Arctic Boundaries in Ice Models

Amol Aggarwal

Columbia University / Clay Mathematics Instiute

April 14, 2021 / Berkeley Probability Seminar



Six-Vertex Ensembles and Ice Models

Let A C Z? be finite, and assign each vertex in A one of the following six
edge configurations

) a%—» % —>o0—> $—> _>I
@ Domain-wall boundary conditions arise when A = [1,N] x [1, N], and arrows
enter from the left boundary and exit through the top.

@ Ice model: Assignment is chosen uniformly at random
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Six-vertex ensembles are collections of non-crossing directed (up-right) paths.



Arctic Boundary of Six-Vertex Ensembles

@ Six-vertex ensemble £ on A
@ A vertex v € A is in the frozen region of £ if one of the following holds
e Every vertex northwest of v is packed in £
o Every vertex northeast of v is vertical in £
o Every vertex southwest of v is horizontal in £
o Every vertex southeast of v is empty in £

o The boundary of the frozen region is called the arctic boundary

The bottommost path of a domain-wall six-vertex ensemble traces the
southeast boundary of the frozen region



Limiting Boundary Parameterization

Define the portion of an ellipse

1 1
Ase = {(r,y) ER: (2 — 1)+ (2y— 1> —4(1 —x)y =1} N ([5,1] x [o, 5D
and its reflections
Asw = {(x,y) € R*: (1 —x,y) € Ase }; Ane = {(x,y) ER*: (x, 1 —y) € As };
Unw = {(x,y) ER*: (1 —x,1—y) € Asg }.

(1)
(:0)

o Let 2l = Agg U Asw U ANe U Anw.
@ Then 2 is not smooth at its four tangency points with [0, 1] x [0, 1].
o Different from what one observers in dimers
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Arctic Boundaries for Ice Model

@ Let N € Z~ be a large integer.
@ Let & denote a sample of the ice model on A = [1,N] x [1,N]

@ Fix areal number € > 0, and assume that dist(z, () > e.

Theorem (A., 2018)

There exists § = 6(c) > 0 such that, with probability at least 1 — e~V (i, )
is in the frozen region of M if and only if z is outside of .

@ Eloranta (1999), Zinn-Justin (2000), Allison—Reshetikhin (2005),
Sylijuasen—Zvonarev (2004): Predicted existence of arctic boundary following
its realization for domino tilings by Jockush—Propp—Shor (1995)

@ Colomo-Pronko (2010): Predicted above explicit form of arctic boundary

@ Colomo-Sportiello (2016): Reproduced prediction through tangent method
o Di Francesco—Guitter (2018), Debin—Ruelle (2018), Corteel-Keating—Nicoletti
(2019), .. .: Predicts arctic boundaries of other statistical mechanical models



Trajectory of the Bottom Path of the Ice Model

@ Let & denote a sample of the ice model on A = [1,N] x [1,N].
@ Denote the non-crossing paths in £, from bottom to top, by p;, ps, - - -, Py-
(] Deﬁnell = [0, %] X {0} and12 = {1} X [%, 1], and let‘B = I] UQ[SE UIz.

By symmetry, we must show the following theorem.

For any € > 0, there exists § = §(¢) > 0 such that dist (N~'p,"B) < ¢ holds
with probability at least 1 — e =N,

@ Proof based on a justification of the (geometric) tangent method, a general
heuristic introduced by Colomo—Sportiello (2016) for deriving arctic
boundaries of statistical mechanical models

@ Proof is not very model-dependent and also should apply to other families of
statistical mechanical systems



Refined Partition Function

@ Domain-wall six-vertex ensemble £ with paths p;,p,, ..., Py

@ Let® = ©(E) € [1,N] be such that p, exits the bottom row at (0, 1)

Py
Ps
Ps

p4—>I °

Ps3 o »
Py o o o
P o o o o
(©,1)
0=3

@ The partition function Zy counts domain-wall six-vertex ensembles .
@ The refined partition function Zy(K) counts those with ©(€) = K.
@ Define the K-refined correlation function Hy(K) by

Hy(K) =P[O(E) = K] = %}f)
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Refined Enumeration

Required integrable input: Asymptotics for refined partition function

o Zeilberger (1996): Hy(K) = (VHK72) (N K1) (3N-2)~

@ Thus, for fixed x > 0, we have for large N that
Hy(kN) = exp (= (b(x) + o(1))N)),

for an explicit h(x) given by

h(k) =1+ k)log(l1+ k) + (2—r)log(2 — k) — klogk
— (1 —k)log(l — k) —3log3+2log2

e Tangency point: (x) minimized at k = %, so we likely have © ~
o If the arctic boundary exists, it should meet the bottom boundary of

0,1] % [0, 1] at (¥,0)
@ Colomo—Sportiello (2016): Use the function h to predict a
parameterization for the limiting trajectory of p; (entire arctic boundary)

N
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Augmented Domains and Ensembles

For ¥ € Z>, a Y-augmented ensemble is a domain-wall six-vertex ensemble on
[1,N] x [1, N], with an additional path entering at (0, —¥) and exiting at (N + 1, N).

N+1

(0, —) v =4

@ Denote the paths in this ensemble, from bottom to top, by pi"*, p3"%, ..., py5.

aug

@ Let O denote be such that p;™® exits the x-axis at (6, 0)
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Tangency Assumption

@ Fix 1 > 0, and let ¥ ~ ¢N
@ Select a U-augmented ensemble £y uniformly at random
@ With high probability, we will have © = O(Eg) ~ N, for some § = 6(¢p) > 0

Belief: As N tends to oo, p{"® first approximates a line £,, tangent to the
arctic boundary of the domain-wall ice model and then merges with it.
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Determining the Arctic Boundary

@ If we could determine 6 = 0(z)) for each 1) > 0, then we would determine .
@ Convex envelope obtained by varying over 1 gives Usg.
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@ The number of augmented ensembles Ey with O(Ew) = P = ¢N is proportional to

<¢ +\I\I,I a 1>HN+|(<I>) = exp ((gw(@) +0(1))N)7

where gy (¢) = (¢ + ) log(y + 1) — plog ¢ — P log Y—h(p).
@ The maximizer ¢ = 6 of gy () determines 8 = 6(yp) > 0.
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Tangent Method Heuristic

The tangent method (Colomo—Sportiello, 2016)
@ Using exact asymptotics for Hy(K), find explicit i : R~¢ — R such that

Hy(kN) = exp (= (b(x) + o(1))N)

@ Define gy () = (¢ + ¥) log(p + ) — plogp — ¢ logy — h(p)
@ Let 6 = (1) denote the maximizer of gy,
@ For each v, let £,, denote the line through (0, —1)) and (0, §)

@ Then the arctic boundary is the convex envelope formed by the £, after varying
over ¢, which is 2Agsg

Issues
@ Must justify the tangency assumption

@ It is not transparent that arctic boundary exists (namely, that p, in the original
model or p;"® in the augmented model have limiting trajectories)

@ The introduction of the new path pi"® in the augmented model might change
the trajectory of p, in the original model



@ Let £ and £y be a domain-wall six-vertex ensemble and a U-augmented
ensemble, respectively, both chosen uniformly at random.

@ Let £ = £y be the tangent line to p5"® through (0, — ).
@ Let (£2,0) = £¢ N {y = 0}, and let p{"® exit the x-axis at (0, 0).
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Proof Outline

@ Tangency: P[|1 — ©] < eN| > 1 — Cexp(—ce’N)
@ Concentration Estimate: P[|© — ON| < eN| > 1 — Cexp(—ce*N)

© Comparing p, and p5"#: Stochastically bound p, approximately above and

approximately below by p5"®
@ Couple € and &y in two ways, such that p, is (weakly) below p5"® under
the first and p, is (weakly) above p5"® under the second

@ P|[dist(p,,p,) <eN| > 1 — Cexp(—ce’N)

£

(0,~w)
¥

Concentration estimate follows from exact enumeration: P[© = &] = Z;" (q>+§ 71)HN+1 (®)
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Boundary Data

If X and Y are vertices / noncrossing paths, with X northwest of Y, we say X < Y.

V2
]
P2 | .
f P,
l_

Uz

Rectangle A
“Barrier paths” fand g withf < g
“Entrance vertices” w = (u1, Uz, . .., Un) Withug > up > -+ > uy,

“Exit vertices” v = (v, V2, ..., Vm), Withvy > v, > -+ >y,

Let QE}'jgw denote set of six-vertex ensembles on A whose paths p, > p, > - - - p,, satisfy
f < p; < g, such that p; enters A through u; and exits A through v;



Monotone Couplings

@ Assume boundary data (f, g;u,v) and (f',g’;u’,v/) satisfy f > ', g > g, u>u/,v>Vv
.
?’;g ’
@ Pathsof £ and £’ arep; > p, > ---p,, and p| > p} > - - - p},. respectively

@ Uniformly random ensembles & and £’ in € = G'f’fgw and ¢/ = ¢ respectively
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The laws of € and E' can be coupled so that each p; > p., almost surely.

@ Allowsf,f = —coand/org,g = oo
@ Proof uses monotonicity of Glauber dynamics (used by Corwin—-Hammond, 2014)

@ Essentially only place where ice weights are used (outside of integrable input)

@ Sometimes known as Fortuin—Kasteleyn—Ginibre (FKG) type condition
@ Holds for a broad class of statistical mechanical models (such as six-vertex at A < %)
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Proof Outline for Monotonicity

There exist £(0) € € and £’(0) € ¢’ with paths p;(0) and p/(0), respectively, so that p;(0) > p;(0).

vy

f P '

W
* 1 A
Run the Glauber dynamics on (£(0), £'(0))
@ Select a face F of A uniformly at random
With probability %, perform “up-flip” (if possible) in £(0) and £/(0) at F
Otherwise perform “down-flip” in £(0) and £’(0) at F
This produces new (random, coupled) six-vertex ensembles £(1) € € and £'(1) € ¢’
Repeating this, we obtain random, coupled £(1),£(2),... € €and £/'(1),E(2),... € &
-

A A
N
'us vy vy
- > Up [ - - --> Down -—- -
..... > F P—
- --- - -- o - - > - -
I,Lg "\ Iu 1 1
'
|

@ Monotone preserving property: If each p;(r) > p/(¢), then each p;(r + 1) > p}(r + 1)

@ Then £(00) = limy— o0 () and £’ (00) = lim— o0 £’(#) are uniform on € and €', respectively,
since the Glauber dynamics are stationary with respect to these uniform measures, and each
p;(00) > p;}(oc0) almost surely
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Linearity Estimates

e Letu,v € Z?, with v northeast of u, and set dist(u,v) = M.
@ Let ¢ = {(u,v) denote the line through « and v.

Standard estimates for linearity of (possibly conditioned) random walks
@ For a uniformly random path p from u to v,
P[dist(p, £) < eM] > 1 — Cexp(—ce’M).
@ For a uniformly random path p from u to v conditioned to lie weakly
below (or above) £, P[dist(p, {) < eM] > 1 — Cexp(—ce’M).

Second statement can formally be deduced from first and monotonicity.
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Proof of © ~ 2

Set u = (0, —¥), and let w be the first vertex in p;"® above the x-axis such that w is (weakly)

below £ but the next vertex in p™® is not.

u=(0,-%),
| 3

We condition on the following.

aug _aug aug

@ Thepaths p, =, p; ..., Py1i

aug

aug

@ The event that p;° passes through w, and the part of p;"® northeast of w

Gibbs property: The law of p{"® southwest of w is given by a uniformly random

path from u to w, conditioned to remain weakly below p5"&.
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Proof of © ~ 2

w

Gibbs property: The law of pi"# is given by a uniformly random path in Gzaug
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Let q be a uniformly random path in & (from u to w without barriers)

By the linearity estimate, q is eéN-linear with probability 1 — C exp(—ce’N)
So, if q exits the x-axis at (T', 0), then P[|T' — Q| < eN] > 1 — Cexp(—ce*N)
aug

By monotonicity, we may couple p{"® and q so that p{"® > q almost surely

Thus, P[© > Q —eN| > P[T' > Q —eN] > 1 — Cexp(—ce’N)
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Proof of © ~ 2

Gibbs property: The law of pi"# is given by a uniformly random path in Gzaug

w
Hesel

2

© o o o o o o

u

#' »'

Let r be a uniformly random path from u to v, conditioned to lie weakly below £y (so it

is uniform on &7, for some f > p3"*)

By the linearity estimate, r is eN-linear with probability 1 — C exp(—ce>N)
So, if r exits the x-axis at (Y, 0), then P[|T — Q| < eN] > 1 — Cexp(—ce’N)
By monotonicity, we may couple p;"® and r so that p;"# < r almost surely

Thus, P[© < Q+eN] > P[YT < Q+¢eN] > 1 — Cexp(—ce’N)



aug

Comparing p, and p,

aug

Seek to stochastically bound p, approximately above / below by p;
@ Couple € and Ey in two ways, such that p, is (weakly) below p5"¢ under the first and p,

is (weakly) above p3"¢ under the second

@ P[dist(p,,p,) < eN| > 1 — Cexp(—ce’N)
First part follows from monotonicity

@ View top path in £y as barrier: Remaining paths below correpsonding £ paths
o Monotonicity implies coupling so that p, < p3"®
@ View bottom path in £y as barrier: Remaining paths above £ paths

o Montonocity implies coupling so that p, > p5"®
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Proximity of p, and p,

Seek to show P[ dist(p;,p,) < eN] > 1 — Cexp(—ce’N)
© Show p, and p, are likely “approximately convex”
© Show approximate convexity of p, likely implies dist(p, p,) < eN

@ Let h = h(p) denote the convex envelope of any path p
o Let = = Z(p) = maxycp dist (v, h(p))

Define event & = £(e) = {E(p;) <eN} N {E(p,) <eN}
@ On &, the paths p; and p, are “approximately convex”
@ Show P[£] > 1 — Cexp(—ceN)
@ Show P[1¢ dist(p;, p,) < 5eN]| > 1 — exp(Ce*N)



Convexity Implies Proximity

Seth; = h(p,) and h, = h(p,)
@ On convexity event £, we have dist(p,, p,) < dist(h;,hy) + 2eN
Suffices to show P[lg dist(hy,hy) < 3eN]| > 1 — Cexp(ce?N)

@ Fix v; € hy, and let v, € h; be such that dist(vy,v,) = dist(vy, hy)
Must show P[1¢ dist(vi,v2) < eN] > 1 — Cexp(—ce’N)
@ Let ¢ be line through v, orthogonal to line through (vy, v;)

@ Convexity of h, implies h, C NW(¥) (is northwest of £)

@ Assume for simplicity that p, C NW(¥)
@ Holds after shifting £ down by eN, since 1¢ dist(p,,hy) < eN and hy C NW(¥)

@ Let £ meet h; at (4, w), and assume for simplicity that u, w € p;
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Convexity Implies Proximity

Must show that P[1¢ dist(vy, v2) < eN| > 1 — Cexp(—ce?N)

@ Condition on p, and on p, outside of interval (u, w)

@ Gibbs property: Then p, is a uniformly random path starting at « and ending at w,
and conditioned to lie above p,

@ Montonicity: Replacing p, with £ only “pushes v down”

@ Linearity: With probability 1 — C exp(—ce>N), a uniformly random path from
u to w conditioned to stay below ¢ does not go below £ by more than eN
@ Shows P[1¢ dist(vi,v;) < eN| > 1 — Cexp(—ce’N)



@ Established arctic boundaries for domain-wall ice model
@ Proceeds by justification of tangent method of Colomo—Sportiello

o Involves inserting an augmented path in the domain
o Path should be tangent to arctic boundary
e Refined partition function asymptotics identify trajectory of the path

o Integrability only involved through understanding these asymptotics
e Full solvability / determinantality of the model not required
@ Proof involves analysis of non-intersecting path ensembles (reminiscent
of ideas used by Corwin—-Hammond in very different context)

e Prove approximate tangency of additional path to arctic boundary of
augmented ensemble
o Gibbs property
@ Monotonicity
e Prove additional path does not substantially affect arctic boundary
o Convexity (and Gibbs property / monotonicity)



