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KPZ stationary models in full-space



TASEP in full-space 2

TASEP: Totally Asymmetric Simple Exclusion Process

Configurations

η = {ηx}x∈Z, ηx =

{
1, if x is occupied,
0, if x is empty.

Dynamics
Independently, particles jump on the right site
with rate 1, provided the right is empty.

⇒ Particles are ordered: position of particle n is xn(t) with
xn(t) > xn+1(t) for all n, t.



Last passage percolation (LPP) 3

Consider independent random variables {ωi,j}(i,j)∈Z2 with
ωi,j ∼ Exp(1)

Exp(1)

(m,n)

(1, 1)

L

The line-to-point LPP from a line L to the point (m,n) is
given by

Lm,n = max
π:L→(m,n)

∑
(i,j)∈π

ωi,j

where the maximum is over up-right paths from L to (m,n),
i.e. paths with increments in {(0, 1), (1, 0)}.
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TASEP and LPP 4

The well-known connection between TASEP and LPP is

P(Lm,n ≤ t) = P(xn(t) ≥ m− n).

where L = {(xk(0) + k, k), k ∈ Z or N}.

L

{(m,n) : Lm,n ≤ t}

TASEP positions

Example: Step-initial condition xk(0) = −k + 1, k ≥ 1,
L = {(1, k), k ≥ 1}, equivalent to reduce L to one point.
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Point-to-point and stationary LPP 5

Point-to-point LPP:

ωi,j =

{
Exp(1), i, j ≥ 1,

0, otherwise.

Stationary LPP: fix α ∈ (−1/2, 1/2)

ωi,j =


Exp

(
1
2 + α

)
i = 0, j ≥ 1,

Exp
(
1
2 − α

)
j = 0, i ≥ 1,

0 if i = j = 0,

Exp(1) otherwise.

0

Exp(12 + α)

Exp(12 − α)

Exp(1)

(m,n)



Some asymptotic results 6

Point-to-point LPP: GUE Tracy-Widom distribution

lim
t→∞

P(LN,N ≤ 4N + s24/3N1/3) = FGUE(s)

with
FGUE(s) = det(1−KAi)L2(s,∞)

with KAi(x, y) =
∫
R+

dλAi(x+λ)Ai(y+λ) is the Airy kernel.

Stationary initial condition: (stated for α = 0)
Baik-Rains distribution

lim
t→∞

P(Lstat
N+w(2N)2/3,N−w(2N)2/3

≤ 4N+s24/3N1/3) = FBR,w(s),

with FBR,w(s) =
d
ds [FGUE(s+ w2)g(s, w)].

w measures the distance from the characteristic line.



TASEP in full-space 7

The Baik-Rains distribution function is

FBR,w(s) =
d

ds
[FGUE(s+ w2)g(s, w)].

Let K̂Ai(x, y) = KAi(x+ w2, y + w2), and

R = s + e
− 2

3
w3

∫ ∞

s
dx

∫ ∞

0
dyAi(x + y + w

2
) e

−w(x+y)
,

Ψ(y) = e
2
3
w3+wy −

∫ ∞

0
dxAi(x + y + w

2
) e

−wx
,

Φ(x) = e
− 2

3
w3

∫ ∞

0
dλ

∫ ∞

s
dyAi(x + w

2
+ λ)Ai(y + w

2
+ λ) e

−wy −
∫ ∞

0
dyAi(y + x + w

2
) e

wy
.

Let Ps be the projection operator Ps(x) = 1{x>s}, then the
function g is given by

g(w, s) = R−
〈
(1− PsK̂AiPs)

−1PsΦ, PsΨ
〉
.



Origin of the structure of FBR,w 8

Step 1: An integrable model with a random shift τ .

For α, β ∈ (−1/2, 1/2] with α+ β > 0:

ωi,j =


Exp

(
1
2 + α

)
i = 0, j ≥ 1,

Exp
(
1
2 + β

)
j = 0, i ≥ 1,

τ = Exp (α+ β) if i = j = 0,

Exp(1) otherwise.

Using a Schur process:

P(Lτ
m,n ≤ s) = det(1−Kα,β)L2(s,∞).

Lstat
m,n = limβ→−α(L

τ
m,n − τ)

Exp(12 + α)

Exp(12 + β)

Exp(1)

Exp(α + β)

(m,n)

Step 2: Shift argument.

P(Lτ
m,n − τ ≤ s) =

(
1 +

1

α+ β

d

ds

)
P(Lτ

m,n ≤ s).



Origin of the structure of FBR,w 9

Step 3: Kα,β is a rank-one perturbation:

Kα,β(x, y) = K(x, y) + (α+ β)fα(x)gβ(y)

gives

det(1−Kα,β) = det(1−K)[1− (α+ β)⟨(1−K)−1fα, gβ⟩)].

Thus

P(Lstat
m,n ≤ s) = lim

β→−α

d

ds

[
det(1−K)

(
1

α+ β
− ⟨(1−K)−1fα, gβ⟩)

)]
.

Step 4: Analytic continuation for α, β ∈ (−1/2, 1/2).

1

α+ β
−⟨(1−K)−1fα, gβ⟩) =

[
1

α+ β
− ⟨fα, gβ⟩

]
−⟨(1−K)−1Kfα, gβ⟩.

Step 5: Large time limit:

K converges to K̂Ai,

the term limβ→−α
1

α+β − ⟨fα, gβ⟩ converges to R,

Kfα and g−α converge to Φ and Ψ.



Further stationary KPZ models 10

Determinantal systems: one-point distribution

Polynuclear growth model Baik,Rains’00,Imamura,Sasamoto’04

TASEP / last passage percolation Ferrari,Spohn’05

Determinantal systems: multi-point distributions

TASEP Baik,Ferrari,Péché’09

One-sided reflecting Brownian motion (low density limit of
TASEP) Ferrari,Spohn,Weiss’15

Integrable but not determinantal models (only one-point
distribution)

KPZ equation Imamura,Sasamoto’13

Borodin,Corwin,Ferrari,Veto’14

ASEP and stochastic six-vertex model Aggarwal’16

q-TASEP and Semi-discrete directed polymer
Imamura,Sasamoto’17
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Half-space stationary models



Half-space LPP 12

Fix α ∈ (−1/2, 1/2) and consider independent random
variables {ωi,j}(i,j)∈D, D = {(i, j) ∈ N2|1 ≤ j ≤ i} and

ωi,j =


Exp

(
1
2 + α

)
i = j ≥ 1,

Exp
(
1
2 − α

)
j = 0, i ≥ 1,

0 if i = j = 0,

Exp(1) otherwise.

0

Exp(12 + α)

Exp(12 − α)

Exp(1)

(m,n)

A stationary half-space LPP time to the point (m,n) (for
n ≤ m), denoted Lstat

m,n, is given by

Lstat
m,n = max

π:(0,0)→(m,n)

∑
(i,j)∈π

ωi,j

where the maximum is over up-right paths in D from (1, 1) to
(m,n), i.e. paths with increments in {(0, 1), (1, 0)}.
For TASEP, the boundary random variables are the injection
waiting times at the origin.
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Half-space LPP: stationarity 13

Why is this model called stationary?

Increments {Lstat
m+1,n − Lstat

m,n,m ≥ n} are iid. Exp(12 − α).

Also {Lstat
m,n − Lstat

m,n−1,m ≥ n} are iid. Exp(12 + α)
Balázs,Cator,Seppäläinen’06

0

Exp(12 + α)

Exp(12 − α)

Exp(1)

(m,n)



Scaling 14

Case α < 0: large diagonal weights

Characteristic lines have slopes
(
(12 + α)/(12 − α)

)2
< 1

End-point on characteristics from (0, 0): diagonal visited only
O(N2/3) around the origin: like full-space

End-point (N,N): maximizer visits O(N) times the diagonal:
Gaussian fluctuations



Scaling 15

Case α > 0: small diagonal weights

Characteristic lines have slopes
(
(12 + α)/(12 − α)

)2
> 1

End-point (N,N): maximizer visits O(N) times the first row:
Gaussian fluctuations in N1/2 scale



Scaling 16

Critical scaling:
α = δ2−4/3N−1/3

and end-point (N,N − ηN) with

η = u25/3N−1/3.

Law of large number gives:

Lstat
N,N−ηN ≃ 4N − 4u(2N)2/3 + δ(2u+ δ)24/3N1/3.



Limiting result 17

Theorem

Let δ ∈ R, u > 0 be fixed. Set

α = δ2−4/3N−1/3, ηN = u25/3N2/3.

Then

lim
N→∞

P

(
Lstat
N,N−ηN − (4N − 4u(2N)2/3)

24/3N1/3
≤ S

)
= Fu,δ(S),

where Fu,δ(S) =
d
dS

{
Pf(J −A)Gδ,u(S)

}
with J =

(
0 1
−1 0

)
Gδ,u(S) = eδ,u(S)−

〈
−gδ,u1 gδ,u2

∣∣∣∣(1− J−1A)−1

(
−hδ,u

1

hδ,u
2

)〉
.



Half-space geometry: remarks 18

The 2× 2 matrix kernel A is the one arising from the model
with Exp(1) also for j = 0, instead of Exp(12 − α).
Away from the diagonal: Imamura,Sasamoto’04

General and rigorous case: Baik,Barraquand,Corwin,Suidan’18

For moment computations the derivative is not a problem:
denote Fu,δ(S) =

d
dST (S) and ξ ∼ Fu,δ, then:

by stationarity: E(ξ) = δ(2u+ δ),
integrating by parts gives

E(ξℓ) = ℓ(ℓ−1)

∫
R+

dSSℓ−2(T (S)−S)+ℓ(ℓ−1)

∫
R−

dSSℓ−2T (S).



Half-space geometry: remarks 19

The inverse of the operator is not a numerical issue either:

Pf (J −K)

〈
c d

∣∣∣∣(1− J−1K)−1

(
a
b

)〉
= Pf (J −K)−Pf

(
J−K−

∣∣∣∣ b
−a

〉
⟨c d|−

∣∣∣∣ c
d

〉
⟨−b a|

)
.

Then use Bornemann’s method to evaluate the Fredholm
determinants (Pfaffians) Bornemann’08



Half-space geometry: proof - sketch 20

Step 1: An integrable model. Consider the model

Exp(12 + α)

Exp(12 + β)

Exp(1)

Exp(α + β)

(m,n)

The process LN,1, LN,2, . . . , LN,N is the marginal of a
Pfaffian Schur process. Baik,Barraquand,Corwin,Suidan’18



Half-space geometry: proof - sketch 21

For α+ β > 0 and β > 0 we a Fredholm Pfaffian expression
on (s,∞)

P(LN,N−n ≤ s) = Pf(J −K)

with

K11(x, y) = −
∮

dz

2πi

∮
dw

2πi

Φ(x, z)

Φ(y, w)

[
( 1
2

− z)( 1
2

+ w)
]n (z + β)(w − β)

(z − β)(w + β)

(z + α)(w − α)(z + w)

4zw(z − w)
,

K12(x, y) = −
∮

dz

2πi

∮
dw

2πi

Φ(x, z)

Φ(y, w)

[
1
2

− z

1
2

− w

]n
z + α

w + α

z + β

z − β

w − β

w + β

z + w

2z(z − w)

= − K21(y, x),

K22(x, y) =

∮
dz

2πi

∮
dw

2πi

Φ(x, z)

Φ(y, w)

1[
( 1
2

+ z)( 1
2

− w)
]n 1

(z − α)(w + α)

z + β

z − β

w − β

w + β

z + w

z − w
+ ε(x, y),

with Φ(x, z) = e−xz[(12 + z)/(12 − z)]N−1 and

ε(x, y) = − sgn(x− y)

∮
Γ1/2,α

dz

2πi

2ze−z|x−y|

(z2 − α2)
(
1
4 − z2

)n .



Half-space geometry: proof - sketch 22

Step 2: Shift argument. We want to get the limit of β = −α
conditioned on ω0,0 = 0.

For α+ β > 0, we have

P(LN,N−n ≤ s|ω0,0 = 0) =

(
1 +

1

α+ β

d

ds

)
P(LN,N−n ≤ s).



Half-space geometry: proof - sketch 23

Step 3: Rank one decomposition.

By deforming contours such that the expressions are analytic
at α+ β = 0 we get

K = K + (α+ β)R

with R of the form

R =

(
|g1⟩

〈
fβ
∣∣− ∣∣fβ

〉
⟨g1|

∣∣fβ
〉
⟨g2|

− |g2⟩
〈
fβ
∣∣ 0

)
with fβ(x) ∼ e−βx.

Thus we have

P(Lstat
N,N−n ≤ s) = lim

β→−α

d

ds

[
Pf(J −K)

(
1

α+β −
〈
Y
∣∣(1−G)−1X

〉)]
with X =

∣∣∣∣ 0
fβ

〉
and Y = ⟨−g1 g2| and G = J−1K.



Half-space geometry: proof - sketch 24

Step 4: Analytic continuation.

Let G = J−1K, then the idea is to use

1

α+ β
−
〈
Y
∣∣(1−G)−1X

〉
=

1

α+ β
−⟨Y |X⟩−

〈
Y
∣∣(1−G)−1GX

〉
Problem:

〈
Y
∣∣GX

〉
is a sum of 4 terms, some of which

diverge for β ≤ 0, due to the fβ term. A term-by-term limit
β → −α for α ≥ 0 is not possible.

Solution: The diverging terms exactly cancels for any β > 0,
namely we show that〈

Y
∣∣(1−G)−1GX

〉
=
〈
Y
∣∣∣(1−G)−1G̃X

〉
where G̃ is without the problematic terms. The result is then
analytic on (α, β) ∈ (−1/2, 1/2)2.

Step 5: Large time asymptotics. Standard steep descent method.
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Full-space vs. half-space stationary models



Half-space geometry: limit to Baik-Rains 26

Full-space Half-space

One-parameter family Two-parameter family
Determinantal structure Pfaffian structure

Simple analytic continuation Tricky analytic continuation

Is the full-space distribution a limit of half-space one?



Half-space geometry: limit to Baik-Rains 27

Taking δ → −∞, the characteristic line has direction far away
from the diagonal. Thus the maximizer of the LPP will touch
less and less the diagonal away from a O(N2/3)-neighborhood
of the origin, so one might expect to recover the Baik-Rains
distribution.

Theorem

Let S = s+ δ(2u+ δ) and u = w − δ (for w = 0 we are on the
characteristic line). Then,

lim
u→∞

Fu,δ(S) = FBR,w(s).



Some remarks 28

In arXiv:2012.10337 we extended the result to multi-point
distributions

In arXiv:2204.06782 we get some results on the time-time
covariance close to the characteristic direction (compare with
Alessandra Occelli’s talk a few weeks ago).

The general stationary process in TASEP has two parameters:
one for the input rate and one for the density at infinity.

Liggett’75

This is reflected into the LPP setting as well (see (maybe)
Barraquand’s talk next week)

Barraquand-Krajenbrink-Le Doussal’22;Barraquand-Corwin’22


