

Dynamical universality classes: Results and open questions

Gunter M. Schütz

Instituto Superior Técnico, University of Lisbon

1. One-dimensional particle systems with short-range interactions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 2. Nonlinear fluctuating hydrodynamics
- 3. Fibonacci universality classes
- 4. Numerical and exact results
- 5. Main results and open problems

1. Particle systems

4. Results 00000 5. Summary and Outlook

1. One-dimensional particle systems with short-range interactions

- Unusual static properties \neq mean field, higher dimensions
- Anomalous transport in nonequilibrium steady states
- Phase separation [Lahiri, Barma, Ramaswamy (2000)]
- Non-diffusive scale-invariant critical dynamics
- Superdiffusive spatio-temporal scaling [KPZ (1985), Dhar (1987), Gwa and Spohn (1992)]
- Dynamical universality classes with dynamical exponent z < 2
- Nongaussian universal scaling functions

 Particle systems 	2. Multilane exclusion processes	3. Burgers equations 00000	4. Results 00000	5. Summary and Outlook 0	
Some constic model systems with local conservation laws					

Some generic model systems with local conservation laws

- Anharmonic chains (Conserved energy, momentum, ...)
- Lattice gas models with M conserved species of particles $\implies M$ stationary currents as functions of conserved densities $n_k^{\alpha}(t)$

Goal: Universality classes for dynamical structure functions Stationary correlations of fluctuation fields $u_k^{\alpha}(t) = n_k^{\alpha}(t) - \rho^{\alpha}$:

$$S_k^{lphaeta}(t) = \langle \, n_k^lpha(t) n_0^eta(0) \,
angle -
ho^lpha
ho^eta = \langle \, u_k^lpha(t) u_0^eta(0) \,
angle$$

- Static compressibility matrix $\mathcal{K}^{lphaeta} = \sum_k S^{lphaeta}_k(t)$
- Current Jacobian $J^{lphaeta}$ from $\sum_k k \dot{S}^{lphaeta}_k(t)$

- Large $k, t \Longrightarrow$ Dynamical exponent, scaling functions

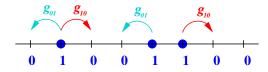
 Particle systems 	2. Multilane exclusion processes	3. Burgers equations 00000	4. Results 00000	5. Summary and Outlook O

2. Multilane exclusion processes

(1) One conservation law:

Asymmetric simple exclusion process (ASEP) [MacDonald, Gibbs, Pipkin (1968); Spitzer (1970)]

- Occupation numbers $n_\ell \in \{0,1\}$ for $\ell \in \{1,\ldots,L\}$
- Configuration $n = \{n_1, \dots, n_L\} \in \{0, 1\}^L$
- Markovian jumps with rates g_{10}, g_{01}



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Particle systems 	 Multilane exclusion processes 000000 	3. Burgers equations	5. Summary and Outlook O

• Generator (periodic boundary conditions)

$$\mathcal{L}f(n) = \sum_{\ell=1}^{L} \left[g_{10} n_{\ell} (1 - n_{\ell+1}) + g_{01} n_{\ell+1} (1 - n_{\ell}) \right] \left[f(n^{\ell,\ell+1}) - f(n) \right]$$

 $\Longrightarrow \mathcal{L}n_\ell = j_{\ell-1} - j_\ell$ with instantaneous current

$$j_{\ell} = g_{10}n_{\ell}(1-n_{\ell+1}) - g_{01}n_{\ell+1}(1-n_{\ell})$$

- Fix particle number N: Uniform invariant measure
- \implies Bernoulli product measures with density $ho \in [0,1]$
- \implies Stationary current $j := \langle j_{\ell} \rangle = f \rho (1 \rho)$

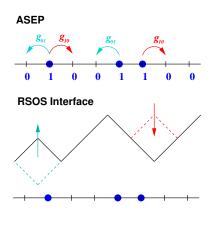
with driving strength $f = g_{10} - g_{01}$

 \implies Static compressibility $\kappa := \frac{1}{L} \langle (N - \rho L)^2 \rangle = \rho (1 - \rho)$

 Particle systems 	 Multilane exclusion processes ○●○○○○ 	 Burgers equations 00000 	5. Summary and Outlook O

From the ASEP to a RSOS interface

- Map occupation number to slope $s_{\ell} = 1 - 2n_{\ell}$ on dual lattice \Longrightarrow
- Particle jumps map to interface growth $\implies j =$ stationary growth velocity
- Time-integrated particle current across bond $(\ell, \ell+1)$ maps to interface height h_{ℓ}



 Particle systems 	2. Multilane exclusion processes 00●000	3. Burgers equations	5. Summary and Outlook 0

Hydrodynamic limit

- Coarse-grain space and rescale $k = x/a, t \rightarrow t/a$, with lattice spacing $a \rightarrow 0$
- Particle conservation, law of large numbers, local stationarity
- \implies Inviscid Burgers equation

$$\frac{\partial}{\partial t}\rho(x,t) + \frac{\partial}{\partial x}j(x,t) = \frac{\partial}{\partial t}\rho(x,t) + j'(\rho(x,t))\frac{\partial}{\partial x}\rho(x,t) = 0$$

with stationary current-density relation $j(\rho)$ and characteristic velocity $j'(\rho) = f(1-2\rho)$

- Kardar-Parisi-Zhang equation for $\rho(x, t) = \partial_x h(x, t)$
- f = 0: Diffusive scaling $t \to t/a^2 \Longrightarrow$ Diffusion equation

 Particle systems 	 Burgers equations 00000 	5. Summary and Outlook 0

Fluctuations: Dynamical structure function

$$\mathcal{S}(p,t) := \sum_{\ell} \mathrm{e}^{-2\pi i p \ell / L} \left(\langle n_{\ell}(t) n_0(0) \rangle -
ho^2
ight)$$

• Zero bias $g_{10} = g_{01}$ (symmetric simple exclusion process): $S(p,t) \propto e^{-Dp^2t}$

Collective diffusion coefficient $D = (g_{10} + g_{01})/2$ (for SSEP) Diffusive universality class with dynamical exponent z = 2

• Non-zero bias $g_{10} \neq g_{01}$ (ASEP):

 $S(p,t) \propto \mathrm{e}^{-i\nu pt} \hat{f}_{PS}(\lambda p^{3/2}t)$

 \hat{f}_{PS} : FT of universal Prähofer-Spohn scaling function, collective velocity $v = j'(\rho)$, scale factor $\lambda = \sqrt{2}|j''(\rho)|$ [Prähofer, Spohn (2004)]

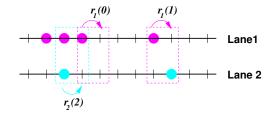
KPZ universality class with dynamical exponent z = 3/2

1. Particle systems	2. Multilane exclusion processes	3. Burgers equations	4. Results	5. Summary and Outlook
0	0000●0		00000	0

(2) M conservation laws: Multi-lane ASEP

- Interacting multi-lane ASEPs with conserved densities ho_{lpha}
- No jumps between lanes, but rates depend on neighbouring lane

Example: Coupled two-lane TASEP



$$r_1(k) = b_1 + \frac{\gamma}{2} \left(n_k^{(2)} + n_{k+1}^{(2)} \right), \quad r_2(k) = b_2 + \frac{\gamma}{2} \left(n_k^{(1)} + n_{k+1}^{(1)} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1. Particle systems 0	2. Multilane exclusion processes 00000●	3. Burgers equations 00000	4. Results 00000	5. Summary and Outlook O

Stationary state

Theorem (Popkov, Salerno (2004))

Fix particle numbers on torus of L sites. Invariant measure is uniform for any b, γ .

 \implies Bernoulli product measures with stationary currents:

$$\begin{aligned} j_1 &= \rho_1 (1 - \rho_1) (b_1 + \gamma \rho_2) \\ j_2 &= \rho_2 (1 - \rho_2) (b_2 + \gamma \rho_1) \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Generalizations: *M* lanes, other interactions within the lanes, partial or no exclusion, ...

 \implies Playground for generic current-density relations.

 Particle systems 	3. Burgers equations 00000	5. Summary and Outlook O

3. Coupled Burgers equations

(1) Nonlinear fluctuating hydrodynamics

• Coarse-grain space and rescale k = x/a, $t \to t/a$, with lattice spacing $a \to 0$ (Eulerian scaling)

• Conservation laws, law of large numbers, local stationarity

 \Longrightarrow Hyperbolic system of conservation laws

$$\frac{\partial}{\partial t}\vec{\rho}(x,t)+\bar{\mathsf{J}}\frac{\partial}{\partial x}\vec{\rho}(x,t)=0$$

with current Jacobian $\overline{J}(x,t) = J(\vec{\rho}(x,t))$

• Expand around stationary solution $ho^\lambda(x,t)=
ho_\lambda+u^\lambda(x,t)$

 Particle systems 	 Burgers equations ●0000 	5. Summary and Outlook 0

Linearized conservation law (first order expansion in ϕ^{α})

$$\frac{\partial}{\partial t}\vec{u}(x,t) + \bar{\mathsf{J}}\frac{\partial}{\partial x}\vec{u}(x,t) = 0$$

with <u>constant</u> $\overline{J}(\vec{\rho})$.

• Transform to normal modes $\vec{\phi} = R\vec{u}$ where $RJR^{-1} = \operatorname{diag}(v_{\alpha})$ for $J \equiv J(\vec{\rho})$ and R normalized such that $RKR^{T} = \mathbb{1}$

 \implies Normal modes: $\partial_t \phi^{\alpha} = -\partial_x v_{\alpha} \phi^{\alpha}$

• Solution: Travelling waves $\phi^{\alpha}(x,t) = \phi_0^{\alpha}(x - v_{\alpha}t)$ with initial data $\phi^{\alpha}(x,0) = \phi_0^{\alpha}(x)$

 \implies v_{α} = velocity of fluctuation field α

2. Multilane exclusion processes	0 1	5. Summary and Outlook O

Nonlinear fluctuating hydrodynamics [Spohn (2014)]

• Second order nonlinearity + phenomenological diffusion + noise:

 \Longrightarrow Coupled noisy Burgers equations

$$\partial_t \phi^{\alpha} = -\partial_x \left(\mathbf{v}_{\alpha} \phi^{\alpha} + \langle \vec{\phi}, \mathbf{G}^{\alpha} \vec{\phi} \rangle - \partial_x (\mathsf{D} \vec{\phi})^{\alpha} + \xi^{\alpha} \right)$$

Mode coupling matrices $G^{\alpha} = \frac{1}{2} \sum_{\lambda} R_{\alpha\lambda} (R^{-1})^T H^{\lambda} R^{-1}$ determined by the current Hessians H^{λ} with $H^{\lambda}_{\alpha\beta} = \frac{\partial^2}{\partial \rho^{\alpha} \partial \rho^{\beta}} j^{\lambda}$

 \Longrightarrow Fluctuations of coarse-grained fluctuation fields

• Equivalent to coupled 1-d KPZ equations with $\phi^{lpha}=\partial_{x}h^{lpha}$

 Particle systems 	2. Multilane exclusion processes	 Burgers equations 00●00 	

Mode-coupling theory [Spohn (2014)]

- Consider strictly hyperbolic case (non-degenerate J)
- \implies Off-diagonal $S^{lphaeta}$ as well as products $S^{lphalpha}S^{etaeta}$ decay quickly
- \Longrightarrow Mode coupling equation for $S_lpha\equiv S^{lphalpha}$

$$\partial_t S_{\alpha}(x,t) = \hat{D}_{\alpha} S_{\alpha}(x,t) + \int_0^t \mathrm{d}s \int_{-\infty}^\infty \mathrm{d}y \, S_{\alpha}(x-y,t-s) M_{\alpha}(y,s)$$

- Linear diffusion operator $\hat{D}_{lpha}=u_{lpha}\partial_{x}+D_{lpha}\partial_{x}^{2}$
- Nonlinear memory kernel $M_{\alpha}(y,s) = 2\partial_y^2 \sum_{\beta} \left(G^{\alpha}_{\beta\beta} S_{\beta}(y,s) \right)^2$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Particle systems 	2. Multilane exclusion processes	 Burgers equations 000●0 	5. Summary and Outlook O

Fibonacci universality classes [Popkov, Schadschneider, Schmidt, GMS, PNAS (2015)]

• Exact scaling solution of mode-coupling equations

(1) All $G^{\alpha}_{\beta\beta} = 0$: $z_{\alpha} = 2$, $S_{\alpha} =$ Gaussian \implies Diffusive scaling

(2) G^α_{αα} ≠ 0: z_α = 3/2, S_α = Prähofer-Spohn or modified KPZ ⇒ KPZ or modified KPZ scaling
(3) G^α_{αα} = 0 G^α_{ββ} ≠ 0: z_α = ³/₂, ⁵/₃, ⁸/₅, ¹³/₈, ... (1 + √5)/2, S_α = Lévy ⇒ Lévy scaling

 \implies Fibonacci universality classes (Kepler ratios $z_{\alpha} = F_{\alpha+1}/F_{\alpha}$)

・ロト・日本 キャー キャー キャックへの

 Particle systems 	2. Multilane exclusion processes	 Burgers equations 0000● 	5. Summary and Outlook 0

Applicability of the theory

- Universal tool for translation invariant 1-d systems when
- short-range interactions, local conservation laws and currents

- slow variables relevant for long-time behavior = long-wavelength Fourier components of the conserved densities

 \Longrightarrow Applicable to Hamiltonian dynamics, anharmonic chains, stochastic lattice gases, \ldots

• Quadratic non-linear terms leading, cubic terms only marginally relevant (and only if quadratic terms are absent), quartic and higher order irrelevant in RG sense.

• Coarse-grained evolution equation fully determined by macroscopic diffusion constants, stationary current and static compressibility!

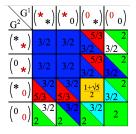
 Particle systems 	2. Multilane exclusion processes	3. Burgers equations 00000	4. Results 00000	5. Summary and Outlook 0

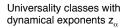
4. Theoretical and simulation results

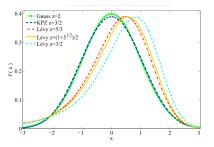
(1) Coupled ASEP's:

Universality classes for two conservation laws

[Popkov, Schmidt, GMS (2015); Spohn, Stoltz (2015)]





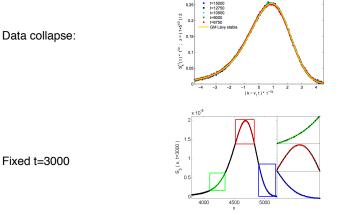


Universal scaling functions with dynamical exponents \mathbf{z}_{α}

 Particle systems 	2. Multilane exclusion processes	 Burgers equations 00000 	5. Summary and Outlook O

Three lane model

Golden mean mode and one-parameter fit with maximally asymmetric $\phi\text{-Levy:}$



[Popkov, Schadschneider, Schmidt, GMS, PNAS 112 12645 (2015)]

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

2. Multilane exclusion processes	3. Burgers equations	5. Summary and Outlook O

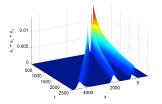
Three lane model (cont')

New Fibonacci universality class: z= 3/2, 5/3, 8/5

Mode 1: 8/5-Fibonacci

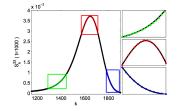
Mode 2: 5/3-Fibonacci,

Mode 3: 3/2-KPZ.



8/5-Fibonacci mode at t=1000:

Fit with max. asym. 8/5-Levy



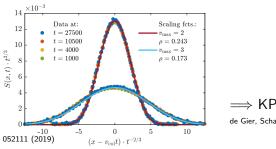
(2) Nagel-Schreckenberg model:

• Cellular automaton for vehicular traffic Nagel and Schreckenberg (1992)

(i) Acceleration:
$$v'_n = \min(v_n + 1, v_{max})$$

(ii) Breaking: $v'_n = \min(d_n, v_n)$
(iii) Randomization: $v'_n = \min(v_n - 1, 0)$ with probability p
(iv) Movement: $x'_n = x_n + v'_n$

• Basis for more refined traffic flow simulations

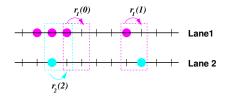


\implies KPZ universality class de Gier, Schadschneider, Schmidt, GMS, PRE 100,

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─ 臣 ─

 Particle systems O 	2. Multilane exclusion processes	 Burgers equations 00000 	4. Results 000●0	5. Summary and Outlook 0

(3) Coupled two-lane random walks: [GMS (2018)]



$$r_1(k) = b_1 + \frac{\gamma}{2} \left(n_k^{(2)} + n_{k+1}^{(2)} \right), \quad r_2(k) = b_2 + \frac{\gamma}{2} \left(n_k^{(1)} + n_{k+1}^{(1)} \right)$$

• Drop exclusion: Invariant product measure

$$j_1 = \rho_1(b_1 + \gamma \rho_2)$$
$$j_2 = \rho_2(b_2 + \gamma \rho_1)$$

• $b_1 = b_2 \implies$ Mode coupling coefficients for modified KPZ class

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Particle systems 	2. Multilane exclusion processes	3. Burgers equations 00000	5. Summary and Outlook O

(4) DAP conditioned on high hopping activity: [Karevski, GMS (2022)]

- Pair deposition and annihilation: Nonconservative dynamics
- Symmetric nearest neighbor jumps: w
- Instantaneous on-site pair annihilation
- Nearest neighbor pair deposition: μ
- Equivalent to exclusion process with

 $A0 \leftrightarrow 0A: w + \mu, \quad AA \leftrightarrow 00: 2w + \mu, \quad 00 \leftrightarrow AA: \mu$

 \bullet Conditioning on atypical jump activity: Realized by DAP with long-range interaction $_{\rm cf.\ Popkov,\ GMS,\ Simon\ (2010)\ for\ conservative\ dynamics}$

- Exact solution: Conformally invariant phase transition line
- Ballistic scaling: z = 1, $S = t^{-1} \times Cauchy$ distribution
- Observation: $z = 1/1 = F_2/F_1 < 3/2$

 Particle systems 	2. Multilane exclusion processes	3. Burgers equations	4. Results 00000	5. Summary and Outlook 0

5. Main results and open problems

Main results:

- Fibonacci family of dynamical universality classes from nonlinear fluctuating hydrodynamics and mode coupling theory
- Dynamical exponents $z_{\alpha} = F_{\alpha+1}/F_{\alpha}$: $z_1 = 1, z_2 = 2, z_3 = 3/2, z_4 = 5/3, z_5 = 8/5, \dots, z_{\infty} = \varphi$
- Explicit scaling functions: $z_1 = 1$: Cauchy, $z_2 = 2$: Gaussian, $z_3 = 3/2$: PS, ?, Lévy, $\alpha > 3$: Lévy
- *M* local conservation laws and local interactions: Consecutive dynamical exponents $z_{\alpha}, z_{\alpha+1}, \dots z_{\alpha+n}$ with $\alpha \in \{2, 3\}$, $0 \le n < M$
- Universality

Open problems:

- Fantastic agreement between theoretical scaling functions and simulation data: Lévy-scaling form obtained from MCT exact?
- Exactly solvable models?
- Rigorous results?
- Modified KPZ universality class?
- z < 3/2: Nonlocal interactions?

Also open:

- Other universality classes
- Universal finite-time effects
- Complex mode velocity and onset of phase separation

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()