A case study: the tangent method applied to two-periodic Aztec diamonds

Philippe Ruelle

(UCLouvain, Belgium)

Randomness, Integrability and Universality Galileo Galilei Institute, Firenze May 2022

Historically, first observed in the domino tiling of Aztec diamonds Cohn, Elkies and Propp (1996) & Jockusch, Propp and Shor (1998)

Since then, many other instances: tilings of hexagons, 6V model, alternating sign matrices, <mark>2-periodic Aztec diamonds</mark>, Young tableaux, Aztec rectangles, 20V model(s), ...

Aztec diamond of order n

- finite domain in Z²
- area = 2n(n+1)
- # dominos = n(n+1)

Then: consider tilings of AD_n by dominos (+ prob. measure, later)

<u>Aztec diamond of order 6</u>

- # coverings $= 2^{21} = 2097152$, and $2^{n(n+1)/2}$ for general n
- they form a set on which the flip $\square \leftrightarrow \square$ is <u>transitive</u>

(ElkKupLarPro '92)

<u>Typical behaviour</u> at large size <u>depends on prob. measure</u>

Limit shape at large size depends on distribution

- corners are frozen: only _____ in N, ____ in W, _____ in S and _____ in E
- central region contains randomness, and non-homogeneous
- interface(s) between distinct regions converge to non-random (arctic) curve(s)

How does one actually compute arctic curves ??

Basic/naive idea: compute probability of relevant observable.

In frozen regions, this probability saturates to 0 or 1, in the scaling limit. (In AzD, consider proba of ____) Left The hard way, but yields more information.

Alternative proposal by Colomo & Sportiello (2016).
Use ...

... the TANGENT METHOD

- Based on formulation in terms of non-intersecting lattice paths
- Heuristic approach but successfully checked in many cases
- Usually much easier than naive idea above
- Relies on a reasonable but strong assumption, not under control 😕

Non-intersecting lattice path bijection

- depends on model considered, but available in all known cases \checkmark
- usually several ways to do that (really helps)
- paths are [non-intersecting random directed walks, with specific set S of elementary steps, starting and ending points are fixed.

For AzD, draw elementary steps on 3 tiles :

Non-intersecting lattice path bijection

- depends on model considered, but available in all known cases \checkmark
- usually several ways to do that (really helps)
- paths are [non-intersecting random directed walks, with specific set S of elementary steps, starting and ending points are fixed.

For AzD, draw elementary steps on 3 tiles :

Non-intersecting lattice path bijection

The tilings of AD_n are in bijection with the set of n-uples of non-intersecting (Schröder) paths, starting and ending at fixed positions. The lattice paths are made of elementary steps (1,1), (1,-1) and (2,0).

For AzD, draw elementary steps on 3 tiles :

Arctic interface in terms of paths

In scaling limit, the uppermost paths accumulate to form a sharp and deterministic interface between a void region and a region densely filled with paths.

Tangent method

Main idea: what if one conditions the uppermost path to exit boundary at P ??

(1) the shape of the interface is preserved;Observations:(2) the new uppermost path starts as a strain

(2) the new uppermost path starts as a straight line from forced initial point, then approaches tangentially and merges in the compact cluster of paths forming the interface.

Tangent method

It builds on the two previous observations, become working hypotheses in the scaling limit:

Perturbing the upper path has little influence on the other paths so that the arctic curve is not affected.

The new upper path is a straight line until it touches the arctic curve, <u>tangentially</u>; from then on, it follows the arctic curve itself. \checkmark

<u>Remarks</u>:

- H1 is strong though reasonable; could turn out to be wrong if strong interactions between paths.
- H2 not as strong; looks surprising but somehow expected, for both linear part and tangency.
 Proved to hold in fairly general context Debin, Granet & PhR (2019)

Tangent method

It builds on the two previous observations, become working hypotheses in the scaling limit:

Perturbing the upper path has little influence on the other paths so that the arctic curve is not affected.

The new upper path is a straight line until it touches the arctic curve, <u>tangentially</u>; from then on, it follows the arctic curve itself. \checkmark

<u>Remarks</u>:

- H1 is strong though reasonable; could turn out to be wrong if strong interactions between paths.
- H2 not as strong; looks surprising but somehow expected, for both linear part and tangency.
 Proved to hold in fairly general context Debin, Granet & PhR (2019)

BUT :

Together H1 and H2 allow for an efficient way to compute arctic curves !

Tangent method at work

- Fix point P, at which upper path leaves left boundary
- Compute corresponding refined partition function
- Extract the slope of the straight part in the scaling limit (rescale all distances by n, and take limit)

Tangent method at work

- Fix point P, at which upper path leaves left boundary
- Compute corresponding refined partition function
- Extract the slope of the straight part in the scaling limit (rescale all distances by n, and take limit)
- Vary starting point P over left boundary to obtain family of lines, all tangent to the arctic curve
- Retrieve the arctic curve as the enveloppe of the 1-parameter family of tangent lines

Problem 1: how to compute the refined partition function ?

Problem 2: how to extract a slope from the partition function ?

<u>To be computed</u> : partition function for those AzD tilings s.t. the upper path leaves the left boundary at prescribed position.

From tiling-paths correspondence, equivalent to condition on fixed number of vertical dominos on WN boundary:

<u>To be computed</u> : partition function for those AzD tilings s.t. the upper path leaves the left boundary at fixed position.

Let k be the number of vertical dominos; then (n-k) horizontal. (On figure, n=6, k=4)

Note: for tangent method, need $k \geq \frac{n}{2}$

Let $Z_{n,k}$ be the refined partition function.

For standard AzD, not difficult: $Z_{n,k} = 2^{n(n-1)/2} {n \choose k}$.

For 2-periodic AzD ???

1 - Refined partition function

2-periodic measure

Is a <u>non-uniform measure</u> on the AzD tilings.

Better described in terms of perfect matchings of dual Aztec graph.

2-periodic weighting:

- * a dimer is weighted by the weight of the face it is adjacent to
- $\,$ weight of a perfect matching and corresponding tiling is product of dimer weights (above matching has weight $a^{12}\,b^8$)

Follow Kuo, 2004 ...

If Z_n denotes the partition function for standard AzD (their number), Kuo proved

$$Z_n Z_{n-2} = Z_{n-1}^2 + Z_{n-1}^2$$

It readily implies $Z_n = 2^{n(n+1)/2}$.

The quadratic recurrence follows from the following graphical equation

Beautiful argument ...

•---•

1 - Two-periodic partition function

Other beautiful observation, by Speyer (2007):

Kuo's recurrence extends to much more general weightings, leads to so-called **octahedron recurrence** !

For 2-periodic AzD, it implies for 2-periodic partition function $Z_n(a, b)$

$$Z_n(a,b) Z_{n-2}(a,b) = \left\{ \begin{matrix} b^2 \\ a^2 \end{matrix} \right\} Z_{n-1}^2(a,b) + a^2 Z_{n-1}^2(b,a) \qquad \text{for } n \left\{ \begin{matrix} \text{even} \\ \text{odd} \end{matrix} \right\}$$

Yields a neat formula:

$$Z_n(a,b) = (2ab)^{\lfloor \frac{(n+1)^2}{4} \rfloor} (a^2 + b^2)^{\lfloor \frac{n^2}{4} \rfloor} \times \begin{cases} 1 & \text{if } n \neq 1 \mod 4\\ \frac{a}{b} & \text{if } n = 1 \mod 4 \end{cases}$$

(Di Francesco & Soto-Garrido, 2014)

The recurrence generalises upon inclusion of boundary face weights

If **k** vertical dimers along WN boundary, the yellow faces bring additional factor

$$x_0 x_1 \ldots \hat{x}_k \ldots x_n$$

Thus

$$Z_{n,k}(a,b) = \frac{Z_n(a,b;x_0,\dots,x_n)}{x_0x_1\dots x_n}\Big|_{x_k^{-1}}$$

$$Z_{n}(a,b|x_{0}...x_{n}) Z_{n-2}(a,b) = x_{0} \left\{ \begin{matrix} b^{2} \\ a^{2} \end{matrix} \right\} Z_{n-1}(a,b|x_{1}...x_{n}) Z_{n-1}(a,b)$$

+ $x_{n} a^{2} Z_{n-1}(b,a|x_{0}...x_{n-1}) Z_{n-1}(b,a)$ for $n \left\{ \begin{matrix} \text{even} \\ \text{odd} \end{matrix} \right\}$

The recurrence generalises upon inclusion of boundary face weights

If **k** vertical dimers along WN boundary, the yellow faces bring additional factor

$$x_0 x_1 \ldots \hat{x}_k \ldots x_n$$

Thus

$$Z_{n,k}(a,b) = \frac{Z_n(a,b;x_0,\dots,x_n)}{x_0x_1\dots x_n}\Big|_{x_k^{-1}}$$

$$Z_{n}(a, b|x_{0}...x_{n}) Z_{n-2}(a, b) = x_{0} \left\{ \begin{matrix} b^{2} \\ a^{2} \end{matrix} \right\} Z_{n-1}(a, b|x_{1}...x_{n}) Z_{n-1}(a, b)$$

+ $x_{n} a^{2} Z_{n-1}(b, a|x_{0}...x_{n-1}) Z_{n-1}(b, a)$ for $n \left\{ \begin{matrix} \text{even} \\ \text{odd} \end{matrix} \right\}$

The recurrence generalises upon inclusion of boundary face weights

If **k** vertical dimers along WN boundary, the yellow faces bring additional factor

$$x_0 x_1 \ldots \hat{x}_k \ldots x_n$$

Thus

$$Z_{n,k}(a,b) = \frac{Z_n(a,b;x_0,\dots,x_n)}{x_0x_1\dots x_n}\Big|_{x_k^{-1}}$$

$$Z_{n}(a,b|x_{0}...x_{n}) Z_{n-2}(a,b) = x_{0} \left\{ \begin{matrix} b^{2} \\ a^{2} \end{matrix} \right\} Z_{n-1}(a,b|x_{1}...x_{n}) Z_{n-1}(a,b)$$

+ $x_{n} a^{2} Z_{n-1}(b,a|x_{0}...x_{n-1}) Z_{n-1}(b,a)$ for $n \left\{ \begin{matrix} \text{even} \\ \text{odd} \end{matrix} \right\}$

The recurrence generalises upon inclusion of boundary face weights

If **k** vertical dimers along WN boundary, the yellow faces bring additional factor

$$x_0 x_1 \ldots \hat{x}_k \ldots x_n$$

Thus

$$Z_{n,k}(a,b) = \frac{Z_n(a,b;x_0,\dots,x_n)}{x_0x_1\dots x_n}\Big|_{x_k^{-1}}$$

$$Z_{n}(a,b|x_{0}...x_{n}) Z_{n-2}(a,b) = x_{0} \left\{ \begin{matrix} b^{2} \\ a^{2} \end{matrix} \right\} Z_{n-1}(a,b|x_{1}...x_{n}) Z_{n-1}(a,b)$$

+ $x_{n} a^{2} Z_{n-1}(b,a|x_{0}...x_{n-1}) Z_{n-1}(b,a)$ for $n \left\{ \begin{matrix} \text{even} \\ \text{odd} \end{matrix} \right\}$

The recurrence generalises upon inclusion of boundary face weights

If **k** vertical dimers along WN boundary, the yellow faces bring additional factor

$$x_0 x_1 \ldots \hat{x}_k \ldots x_n$$

Thus

$$Z_{n,k}(a,b) = \frac{Z_n(a,b;x_0,\dots,x_n)}{x_0x_1\dots x_n}\Big|_{x_k^{-1}}$$

$$Z_{n}(a,b|x_{0}...x_{n}) Z_{n-2}(a,b) = x_{0} \left\{ \begin{matrix} b^{2} \\ a^{2} \end{matrix} \right\} Z_{n-1}(a,b|x_{1}...x_{n}) Z_{n-1}(a,b)$$

+ $x_{n} a^{2} Z_{n-1}(b,a|x_{0}...x_{n-1}) Z_{n-1}(b,a)$ for $n \left\{ \begin{matrix} \text{even} \\ \text{odd} \end{matrix} \right\}$

Selecting the proper terms yields

$$Z_{n,k}(a,b) Z_{n-2}(a,b) = \left\{ \begin{matrix} b^2 \\ a^2 \end{matrix} \right\} Z_{n-1,k-1}(a,b) Z_{n-1}(a,b) + a^2 Z_{n-1,k}(b,a) Z_{n-1}(b,a)$$

which becomes a linear recurrence for $S_{n,k}(a,b) \equiv \frac{Z_{n,k}(a,b)}{Z_{n-1}(a,b)}$!

Compute generating function, and use standard methods to extract asymptotic value of $S_{n,k}(a,b)$ for large k.

For
$$k = rn, \ 0 \le r \le 1$$

$$\lim_{n \to \infty} \frac{1}{n} \log \frac{Z_{n,rn}(a,b)}{Z_{n-1}(a,b)} = \log(ab) + F_1(r) \qquad (0 \le v \le +\infty)$$
$$\frac{\mathrm{d}F_1(r)}{\mathrm{d}r} = -\log v(r) \quad \text{and} \qquad r(v) = \frac{v}{1-v^2} \left\{ \frac{1+\beta}{2\sqrt{\beta}} \frac{1+v^2}{\sqrt{1+(\beta+\frac{1}{\beta})v^2+v^4}} - v \right\}$$

Tangent method at work

- Fix point P, at which upper path leaves left boundary
- Compute corresponding refined partition function
- Extract the slope of the straight part in the scaling limit (rescale all distances by n, and take limit)
- Vary starting point P over left boundary to obtain family of lines, all tangent to the arctic curve
- Retrieve the arctic curve as the enveloppe of the 1-parameter family of tangent lines

Ρ

Problem 1: how to compute the refined partition function ?

Problem 2: how to extract a slope from the partition function ?

2 - Computation of the slope

A priori, <u>not possible</u> to extract the slope from the partition function alone ! Need for further input ...

Further input is provided by underlying assumptions of tangent method itself.

It assumes that

the uppermost path does not affect the way the other (n-1) paths behave in the scaling limit,

and suggests that

to dominant order, the refined partition function factorizes into a contribution of the bulk (n-1) paths and the contribution of the uppermost/isolated path:

$$Z_{n,k}(a,b) \sim Z_{n-1}(a,b) Z_1^{\mathrm{up}}(a,b) \implies \lim_{n \to \infty} \frac{1}{n} \log \frac{Z_{n,rn}(a,b)}{Z_{n-1}(a,b)} = \lim_{n \to \infty} \frac{1}{n} \log Z_1^{\mathrm{up}}$$

(Debin & PhR, 2021)

2 - Computation of the slope

Next step is to compute Z_1^{up} .

It is the partition function for a single path, travelling from (fixed) P to Q, and confined in a <u>deterministic</u> domain formed by the boundaries of the AzD and the arctic curve.

In scaling limit, partition function is exponentially dominated by lattice paths which condense on a deterministic trajectory f and is given asymptotically by

 $Z_1^{\rm up}[f] \simeq \exp\{nS[f]\}, \qquad S[f] = \int_P^Q \mathrm{d}x \, L\big(f'(x)\big)$

Moreover, f is the shortest path between P and Q entirely contained in the domain. In present case, f is the red curve (straight line + piece of arctic curve).

(Debin, Granet & PhR, 2019)

2 - Computation of the slope

Combining previous results,

$$\log(ab) + F_1(r) = S[f] = \int_{P_r}^Q dx L(f'(x))$$
$$= \int_{P_r}^{x^*} dx L(t^*) + \int_{x^*}^Q dx L(h'(x))$$
$$= (x^* - P_r)L(t^*) + \int_{x^*}^Q dx L(h'(x))$$

Differentiate with respect to r to get

$$F_1'(r) = \log \sqrt{ab} - L(t^*) - (1 - t^*)L'(t^*)$$

i.e. an explicit relation between the slope and r.

→ if we can compute the function L(t), <u>WE ARE DONE</u> \Rightarrow

Remember one of previous slides:

Must extend to a measure preserving bijection !

- Green dominos contribute to weight of tiling but have no associated step ! Observe however: as many a/b-type red domino as a/b-type green domino. simply square the weights of red dominos
- A path is made of elementary steps with position dependent weights

3 - Computation of function L(t)

• Partition function $Z_{i,j}(a,b)$ for a single path = sum of weights of all paths $(0,0) \longrightarrow (i,j)$ Write recurrence relations and form generating function $G(x,y) = \sum_{i,j} Z_{i,j}(a,b) x^i y^j$ and get

$$G(x,y) = \frac{1 - b^2 x^2 + x(ay + b/y)}{(1 - a^2 x^2)(1 - b^2 x^2) - x^2(ay + b/y)(by + a/y)}$$

Use standard methods to extract asymptotic value for large i = rn, j = sn

$$Z_{rn,sn}(a,b) \simeq \exp\{nr L(t)\}$$
 $t = \frac{s}{r}$

 \bullet Allows to compute contribution of paths condensing on trajectory f

FINAL RESULTS

The arctic curve for the 2-periodic AzD has the following parametrization

$$\begin{cases} X(v) \\ Y(v) \end{cases} = \frac{1}{(v^2+1)^4 + 4\frac{(\beta-1)^2}{\beta}v^4} \left\{ \frac{1}{2}(v^4-1)(v^2+1)^2 \mp 2\frac{\sqrt{\beta}}{\beta+1}v\left[v^4 + \left(\beta + \frac{1}{\beta}\right)v^2 + 1\right]^{\frac{3}{2}} \right\} \\ \left(\beta = \frac{a^2}{b^2}\right)^{\frac{3}{2}} \left(\beta = \frac{a^2}{b^2}\right)^{\frac{3}{2}} \left(\beta = \frac{a^2}{b^2}\right)^{\frac{3}{2}} \right\}$$

It satisfies 8th degree algebraic for U = X + Y and V = Y - X

 $\beta = 1.5$

 $\beta =$

 $\beta = 10$

 $\beta = 100$

Selected references

- N. Elkies, G. Kuperberg, M. Larsen and J. Propp
 Alternating sign matrices and domino tilings I + II
 J. Alg. Combin. 1 (1992) 111-132 + 219-234 (arXiv:math/9201305 [math.CO])
- W. Jockusch, J. Propp and P. Shor
 Random domino tilings and the arctic circle theorem arXiv:math/9801068 [math.CO]
- P. Di Francesco and R. Soto-Garrido
 Arctic curves of the octahedron equation
 J. Phys. A: Math. Theor. 47 (2014) 285204 (arXiv:1402.4493 [math-ph])
- F. Colomo and A. Sportiello
 Arctic curves of the six-vertex model on generic domains: the tangent method
 J. Stat. Phys. 164 (2016) 1488-1523 (arXiv:1605.01388 [math-ph])
- B. Debin and P. Ruelle
 Factorization in the multirefined tangent method
 J. Stat. Mech. (2021) 103201 (arXiv:2105.02257 [math-ph]
- P. Ruelle
 Double tangent method for two-periodic Aztec diamonds
 Soon on arXiv (within a few days)
- Antoine Doeraene
 Aztec Diamond Generator
 Website <u>https://sites.uclouvain.be/aztecdiamond/</u>