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1. One-dimensional particle systems with short-range
interactions

• Unusual static properties 6= mean field, higher dimensions

- Anomalous transport in nonequilibrium steady states

- Phase separation [Lahiri, Barma, Ramaswamy (2000)]

• Non-diffusive scale-invariant critical dynamics

- Superdiffusive spatio-temporal scaling [KPZ (1985), Dhar (1987), Gwa and Spohn

(1992)]

- Dynamical universality classes with dynamical exponent z < 2

- Nongaussian universal scaling functions
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Some generic model systems with local conservation laws

• Anharmonic chains (Conserved energy, momentum, . . . )

• Lattice gas models with M conserved species of particles
=⇒ M stationary currents as functions of conserved densities nαk (t)

Goal: Universality classes for dynamical structure functions

Stationary correlations of fluctuation fields uαk (t) = nαk (t)− ρα:

Sαβk (t) = 〈 nαk (t)nβ0 (0) 〉 − ραρβ = 〈 uαk (t)uβ0 (0) 〉

− Static compressibility matrix Kαβ =
∑

k S
αβ
k (t)

− Current Jacobian Jαβ from
∑

k kṠ
αβ
k (t)

− Large k, t =⇒ Dynamical exponent, scaling functions
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2. Multilane exclusion processes

(1) One conservation law:

Asymmetric simple exclusion process (ASEP) [MacDonald, Gibbs, Pipkin (1968);

Spitzer (1970)]

• Occupation numbers n` ∈ {0, 1} for ` ∈ {1, . . . , L}

• Configuration n = {n1, . . . , nL} ∈ {0, 1}L

• Markovian jumps with rates g10, g01
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g g01 01
g g10 10



1. Particle systems 2. Multilane exclusion processes 3. Burgers equations 4. Results 5. Summary and Outlook

• Generator (periodic boundary conditions)

Lf (n) =
L∑
`=1

[g10n`(1− n`+1) + g01n`+1(1− n`)]
[
f (n`,`+1)− f (n)

]
=⇒ Ln` = j`−1 − j` with instantaneous current

j` = g10n`(1− n`+1)− g01n`+1(1− n`)

• Fix particle number N: Uniform invariant measure

=⇒ Bernoulli product measures with density ρ ∈ [0, 1]

=⇒ Stationary current j := 〈 j` 〉 = f ρ(1− ρ)

with driving strength f = g10 − g01

=⇒ Static compressibility κ := 1
L〈 (N − ρL)2 〉 = ρ(1− ρ)
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From the ASEP to a RSOS interface

• Map occupation number
to slope s` = 1−2n` on dual
lattice =⇒

• Particle jumps map to in-
terface growth =⇒ j = sta-
tionary growth velocity

• Time-integrated particle
current across bond (`, `+1)
maps to interface height h`

RSOS Interface 

g g01 01
g g10 10
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ASEP
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Hydrodynamic limit

• Coarse-grain space and rescale k = x/a, t → t/a, with lattice
spacing a→ 0

• Particle conservation, law of large numbers, local stationarity

=⇒ Inviscid Burgers equation

∂

∂t
ρ(x , t) +

∂

∂x
j(x , t) =

∂

∂t
ρ(x , t) + j ′(ρ(x , t))

∂

∂x
ρ(x , t) = 0

with stationary current-density relation j(ρ) and characteristic
velocity j ′(ρ) = f (1− 2ρ)

• Kardar-Parisi-Zhang equation for ρ(x , t) = ∂xh(x , t)

• f = 0: Diffusive scaling t → t/a2 =⇒ Diffusion equation
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Fluctuations: Dynamical structure function

S(p, t) :=
∑

` e
−2πip`/L

(
〈 n`(t)n0(0) 〉 − ρ2

)
• Zero bias g10 = g01 (symmetric simple exclusion process):

S(p, t) ∝ e−Dp2t

Collective diffusion coefficient D = (g10 + g01)/2 (for SSEP)

Diffusive universality class with dynamical exponent z = 2

• Non-zero bias g10 6= g01 (ASEP):

S(p, t) ∝ e−ivpt f̂PS(λp3/2t)

f̂PS : FT of universal Prähofer-Spohn scaling function, collective
velocity v = j ′(ρ), scale factor λ =

√
2|j ′′(ρ)| [Prähofer, Spohn (2004)]

KPZ universality class with dynamical exponent z = 3/2
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(2) M conservation laws: Multi-lane ASEP

• Interacting multi-lane ASEPs with conserved densities ρα

• No jumps between lanes, but rates depend on neighbouring lane

Example: Coupled two-lane TASEP

Lane 2

r (2)
2

r (0)
1
r (1)

1

Lane1

r1(k) = b1 + γ
2

(
n

(2)
k + n

(2)
k+1

)
, r2(k) = b2 + γ

2

(
n

(1)
k + n

(1)
k+1

)
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Stationary state

Theorem (Popkov, Salerno (2004))

Fix particle numbers on torus of L sites. Invariant measure is
uniform for any b, γ.

=⇒ Bernoulli product measures with stationary currents:

j1 = ρ1(1− ρ1)(b1 + γρ2)

j2 = ρ2(1− ρ2)(b2 + γρ1)

• Generalizations: M lanes, other interactions within the lanes,
partial or no exclusion, . . .

=⇒ Playground for generic current-density relations.
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3. Coupled Burgers equations

(1) Nonlinear fluctuating hydrodynamics

• Coarse-grain space and rescale k = x/a, t → t/a, with lattice
spacing a→ 0 (Eulerian scaling)

• Conservation laws, law of large numbers, local stationarity

=⇒ Hyperbolic system of conservation laws

∂

∂t
~ρ(x , t) + J̄

∂

∂x
~ρ(x , t) = 0

with current Jacobian J̄(x , t) = J(~ρ(x , t))

• Expand around stationary solution ρλ(x , t) = ρλ + uλ(x , t)
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Linearized conservation law (first order expansion in φα)

∂

∂t
~u(x , t) + J̄

∂

∂x
~u(x , t) = 0

with constant J̄(~ρ).

• Transform to normal modes ~φ = R~u where RJR−1 = diag(vα)
for J ≡ J(~ρ) and R normalized such that RKRT = 1

=⇒ Normal modes: ∂tφ
α = −∂xvαφα

• Solution: Travelling waves φα(x , t) = φα0 (x − vαt) with initial
data φα(x , 0) = φα0 (x)

=⇒ vα = velocity of fluctuation field α



1. Particle systems 2. Multilane exclusion processes 3. Burgers equations 4. Results 5. Summary and Outlook

Nonlinear fluctuating hydrodynamics [Spohn (2014)]

• Second order nonlinearity + phenomenological diffusion + noise:

=⇒ Coupled noisy Burgers equations

∂tφ
α = −∂x

(
vαφ

α + 〈~φ,Gα~φ〉 − ∂x(D~φ)α + ξα
)

Mode coupling matrices Gα = 1
2

∑
λ Rαλ(R−1)THλR−1

determined by the current Hessians Hλ with Hλ
αβ = ∂2

∂ρα∂ρβ
jλ

=⇒ Fluctuations of coarse-grained fluctuation fields

• Equivalent to coupled 1-d KPZ equations with φα = ∂xh
α
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Mode-coupling theory [Spohn (2014)]

• Consider strictly hyperbolic case (non-degenerate J)

=⇒ Off-diagonal Sαβ as well as products SααSββ decay quickly

=⇒ Mode coupling equation for Sα ≡ Sαα

∂tSα(x , t) = D̂αSα(x , t) +

∫ t

0
ds

∫ ∞
−∞

dy Sα(x − y , t − s)Mα(y , s)

- Linear diffusion operator D̂α = −vα∂x + Dα∂
2
x

- Nonlinear memory kernel Mα(y , s) = 2∂2
y

∑
β

(
Gα
ββSβ(y , s)

)2
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Fibonacci universality classes [Popkov, Schadschneider, Schmidt, GMS, PNAS (2015)]

• Exact scaling solution of mode-coupling equations

(1) All Gα
ββ = 0: zα = 2, Sα = Gaussian

=⇒ Diffusive scaling

(2) Gα
αα 6= 0: zα = 3/2, Sα = Prähofer-Spohn or modified KPZ

=⇒ KPZ or modified KPZ scaling

(3) Gα
αα = 0 Gα

ββ 6= 0: zα = 3
2 ,

5
3 ,

8
5 ,

13
8 , . . . (1 +

√
5)/2, Sα = Lévy

=⇒ Lévy scaling

=⇒ Fibonacci universality classes (Kepler ratios zα = Fα+1/Fα)
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Applicability of the theory

• Universal tool for translation invariant 1-d systems when

− short-range interactions, local conservation laws and currents

− slow variables relevant for long-time behavior = long-wavelength
Fourier components of the conserved densities

=⇒ Applicable to Hamiltonian dynamics, anharmonic chains,
stochastic lattice gases, ...

• Quadratic non-linear terms leading, cubic terms only marginally
relevant (and only if quadratic terms are absent), quartic and
higher order irrelevant in RG sense.

• Coarse-grained evolution equation fully determined by
macroscopic diffusion constants, stationary current and static
compressibility!
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4. Theoretical and simulation results

(1) Coupled ASEP’s:

Universality classes for two conservation laws
   
[Popkov, Schmidt, GMS (2015); Spohn, Stoltz (2015)]

Universality classes with 
dynamical exponents zα

Universal scaling functions with 
dynamical exponents zα

Remember: Difference between Gauss and KPZ verified experimentally 
(unambiguous)   [Takeuchi & Sano, PRL (2010)]
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Three lane model 

Golden mean mode and one-parameter fit with maximally asymmetric 
ϕ�Levy:

Data collapse:

Fixed t=3000

[Popkov, Schadschneider, Schmidt, GMS, PNAS 112 12645 (2015)]
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Three lane model (cont’) 

New Fibonacci universality class: z= 3/2, 5/3, 8/5

Mode 1: 8/5-Fibonacci
  
Mode 2:  5/3-Fibonacci,  

Mode 3:  3/2-KPZ.

8/5-Fibonacci mode at t=1000:

Fit with max. asym. 8/5�Levy 
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(2) Nagel-Schreckenberg model:

• Cellular automaton for vehicular traffic Nagel and Schreckenberg (1992)

(i) Acceleration: v ′n = min (vn + 1, vmax)
(ii) Breaking: v ′n = min (dn, vn)
(iii) Randomization: v ′n = min (vn − 1, 0) with probability p
(iv) Movement: x ′n = xn + v ′n

• Basis for more refined traffic flow simulations

=⇒ KPZ universality class
de Gier, Schadschneider, Schmidt, GMS, PRE 100,

052111 (2019)
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(3) Coupled two-lane random walks: [GMS (2018)]

Lane 2

r (2)
2

r (0)
1
r (1)

1

Lane1

r1(k) = b1 + γ
2

(
n

(2)
k + n

(2)
k+1

)
, r2(k) = b2 + γ

2

(
n

(1)
k + n

(1)
k+1

)
• Drop exclusion: Invariant product measure

j1 = ρ1(b1 + γρ2)

j2 = ρ2(b2 + γρ1)

• b1 = b2 =⇒ Mode coupling coefficients for modified KPZ class
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(4) DAP conditioned on high hopping activity: [Karevski, GMS (2022)]

• Pair deposition and annihilation: Nonconservative dynamics

- Symmetric nearest neighbor jumps: w
- Instantaneous on-site pair annihilation
- Nearest neighbor pair deposition: µ
- Equivalent to exclusion process with
A0↔ 0A : w + µ, AA↔ 00 : 2w + µ, 00↔ AA : µ

• Conditioning on atypical jump activity: Realized by DAP with
long-range interaction cf. Popkov, GMS, Simon (2010) for conservative dynamics

• Exact solution: Conformally invariant phase transition line

• Ballistic scaling: z = 1, S = t−1×Cauchy distribution

- Observation: z = 1/1 = F2/F1 < 3/2
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5. Main results and open problems

Main results:

• Fibonacci family of dynamical universality classes from nonlinear
fluctuating hydrodynamics and mode coupling theory

- Dynamical exponents zα = Fα+1/Fα:
z1 = 1, z2 = 2, z3 = 3/2, z4 = 5/3, z5 = 8/5, . . . , z∞ = ϕ

- Explicit scaling functions:
z1 = 1: Cauchy, z2 = 2: Gaussian, z3 = 3/2: PS, ?, Lévy,
α > 3: Lévy

- M local conservation laws and local interactions: Consecutive
dynamical exponents zα, zα+1, . . . zα+n with α ∈ {2, 3}, 0 ≤ n < M

• Universality
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Open problems:

• Fantastic agreement between theoretical scaling functions and
simulation data: Lévy-scaling form obtained from MCT exact?
− Exactly solvable models?
− Rigorous results?

• Modified KPZ universality class?

• z < 3/2: Nonlocal interactions?

Also open:

• Other universality classes

• Universal finite-time effects

• Complex mode velocity and onset of phase separation


	1. Particle systems
	2. Multilane exclusion processes
	3. Burgers equations
	4. Results
	5. Summary and Outlook

