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KPZ stationary models in full-space




TASEP in full-space 2

@ TASEP: Totally Asymmetric Simple Exclusion Process

e Configurations e Z
B |1, if z is occupied, 1oo1 1
n={Ne}eez, M = { 0. if 2 is empty. s
TN
e Dynamics @+
Independently, particles jump on the right site P
with rate 1, provided the right is empty. 00—

= Particles are ordered: position of particle n is x,(t) with
ZTn(t) > xpy1(t) for all n,t.




Last passage percolation (LPP) 3

o Consider independent random variables {w; ; }; j)ez> With
wij ~ Exp(1)

(m,n)

Exp(1)




Last passage percolation (LPP) 3

o Consider independent random variables {w; ;}; j)ez2 with
wij ~ Exp(1)
@ The line-to-point LPP from a line £ to the point (m,n) is
given by
B = B 2
7.] S
where the maximum is over up-right paths from £ to (m,n),
i.e. paths with increments in {(0,1), (1,0)}.

o | oo [(m,n)

1
o | Exp(1)

o]




TASEP and LPP 4

@ The well-known connection between TASEP and LPP is
P(Lyy <t) =P(zp(t) > m —n).
where £ = {(zx(0) + k,k),k € Z or N}.

. . . /o\ . 0 . {(mw") Ly < t}
o | o \'~—o——/

TASEP positions £



TASEP and LPP 4

@ The well-known connection between TASEP and LPP is

P(Lyyp <t) =P(zp(t) > m—n).

where £ = {(zx(0) + k, k), k € Z or N}.
—-k+1,k>1,

e Example: Step-initial condition x(0)
L ={(1,k),k > 1}, equivalent to reduce L to one point.

>
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Point-to-point and stationary LPP 5

@ Point-to-point LPP:

Exp(1), 4,j>1,
Wi s —
! 0, otherwise.

e Stationary LPP: fix a« € (—1/2,1/2)

O I R I A S o |(m,n)
Exp(%—koz) 1=0,5 >1, S I I I I e
. . [ N
L — JExp (L-a) j=0,i>1, boltre L8] T B
" 0 ifi=j=0, ) THEIREEE
Exp(1) otherwise. i B olelolele
v o | o . o | o
0




Some asymptotic results 6

@ Point-to-point LPP: GUE Tracy-Widom distribution
lim P(Ly,y < 4N + s2Y3NY3) = Faug(s)
—00
with
Foug(s) = det(1 — KAi)LQ(s,oo)
with Kai(z,y) = [p, dAAi(z 4+ A)Ai(y+ A) is the Airy kernel.

e Stationary initial condition: (stated for a = 0)
Baik-Rains distribution
Hm POLYY o2/ v anyeis < AN+52Y3NY3) = Fag o(s),

with FRr . (s) = d%[FGUE(S +w?)g(s,w)].
@ w measures the distance from the characteristic line.



TASEP in full-space 7

@ The Baik-Rains distribution function is

Fon () = o {Fou(s + v?)o(s, w)].

o Let I?Ai(iﬂay) = Kai(z +w?y +w?), and
R=s+e v /Do doc/:o dyAi(z + y + w?) e U@tV

2,3 oo
W(y) =e3" tuwy —/ dzAi(z4—;:;/4—102)@7“)17
0

=243 [ e . 2 . 2 —wy ©0 . 2, wy
Pd(zx) =€ 3 dX dyAi(z + w” + NAi(y + w” + N e - dyAi(y + = + w?) e™?.
0 s 0

o Let Ps be the projection operator Ps(z) = 1,4, then the
function g is given by

g(w,s) = R — (1 — PyKaiPs) "L P,®, PyW).



Origin of the structure of FpR 4,

Step 1: An integrable model with a random shift .
e For o, € (—1/2,1/2] with a + 8 > 0:

EXP(%‘FOL) ZZO,]Z]., L N T S A IS S Y

wr Exp(%—i—ﬁ) J:O’ZZ:[’ o | o | e[ oo |0 e
2y TZEXp(CM-‘rﬂ) ifiZjZO, o | oo ||| »——’o (m,n)
Exp(1) otherwise. o s . ABE : Eg}(l)

Using a Schur process: SR REE

]P)(LTm,n < S) = det(ﬂ_Ka,B)LQ(s,oo)" v ..; ololololo

Exp(a + )
N Exp(% +0)

Lyt = limg o (L7, — 7)

Step 2: Shift argument.

1 d
T < — . T < .
P(me —7<5) (1 + ot h ds) P(me <)




Origin of the structure of FpR 4,

Step 3: K,z is a rank-one perturbation:
Ka,B(xv y) = F(a:, y) + (a + B)fa(x)gﬁ(y)

gives
det(L — Ka,5) = det(L — K)[1 — (a+ B){(L — K) ™" fa, 95))]-
Thus
P < 9) = tim % [aen(1 = T (=B g )|

Step 4: Analytic continuation for o, € (—1/2,1/2).
B o) = | g = o) | (- F) K0
Step 5: Large time limit:
o K converges to K 4;,
o the term limg_, T—lkﬁ — (fas gp) converges to R,
e Kf, and g_, converge to ® and W.
I 4@




Further stationary KPZ models

Determinantal systems: one-point distribution
("] Polynuclear growth model Baik,Rains’00, Imamura,Sasamoto’04
@ TASEP / last passage percolation Ferrari,Spohn’05
Determinantal systems: multi-point distributions
e TASEP Baik,Ferrari,Péché’09

@ One-sided reflecting Brownian motion (low density limit of
TASEP) Ferrari,Spohn,Weiss’15

Integrable but not determinantal models (only one-point
distribution)

e KPZ equation Imamura,Sasamoto’13

Borodin,Corwin,Ferrari,Veto’14
@ ASEP and stochastic six-vertex model Aggarwal’16

@ ¢-TASEP and Semi-discrete directed polymer

Imamura,Sasamoto’17



Half-space stationary models




Half-space LPP

e Fix & € (—1/2,1/2) and consider independent random
variables {w; ;}; jjep, D = {(i,j) € N*[1 < j < i} and

Exp(3+a) i=j>1,
Exp(3—-a) j=0,i>1,
0 if i = j =0,
Exp(1) otherwise.

Wij =




Half-space LPP

e Fix & € (—1/2,1/2) and consider independent random
variables {w; j}; jjep. D = {(4,j) € N*[1 < j < i} and

Exp(3+a) i=j>1,
Exp(%—a) j=0,0>1,
0 ifi=j=0,
Exp(1) otherwise.

@ A stationary half-space LPP time to the point (m,n) (for
n < m), denoted L% s given by

m,n’

stat __
Liin = _ o lhax Z Wi
:(0,0)—=(m,n)
7] em

where the maximum is over up-right paths in D from (1,1) to
(m,n), i.e. paths with increments in {(0, 1), (1,0)}.

@ For TASEP, the boundary random variables are the injection
waiting times at the origin.



Half-space LPP: stationarity

@ Why is this model called stationary?

o Increments {L5%f, | — L5t i > n} are iid. Exp(3 — «).

o Also {Lsiat — [stat | m > n} areiid. Exp(} + )

m,n—1
Balazs,Cator,Seppédléinen’06




Scaling

o Case a < 0: large diagonal weights

o Characteristic lines have slopes ((3 +)/(3 — oz))2 <1

e End-point on characteristics from (0,0): diagonal visited only
O(N?/3) around the origin: like full-space

@ End-point (N, N): maximizer visits O(N) times the diagonal:
Gaussian fluctuations

n

(N,N) n (N,N)




Scaling

@ Case o > 0: small diagonal weights
o Characteristic lines have slopes ((3 +@)/(3 — a))2 > 1

@ End-point (N, N): maximizer visits O(N) times the first row:
Gaussian fluctuations in N'/2 scale

" (N,N)

m




Scaling

o Critical scaling:
a=062"Y3NTL/3

and end-point (N, N —nN) with
n = u2¥3N-1/3,

@ Law of large number gives:

Lk = AN — 4u(2N)*3 +6(2u + 6)2* /SN2,




Limiting result

Theorem
Let 6 € R, u > 0 be fixed. Set

_ so—4/377—1/3 — y25/3N2/3
o =02 N , NN =u2’°N

Then
, L3,y — (4N — 4u(2N)?/3)
Ao P < 1/3N1/3 <5 ) = FuslS),

where F, 5(S) = 45 {Pt(J — A)Gs,(S)} with J = ( °})
o= ()

u o,u S,u
GsulS) = (5) — <—g1 &

V.



Half-space geometry: remarks

@ The 2 x 2 matrix kernel A is the one arising from the model
with Exp(1) also for j = 0, instead of Exp(3 — a).
Away from the diagonal: Imamura,Sasamoto’04
General and rigorous case:  Baik,Barraquand,Corwin,Suidan’18

@ For moment computations the derivative is not a problem:
denote F, 5(5) = dS T(S) and & ~ F, 5, then:
o by stationarity: E(§) = §(2u + 9),
e integrating by parts gives

B(¢") = t(e-1) [

R4

dSS*3(T(S)—S)+e(l—-1) / dSS*72T(8S).




Half-space geometry: remarks

@ The inverse of the operator is not a numerical issue either:

Pf (J — K) <c d '(11 —JK) <Z>>

—Pf(J—K)—Pf(J—K—’ b ><c d|—

) )

@ Then use Bornemann's method to evaluate the Fredholm
determinants (Pfaffians) Bornemann’08




Half-space geometry: proof - sketch

Step 1: An integrable model. Consider the model

| o | Exp(l)
SERSRES =
_ IR R -

@ The process Ly 1,Ln2,..., LN N is the marginal of a
Pfaffian Schur process. Baik,Barraquand,Corwin,Suidan’18



Half-space geometry: proof - sketch

@ For a+ 3 >0 and 8 > 0 we a Fredholm Pfaffian expression

on (s,00)
P(LN,N—n S S) = Pf(J - K)
with
dw ®(z, z) n (z+ B)(w — B) (ZWLCY)("U*Q)(Z‘F“’)
Ku(e.v) = fQﬂ'lfQ‘n’l P(y, w) (% Z)(%+ )} (z = B)(w+ B) 4zw(z — w)
dw ®(z, z) i_ . "24az4+Bw—B8 z4w
Kia(2,9) = .7{27r1}§27r1<1>(yw)|:%2 w:| wHaz—Bw+ B 2z(z — w)
=— Ko (y, ),
dw ®(z, z) 1 1 z+Bw—Bz+w
Kaa(e,9) = ?{27«-1 f 27 ®(y, w) ( +z)(% ,w)]n (zfa)(w+a)ﬁw+ﬁ z — +el@ ),
with ®(z, 2) = e "*[(3 +2)/(3 — 2)]V ! and
dz 2ze o=yl
€($7y) - _Sgn(aj - y) f %(22 — (12) (% — 22)71'

1—‘1/2,(:2



Half-space geometry: proof - sketch

Step 2: Shift argument. We want to get the limit of 8 = —«
conditioned on wp o = 0.

@ For a+ 8 > 0, we have

1 d
IP)(LNJV_n < s|w0,0 = O) = <1 + 8) ]P)(LN,N—n < 5).




Half-space geometry: proof - sketch

Step 3: Rank one decomposition.

@ By deforming contours such that the expressions are analytic
at a+ =0 we get

K=K+ (a+pB)R

with R of the form

1 Bl — B 1 B 2
R:<M>UW }f)@\lf%@\)

—lg2) (/7|

with f?(z) ~ e75.
@ Thus we have

P@%%n_syigmdeJ—K)<l-4YK1—G)%$H

with X = > and Y = (—g; go| and G = J K.



Half-space geometry: proof - sketch
Step 4: Analytic continuation.
e Let G = J 1K, then the idea is to use

1
a+p

—{Y|1-G)'X) = (wlrﬂ_<Y‘X —{Y|(1-G)"'GX)

e Problem: (Y |GX) is a sum of 4 terms, some of which
diverge for 3 < 0, due to the f5 term. A term-by-term limit
B8 — —a for a > 0 is not possible.

@ Solution: The diverging terms exactly cancels for any 8 > 0,
namely we show that

(Y |(1-G)'Gx) = <Y’(IL—@)’1(~JX>

where G is without the problematic terms. The result is then
analytic on (a, 8) € (—=1/2,1/2)2.
Step 5: Large time asymptotics. Standard steep descent method.



Full-space vs. half-space stationary models




Half-space geometry: limit to Baik-Rains

Full-space Half-space
One-parameter family Two-parameter family
Determinantal structure Pfaffian structure
Simple analytic continuation | Tricky analytic continuation

@ Is the full-space distribution a limit of half-space one?




Half-space geometry: limit to Baik-Rains

e Taking § — —o0, the characteristic line has direction far away
from the diagonal. Thus the maximizer of the LPP will touch
less and less the diagonal away from a O(N?/?)-neighborhood
of the origin, so one might expect to recover the Baik-Rains
distribution.

Theorem

Let S=s+d2u+6) and u=w — § (for w =0 we are on the
characteristic line). Then,

lim Fu,(;(S) = FBR,w(S)-

U—00




Some remarks

@ In arXiv:2012.10337 we extended the result to multi-point
distributions

@ In arXiv:2204.06782 we get some results on the time-time
covariance close to the characteristic direction (compare with
Alessandra Occelli's talk a few weeks ago).

@ The general stationary process in TASEP has two parameters:
one for the input rate and one for the density at infinity.
Liggett’75
This is reflected into the LPP setting as well (see (maybe)
Barraquand'’s talk next week)

Barraquand-Krajenbrink-Le Doussal’22;Barraquand-Corwin’22




