

$$
\begin{aligned}
& \operatorname{Pf}(J-K)\left\langle\begin{array}{ll}
c & d
\end{array} \left\lvert\,\left(\mathbb{1}-J^{-1} K\right)^{-1}\binom{a}{b}\right.\right\rangle \\
= & \operatorname{Pf}(J-K)-\operatorname{Pf}\left(J-K-\left|\begin{array}{c}
b \\
-a
\end{array}\right\rangle\left\langle\begin{array}{ll}
c & \left.d|-| \begin{array}{c}
c \\
d
\end{array}\right\rangle\left\langle\begin{array}{ll}
-b & a \mid
\end{array}\right) .
\end{array} . . \begin{array}{ll}
&
\end{array}\right) . \begin{array}{ll}
&
\end{array}\right)
\end{aligned}
$$

- Then use Bornemann's method to evaluate the Fredholm determinants (Pfaffians)

Step 1: An integrable model. Consider the model

- The process $L_{N, 1}, L_{N, 2}, \ldots, L_{N, N}$ is the marginal of a Pfaffian Schur process. Baik, Barraquand, Corwin, Suidan'18
- For $\alpha+\beta>0$ and $\beta>0$ we a Fredholm Pfaffian expression on (s, ∞)

$$
\mathbb{P}\left(L_{N, N-n} \leq s\right)=\operatorname{Pf}(J-K)
$$

with

$$
\begin{aligned}
& K_{11}(x, y)=-\oint \frac{d z}{2 \pi \mathrm{i}} \oint \frac{d w}{2 \pi \mathrm{i}} \frac{\Phi(x, z)}{\Phi(y, w)}\left[\left(\frac{1}{2}-z\right)\left(\frac{1}{2}+w\right)\right]^{n} \frac{(z+\beta)(w-\beta)}{(z-\beta)(w+\beta)} \frac{(z+\alpha)(w-\alpha)(z+w)}{4 z w(z-w)}, \\
& K_{12}(x, y)=-\oint \frac{d z}{2 \pi \mathrm{i}} \oint \frac{d w}{2 \pi \mathrm{i}} \frac{\Phi(x, z)}{\Phi(y, w)}\left[\frac{\frac{1}{2}-z}{\frac{1}{2}-w}\right]^{n} \frac{z+\alpha}{w+\alpha} \frac{z+\beta}{z-\beta} \frac{w-\beta}{w+\beta} \frac{z+w}{2 z(z-w)} \\
& =-K_{21}(y, x) \text {, } \\
& K_{22}(x, y)=\oint \frac{d z}{2 \pi \mathrm{i}} \oint \frac{d w}{2 \pi \mathrm{i}} \frac{\Phi(x, z)}{\Phi(y, w)} \frac{1}{\left[\left(\frac{1}{2}+z\right)\left(\frac{1}{2}-w\right)\right]^{n}} \frac{1}{(z-\alpha)(w+\alpha)} \frac{z+\beta}{z-\beta} \frac{w-\beta}{w+\beta} \frac{z+w}{z-w}+\varepsilon(x, y), \\
& \text { with } \Phi(x, z)=e^{-x z}\left[\left(\frac{1}{2}+z\right) /\left(\frac{1}{2}-z\right)\right]^{N-1} \text { and } \\
& \varepsilon(x, y)=-\operatorname{sgn}(x-y) \oint_{\Gamma_{1 / 2, \alpha}} \frac{d z}{2 \pi \mathrm{i}} \frac{2 z e^{-z|x-y|}}{\left(z^{2}-\alpha^{2}\right)\left(\frac{1}{4}-z^{2}\right)^{n}} .
\end{aligned}
$$

Step 2: Shift argument. We want to get the limit of $\beta=-\alpha$ conditioned on $\omega_{0,0}=0$.

- For $\alpha+\beta>0$, we have

$$
\mathbb{P}\left(L_{N, N-n} \leq s \mid \omega_{0,0}=0\right)=\left(1+\frac{1}{\alpha+\beta} \frac{d}{d s}\right) \mathbb{P}\left(L_{N, N-n} \leq s\right)
$$

Step 3: Rank one decomposition.

- By deforming contours such that the expressions are analytic at $\alpha+\beta=0$ we get

$$
K=\bar{K}+(\alpha+\beta) R
$$

with R of the form

$$
R=\left(\begin{array}{cc}
\left|g_{1}\right\rangle\left\langle f^{\beta}\right|-\left|f^{\beta}\right\rangle\left\langle g_{1}\right| & \left|f^{\beta}\right\rangle\left\langle g_{2}\right| \\
-\left|g_{2}\right\rangle\left\langle f^{\beta}\right.
\end{array}\right)
$$

with $f^{\beta}(x) \sim e^{-\beta x}$.

- Thus we have

$$
\begin{gathered}
\mathbb{P}\left(L_{N, N-n}^{\text {stat }} \leq s\right)=\lim _{\beta \rightarrow-\alpha} \frac{d}{d s}\left[\operatorname{Pf}(J-\bar{K})\left(\frac{1}{\alpha+\beta}-\left\langle Y \mid(\mathbb{1}-\bar{G})^{-1} X\right\rangle\right)\right] \\
\text { with } X=\left|\begin{array}{c}
0 \\
f^{\beta}
\end{array}\right\rangle \text { and } Y=\left\langle\begin{array}{ll}
-g_{1} & g_{2} \mid \text { and } \bar{G}=J^{-1} \bar{K} .
\end{array} .\right.
\end{gathered}
$$

Step 4: Analytic continuation.

- Let $G=J^{-1} K$, then the idea is to use
$\frac{1}{\alpha+\beta}-\left\langle Y \mid(\mathbb{1}-\bar{G})^{-1} X\right\rangle=\frac{1}{\alpha+\beta}-\langle Y \mid X\rangle-\left\langle Y \mid(\mathbb{1}-\bar{G})^{-1} \bar{G} X\right\rangle$
- Problem: $\langle Y \mid \bar{G} X\rangle$ is a sum of 4 terms, some of which diverge for $\beta \leq 0$, due to the f^{β} term. A term-by-term limit $\beta \rightarrow-\alpha$ for $\alpha \geq 0$ is not possible.
- Solution: The diverging terms exactly cancels for any $\beta>0$, namely we show that

$$
\left\langle Y \mid(\mathbb{1}-\bar{G})^{-1} \bar{G} X\right\rangle=\left\langle Y \mid(\mathbb{1}-\bar{G})^{-1} \widetilde{G} X\right\rangle
$$

where \widetilde{G} is without the problematic terms. The result is then analytic on $(\alpha, \beta) \in(-1 / 2,1 / 2)^{2}$.
Step 5: Large time asymptotics. Standard steep descent method.

Full-space vs. half-space stationary models

Full-space	Half-space
One-parameter family	Two-parameter family
Determinantal structure	Pfaffian structure
Simple analytic continuation	Tricky analytic continuation

- Is the full-space distribution a limit of half-space one?
- Taking $\delta \rightarrow-\infty$, the characteristic line has direction far away from the diagonal. Thus the maximizer of the LPP will touch less and less the diagonal away from a $O\left(N^{2 / 3}\right)$-neighborhood of the origin, so one might expect to recover the Baik-Rains distribution.

Theorem
Let $S=s+\delta(2 u+\delta)$ and $u=w-\delta$ (for $w=0$ we are on the characteristic line). Then,

$$
\lim _{u \rightarrow \infty} F_{u, \delta}(S)=F_{\mathrm{BR}, w}(s)
$$

- In arXiv:2012.10337 we extended the result to multi-point distributions
- In arXiv:2204.06782 we get some results on the time-time covariance close to the characteristic direction (compare with Alessandra Occelli's talk a few weeks ago).
- The general stationary process in TASEP has two parameters: one for the input rate and one for the density at infinity.

Liggett'75
This is reflected into the LPP setting as well (see (maybe) Barraquand's talk next week)

```
Barraquand-Krajenbrink-Le Doussal'22;Barraquand-Corwin'22
```

