DYNAMICS OF SYMMETRY-RESOLVED ENTANGLEMENT MEASURES AFTER A QUENCH IN FREE-FERMIONIC SYSTEMS

"Randomness, Integrability, Universality" May 17 , GGI Florence Riccarda Bonsignori

In collaboration with Gilles Parez and Pasquale Calabrese

HrZZ project No. IP-2019-4-3321

OUTLINE

Definitions and motivations

- Symmetry-resolved entanglement and Renyi entropies
- Charge-imbalance-resolved entanglement negativity
- Dynamics of symmetry-resolved entanglement measures after a quench
- Conclusions

SYMMETRY RESOLVED ENTANGLEMENT ENTROPY

ENTANGLEMENT ENTROPY: DEFINITIONS

- Reduced density matrix of A: $\rho_A = \text{Tr}_B \rho$

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

Let us consider a bipartite quantum system $S = A \cup B$ in a pure state $\rho = |\psi\rangle\langle\psi|$

- Measures of entanglement for bipartite pure states:
 - Entanglement Entropy (EE): $S = -\mathrm{Tr}\rho_A \log \rho_A$
 - $S_n = \frac{1}{1 n} \log \operatorname{Tr} \rho_A^n$ Renyi Entropies (RE):
- The EE is the limit $n \rightarrow 1$ of the RE.

SYMMETRY RESOLVED ENTANGLEMENT ENTROPY: DEFINITIONS Bipartite system with U(1) internal symmetry generated by a charge $Q = Q_A + Q_B$

 $[Q,\rho] = 0 \Rightarrow [Q_A,\rho_A] = 0 \Rightarrow \rho_A$ has block diagonal structure

$$\rho_A = \bigoplus_q \Pi_q \rho_A = \bigoplus_q [p(q)\rho_A(q)], \qquad p(q)$$

Symmetry Resolved Entanglement Entropy

$$S(q) = -\text{Tr}[\rho_A(q)\ln\rho_A(q)]$$

Symmetry Resolved Renyi Entropies

$$S_n(q) = \frac{1}{1-n} \log \operatorname{Tr}[\rho_A(q)]^n$$

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

 $(q) = \text{Tr}(\Pi_q \rho_A)$

 Π_q projector on the eigenspace of q

SYMMETRY DECOMPOSITION OF ENTANGLEMENT

Decomposition of EE:

$$S = \sum_{q} p(q)S(q) - \sum_{q} p(q)\log p(q) \equiv S^{c} + S^{n}$$

• S^c: configurational entanglement

• S^n : number entanglement

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

SYMMETRY DECOMPOSITION OF ENTANGLEMENT M. Greiner, Science 364, 6437 (2019).

The study of the symmetry resolution of the entanglement measures is a fundamental tool for a more refined description of the entanglement content of a quantum system.

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M. Kaufman, S. Choi, V. Khemani, J. Leonard, and

PATH INTEGRAL APPROACH

Single interval $A = [0, \ell], (1 + 1) D CFT$:

$$Z_n(\alpha) = \langle \mathcal{T}_{n,\alpha}(\ell,0) \tilde{\mathcal{T}}_{n,\alpha}(0,0) \rangle,$$

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

* M. Goldstein, E. Sela, *Phys.Rev.Lett.* 120 (2018) 20, 200602

• Charged moments*: $Z_n(\alpha) = \text{Tr}[e^{i\alpha Q_A}\rho_A^n]$

er transform:
$$\mathscr{X}_n(q) \equiv \text{Tr}[\Pi_q \rho_A^n] = \int_{-\pi}^{\pi} \frac{d\alpha}{2\pi} e^{-iq\alpha} Z_n(\alpha)$$

Symmetry resolved Renyi and Entanglement Entropies:

$$= \frac{1}{1-n} \ln \left[\frac{\mathscr{Z}_n(q)}{\mathscr{Z}_1(q)^n} \right], \qquad S_{vN}(q) = -\partial_n \left[\frac{\mathscr{Z}_n(q)}{\mathscr{Z}_1(q)^n} \right]_{n=1}$$

$$\Delta_{n,\alpha} = \Delta_n + \frac{\Delta_{\alpha}}{n}, \qquad \Delta_n = \frac{c}{24} \left(n - \frac{1}{n} \right)$$

ENTANGLEMENT EQUIPARTITION

Charged moments:
$$Z_n(\alpha) \sim \ell^{-\frac{c}{6}\left(n-\frac{1}{n}\right)-2\frac{\Delta_{\alpha}+\bar{\Delta}_{\alpha}}{n}}, \qquad \Delta_{\alpha} = \bar{\Delta}_{\alpha} = \frac{1}{2}\left(\frac{\alpha}{2\pi}\right)^2 K$$

Q_A-resolved moments: $\mathscr{Z}_n(q) \simeq \mathscr{C}^{-\frac{c}{6}(n-1)}$

Equipartition of entanglement*:

$$S_n(q) = S_n - \frac{1}{2} \ln\left(\frac{2K}{\pi} \ln \ell\right) + O(\ell^0),$$

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

$$\frac{1}{n} \int \sqrt{\frac{n\pi}{2K\ln\ell}} e^{\frac{n\pi^2(q-\langle Q_A\rangle)^2}{2K\ln\ell}}$$

$$S(q) = S - \frac{1}{2} \ln\left(\frac{2K}{\pi} \ln \ell\right) + O(\ell^0)$$

* J. C. Xavier, F. C. Alcaraz, and G. Sierra, Phys. Rev. B **98**, 0401106 (2018)

SYMMETRY RESOLVED ENTANGLEMENT FOR THE XX CHAIN WITH PBC

$$\mathcal{E}_n(q) = Z_n(0) \sqrt{\frac{n\pi}{2(\ln(2\ell |\sin k_F|) - 2\pi^2 n\gamma_2(n))}}$$

Symmetry Resolved Entanglement Entropy:

$$S(q) = S - \frac{1}{2} \ln\left(\frac{2}{\pi} \ln \delta_1(2\ell |\sin k_F|)\right) - \frac{1}{2} + (q - \bar{q})^2 \pi$$

R. B., P. Ruggiero and P. Calabrese, J. Phys. A: Math. Theor. **52**, 475302 (2019). Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

Free fermion chain via Jordan-Wigner transformation

$$H = -\sum_{i=-\infty}^{\infty} \left[c_i^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_i - 2h \left(c_i^{\dagger} c_i - \frac{1}{2} \right) \right]$$

ENTANGLEMENT NEGATIVITY

Bosonic system:

 $(|e_i^1, e_i^2\rangle \langle e_k^1, e_l^2|)$

 $\rho_{A} = \sum \langle e_{i}^{1}, e_{j}^{2} | \rho_{A} | e_{k}^{1} e_{l}^{2} \rangle | e_{i}^{1}, e_{j}^{2} \rangle \langle e_{k}^{1} e_{l}^{2} |$ iikl

Negativity:

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

$S = (A_1 \cup A_2) \cup B, \qquad \rho_A = \operatorname{Tr}_B \rho$

 $\{|e_i^1\rangle\}$ orthonormal basis of \mathcal{H}_{A_1} $\{|e_i^2\rangle\}$ orthonormal basis of \mathcal{H}_{A_2}

$$\rho_{A}^{T_{1}} \equiv |e_{k}^{1}, e_{j}^{2}\rangle\langle e_{i}^{1}, e_{l}^{2}|$$

$$\rho_{A}^{T_{1}} = \sum_{ijkl} \langle e_{k}^{1}, e_{j}^{2} | \rho_{A} | e_{i}^{1} e_{l}^{2} \rangle |e_{i}^{1}, e_{j}^{2}\rangle\langle e_{k}^{1} e_{l}^{2}|$$

 $\mathcal{N} = \frac{\mathrm{Tr}\rho_A^{T_1} - 1}{2}$

FERMIONIC PARTIAL TRANSPOSE* В В A_1 A_2 В ℓ_2 ℓ_1

Example: occupation number basis $|\{n_j\}_{j \in A_1}, \{n_j\}_{j \in A_2}\rangle$ $U_{A_1}(|\{n_j\}_{j\in A_1},\{n_j\}_{j\in A_2})\langle\{\bar{n}_j\}_{j\in A_1},\{\bar{n}_j\}_{j\in A_2}|)^{R_1}$ $= |\{\bar{n}_{j}\}_{j \in A_{1}}, \{n_{j}\}_{j \in A_{2}}\rangle \langle \{n_{j}\}_{j \in A_{1}}, \{n_{j}\}, \{n_{j}\}, n_{j}\}, \{n_{j}\}, n_{j}\}, n_{j}$

(Fermionic)Negativity:

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

* H. Shapourian, K. Shiozaki, S. Ryu, Phys. Rev. B 95(16) 165101

Fermionic system:

$$S = (A_1 \cup A_2) \cup B, \qquad \rho_A = \operatorname{Tr}_B \rho$$

$$= (f_{m_1}^{\dagger})^{n_{m_1}} \cdots (f_{m_{l_1}}^{\dagger})^{n_{m_{l_1}}} (f_{m_1'}^{\dagger})^{n_{m_1'}} \cdots (f_{m_{l_2}'}^{\dagger})^{n_{m_{l_2}'}} |0\rangle$$

$${}^{\scriptscriptstyle 1}U_{A_1}^{\dagger} =$$

$$\{\bar{n}_j\}_{j\in A_2} | (-1)^{\phi(\{n_j\},\{\bar{n}_j\})}, \quad n_i, \bar{n}_j \in \{0,1\}$$

$$\frac{1}{2}\sqrt{\rho_A^{R_1}(\rho_A^{R_1})^{\dagger}-1}$$

SYMMFTRY DECOMPOSITION OF NEGATIV

Single particle in one out of three boxes: $(A_1 \cup A_2) \cup B$. The system is in a pure state $|\Psi\rangle = \alpha |100\rangle + \beta |010\rangle + \gamma |001\rangle$

The ρ_A has block diagonal structure according to the eigenvalues $q = q_1 + q_2$.

The $\rho_A^{R_1}$ has block diagonal structure according to the eigenvalues $\tilde{q} = q_2 - q_1$.

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

*E. Cornfeld, M. Goldstein, E.Sela , Phys. Rev. A 98, 032302

SYMMETRY DECOMPOSITION OF NEGATIVITY

$$[\rho_A^{R_1}, Q_2 - Q_1^{R_1}] = 0 \quad \Rightarrow \quad \rho_A^{R_1} \text{ has block d}$$

$$\rho_A^{R_1}(\tilde{q}) = \frac{\Pi_{\tilde{q}} \rho_A^{R_1} \Pi_{\tilde{q}}}{\operatorname{Tr}(\Pi_{\tilde{q}} \rho_A^{R_1})}, \quad \tilde{p}(\tilde{q}) = \operatorname{Tr}(\Pi_{\tilde{q}} \rho_A^{R_1})$$

Charge imbalance resolved negativity:

$$\mathcal{N}(\tilde{q}) = \frac{\operatorname{Tr} |\rho_A^{R_1}(\tilde{q})| - 1}{2}$$

Charge imbalance resolved Renyi negativity:

$$\hat{N}_{n}(\tilde{q}) = \begin{cases} \operatorname{Tr}(\rho_{A}^{R_{1}}(\tilde{q})\rho_{A}^{R_{1}}(\tilde{q})^{\dagger}\dots\rho_{A}^{R_{1}}(\tilde{q})) \\ \operatorname{Tr}(\rho_{A}^{R_{1}}(\tilde{q})\rho_{A}^{R_{1}}(\tilde{q}))^{\dagger}\dots\rho_{A}^{R_{1}}(\tilde{q})) \end{cases}$$

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

lecomposition

 $_{\dot{a}}\rho_{A}^{R_{1}}$

Charge imbalance resolved logarithmic negativity:

$$\hat{\mathscr{E}}(\tilde{q}) = \log \operatorname{Tr} |\rho_A^{R_1}(\tilde{q})|$$

N even, • **1** odd,)), n

DEFINITION OF CHARGED MOMENTS

Charged moments of the partial TR transpose:

Partition function in terms of vertex operator

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

S. Murciano, R. B. and P. Calabrese, SciPost Phys. 10, 111 (2021).

$$N_{n}(\alpha) \equiv \begin{cases} \operatorname{Tr}(\rho_{A}^{R_{1}}\rho_{A}^{R_{1}\dagger}\cdots\rho_{A}^{R_{1}}\rho_{A}^{R_{1}\dagger}e^{i\tilde{Q}_{A}\alpha}), & \text{if } n \text{ is even} \\ \operatorname{Tr}(\rho_{A}^{R_{1}}\rho_{A}^{R_{1}\dagger}\cdots\rho_{A}^{R_{1}}e^{i\tilde{Q}_{A}\alpha}), & \text{if } n \text{ is ode} \end{cases}$$

• Multivalued field $\Psi = (\psi_1, \dots, \psi_n)^T$ on a single-sheet spacetime.

Around the endpoints the field transforms according to $T_{\alpha}^{R_1}$ and T_{α} .

$$V_{n}(\alpha) = \prod_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} Z_{R_{1},k}(\alpha)$$

rs:
$$Z_{R_1,k}(\alpha) = \langle \prod_{i=1}^p V_{k,\alpha}(u_i) V_{-k,\alpha}(v_i) \rangle$$

Riccarda Bonsignori

en

SYMMETRY RESOLUTION: MAIN QUANTITIES

Charged Rényi LN: $\mathscr{C}_n(\alpha) = \log N_n(\alpha)$ Fourier transforms: $\mathscr{Z}_{R_1,n}(\tilde{q}) = \int_{-2\pi}^{\pi} \frac{d\alpha}{2\pi}$

Charged probability: $N_1(\alpha) = \text{Tr}(\rho_A^R)$

Charge imbalance resolved Renyì negat

Charge imbalance resolved negativity and logarithmic negativity: $\mathcal{N}(q) = \frac{1}{2} \left(\frac{\mathcal{Z}_{R_1}(\tilde{q})}{\tilde{p}(\tilde{q})} - 1 \right)$

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

$$\begin{array}{ll} \alpha) & \stackrel{n_e \to 1}{\longrightarrow} & \text{Charged LN: } \mathscr{E}(\alpha) \\ \hline e^{-i\tilde{q}\alpha}N_n(\alpha), & \stackrel{n_e \to 1}{\longrightarrow} & \mathscr{Z}_{R_1}(\tilde{q}) = \lim_{n_e \to 1} \mathscr{Z}_{R_1,n_e}(\alpha) \\ \hline e^{i\tilde{\mathcal{Q}}_A\alpha}) & \longrightarrow & \tilde{p}(\tilde{q}) = \int_{-\pi}^{\pi} \frac{d\alpha}{2\pi} e^{-i\tilde{q}\alpha}N_1(\alpha) \\ \text{tivity:} & \hat{N}_n(\tilde{q}) = \frac{\mathscr{Z}_{R_1,n}(\tilde{q})}{\tilde{p}(\tilde{q})^n}, \end{array}$$

$$\hat{\mathscr{E}}(q) = \log\left(\frac{\mathscr{Z}_{R_1}(\tilde{q})}{\tilde{p}(\tilde{q})}\right),$$

DYNAMICS OF SYMMETRY RESOLVED ENTANGLEMENT ENTROPY AND MUTUAL INFORMATION AFTER A QUENCH

TIME EVOLUTION

Hamiltonian: $\mathscr{H} = \sum_{i=1}^{L} (c_i^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_i), \qquad \{c_i, c_j^{\dagger}\} = \delta_{ij}$ i=1

Quench from:

 $|N\rangle = \prod_{j=1}^{L/2} c_{2j}^{\dagger} |0\rangle$ the Néel state: j = 1

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

Majumdar-Gosh dimer state: $|D\rangle = \prod_{j=1}^{L/2} \frac{c_{2j}^{\dagger} - c_{2j-1}^{\dagger}}{\sqrt{2}} |0\rangle$ *j*=1

QUENCH FROM THE NEEL STATE

- Correlation matrix: $\left[C_{A}(t)\right]_{x,x'} = \frac{\delta_{x,x'}}{2} + \frac{(-1)^{x'}}{2} \int_{-\pi}^{\pi} \frac{dk}{2\pi} e^{ik(x-x)}$
- We evaluate: $\ln \left(\operatorname{Tr}[e^{i\alpha Q_A} \rho_A^n] \right) = \log \left(\frac{1}{2} \log \left(\frac$
- Charged moments:

$$Z_n(\alpha) = \left(\frac{\cos(\alpha/2)}{2^{n-1}}\right)^{\mathcal{J}} e^{i\mathscr{L}\frac{\alpha}{2}},$$

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

G. Parez, R. Bonsignori, P. Calabrese, Phys. Rev. B 103, L041104

$$(x-x')+4it\cos k = \frac{\delta_{x,x'}}{2} + [J_A(t)]_{x,x'}$$

$$g Z_n(\alpha) = \sum_{m=0}^{\infty} c_{n,\alpha}(m) \operatorname{Tr} J_A^m$$

$$\mathcal{J} = \ell - \operatorname{Tr} J_A(t)^2 = \int \frac{dk}{2\pi} \min[\ell, 2v_k t]$$

SYMMETRY RESOLVED ENTROPIES

Symmetry resolved EE and RE:

$$S_n(q) = \mathcal{J}\log 2 + \log \mathcal{Z}_1(q)$$

Using the explicit form of:

$$S_n(q) = \log \frac{\Gamma(\mathcal{J} + 1)}{\Gamma\left(\frac{\mathcal{J} + 2\Delta q + 2}{2}\right)\Gamma\left(\frac{\mathcal{J} - 2\Delta q + 2}{2}\right)}$$

For large ℓ and small $|\Delta q| \ll \mathcal{J}$:

$$S_n(q) = \mathscr{J}\left(\log 2 - 2\left(\frac{|\Delta q|}{\mathscr{J}}\right)^2\right)$$

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

For the Néel quench, the entropies do not depend on *n*

The entropies start to grow after a time delay $t_D = \pi |\Delta q|/4$

For small $|\Delta q|$ there is effective equipartition of entanglement

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

Time evolution of the symmetry-resolved entanglement and Renyi 2 entropies, after a quench from the Néel state: Analytical predictions vs numerical results

G. Parez, R. Bonsignori, P. Calabrese, Phys. Rev. B 103, L041104 Riccarda Bonsignori

CFT RESULTS*

Charged moments:

 $\log Z_n^{Neel/Dimer}(\alpha) = \log Z_n^{Neel/Dimer}(\alpha)$

 $\log Z_n^{CFT}(\alpha) = \log Z_n^{CFT}(\alpha)$

- Observations for the CFT case:
 - Equipartition of entanglement
 - Absence of delay time

captures only the universal properties of the charged moments

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

*P. Calabrese and J. Cardy, J. Stat. Mech. (2005) P04010

$$\log Z_n^{Neel/Dimer}(0) - \alpha^2 \mathcal{J}_{0/n}$$
$$F_{FT}(0) - \frac{K\alpha^2 \min[2vt, \ell]}{4\pi n} \tau_0$$

SYMMETRY RESOLVED MUTUAL INFORMATION

Symmetry Resolved Mutual Information:

$$\begin{split} I_{1}^{A_{1}:A_{2}}(q) &= \sum_{q_{1}=0}^{q} p(q_{1}, q-q_{1}) \Big(S_{1}^{A_{1}}(q_{1}) + S_{1}^{A_{2}}(q-q_{1}) \Big) - S_{1}^{A_{1}\cup A_{2}}(q) \\ p(q_{1}, q-q_{1}) &= \underbrace{\begin{array}{c} \mathscr{Z}_{1}^{A_{1}:A_{2}}(q_{1}, q-q_{1}) \\ \mathscr{Z}_{1}^{A_{1}\cup A_{2}}(q) \end{array}}_{\mathcal{Z}_{1}^{A_{1}:A_{2}}(\alpha, \beta) &= \mathrm{Tr}[\rho_{A}e^{i\alpha Q_{A_{1}}+i\beta Q_{A_{1}}}] \\ \end{split}$$

$$I_1^{A_1:A_2} = \sum_q p(q)I_1^{A_1:A_2}(q) + S^{A_1,n} + S^{A_2,n} - S^{A_1\cup A_2,n} = \sum_q p(q)I_1^{A_1:A_2}(q) + I^{A_1:A_2,n}$$

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

G. Parez, R. Bonsignori, P. Calabrese, J. Stat. Mech. 2021, 093102 (2021).41104

Mutual Information:

$$I^{A_1:A_2} = S^{A_1} + S^{A_2} - S^{A_1 \cup A_2}$$

At the leading order there is equipartition of the symmetry resolved Mutual Information.

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

Time evolution of the symmetry-resolved Mutual Information after a quench from the Néel state: Analytical predictions vs numerical results

G. Parez, R. Bonsignori, P. Calabrese, J. Stat. Mech. 2021, 093102

$$= (\mathcal{J}_{A_1} + \mathcal{J}_{A_2} - \mathcal{J}_d) \log 2 - \frac{1}{2} \left(\log \frac{\mathcal{J}_{A_1} \mathcal{J}_{A_2} \pi}{2 \mathcal{J}_d} \right) - \frac{4 \mathcal{J}_{A_1} \mathcal{J}_{A_2} - \mathcal{J}_m^2}{8 \mathcal{J}_d} \left(\frac{1}{\mathcal{J}_{A_1}} + \frac{\mathcal{J}_{A_2} - \mathcal{J}_d}{2 \mathcal{J}_d} \right)^2 - \frac{1}{\mathcal{J}_{A_1}} + \left(\frac{\mathcal{J}_{A_1} - \mathcal{J}_{A_2} - \mathcal{J}_d}{2 \mathcal{J}_d} \right)^2 \frac{1}{\mathcal{J}_{A_2}} - \frac{1}{\mathcal{J}_d} \right\}.$$

Riccarda Bonsignori

(2021).41104 \mathcal{J}_{A_2}

entangled pairs of quasiparticles shared between A and B

$$S(t) = 2t \int_{2v_k t < \ell} \frac{dk}{2\pi} v_k s(k) + \ell \int_{2v_k t > \ell} \frac{dk}{2\pi} s(k) = \int \frac{dk}{2\pi} s(k) \min[2v_k t, \ell]$$

For free-fermion models:

$$s(k) = \frac{1}{2\pi} (-n_k \log n_k - (1 - n_k) \log(1 - n_k))$$

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

*P. Calabrese and J. Cardy, J. Stat. Mech. (2005) P04010

The entanglement between a subsystem A and its complement B is proportional to the number of

The expression obtained for the charged moments has the form:

 $\log Z_n(\alpha) = i\langle$

The result confirms the existence of a delay time t_D , that in the quasiparticle picture can be seen as the time needed to change the charge by an amount $|\Delta q|$ within the subsystem A.

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

$$\langle Q_A \rangle \alpha + \int \frac{dk}{2\pi} f_{n,\alpha}(k) \min[2v_k t, \ell]$$

DYNAMICS OF CHARGE-IMBALANCE-RESOLVED ENTANGLEMENT NEGATIVITY AFTER A QUENCH

DISJOINT INTERVALS

$$J_{A_1 \cup A_2} = \begin{pmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{pmatrix}, \qquad J_{\pm} = \begin{pmatrix} -J_{11} \\ \pm iJ_{21} \end{pmatrix}$$

Charged Renyi logarithmic negativity:

$$\log N_{n_e}(\alpha) = -i\frac{\ell\alpha}{2} + \operatorname{Tr}\log\left[\left(\frac{\mathbb{I}+J_x}{2}\right)^{\frac{n_e}{2}}e^{i\alpha} + \left(\frac{\mathbb{I}-J_x}{2}\right)^{\frac{n_e}{2}}\right] + \frac{n_e}{2}\operatorname{Tr}\log\left[\left(\frac{\mathbb{I}+J}{2}\right)^2 + \left(\frac{\mathbb{I}-J}{2}\right)^2\right]$$

rged logarithmic negativity:
$$\mathscr{E}(\alpha) = -i\frac{\ell\alpha}{2} + \operatorname{Tr}\log\left[\left(\frac{\mathbb{I}+J_x}{2}\right)^{\frac{1}{2}}e^{i\alpha} + \left(\frac{\mathbb{I}-J_x}{2}\right)^{\frac{1}{2}}\right] + \frac{1}{2}\operatorname{Tr}\log\left[\left(\frac{\mathbb{I}+J}{2}\right)^2 + \left(\frac{\mathbb{I}-J}{2}\right)^2\right]$$

rged probability: $\log N_1(\alpha) = -i\frac{\ell\alpha}{2} + \operatorname{Tr}\log\left[\frac{\mathbb{I}+J_+}{2}e^{i\alpha} + \frac{\mathbb{I}-J_+}{2}\right]$

Cha

$$\log N_{n_{e}}(\alpha) = -i\frac{\ell\alpha}{2} + \operatorname{Tr}\log\left[\left(\frac{\mathbb{I}+J_{x}}{2}\right)^{\frac{n_{e}}{2}}e^{i\alpha} + \left(\frac{\mathbb{I}-J_{x}}{2}\right)^{\frac{n_{e}}{2}}\right] + \frac{n_{e}}{2}\operatorname{Tr}\log\left[\left(\frac{\mathbb{I}+J}{2}\right)^{2} + \left(\frac{\mathbb{I}-J}{2}\right)^{2}\right]$$
ged logarithmic negativity:

$$\mathscr{E}(\alpha) = -i\frac{\ell\alpha}{2} + \operatorname{Tr}\log\left[\left(\frac{\mathbb{I}+J_{x}}{2}\right)^{\frac{1}{2}}e^{i\alpha} + \left(\frac{\mathbb{I}-J_{x}}{2}\right)^{\frac{1}{2}}\right] + \frac{1}{2}\operatorname{Tr}\log\left[\left(\frac{\mathbb{I}+J}{2}\right)^{2} + \left(\frac{\mathbb{I}-J}{2}\right)^{2}\right]$$
ged probability: $\log N_{1}(\alpha) = -i\frac{\ell\alpha}{2} + \operatorname{Tr}\log\left[\frac{\mathbb{I}+J_{+}}{2}e^{i\alpha} + \frac{\mathbb{I}-J_{+}}{2}\right]$

Cha

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

H. Shapourian, K. Shiozaki, S. Ryu, Phys. Rev. B 95(16) 165101 G. Parez, R. Bonsignori, P. Calabrese, arXiv:2202.05309

$$\overset{\pm i J_{12}}{J_{22}}) \qquad J_{\mathbf{X}} = (\mathbb{I} + J_{+}J_{-})^{-1} \cdot (J_{+} + J_{-}),$$

CHARGED PROBABILITY

Charged probability: $\mathscr{E}_1(\alpha) = \left[\frac{dk}{2\pi} \operatorname{Re}[h_{1,\alpha}(x_k)](\min(\ell_1, 2v_k t) + \min(\ell_2, 2v_k t)) + \right]$

 $-\left[\frac{dk}{2\pi}\operatorname{Re}[h_{1,\alpha}(x_k) - \frac{1}{2}h_{1,2\alpha}(x_k)](\max(d,2v_kt) + \max(d+\ell,2v_kt) - \max(d+\ell_1,2v_kt) - \max(d+\ell_2,2v_kt))\right]$

where
$$h_{n,\alpha}(x) = \log\left[\left(\frac{1+x}{2}\right)^n e^{i\alpha} + \left(\frac{1-x}{2}\right)^n\right]$$

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

G. Parez, R. Bonsignori, P. Calabrese, arXiv:2202.05309

CHARGED RENYI LOGARITHMIC NEGATIVITIES

Charged Renyi logarithmic negativities:

where

$$\mathscr{E}_n(\alpha) = \int \frac{dk}{2\pi} \operatorname{Re}[h_{n,\alpha}(x)]$$

$$-\int \frac{dk}{2\pi} \operatorname{Re}[h_{n,\alpha}(x_k) - h_{n,\alpha}^{(2)}(x_k)](\max(d, 2v_k t) + \max(d, 2v_k t))](\max(d, 2v_k t) + \max(d, 2v_k t))](\max(d, 2v_k t))$$

 $h_{n,\alpha}^{(2)}(x_k) = \begin{cases} \frac{1}{2}h_{n,2\alpha}(x_k), & \text{odd } n, \\ h_{\frac{n}{2},\alpha}(x_k), & \text{even } n. \end{cases}$

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

- $(x_k)](\min(\ell_1, 2v_k t) + \min(\ell_2, 2v_k t)) +$
- $x(d + \ell, 2v_k t) \max(d + \ell_1, 2v_k t) \max(d + \ell_2, 2v_k t))$

- charged logarithmic negativity $\mathscr{E}(\alpha)$

CHARGED RENYI LOGARITHMIC NEGATIVITIES

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

CHARGED LOGARITHMIC NEGATIVITY

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

$$\hat{\mathscr{E}}(q) = \mathscr{E}(0) - 2\Delta q^2 \left(\frac{1}{\mathscr{J}_{A_1,A_2}^{(1)} - \mathscr{J}_m^{(1)} + \mathscr{J}_m^{(1/2)}}\right)$$

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

QUASIPARTICLE DYNAMICS FOR LOGARITHMIC NEGATIVITY

The Quasiparticle prediction for the logarithmic negativity is*

$$\mathcal{E} = \int dk \ \epsilon(k)(\max(d, 2v_k t) + \max(d + t))$$

For free-fermion models:

$$\epsilon(k) = h_{1/2,0}(2n_k - 1),$$

*V. Alba, P. Calabrese, PNAS 114, 7947 (2017).

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

 $\ell(2v_k t) - \max(d + \ell_1(2v_k t)) - \max(d + \ell_2(2v_k t))$

$$n_k = \begin{cases} \frac{1}{2}, \\ \frac{(1+\cos k)}{2}, \end{cases}$$

Neel quench, Dimer quench

QUASIPARTICLE DYNAMICS FOR \mathscr{E}_n A_{2}

$$\mathscr{E}_n = \int \frac{dk}{2\pi} \epsilon_n(k) (\min(\ell_1, 2v_k t) + \min(\ell_2, 2v_k t)) +$$

$$-\int \frac{dk}{2\pi} (\epsilon_n(k) - \epsilon_n^{(2)}(k)) (\max(d, 2\nu_k t) + \max(d + \ell, 2k)) (\max(d, 2\nu_k t)) (\max(d, 2\nu_k t$$

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

 $2v_k t$) - max $(d + \ell_1, 2v_k t)$ - max $(d + \ell_2, 2v_k t)$)

odd n,

even n

*S. Murciano, V. Alba, P. Calabrese, arXiv:2110.14589.

QUASIPARTICLE DYNAMICS FOR $\mathscr{E}_n(\alpha)$

$$\mathscr{E}_{n}(\alpha) = \int \frac{dk}{2\pi} \epsilon_{n,\alpha}(k) (\min(\ell_{1}, 2v_{k}t) + \min(\ell_{2}, 2v_{k}t) + -\int \frac{dk}{2\pi} (\epsilon_{n,\alpha}(k) - \epsilon_{n,\alpha}^{(2)}(k)) (\max(d, 2v_{k}t) + \max(d)) \epsilon_{n,\alpha}^{(2)}(k) = \begin{cases} \frac{1}{2} \epsilon_{n,2\alpha} \\ \epsilon_{n,\alpha}(k) \end{cases}$$

Our results for can be understood in the framework of the quasiparticle picture for the entanglement dynamics

The conjecture is expected to hold for a large variety of integrable models

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

 $+\ell, 2v_kt) - \max(d + \ell_1, 2v_kt) - \max(d + \ell_2, 2v_kt))$

- odd n, (k),
- even n.

CONCLUSIONS

The study of the symmetry resolution of the entanglement measures gives a deeper understanding of the entanglement dynamics of many-body quantum systems.

- Dynamics of symmetry-resolved entanglement entropy and mutual information • Existence of delay time t_D
 - Equipartition for small $|\Delta q|$
- Dynamics of charge-imbalance-resolved negativity
 - Equipartition with violations of order $\Delta q^2 l \ell$ at intermediate times
- arbitrary integrable models and predicts:

Seminar @ GGI Workshop on Randomness, Integrability and Universality, 17 May, Florence

Within the quasiparticle picture, we conjectured a general formula for the charged entropy and charged Renyi logarithmic negativities that is expected to hold for

