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Six-Vertex Ensembles and Ice Models

Let Λ ⊂ Z2 be finite, and assign each vertex in Λ one of the following six
edge configurations

Domain-wall boundary conditions arise when Λ = [1,N]× [1,N], and arrows
enter from the left boundary and exit through the top.

Ice model: Assignment is chosen uniformly at random

Six-vertex ensembles are collections of non-crossing directed (up-right) paths.
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Arctic Boundary of Six-Vertex Ensembles
Six-vertex ensemble E on Λ
A vertex v ∈ Λ is in the frozen region of E if one of the following holds

Every vertex northwest of v is packed in E
Every vertex northeast of v is vertical in E
Every vertex southwest of v is horizontal in E
Every vertex southeast of v is empty in E

The boundary of the frozen region is called the arctic boundary

The bottommost path of a domain-wall six-vertex ensemble traces the
southeast boundary of the frozen region
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Limiting Boundary Parameterization
Define the portion of an ellipse

ASE =
{

(x, y) ∈ R2 : (2x− 1)2 + (2y− 1)2 − 4(1− x)y = 1
}
∩
([1

2
, 1
]
×
[
0,

1
2

])
,

and its reflections

ASW =
{

(x, y) ∈ R2 : (1− x, y) ∈ ASE
}

; ANE =
{

(x, y) ∈ R2 : (x, 1− y) ∈ ASE
}

;

ANW =
{

(x, y) ∈ R2 : (1− x, 1− y) ∈ ASE
}
.
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Let A = ASE ∪ ASW ∪ ANE ∪ ANW.
Then A is not smooth at its four tangency points with [0, 1]× [0, 1].

Different from what one observers in dimers
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Arctic Boundaries for Ice Model

Let N ∈ Z>0 be a large integer.

Let E denote a sample of the ice model on Λ = [1,N]× [1,N]

Let (i, j) ∈ [1,N]× [1,N] be an integer pair, and set z =
( i

N ,
j
N

)
∈ [0, 1]× [0, 1].

Fix a real number ε > 0, and assume that dist(z,A) > ε.

Theorem (A., 2018)

There exists δ = δ(ε) > 0 such that, with probability at least 1− e−δN , (i, j)
is in the frozen region of M if and only if z is outside of A.

Eloranta (1999), Zinn-Justin (2000), Allison–Reshetikhin (2005),
Sylijuåsen–Zvonarev (2004): Predicted existence of arctic boundary following
its realization for domino tilings by Jockush–Propp–Shor (1995)

Colomo–Pronko (2010): Predicted above explicit form of arctic boundary

Colomo–Sportiello (2016): Reproduced prediction through tangent method
Di Francesco–Guitter (2018), Debin–Ruelle (2018), Corteel–Keating–Nicoletti
(2019), . . .: Predicts arctic boundaries of other statistical mechanical models
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Trajectory of the Bottom Path of the Ice Model

Let E denote a sample of the ice model on Λ = [1,N]× [1,N].

Denote the non-crossing paths in E , from bottom to top, by p1,p2, . . . ,pN .

Define I1 =
[
0, 1

2

]
× {0} and I2 = {1} ×

[ 1
2 , 1

]
, and let P = I1 ∪ ASE ∪ I2.

By symmetry, we must show the following theorem.

Theorem
For any ε > 0, there exists δ = δ(ε) > 0 such that dist

(
N−1p1,P

)
< ε holds

with probability at least 1− e−δN .

Proof based on a justification of the (geometric) tangent method, a general
heuristic introduced by Colomo–Sportiello (2016) for deriving arctic
boundaries of statistical mechanical models

Proof is not very model-dependent and also should apply to other families of
statistical mechanical systems
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Refined Partition Function

Domain-wall six-vertex ensemble E with paths p1,p2, . . . ,pN

Let Θ = Θ(E) ∈ [1,N] be such that p1 exits the bottom row at (Θ, 1)

p1

p2

p3

p4

p5

p6

p7

(Θ, 1)

Θ = 3

The partition function ZN counts domain-wall six-vertex ensembles E .

The refined partition function ZN(K) counts those with Θ(E) = K.

Define the K-refined correlation function HN(K) by

HN(K) = P
[
Θ(E) = K

]
=

ZN(K)

ZN
.
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Refined Enumeration

Required integrable input: Asymptotics for refined partition function

Zeilberger (1996): HN(K) =
(N+K−2

N−1

)(2N−K−1
N−1

)(3N−2
N−1

)−1

Thus, for fixed κ > 0, we have for large N that

HN(κN) = exp
(
−
(
h(κ) + o(1)

)
N
)
,

for an explicit h(κ) given by

h(κ) = (1 + κ) log(1 + κ) + (2− κ) log(2− κ)− κ log κ

− (1− κ) log(1− κ)− 3 log 3 + 2 log 2

Tangency point: h(κ) minimized at κ = 1
2 , so we likely have Θ ≈ N

2
If the arctic boundary exists, it should meet the bottom boundary of
[0, 1]× [0, 1] at

(N
2 , 0

)
Colomo–Sportiello (2016): Use the function h to predict a
parameterization for the limiting trajectory of p1 (entire arctic boundary)
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Augmented Domains and Ensembles

For Ψ ∈ Z≥0, a Ψ-augmented ensemble is a domain-wall six-vertex ensemble on
[1,N]× [1,N], with an additional path entering at (0,−Ψ) and exiting at (N + 1,N).

N

N + 1

(0,−Ψ) Ψ = 4

Θ = 5

paug
1

paug
2

Denote the paths in this ensemble, from bottom to top, by paug
1 ,paug

2 , . . . ,paug
N+1.

Let Θ denote be such that paug
1 exits the x-axis at (Θ, 0)
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Tangency Assumption

Fix ψ > 0, and let Ψ ≈ ψN

Select a Ψ-augmented ensemble EΨ uniformly at random

With high probability, we will have Θ = Θ(EΨ) ≈ θN, for some θ = θ(ψ) > 0

Belief: As N tends to∞, paug
1 first approximates a line `ψ tangent to the

arctic boundary of the domain-wall ice model and then merges with it.
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Determining the Arctic Boundary

If we could determine θ = θ(ψ) for each ψ > 0, then we would determine `ψ .

Convex envelope obtained by varying over ψ gives ASE.

The number of augmented ensembles EΨ with Θ(EΨ) = Φ ≈ ϕN is proportional to(
Φ + Ψ− 1

Ψ

)
HN+1(Φ) = exp

((
gψ(ϕ) + o(1)

)
N
)
,

where gψ(ϕ) = (ϕ+ ψ) log(ϕ+ ψ)− ϕ logϕ− ψ logψ−h(ϕ).

The maximizer ϕ = θ of gψ(ϕ) determines θ = θ(ψ) > 0.
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Tangent Method Heuristic

The tangent method (Colomo–Sportiello, 2016)
Using exact asymptotics for HN(K), find explicit h : R>0 → R such that

HN(κN) = exp
(
−
(
h(κ) + o(1)

)
N
)

Define gψ(ϕ) = (ϕ+ ψ) log(ϕ+ ψ)− ϕ logϕ− ψ logψ − h(ϕ)

Let θ = θ(ψ) denote the maximizer of gψ
For each ψ, let `ψ denote the line through (0,−ψ) and (0, θ)

Then the arctic boundary is the convex envelope formed by the `ψ after varying
over ψ, which is ASE

Issues

Must justify the tangency assumption

It is not transparent that arctic boundary exists (namely, that p1 in the original
model or paug

2 in the augmented model have limiting trajectories)

The introduction of the new path paug
1 in the augmented model might change

the trajectory of p1 in the original model

12 / 26



Notation

Let E and EΨ be a domain-wall six-vertex ensemble and a Ψ-augmented
ensemble, respectively, both chosen uniformly at random.

Let L = LΨ be the tangent line to paug
2 through (0,−Ψ).

Let (Ω, 0) = LΨ ∩ {y = 0}, and let paug
1 exit the x-axis at (Θ, 0).
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Proof Outline

1 Tangency: P
[
|Ω−Θ| < εN

]
> 1− C exp(−cε2N)

2 Concentration Estimate: P
[
|Θ− θN| < εN

]
> 1− C exp(−cε2N)

3 Comparing p1 and paug
2 : Stochastically bound p1 approximately above and

approximately below by paug
2

1 Couple E and EΨ in two ways, such that p1 is (weakly) below paug
2 under

the first and p2 is (weakly) above paug
2 under the second

2 P
[

dist(p1,p2) < εN
]
> 1− C exp(−cε2N)

Concentration estimate follows from exact enumeration: P[Θ = Φ] = Z−1
Ψ

(
Φ+Ψ−1

Ψ

)
HN+1(Φ)
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Boundary Data

If X and Y are vertices / noncrossing paths, with X northwest of Y , we say X ≤ Y .

f

g

p2

p1

u2

v2

u1

v1

Λ

Rectangle Λ

“Barrier paths” f and g with f ≤ g

“Entrance vertices” u = (u1, u2, . . . , um) with u1 ≥ u2 ≥ · · · ≥ um

“Exit vertices” v = (v1, v2, . . . , vm), with v1 ≥ v2 ≥ · · · ≥ vm

Let Eu;w
f;g denote set of six-vertex ensembles on Λ whose paths p1 ≥ p2 ≥ · · · pm satisfy

f ≤ pi ≤ g, such that pi enters Λ through ui and exits Λ through vi
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Monotone Couplings
Assume boundary data (f, g; u, v) and (f′, g′; u′, v′) satisfy f ≥ f′, g ≥ g′, u ≥ u′, v ≥ v′

Uniformly random ensembles E and E ′ in E = Eu;w
f;g and E′ = Eu′;w′

f′;g′ , respectively
Paths of E and E ′ are p1 ≥ p2 ≥ · · · pm and p′1 ≥ p′2 ≥ · · · p

′
m, respectively

Lemma
The laws of E and E ′ can be coupled so that each pi ≥ p′i , almost surely.

Allows f, f′ = −∞ and / or g, g′ =∞
Proof uses monotonicity of Glauber dynamics (used by Corwin–Hammond, 2014)

Essentially only place where ice weights are used (outside of integrable input)
Sometimes known as Fortuin–Kasteleyn–Ginibre (FKG) type condition

Holds for a broad class of statistical mechanical models (such as six-vertex at ∆ ≤ 1
2 )
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Proof Outline for Monotonicity
There exist E(0) ∈ E and E ′(0) ∈ E′ with paths pi(0) and p′i (0), respectively, so that pi(0) ≥ p′i (0).

Run the Glauber dynamics on
(
E(0), E ′(0)

)
Select a face F of Λ uniformly at random
With probability 1

2 , perform “up-flip” (if possible) in E(0) and E ′(0) at F
Otherwise perform “down-flip” in E(0) and E ′(0) at F
This produces new (random, coupled) six-vertex ensembles E(1) ∈ E and E ′(1) ∈ E′

Repeating this, we obtain random, coupled E(1), E(2), . . . ∈ E and E ′(1), E ′(2), . . . ∈ E′

Monotone preserving property: If each pi(t) ≥ p′i (t), then each pi(t + 1) ≥ p′i (t + 1)

Then E(∞) = limt→∞ E(t) and E ′(∞) = limt→∞ E ′(t) are uniform on E and E′, respectively,
since the Glauber dynamics are stationary with respect to these uniform measures, and each
pi(∞) ≥ p′i (∞) almost surely
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Linearity Estimates

Let u, v ∈ Z2, with v northeast of u, and set dist(u, v) = M.
Let ` = `(u, v) denote the line through u and v.

Standard estimates for linearity of (possibly conditioned) random walks
1 For a uniformly random path p from u to v,

P
[

dist(p, `) < εM
]
> 1− C exp(−cε2M).

2 For a uniformly random path p from u to v conditioned to lie weakly
below (or above) `, P

[
dist(p, `) < εM

]
> 1− C exp(−cε2M).

Second statement can formally be deduced from first and monotonicity
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Proof of Θ ≈ Ω

Set u = (0,−Ψ), and let w be the first vertex in paug
1 above the x-axis such that w is (weakly)

below LΨ but the next vertex in paug
1 is not.

u = (0,−Ψ)

(Ω, 0)

(Θ, 0)

w

paug
1

paug
2

LΨ

We condition on the following.

The paths paug
2 , paug

3 , . . . , paug
N+1

The event that paug
1 passes through w, and the part of paug

1 northeast of w

Gibbs property: The law of paug
1 southwest of w is given by a uniformly random

path from u to w, conditioned to remain weakly below paug
2 .
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Proof of Θ ≈ Ω

Gibbs property: The law of paug
1 is given by a uniformly random path in Eu;w

paug2 ;∞.

Let q be a uniformly random path in Eu;w
−∞,∞ (from u to w without barriers)

By the linearity estimate, q is εN-linear with probability 1− C exp(−cε2N)

So, if q exits the x-axis at (Γ, 0), then P
[
|Γ− Ω| < εN

]
≥ 1− C exp(−cε2N)

By monotonicity, we may couple paug
1 and q so that paug

1 ≥ q almost surely

Thus, P
[
Θ ≥ Ω− εN

]
≥ P

[
Γ ≥ Ω− εN

]
≥ 1− C exp(−cε2N)
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Proof of Θ ≈ Ω

Gibbs property: The law of paug
1 is given by a uniformly random path in Eu;w

paug2 ;∞.

Let r be a uniformly random path from u to v, conditioned to lie weakly below LΨ (so it
is uniform on Eu;w

f,∞, for some f ≥ paug
2 )

By the linearity estimate, r is εN-linear with probability 1− C exp(−cε2N)

So, if r exits the x-axis at (Υ, 0), then P
[
|Υ− Ω| < εN

]
≥ 1− C exp(−cε2N)

By monotonicity, we may couple paug
1 and r so that paug

1 ≤ r almost surely

Thus, P
[
Θ ≤ Ω + εN

]
≥ P

[
Υ ≤ Ω + εN

]
≥ 1− C exp(−cε2N)
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Comparing p1 and paug
2

Seek to stochastically bound p1 approximately above / below by paug
2

1 Couple E and EΨ in two ways, such that p1 is (weakly) below paug
2 under the first and p2

is (weakly) above paug
2 under the second

2 P
[

dist(p1, p2) < εN
]
> 1− C exp(−cε2N)

First part follows from monotonicity

View top path in EΨ as barrier: Remaining paths below correpsonding E paths
Monotonicity implies coupling so that p2 ≤ paug

2

View bottom path in EΨ as barrier: Remaining paths above E paths
Montonocity implies coupling so that p2 ≥ paug

2
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Proximity of p1 and p2

Seek to show P
[

dist(p1,p2) < εN
]
> 1− C exp(−cε2N)

1 Show p1 and p2 are likely “approximately convex”
2 Show approximate convexity of p2 likely implies dist(p1,p2) < εN

Let h = h(p) denote the convex envelope of any path p
Let Ξ = Ξ(p) = maxv∈p dist

(
v,h(p)

)
Define event E = E(ε) =

{
Ξ(p1) < εN

}
∩
{

Ξ(p2) < εN
}

On E , the paths p1 and p2 are “approximately convex”
1 Show P[E ] > 1− C exp(−cε2N)
2 Show P

[
1E dist(p1,p2) < 5εN

]
> 1− exp(Cε2N)
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Convexity Implies Proximity

Set h1 = h(p1) and h2 = h(p2)

On convexity event E , we have dist(p1,p2) ≤ dist(h1,h2) + 2εN

Suffices to show P
[
1E dist(h1,h2) < 3εN

]
> 1− C exp(cε2N)

Fix v1 ∈ h1, and let v2 ∈ h2 be such that dist(v1, v2) = dist(v1,h2)

Must show P
[
1E dist(v1, v2) < εN

]
> 1− C exp(−cε2N)

Let ` be line through v2 orthogonal to line through (v1, v2)
Convexity of h2 implies h2 ⊂ NW(`) (is northwest of `)

Assume for simplicity that p2 ⊂ NW(`)
Holds after shifting ` down by εN, since 1E dist(p2, h2) < εN and h2 ⊂ NW(`)

Let ` meet h1 at (u,w), and assume for simplicity that u,w ∈ p1
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Convexity Implies Proximity

Must show that P
[
1E dist(v1, v2) < εN

]
> 1− C exp(−cε2N)

Condition on p2 and on p1 outside of interval (u,w)
Gibbs property: Then p1 is a uniformly random path starting at u and ending at w,
and conditioned to lie above p2

Montonicity: Replacing p2 with ` only “pushes v down”
Linearity: With probability 1− C exp(−cε2N), a uniformly random path from
u to w conditioned to stay below ` does not go below ` by more than εN
Shows P

[
1E dist(v1, v2) < εN

]
> 1− C exp(−cε2N)
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Summary

Established arctic boundaries for domain-wall ice model
Proceeds by justification of tangent method of Colomo–Sportiello

Involves inserting an augmented path in the domain
Path should be tangent to arctic boundary
Refined partition function asymptotics identify trajectory of the path

Integrability only involved through understanding these asymptotics
Full solvability / determinantality of the model not required

Proof involves analysis of non-intersecting path ensembles (reminiscent
of ideas used by Corwin–Hammond in very different context)

Prove approximate tangency of additional path to arctic boundary of
augmented ensemble

Gibbs property
Monotonicity

Prove additional path does not substantially affect arctic boundary
Convexity (and Gibbs property / monotonicity)
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