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Integer partitions λ ` n are weakly decreasing sequences of positive

integers λ = (λ1 ≥ λ2 ≥ . . . λ`(λ) > 0), such that

λ1 + λ2 + . . .+ λ`(λ) = n. They are represented with Young diagrams.

e.g. for λ = (4, 2, 1):

λ1

λ2

λ3

`(λ)

λ1

A natural measure on partitions of n arises from the uniform measure on

permutations of 1, . . . , n.



Famously, the Robinson–Schensted algorithm maps each σ ∈ Sn to a pair

of standard Young tableaux (P,Q) of the same shape λ ` n. E.g.,

σ = (7, 5, 1, 6, 2, 3, 4)
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λ1 is the length of the longest increasing subsequence of σ.

Where σ is sampled uniformly, this induces the Plancherel measure

Pn(λ) = P[Shape(RS(σ)) = λ] =
f 2
λ

n!

where fλ is the number of SYT of shape λ.
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As n→∞, the Young diagram of a random

partition distributed by Pn has a deterministic

limit shape (Vershik & Kerov; Logan & Shepp,

1977). This is a simple solvable model in the

“KPZ class”.

Theorem (Baik–Deift–Johansson, 1998)

Let λ ` n be a random partition under the Plancherel measure Pn. Then

lim
n→∞

Pn

[
λ1 − 2n1/2

n1/6
< s

]
= FTW

2 (s) := det(1−A)[s,∞)

in law, where FTW
2 (s) is the Tracy–Widom distribution of the largest

eigenvalue of a GUE random matrix.



Returning to uniform random permutations,

Theorem (Baik–Deift–Johansson, 1998)

Let σ ∈ Sn be a uniform random permutation and let LL.I .S.(σ) be the

length of its longest increasing subsequence

lim
n→∞

Pn

[
LL.I .S.(σ)− 2n1/2

n1/6
< s

]
= FTW

2 (s) := det(1−A)[s,∞)

in law, where FTW
2 (s) is the Tracy–Widom distribution of the largest

eigenvalue of a GUE random matrix.

i

σ(i)

The statistic LL.I .S.(σ) or λ1 has a

geometric interpretation as the longest

directed path in a uniform random medium.
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Via RSK, the Plancherel measure has a

geometric generalisation corresponding to

last passage percolation in more interesting

random media, e.g.

P(λ) =
1

Z
sλ(a1, a2, . . . , aN)sλ(b1, b2, . . . , bN)

where ai , bi ∈ [0, 1) and sλ is the Schur

symmetric function (cf Guillaume’s talk).

sλ(x1, . . . , xN) =

det
1≤i,j≤N

xλi−i+j
j

det
1≤i,j≤N

x ij

sλ(x1, . . . , xN) =
∑

T SSYT of λ
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We consider Schur measures that do not correspond to stochastic

processes, but arise from lattice fermion models. They can notably

escape the KPZ class.

m = 2 m = 3
m = 4

Theorem (Betea–Bouttier–W., 2020)

Let λ be a random partition of mean size θ2 distributed by Pm
θ *. Then

lim
θ→∞

Pm
θ

[
λ1 − bθ

(dθ)
1

2m+1

< s

]
= F (2m + 1; s) := det(1−A2m+1)[s,∞)

in law for constants b, d*, where A2m+1(x , y) is the order m

generalized Airy kernel*. * to be defined.

This edge behaviour was first observed for momenta of trapped fermions

(Le Doussal, Majumdar & Schehr, 2018).
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Partitions map to configurations of fermions on a 1D lattice at fixed

charge, which can be read off tilted Young diagrams.

The empty partition corresponds to the domain wall state |∅〉

, a partition

λ corresponds to the state

|λ〉 := c†
λ1− 1

2

c†
λ2− 3

2

· · · c†
λ`−`+ 1

2

c−`+ 1
2
· · · c− 3

2
c− 1

2
|∅〉 .

These are eigenstates of a linear potential

H0 =
∑
k

k : c†k ck :, H0 |λ〉 = |λ| |λ〉 .
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|λ〉 are eigenstates of a linear potential

H0 =
∑
k

k : c†k ck :, H0 |λ〉 = |λ| |λ〉 , |λ| =
∑
i

λi .

We add kinetic hopping terms

ar :=
∑
k

: c†k ck+r :

via the unitary operator

U := e
∑

r≥1(tra
†
r −t̄rar )

for some finite sequence of complex parameters tr (called Miwa times).

Then

H = UH0U−1 = H0 −
∑
r≥1

r(t̄rar + tra
†
r ) +

∑
r≥1

r2|tr |2

has the ground state

U |∅〉 = e−
∑

r≥1 r |tr |2/2e
∑

r≥1 tra
†
r |∅〉 = e−

∑
r≥1 r |tr |2/2

∑
λ

sλ[t1, t2, . . .] |λ〉 .

Here the specialisation is in the power sums tr =
∑

i x
r
i .
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∑
k

: c†k ck+r :

via the unitary operator

U := e
∑

r≥1(tra
†
r −t̄rar )

for some finite sequence of complex parameters tr (called Miwa times).

Then

H = UH0U−1 =
∑
r≥1

a†r ar +
a2

0

2
−
∑
r≥1

r(t̄rar + tra
†
r ) +

∑
r≥1

r2|tr |2

has the coherent ground state

U |∅〉 = e−
∑

r≥1 r |tr |2/2e
∑

r≥1 tra
†
r |∅〉 = e−

∑
r≥1 r |tr |2/2

∑
λ

sλ[t1, t2, . . .] |λ〉 .

Here the specialisation is of the power sums, via tr =
∑

i x
r
i .



Imagine we could simultaneously measure the occupation number of

every site on the lattice; the probability of observing |λ〉 is the Hermitian

Schur measure (Okounkov, 2001)

P(λ) = |〈λ| U |∅〉|2 = e−
∑

r≥1 r |tr |2sλ[t1, t2, . . .]sλ[t̄1, t̄2, . . .].

• P(λ) is a determinantal point process on the sets

S(λ) = {λi − i + 1
2 , i ∈ Z + 1

2}, with

P(k1, . . . , kn ∈ S(λ)) = det
1≤i,j≤n

K (ki , kj)

∑
k,`

zkw−`√
zw

K(k, `) = e
∑

r (tr z
r−t̄r z

−r )

e
∑

r (tr wr−t̄r w−r )

• At t1 = θ, tr>1 = 0, we have the Poissonized Plancherel measure

(Johansson; Borodin, Okounkov & Olshanski, 1999):

P(λ) = | 〈λ| e−θ2/2eθa1 |∅〉 |2 = f 2
λ

θ2|λ|

eθ2 |λ|!2
1

23

4 56
7
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Consider free fermions on a line in confining potentials V (x) = x2m,

m = 1, 2, . . . (in first quantisation), and look at what happens on the

edge (Le Doussal, Majumdar & Schehr, 2018).

V (x) = x2n

s
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Figure from LDMS 2018.

• In position space: universal Airy fermions

Hedge ≈ x − d2

dx2
.

• In momentum space:

Hedge ≈ p + (−1)m d2m

dp2m .

The ground state correlator is

A2m+1(x , y) =

ˆ ∞
−∞

dµ Ai2m+1(x + µ) Ai2m+1(y + µ),

Ai2m+1(p) =

ˆ
iR+δ

dζ

2πi
e

(−1)m+1

2m+1 ζ2m+1−pζ

Fluctuations are given by a Fredholm determinant

P[pmax − pF < pNs] = F (2m + 1; s)

= det(1−A2m+1)[s,∞).
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The Fredholm determinant

F (2m + 1; s) := det(1−A2m+1)[s,∞)

= P[pmax − pF < pNs]

generalises a connection between the Tracy–Widom

distribution and classical integro-differential

equations:

F (2m + 1; s) = exp

[
−
ˆ ∞
s

(x − s)q2
m((−1)m+1x) dx

]
where qm is a solution of the mth equation of the Painlevé II hierarchy

which coincide with Ai2m+1 at infinity

(LDMS, 2018; Cafasso, Claeys & Girotti, 2019).

The same higher-order Painlevé equations are asymptotically satisfied by

certain “multicritical” unitary matrix integrals (Periwal & Shevitz, 1990).

There is a finite temperature extension of F (2m + 1; s) and the Painlevé

equations (Krajenbrink, 2020; Bothner, Cafasso & Tarricone, 2021).



We can tune the Miwa times to have the same asymptotic edge

fluctuations. E.g. take

Pm
θ (λ) = e−θ

2 ∑
r

γ2
r
r sλ[θγ1, θγ2, . . .]

2

with

γr = (−1)r
(

2m
m−r

)
/
(

2m
m−1

)
, r = 1, . . . ,m

and all other γr = 0.

m = 2 m = 3
m = 4

The θ →∞ limit shape has a right edge that vanishes with a 1/2m

exponent.



We can tune the Miwa times to have the same asymptotic edge

behaviour. E.g. take

Poe,m
θ (λ) = e−θ

2 ∑
r

γ2
r
r sλ[θγ1, θγ2, . . .]

2

with

γr = (−1)r
(

2m
m−r

)
/
(

2m
m−1

)
, r = 1, . . . ,m

and all other γr = 0.

-3 -2 -1 1 2 3
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n = 1

n = 2

n = 3

n = 4

n = 5

ρoe(u)

Ωoe(u)

u

The θ →∞ limit shape vanishes with a 1/2m exponent on the right.

The m = 2 limit density also appeared for non-probabilistic time

dependent free fermion processes (Bocini & Stéphan, 2020).



Or take

Po,m
θ (λ) = e−θ

2 ∑
r

γ2
r
r sλ[θγ1, θγ2, . . .]

2

with

γ2r−1 = (−1)r
(

2m−1
m−r

)
/
(

2m−1
m−1

)
, r = 1, . . . ,m

and all other γr = 0.

1

2

n = 1
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u
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-2 -1 1 2

The θ →∞ limit shape has two edges vanishing with a 1/2m exponent.



Define a class of Hermitian Schur measures with one parameter

Pm
θ (λ) = e−θ

2 ∑
r

γ2
r
r sλ[θγ1, θγ2, . . .]

2

on integer partitions, where {γr} satisfy

2
∑
r

r2pγr = δp,0b + δp,m(−1)m+1(2m)!d , p = 0, 1, 2, . . . ,m

and
∑

r≥1 rγr sin rφ ≥ 0, φ ∈ [0, π] for some b, d > 0.

Theorem (Betea–Bouttier–W., 2020)

Let λ be a random partition of mean size θ2 distributed by Pm
θ . Then

lim
θ→∞

Pm
θ

[
λ1 − bθ

(dθ)
1

2m+1

< s

]
= F (2m + 1; s) = det(1−A2m+1)[s,∞)

in law for constants b, d , where A2m+1(x , y) is the order m generalized

Airy kernel.

This extends to finite temperature via cylindric partitions (Borodin, 2006;

Betea & Bouttier, 2018)
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Heuristically...

In the critical scaling regime k = bθ + (dθ)
1

2n+1 , where

b := 2
∑

r≥1 rγr > 0 and d := 2(−1)n+1

(2n)!

∑
r≥1 r

2n+1γr , the Hamiltonian

associated with the underlying fermion model asymptotically coincides

with that of fermion edge momenta in flat traps,

1

θ
2n

2n+1

Hθ,n −−−→
θ→∞

H∞,n =

ˆ
R
dx c†(x)

[
x + (−1)n

d2n

dx2n

]
c(x).

• Asymptotic analysis of wave functions was also used to study similar

models (Kimura & Zahabi 2020).

Rigorously...

We compute asymptotics of the kernel for Pm
θ

K (k , `) =
1

(2πi)2

‹
dz

zk+
1
2

dw

w−`+
1
2

eθ
∑

r
γr
r (z r−z−r )

eθ
∑

r
γr
r (w r−w−r )

where w is integrated along |w | = 1− δ and z along |z | = 1 + δ. At

order m multicriticality, there’s an order 2m saddle point.



The distribution of λ1 under Pm
θ is equal to the partition function of a

multicritical unitary matrix model.

Proposition (Betea–Bouttier–W.,2020)

For λ distributed by Pm
θ , we have:

e
∑

r rθ
2γ2

r · P(λ1 ≤ `) =

ˆ
U(`)

DU eθ tr
∑

r (−1)r−1γr (U r+U∗r )

and the unitary matrix model with potential

V (U) = θ
∑

r (−1)r−1γr (U
r + U∗r ) has order 2m vanishing in its

eigenvalue density.

• Cauchy-Binet formula: sλ[θγ] = det1≤i,j≤`(l) hλi−i+j , so∑
λ:`(λ)<`

sλ[θγ]sλ[θγ] = det
1≤i,j≤`

∞∑
k=0

hk−ihk−j

This is a Toeplitz determinant, and
∑

k hkz
k = eθ

∑
r

γr
r z r .

• Heine’s identity:

det
1≤i,j≤`

[fj−i ] =

ˆ
dθ1

ˆ
dθ2 . . .

ˆ
dθ`

∏
i<j

|eθi−eθj |2f (θ1)f (θ2) · · · f (θ`) .
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The distribution of λ1 under Pm
θ is equal to the partition function of a

multicritical unitary matrix model.

Proposition (Betea–Bouttier–W.,2020)

For λ distributed by Pγn,θ, we have:

e
∑

r rθ
2γ2

r · P(λ1 ≤ `) =

ˆ
U(`)

DU eθ tr
∑

r (−1)r−1γr (U r+U∗r )

and the unitary matrix model with potential

V (U) = θ
∑

r (−1)r−1γr (U
r + U∗r ) has order 2m vanishing in its

eigenvalue density.

The unitary matrix integrals corresponding to Poe,m
θ were previously found

by tuning to multicriticality; the mth order Painlevé equation was also

found here (Periwal & Shevitz, 1990).

• n = 1 case: correspondence between the Poissonized Plancherel

measure and the Gross–Witten–Wadia model (Johannson, 1998).

• In general: third order phase transition with scaling exponent 2 + 1
m .

The unitary matrix integral might give a combinatorial interpretation...
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The second condition ∑
r≥1

rγr sin rφ ≥ 0, φ ∈ [0, π]

in our definition of multicritical Schur measures ensures that the ground

state has a connected momentum spectrum.

In the corresponding unitary matrix model, this is a single cut assumption.

What if we lift it?
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Figure from BS 2020.

• This situation has been studied for the

Lieb–Liniger model (Fokkema, Eliëns &

Caux 2014; Eliëns’ PhD thesis)

• For free fermion models with a “split

Fermi sea”, limiting densities have

been found (Bocini & Stéphan, 2020).



Take a Hermitian Schur measure Poe,m
θ (λ) = e−θ

2 ∑
r

γ2
r
r sλ[θγ1, θγ2, . . .]

2

with

γ1 = 1, γ2 = −1

4

and all other γr = 0.
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Figure from BS 2020.

The fluctuations around the right edge are

in the generic θ1/3 scale, but the two-point

function does not quite converge to the

Airy kernel.

We have

lim
θ→∞

P
[
λ1 − bθ

(dθ)1/3
< s

]
= det

(
1− Ã

)
[s,∞)

Ã(x , y) =

{
A(x , x), x = y

1
2A(x , y), x 6= y .



Further directions

• extension of the unitary matrix models to finite temperature

• multicriticality at non-integer n (cf Ambjorn, Budd & Makeenko,

2016)

• internal cusps in split fermi sea models

• combinatorial interpretations: is there a connection with surface

enumeration? (cf Okounkov, 2000)



Thank you for your attention!
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