Arctic Boundaries in Ice Models

Amol Aggarwal

Columbia University / Clay Mathematics Instiute
April 14, 2021 / Berkeley Probability Seminar

Six-Vertex Ensembles and Ice Models

Let $\Lambda \subset \mathbb{Z}^{2}$ be finite, and assign each vertex in Λ one of the following six edge configurations

- Domain-wall boundary conditions arise when $\Lambda=[1, N] \times[1, N]$, and arrows enter from the left boundary and exit through the top.
- Ice model: Assignment is chosen uniformly at random

Six-vertex ensembles are collections of non-crossing directed (up-right) paths.

Arctic Boundary of Six-Vertex Ensembles

- Six-vertex ensemble \mathcal{E} on Λ
- A vertex $v \in \Lambda$ is in the frozen region of \mathcal{E} if one of the following holds
- Every vertex northwest of v is packed in \mathcal{E}
- Every vertex northeast of v is vertical in \mathcal{E}
- Every vertex southwest of v is horizontal in \mathcal{E}
- Every vertex southeast of v is empty in \mathcal{E}
- The boundary of the frozen region is called the arctic boundary

The bottommost path of a domain-wall six-vertex ensemble traces the southeast boundary of the frozen region

Limiting Boundary Parameterization

Define the portion of an ellipse

$$
\mathfrak{A}_{\mathrm{SE}}=\left\{(x, y) \in \mathbb{R}^{2}:(2 x-1)^{2}+(2 y-1)^{2}-4(1-x) y=1\right\} \cap\left(\left[\frac{1}{2}, 1\right] \times\left[0, \frac{1}{2}\right]\right)
$$

and its reflections

$$
\begin{aligned}
& \mathfrak{A}_{\mathrm{SW}}=\left\{(x, y) \in \mathbb{R}^{2}:(1-x, y) \in \mathfrak{A}_{\mathrm{SE}}\right\} ; \quad \mathfrak{A}_{\mathrm{NE}}=\left\{(x, y) \in \mathbb{R}^{2}:(x, 1-y) \in \mathfrak{A}_{\mathrm{SE}}\right\} ; \\
& \mathfrak{A}_{\mathrm{NW}}=\left\{(x, y) \in \mathbb{R}^{2}:(1-x, 1-y) \in \mathfrak{A}_{\mathrm{SE}}\right\} .
\end{aligned}
$$

- Let $\mathfrak{A}=\mathfrak{A}_{\mathrm{SE}} \cup \mathfrak{A}_{\mathrm{SW}} \cup \mathfrak{A}_{\mathrm{NE}} \cup \mathfrak{A}_{\mathrm{NW}}$.
- Then \mathfrak{A} is not smooth at its four tangency points with $[0,1] \times[0,1]$.
- Different from what one observers in dimers

Arctic Boundaries for Ice Model

- Let $N \in \mathbb{Z}_{>0}$ be a large integer.
- Let \mathcal{E} denote a sample of the ice model on $\Lambda=[1, N] \times[1, N]$
- Let $(i, j) \in[1, N] \times[1, N]$ be an integer pair, and set $z=\left(\frac{i}{N}, \frac{j}{N}\right) \in[0,1] \times[0,1]$.
- Fix a real number $\varepsilon>0$, and assume that $\operatorname{dist}(z, \mathfrak{A})>\varepsilon$.

Theorem (A., 2018)

There exists $\delta=\delta(\varepsilon)>0$ such that, with probability at least $1-e^{-\delta N},(i, j)$ is in the frozen region of \boldsymbol{M} if and only if z is outside of \mathfrak{A}.

- Eloranta (1999), Zinn-Justin (2000), Allison-Reshetikhin (2005), Sylijuåsen-Zvonarev (2004): Predicted existence of arctic boundary following its realization for domino tilings by Jockush-Propp-Shor (1995)
- Colomo-Pronko (2010): Predicted above explicit form of arctic boundary
- Colomo-Sportiello (2016): Reproduced prediction through tangent method
- Di Francesco-Guitter (2018), Debin-Ruelle (2018), Corteel-Keating-Nicoletti (2019), . . . Predicts arctic boundaries of other statistical mechanical models

Trajectory of the Bottom Path of the Ice Model

- Let \mathcal{E} denote a sample of the ice model on $\Lambda=[1, N] \times[1, N]$.
- Denote the non-crossing paths in \mathcal{E}, from bottom to top, by $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{N}$.
- Define $I_{1}=\left[0, \frac{1}{2}\right] \times\{0\}$ and $I_{2}=\{1\} \times\left[\frac{1}{2}, 1\right]$, and let $\mathfrak{P}=I_{1} \cup \mathfrak{A}_{\mathrm{SE}} \cup I_{2}$.

By symmetry, we must show the following theorem.

Theorem

For any $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ such that dist $\left(N^{-1} \boldsymbol{p}_{1}, \mathfrak{P}\right)<\varepsilon$ holds with probability at least $1-e^{-\delta N}$.

- Proof based on a justification of the (geometric) tangent method, a general heuristic introduced by Colomo-Sportiello (2016) for deriving arctic boundaries of statistical mechanical models
- Proof is not very model-dependent and also should apply to other families of statistical mechanical systems

Refined Partition Function

- Domain-wall six-vertex ensemble \mathcal{E} with paths $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{N}$
- Let $\Theta=\Theta(\mathcal{E}) \in[1, N]$ be such that \mathbf{p}_{1} exits the bottom row at $(\Theta, 1)$

- The partition function Z_{N} counts domain-wall six-vertex ensembles \mathcal{E}.
- The refined partition function $Z_{N}(K)$ counts those with $\Theta(\mathcal{E})=K$.
- Define the K-refined correlation function $H_{N}(K)$ by

$$
H_{N}(K)=\mathbb{P}[\Theta(\mathcal{E})=K]=\frac{Z_{N}(K)}{Z_{N}}
$$

Refined Enumeration

Required integrable input: Asymptotics for refined partition function

- Zeilberger (1996): $H_{N}(K)=\binom{N+K-2}{N-1}\binom{2 N-K-1}{N-1}\binom{3 N-2}{N-1}^{-1}$
- Thus, for fixed $\kappa>0$, we have for large N that

$$
H_{N}(\kappa N)=\exp (-(\mathfrak{h}(\kappa)+o(1)) N)
$$

for an explicit $\mathfrak{h}(\kappa)$ given by

$$
\begin{aligned}
\mathfrak{h}(\kappa)= & (1+\kappa) \log (1+\kappa)+(2-\kappa) \log (2-\kappa)-\kappa \log \kappa \\
& -(1-\kappa) \log (1-\kappa)-3 \log 3+2 \log 2
\end{aligned}
$$

- Tangency point: $\mathfrak{h}(\kappa)$ minimized at $\kappa=\frac{1}{2}$, so we likely have $\Theta \approx \frac{N}{2}$
- If the arctic boundary exists, it should meet the bottom boundary of $[0,1] \times[0,1]$ at $\left(\frac{N}{2}, 0\right)$
- Colomo-Sportiello (2016): Use the function \mathfrak{h} to predict a parameterization for the limiting trajectory of \mathbf{p}_{1} (entire arctic boundary)

Augmented Domains and Ensembles

For $\Psi \in \mathbb{Z}_{\geq 0}$, a Ψ-augmented ensemble is a domain-wall six-vertex ensemble on $[1, N] \times[1, N]$, with an additional path entering at $(0,-\Psi)$ and exiting at $(N+1, N)$.

- Denote the paths in this ensemble, from bottom to top, by $\mathbf{p}_{1}^{\text {aug }}, \mathbf{p}_{2}^{\text {aug }}, \ldots, \mathbf{p}_{N+1}^{\text {aug }}$.
- Let Θ denote be such that $\mathbf{p}_{1}^{\text {aug }}$ exits the x-axis at $(\Theta, 0)$

Tangency Assumption

- Fix $\psi>0$, and let $\Psi \approx \psi N$
- Select a Ψ-augmented ensemble \mathcal{E}_{Ψ} uniformly at random
- With high probability, we will have $\Theta=\Theta\left(\mathcal{E}_{\Psi}\right) \approx \theta N$, for some $\theta=\theta(\psi)>0$

Belief: As N tends to ∞, $\mathbf{p}_{1}^{\text {aug }}$ first approximates a line ℓ_{ψ} tangent to the arctic boundary of the domain-wall ice model and then merges with it.

Determining the Arctic Boundary

- If we could determine $\theta=\theta(\psi)$ for each $\psi>0$, then we would determine ℓ_{ψ}.
- Convex envelope obtained by varying over ψ gives $\mathfrak{A}_{\text {SE }}$.

- The number of augmented ensembles \mathcal{E}_{Ψ} with $\Theta\left(\mathcal{E}_{\Psi}\right)=\Phi \approx \varphi N$ is proportional to

$$
\binom{\Phi+\Psi-1}{\Psi} H_{N+1}(\Phi)=\exp \left(\left(g_{\psi}(\varphi)+o(1)\right) N\right)
$$

where $g_{\psi}(\varphi)=(\varphi+\psi) \log (\varphi+\psi)-\varphi \log \varphi-\psi \log \psi-\mathfrak{h}(\varphi)$.

- The maximizer $\varphi=\theta$ of $g_{\psi}(\varphi)$ determines $\theta=\theta(\psi)>0$.

Tangent Method Heuristic

The tangent method (Colomo-Sportiello, 2016)

- Using exact asymptotics for $H_{N}(K)$, find explicit $\mathfrak{h}: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ such that

$$
H_{N}(\kappa N)=\exp (-(\mathfrak{h}(\kappa)+o(1)) N)
$$

- Define $g_{\psi}(\varphi)=(\varphi+\psi) \log (\varphi+\psi)-\varphi \log \varphi-\psi \log \psi-\mathfrak{h}(\varphi)$
- Let $\theta=\theta(\psi)$ denote the maximizer of g_{ψ}
- For each ψ, let ℓ_{ψ} denote the line through $(0,-\psi)$ and $(0, \theta)$
- Then the arctic boundary is the convex envelope formed by the ℓ_{ψ} after varying over ψ, which is $\mathfrak{A}_{\text {SE }}$

Issues

- Must justify the tangency assumption
- It is not transparent that arctic boundary exists (namely, that \mathbf{p}_{1} in the original model or $\mathbf{p}_{2}^{\text {aug }}$ in the augmented model have limiting trajectories)
- The introduction of the new path $\mathbf{p}_{1}^{\text {aug }}$ in the augmented model might change the trajectory of \mathbf{p}_{1} in the original model

Notation

- Let \mathcal{E} and \mathcal{E}_{Ψ} be a domain-wall six-vertex ensemble and a Ψ-augmented ensemble, respectively, both chosen uniformly at random.
- Let $\mathfrak{L}=\mathfrak{L}_{\Psi}$ be the tangent line to $\mathbf{p}_{2}^{\text {aug }}$ through $(0,-\Psi)$.
- Let $(\Omega, 0)=\mathfrak{L}_{\Psi} \cap\{y=0\}$, and let $\mathbf{p}_{1}^{\text {aug }}$ exit the x-axis at $(\Theta, 0)$.
\mathcal{E}_{Ψ}

Proof Outline

(1) Tangency: $\mathbb{P}[|\Omega-\Theta|<\varepsilon N]>1-C \exp \left(-c \varepsilon^{2} N\right)$
(2) Concentration Estimate: $\mathbb{P}[|\Theta-\theta N|<\varepsilon N]>1-C \exp \left(-c \varepsilon^{2} N\right)$
(3) Comparing \mathbf{p}_{1} and $\mathbf{p}_{2}^{\text {aug. }}$: Stochastically bound \mathbf{p}_{1} approximately above and approximately below by $\mathbf{p}_{2}^{\text {aug }}$

- Couple \mathcal{E} and \mathcal{E}_{Ψ} in two ways, such that \mathbf{p}_{1} is (weakly) below $\mathbf{p}_{2}^{\text {aug }}$ under the first and \mathbf{p}_{2} is (weakly) above $\mathbf{p}_{2}^{\text {aug }}$ under the second
(2 $\mathbb{P}\left[\operatorname{dist}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)<\varepsilon N\right]>1-C \exp \left(-c \varepsilon^{2} N\right)$ \mathcal{E}_{Ψ}

Concentration estimate follows from exact enumeration: $\mathbb{P}[\Theta=\Phi]=Z_{\Psi}^{-1}\left(\underset{\Psi}{\Phi+\Psi-\frac{1}{2}}\right) H_{N+\underline{1}}(\Phi)$,

Boundary Data

If X and Y are vertices / noncrossing paths, with X northwest of Y, we say $X \leq Y$.

- Rectangle Λ
- "Barrier paths" \mathbf{f} and \mathbf{g} with $\mathbf{f} \leq \mathbf{g}$
- "Entrance vertices" $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ with $u_{1} \geq u_{2} \geq \cdots \geq u_{m}$
- "Exit vertices" $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$, with $v_{1} \geq v_{2} \geq \cdots \geq v_{m}$
- Let $\mathfrak{E}_{\mathbf{f} ; \mathbf{g}}^{\mathrm{u} ; \mathbf{w}}$ denote set of six-vertex ensembles on Λ whose paths $\mathbf{p}_{1} \geq \mathbf{p}_{2} \geq \cdots \mathbf{p}_{m}$ satisfy $\mathbf{f} \leq \mathbf{p}_{i} \leq \mathbf{g}$, such that \mathbf{p}_{i} enters Λ through u_{i} and exits Λ through v_{i}

Monotone Couplings

- Assume boundary data ($\mathbf{f}, \mathbf{g} ; \mathbf{u}, \mathbf{v})$ and $\left(\mathbf{f}^{\prime}, \mathbf{g}^{\prime} ; \mathbf{u}^{\prime}, \mathbf{v}^{\prime}\right)$ satisfy $\mathbf{f} \geq \mathbf{f}^{\prime}, \mathbf{g} \geq \mathbf{g}^{\prime}, \mathbf{u} \geq \mathbf{u}^{\prime}, \mathbf{v} \geq \mathbf{v}^{\prime}$
- Uniformly random ensembles \mathcal{E} and \mathcal{E}^{\prime} in $\mathfrak{E}=\mathfrak{F}_{\mathbf{f} ; \mathbf{g}}^{\mathbf{u} ; \mathbf{w}}$ and $\mathfrak{E}^{\prime}=\mathfrak{E}_{\mathbf{f}^{\prime} ; \mathbf{g}^{\prime}}^{\mathbf{u}^{\prime} ; \mathbf{w}^{\prime}}$, respectively
- Paths of \mathcal{E} and \mathcal{E}^{\prime} are $\mathbf{p}_{1} \geq \mathbf{p}_{2} \geq \cdots \mathbf{p}_{m}$ and $\mathbf{p}_{1}^{\prime} \geq \mathbf{p}_{2}^{\prime} \geq \cdots \mathbf{p}_{m}^{\prime}$, respectively

Lemma

The laws of \mathcal{E} and \mathcal{E}^{\prime} can be coupled so that each $\boldsymbol{p}_{i} \geq \boldsymbol{p}_{i}^{\prime}$, almost surely.

- Allows $\mathbf{f}, \mathbf{f}^{\prime}=-\infty$ and $/$ or $\mathbf{g}, \mathbf{g}^{\prime}=\infty$
- Proof uses monotonicity of Glauber dynamics (used by Corwin-Hammond, 2014)
- Essentially only place where ice weights are used (outside of integrable input)
- Sometimes known as Fortuin-Kasteleyn-Ginibre (FKG) type condition
- Holds for a broad class of statistical mechanical models (such as six-vertex at $\Delta \underline{\underline{\underline{1}}} \leq \frac{1}{2}$)

Proof Outline for Monotonicity

There exist $\mathcal{E}(0) \in \mathfrak{E}$ and $\mathcal{E}^{\prime}(0) \in \mathfrak{E}^{\prime}$ with paths $\mathbf{p}_{i}(0)$ and $\mathbf{p}_{i}^{\prime}(0)$, respectively, so that $\mathbf{p}_{i}(0) \geq \mathbf{p}_{i}^{\prime}(0)$.

Run the Glauber dynamics on $\left(\mathcal{E}(0), \mathcal{E}^{\prime}(0)\right)$

- Select a face F of Λ uniformly at random
- With probability $\frac{1}{2}$, perform "up-flip" (if possible) in $\mathcal{E}(0)$ and $\mathcal{E}^{\prime}(0)$ at F
- Otherwise perform "down-flip" in $\mathcal{E}(0)$ and $\mathcal{E}^{\prime}(0)$ at F
- This produces new (random, coupled) six-vertex ensembles $\mathcal{E}(1) \in \mathfrak{E}$ and $\mathcal{E}^{\prime}(1) \in \mathfrak{E}^{\prime}$
- Repeating this, we obtain random, coupled $\mathcal{E}(1), \mathcal{E}(2), \ldots \in \mathfrak{E}$ and $\mathcal{E}^{\prime}(1), \mathcal{E}^{\prime}(2), \ldots \in \mathfrak{E}^{\prime}$

- Monotone preserving property: If each $\mathbf{p}_{i}(t) \geq \mathbf{p}_{i}^{\prime}(t)$, then each $\mathbf{p}_{i}(t+1) \geq \mathbf{p}_{i}^{\prime}(t+1)$
- Then $\mathcal{E}(\infty)=\lim _{t \rightarrow \infty} \mathcal{E}(t)$ and $\mathcal{E}^{\prime}(\infty)=\lim _{t \rightarrow \infty} \mathcal{E}^{\prime}(t)$ are uniform on \mathfrak{E} and \mathfrak{E}^{\prime}, respectively, since the Glauber dynamics are stationary with respect to these uniform measures, and each $\mathbf{p}_{i}(\infty) \geq \mathbf{p}_{i}^{\prime}(\infty)$ almost surely

Linearity Estimates

- Let $u, v \in \mathbb{Z}^{2}$, with v northeast of u, and $\operatorname{set} \operatorname{dist}(u, v)=M$.
- Let $\ell=\ell(u, v)$ denote the line through u and v.

Standard estimates for linearity of (possibly conditioned) random walks
(1) For a uniformly random path \mathbf{p} from u to v, $\mathbb{P}[\operatorname{dist}(\mathbf{p}, \ell)<\varepsilon M]>1-C \exp \left(-c \varepsilon^{2} M\right)$.
(2) For a uniformly random path \mathbf{p} from u to v conditioned to lie weakly below (or above) $\ell, \mathbb{P}[\operatorname{dist}(\mathbf{p}, \ell)<\varepsilon M]>1-C \exp \left(-c \varepsilon^{2} M\right)$.
Second statement can formally be deduced from first and monotonicity

Proof of $\Theta \approx \Omega$

Set $u=(0,-\Psi)$, and let w be the first vertex in $\mathbf{p}_{1}^{\text {aug }}$ above the x-axis such that w is (weakly) below \mathfrak{L}_{Ψ} but the next vertex in $\mathbf{p}_{1}^{\text {aug }}$ is not.

We condition on the following.

- The paths $\mathbf{p}_{2}^{\text {aug }}, \mathbf{p}_{3}^{\text {aug }}, \ldots, \mathbf{p}_{N+1}^{\text {aug }}$
- The event that $\mathbf{p}_{1}^{\text {aug }}$ passes through w, and the part of $\mathbf{p}_{1}^{\text {aug }}$ northeast of w

Gibbs property: The law of $\mathbf{p}_{1}^{\text {aug }}$ southwest of w is given by a uniformly random path from u to w, conditioned to remain weakly below $\mathbf{p}_{2}^{\text {aug }}$.

Proof of $\Theta \approx \Omega$

Gibbs property: The law of $\mathbf{p}_{1}^{\text {aug }}$ is given by a uniformly random path in $\mathfrak{E}_{\mathbf{p}_{2}^{\text {aug }} ; \infty}^{u ; w}$.

- Let \mathbf{q} be a uniformly random path in $\mathfrak{E}_{-\infty, \infty}^{\mathfrak{u} w}$ (from u to w without barriers)
- By the linearity estimate, \mathbf{q} is εN-linear with probability $1-C \exp \left(-c \varepsilon^{2} N\right)$
- So, if \mathbf{q} exits the x-axis at $(\Gamma, 0)$, then $\mathbb{P}[|\Gamma-\Omega|<\varepsilon N] \geq 1-C \exp \left(-c \varepsilon^{2} N\right)$
- By monotonicity, we may couple $\mathbf{p}_{1}^{\text {aug }}$ and \mathbf{q} so that $\mathbf{p}_{1}^{\text {aug }} \geq \mathbf{q}$ almost surely
- Thus, $\mathbb{P}[\Theta \geq \Omega-\varepsilon N] \geq \mathbb{P}[\Gamma \geq \Omega-\varepsilon N] \geq 1-C \exp \left(-c \varepsilon^{2} N\right)$

Proof of $\Theta \approx \Omega$

Gibbs property: The law of $\mathbf{p}_{1}^{\text {aug }}$ is given by a uniformly random path in $\mathfrak{E}_{\mathbf{p}_{2}^{\text {aug }} ; \infty}^{u ; w}$.

- Let \mathbf{r} be a uniformly random path from u to v, conditioned to lie weakly below \mathfrak{L}_{Ψ} (so it is uniform on $\mathfrak{E}_{\mathbf{f}, \infty}^{u ; w}$, for some $\mathbf{f} \geq \mathbf{p}_{2}^{\text {aug }}$)
- By the linearity estimate, \mathbf{r} is εN-linear with probability $1-C \exp \left(-c \varepsilon^{2} N\right)$
- So, if \mathbf{r} exits the x-axis at $(\Upsilon, 0)$, then $\mathbb{P}[|\Upsilon-\Omega|<\varepsilon N] \geq 1-C \exp \left(-c \varepsilon^{2} N\right)$
- By monotonicity, we may couple $\mathbf{p}_{1}^{\text {aug }}$ and \mathbf{r} so that $\mathbf{p}_{1}^{\text {aug }} \leq \mathbf{r}$ almost surely
- Thus, $\mathbb{P}[\Theta \leq \Omega+\varepsilon N] \geq \mathbb{P}[\Upsilon \leq \Omega+\varepsilon N] \geq 1-C \exp \left(-c \varepsilon^{2} N\right)$

Comparing \mathbf{p}_{1} and $\mathbf{p}_{2}^{\text {aug }}$

Seek to stochastically bound \mathbf{p}_{1} approximately above / below by $\mathbf{p}_{2}^{\text {aug }}$
(1) Couple \mathcal{E} and \mathcal{E}_{Ψ} in two ways, such that \mathbf{p}_{1} is (weakly) below $\mathbf{p}_{2}^{\text {aug }}$ under the first and \mathbf{p}_{2} is (weakly) above $\mathbf{p}_{2}^{\text {aug }}$ under the second
(2) $\mathbb{P}\left[\operatorname{dist}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)<\varepsilon N\right]>1-C \exp \left(-c \varepsilon^{2} N\right)$

First part follows from monotonicity

- View top path in \mathcal{E}_{Ψ} as barrier: Remaining paths below correpsonding \mathcal{E} paths
- Monotonicity implies coupling so that $\mathbf{p}_{2} \leq \mathbf{p}_{2}^{\text {aug }}$
- View bottom path in \mathcal{E}_{Ψ} as barrier: Remaining paths above \mathcal{E} paths
- Montonocity implies coupling so that $\mathbf{p}_{2} \geq \mathbf{p}_{2}^{\text {aug }}$

$$
\mathcal{E}_{\Psi}
$$

Proximity of \mathbf{p}_{1} and \mathbf{p}_{2}

Seek to show $\mathbb{P}\left[\operatorname{dist}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)<\varepsilon N\right]>1-C \exp \left(-c \varepsilon^{2} N\right)$
(1) Show \mathbf{p}_{1} and \mathbf{p}_{2} are likely "approximately convex"
(2) Show approximate convexity of \mathbf{p}_{2} likely implies $\operatorname{dist}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)<\varepsilon N$

- Let $\mathbf{h}=\mathbf{h}(\mathbf{p})$ denote the convex envelope of any path \mathbf{p}
- Let $\Xi=\Xi(\mathbf{p})=\max _{v \in \mathbf{p}} \operatorname{dist}(v, \mathbf{h}(\mathbf{p}))$

Define event $\mathcal{E}=\mathcal{E}(\varepsilon)=\left\{\Xi\left(\mathbf{p}_{1}\right)<\varepsilon N\right\} \cap\left\{\Xi\left(\mathbf{p}_{2}\right)<\varepsilon N\right\}$

- On \mathcal{E}, the paths \mathbf{p}_{1} and \mathbf{p}_{2} are "approximately convex"
(1) Show $\mathbb{P}[\mathcal{E}]>1-C \exp \left(-c \varepsilon^{2} N\right)$
(2) Show $\mathbb{P}\left[\mathbf{1}_{\mathcal{E}} \operatorname{dist}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)<5 \varepsilon N\right]>1-\exp \left(C \varepsilon^{2} N\right)$

Convexity Implies Proximity

Set $\mathbf{h}_{1}=\mathbf{h}\left(\mathbf{p}_{1}\right)$ and $\mathbf{h}_{2}=\mathbf{h}\left(\mathbf{p}_{2}\right)$

- On convexity event \mathcal{E}, we have $\operatorname{dist}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right) \leq \operatorname{dist}\left(\mathbf{h}_{1}, \mathbf{h}_{2}\right)+2 \varepsilon N$

Suffices to show $\mathbb{P}\left[\mathbf{1}_{\mathcal{E}} \operatorname{dist}\left(\mathbf{h}_{1}, \mathbf{h}_{2}\right)<3 \varepsilon N\right\rceil>1-C \exp \left(c \varepsilon^{2} N\right)$

- Fix $v_{1} \in \mathbf{h}_{1}$, and let $v_{2} \in \mathbf{h}_{2}$ be such that $\operatorname{dist}\left(v_{1}, v_{2}\right)=\operatorname{dist}\left(v_{1}, \mathbf{h}_{2}\right)$

Must show $\mathbb{P}\left[\mathbf{1}_{\mathcal{E}} \operatorname{dist}\left(v_{1}, v_{2}\right)<\varepsilon N\right]>1-C \exp \left(-c \varepsilon^{2} N\right)$

- Let ℓ be line through v_{2} orthogonal to line through $\left(v_{1}, v_{2}\right)$
- Convexity of \mathbf{h}_{2} implies $\mathbf{h}_{2} \subset \mathrm{NW}(\ell)$ (is northwest of ℓ)
- Assume for simplicity that $\mathbf{p}_{2} \subset \mathrm{NW}(\ell)$
- Holds after shifting ℓ down by εN, since $\mathbf{1}_{\mathcal{E}} \operatorname{dist}\left(\mathbf{p}_{2}, \mathbf{h}_{2}\right)<\varepsilon N$ and $\mathbf{h}_{2} \subset \mathrm{NW}(\ell)$
- Let ℓ meet \mathbf{h}_{1} at (u, w), and assume for simplicity that $u, w \in \mathbf{p}_{1}$

Convexity Implies Proximity

Must show that $\mathbb{P}\left[\mathbf{1}_{\mathcal{E}} \operatorname{dist}\left(v_{1}, v_{2}\right)<\varepsilon N\right]>1-C \exp \left(-c \varepsilon^{2} N\right)$

- Condition on \mathbf{p}_{2} and on \mathbf{p}_{1} outside of interval (u, w)
- Gibbs property: Then \mathbf{p}_{1} is a uniformly random path starting at u and ending at w, and conditioned to lie above \mathbf{p}_{2}
- Montonicity: Replacing \mathbf{p}_{2} with ℓ only "pushes v down"
- Linearity: With probability $1-C \exp \left(-c \varepsilon^{2} N\right)$, a uniformly random path from u to w conditioned to stay below ℓ does not go below ℓ by more than εN
- Shows $\mathbb{P}\left[\mathbf{1}_{\mathcal{E}} \operatorname{dist}\left(v_{1}, v_{2}\right)<\varepsilon N\right]>1-C \exp \left(-c \varepsilon^{2} N\right)$

Summary

- Established arctic boundaries for domain-wall ice model
- Proceeds by justification of tangent method of Colomo-Sportiello
- Involves inserting an augmented path in the domain
- Path should be tangent to arctic boundary
- Refined partition function asymptotics identify trajectory of the path
- Integrability only involved through understanding these asymptotics
- Full solvability / determinantality of the model not required
- Proof involves analysis of non-intersecting path ensembles (reminiscent of ideas used by Corwin-Hammond in very different context)
- Prove approximate tangency of additional path to arctic boundary of augmented ensemble
- Gibbs property
- Monotonicity
- Prove additional path does not substantially affect arctic boundary
- Convexity (and Gibbs property / monotonicity)

