Arctic Boundaries in Ice Models

Amol Aggarwal

Columbia University / Clay Mathematics Institue

April 14, 2021 / Berkeley Probability Seminar

ロト・御ト・ヨト・ヨト・ヨークへで、

Six-Vertex Ensembles and Ice Models

Let $\Lambda\subset\mathbb{Z}^2$ be finite, and assign each vertex in Λ one of the following six edge configurations

- **Domain-wall boundary conditions** arise when $\Lambda = [1, N] \times [1, N]$, and arrows enter from the left boundary and exit through the top.
- Ice model: Assignment is chosen uniformly at random

Six-vertex ensembles are collections of non-crossing directed (up-right) paths,

Arctic Boundary of Six-Vertex Ensembles

- Six-vertex ensemble \mathcal{E} on Λ
- A vertex $v \in \Lambda$ is in the **frozen region** of \mathcal{E} if one of the following holds
 - Every vertex northwest of v is packed in \mathcal{E}
 - Every vertex northeast of v is vertical in \mathcal{E}
 - Every vertex southwest of v is horizontal in \mathcal{E}
 - Every vertex southeast of v is empty in \mathcal{E}
- The boundary of the frozen region is called the arctic boundary

The **bottommost path** of a domain-wall six-vertex ensemble traces the southeast boundary of the frozen region

Limiting Boundary Parameterization

Define the portion of an ellipse

$$\mathfrak{A}_{SE} = \left\{ (x, y) \in \mathbb{R}^2 : (2x - 1)^2 + (2y - 1)^2 - 4(1 - x)y = 1 \right\} \cap \left(\left[\frac{1}{2}, 1 \right] \times \left[0, \frac{1}{2} \right] \right),$$

and its reflections

$$\begin{split} \mathfrak{A}_{SW} &= \big\{ (x,y) \in \mathbb{R}^2 : (1-x,y) \in \mathfrak{A}_{SE} \big\}; \qquad \mathfrak{A}_{NE} = \big\{ (x,y) \in \mathbb{R}^2 : (x,1-y) \in \mathfrak{A}_{SE} \big\}; \\ \mathfrak{A}_{NW} &= \big\{ (x,y) \in \mathbb{R}^2 : (1-x,1-y) \in \mathfrak{A}_{SE} \big\}. \end{split}$$

- Let $\mathfrak{A} = \mathfrak{A}_{SE} \cup \mathfrak{A}_{SW} \cup \mathfrak{A}_{NE} \cup \mathfrak{A}_{NW}$.
- Then \mathfrak{A} is **not smooth** at its four tangency points with $[0, 1] \times [0, 1]$.
 - Different from what one observers in dimers

Arctic Boundaries for Ice Model

- Let $N \in \mathbb{Z}_{>0}$ be a large integer.
- Let \mathcal{E} denote a sample of the ice model on $\Lambda = [1, N] \times [1, N]$
- Let $(i,j) \in [1,N] \times [1,N]$ be an integer pair, and set $z = \left(\frac{i}{N}, \frac{j}{N}\right) \in [0,1] \times [0,1]$.
- Fix a real number ε > 0, and assume that dist(z, 𝔅) > ε.

Theorem (A., 2018)

There exists $\delta = \delta(\varepsilon) > 0$ such that, with probability at least $1 - e^{-\delta N}$, (i, j) is in the frozen region of M if and only if z is outside of \mathfrak{A} .

- Eloranta (1999), Zinn-Justin (2000), Allison–Reshetikhin (2005), Sylijuåsen–Zvonarev (2004): Predicted existence of arctic boundary following its realization for domino tilings by Jockush–Propp–Shor (1995)
- Colomo–Pronko (2010): Predicted above explicit form of arctic boundary
- Colomo–Sportiello (2016): Reproduced prediction through tangent method
 - Di Francesco–Guitter (2018), Debin–Ruelle (2018), Corteel–Keating–Nicoletti (2019), . . .: Predicts arctic boundaries of other statistical mechanical models

Trajectory of the Bottom Path of the Ice Model

- Let \mathcal{E} denote a sample of the ice model on $\Lambda = [1, N] \times [1, N]$.
- Denote the non-crossing paths in \mathcal{E} , from bottom to top, by $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_N$.
- Define $I_1 = [0, \frac{1}{2}] \times \{0\}$ and $I_2 = \{1\} \times [\frac{1}{2}, 1]$, and let $\mathfrak{P} = I_1 \cup \mathfrak{A}_{SE} \cup I_2$.

By symmetry, we must show the following theorem.

Theorem

For any $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that dist $(N^{-1}\boldsymbol{p}_1, \mathfrak{P}) < \varepsilon$ holds with probability at least $1 - e^{-\delta N}$.

- Proof based on a justification of the (geometric) tangent method, a general heuristic introduced by Colomo–Sportiello (2016) for deriving arctic boundaries of statistical mechanical models
- Proof is not very model-dependent and also should apply to other families of statistical mechanical systems

<ロ> <四> <四> <四> <三</p>

Refined Partition Function

- Domain-wall six-vertex ensemble \mathcal{E} with paths $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_N$
- Let $\Theta = \Theta(\mathcal{E}) \in [1, N]$ be such that \mathbf{p}_1 exits the bottom row at $(\Theta, 1)$

- The **partition function** Z_N counts domain-wall six-vertex ensembles \mathcal{E} .
- The refined partition function $Z_N(K)$ counts those with $\Theta(\mathcal{E}) = K$.
- Define the *K*-refined correlation function $H_N(K)$ by

$$H_N(K) = \mathbb{P}[\Theta(\mathcal{E}) = K] = \frac{Z_N(K)}{Z_N}$$

Refined Enumeration

Required integrable input: Asymptotics for refined partition function

- Zeilberger (1996): $H_N(K) = \binom{N+K-2}{N-1} \binom{2N-K-1}{N-1} \binom{3N-2}{N-1}^{-1}$
- Thus, for fixed $\kappa > 0$, we have for large N that

$$H_N(\kappa N) = \exp\Big(-(\mathfrak{h}(\kappa)+o(1))N\Big),$$

for an **explicit** $\mathfrak{h}(\kappa)$ given by

$$\mathfrak{h}(\kappa) = (1+\kappa)\log(1+\kappa) + (2-\kappa)\log(2-\kappa) - \kappa\log\kappa$$
$$-(1-\kappa)\log(1-\kappa) - 3\log 3 + 2\log 2$$

• Tangency point: $\mathfrak{h}(\kappa)$ minimized at $\kappa = \frac{1}{2}$, so we likely have $\Theta \approx \frac{N}{2}$

- If the arctic boundary exists, it should meet the bottom boundary of $[0,1] \times [0,1]$ at $\left(\frac{N}{2},0\right)$
- Colomo–Sportiello (2016): Use the function h to predict a parameterization for the limiting trajectory of p₁ (entire arctic boundary)

Augmented Domains and Ensembles

For $\Psi \in \mathbb{Z}_{\geq 0}$, a Ψ -augmented ensemble is a domain-wall six-vertex ensemble on $[1, N] \times [1, N]$, with an additional path entering at $(0, -\Psi)$ and exiting at (N + 1, N).

Tangency Assumption

- Fix $\psi > 0$, and let $\Psi \approx \psi N$
- Select a Ψ -augmented ensemble \mathcal{E}_{Ψ} uniformly at random
- With high probability, we will have $\Theta = \Theta(\mathcal{E}_{\Psi}) \approx \theta N$, for some $\theta = \theta(\psi) > 0$

Belief: As *N* tends to ∞ , $\mathbf{p}_1^{\text{aug}}$ first approximates a line ℓ_{ψ} tangent to the arctic boundary of the domain-wall ice model and then merges with it.

Determining the Arctic Boundary

- If we could determine θ = θ(ψ) for each ψ > 0, then we would determine ℓ_ψ.
- Convex envelope obtained by varying over ψ gives \mathfrak{A}_{SE} .

• The number of augmented ensembles \mathcal{E}_{Ψ} with $\Theta(\mathcal{E}_{\Psi}) = \Phi \approx \varphi N$ is proportional to

$$egin{pmatrix} \Phi+\Psi-1\ \Psi \end{pmatrix} H_{N+1}(\Phi) = \exp\Big(ig(g_\psi(arphi)+o(1)ig)N\Big),$$

where $g_{\psi}(\varphi) = (\varphi + \psi) \log(\varphi + \psi) - \varphi \log \varphi - \psi \log \psi - \mathfrak{h}(\varphi)$.

• The maximizer $\varphi = \theta$ of $g_{\psi}(\varphi)$ determines $\theta = \theta(\psi) > 0$.

Tangent Method Heuristic

The tangent method (Colomo-Sportiello, 2016)

• Using exact asymptotics for $H_N(K)$, find explicit $\mathfrak{h} : \mathbb{R}_{>0} \to \mathbb{R}$ such that

$$H_N(\kappa N) = \exp\left(-(\mathfrak{h}(\kappa) + o(1))N\right)$$

- Define $g_{\psi}(\varphi) = (\varphi + \psi) \log(\varphi + \psi) \varphi \log \varphi \psi \log \psi \mathfrak{h}(\varphi)$
- Let $\theta = \theta(\psi)$ denote the maximizer of g_{ψ}
- For each ψ , let ℓ_{ψ} denote the line through $(0, -\psi)$ and $(0, \theta)$
- Then the arctic boundary is the convex envelope formed by the ℓ_{ψ} after varying over ψ , which is \mathfrak{A}_{SE}

Issues

- Must justify the tangency assumption
- It is not transparent that arctic boundary exists (namely, that p₁ in the original model or p₂^{aug} in the augmented model have limiting trajectories)
- The introduction of the new path \mathbf{p}_1^{aug} in the augmented model might change the trajectory of \mathbf{p}_1 in the original model

Notation

- Let \mathcal{E} and \mathcal{E}_{Ψ} be a domain-wall six-vertex ensemble and a Ψ -augmented ensemble, respectively, both chosen uniformly at random.
- Let $\mathfrak{L} = \mathfrak{L}_{\Psi}$ be the tangent line to $\mathbf{p}_2^{\mathrm{aug}}$ through $(0, -\Psi)$.
- Let $(\Omega, 0) = \mathfrak{L}_{\Psi} \cap \{y = 0\}$, and let $\mathbf{p}_1^{\mathrm{aug}}$ exit the *x*-axis at $(\Theta, 0)$.

Proof Outline

- Tangency: $\mathbb{P}[|\Omega \Theta| < \varepsilon N] > 1 C \exp(-c\varepsilon^2 N)$
- 2 Concentration Estimate: $\mathbb{P}[|\Theta \theta N| < \varepsilon N] > 1 C \exp(-c\varepsilon^2 N)$
- Comparing p₁ and p₂^{aug}: Stochastically bound p₁ approximately above and approximately below by p₂^{aug}
 - Couple *E* and *E*_Ψ in two ways, such that **p**₁ is (weakly) below **p**₂^{aug} under the first and **p**₂ is (weakly) above **p**₂^{aug} under the second

Concentration estimate follows from exact enumeration: $\mathbb{P}[\Theta = \Phi] = Z_{\Psi}^{-1} \begin{pmatrix} \Phi + \Psi - 1 \\ \Psi & \Psi \end{pmatrix} H_{N+1} (\Phi)$

Boundary Data

If *X* and *Y* are vertices / noncrossing paths, with *X* northwest of *Y*, we say $X \leq Y$.

• Rectangle Λ

- "Barrier paths" **f** and **g** with $\mathbf{f} \leq \mathbf{g}$
- "Entrance vertices" $\mathbf{u} = (u_1, u_2, \dots, u_m)$ with $u_1 \ge u_2 \ge \dots \ge u_m$
- "Exit vertices" $\mathbf{v} = (v_1, v_2, \dots, v_m)$, with $v_1 \ge v_2 \ge \dots \ge v_m$
- Let $\mathfrak{E}_{\mathbf{f};\mathbf{g}}^{\mathbf{u};\mathbf{w}}$ denote set of six-vertex ensembles on Λ whose paths $\mathbf{p}_1 \ge \mathbf{p}_2 \ge \cdots \mathbf{p}_m$ satisfy $\mathbf{f} \le \mathbf{p}_i \le \mathbf{g}$, such that \mathbf{p}_i enters Λ through u_i and exits Λ through v_i

Monotone Couplings

- Assume boundary data (f, g; u, v) and (f', g'; u', v') satisfy $f \ge f', g \ge g', u \ge u', v \ge v'$
- Uniformly random ensembles \mathcal{E} and \mathcal{E}' in $\mathfrak{E} = \mathfrak{E}_{\mathbf{f},\mathbf{g}}^{\mathbf{u};\mathbf{w}}$ and $\mathfrak{E}' = \mathfrak{E}_{\mathbf{f}',\mathbf{g}'}^{\mathbf{u}';\mathbf{w}'}$, respectively
- Paths of \mathcal{E} and \mathcal{E}' are $\mathbf{p}_1 \geq \mathbf{p}_2 \geq \cdots \neq \mathbf{p}_m$ and $\mathbf{p}'_1 \geq \mathbf{p}'_2 \geq \cdots \neq \mathbf{p}'_m$, respectively

Lemma

The laws of \mathcal{E} and \mathcal{E}' can be coupled so that each $\mathbf{p}_i \geq \mathbf{p}'_i$, almost surely.

- Allows $\mathbf{f}, \mathbf{f}' = -\infty$ and / or $\mathbf{g}, \mathbf{g}' = \infty$
- Proof uses monotonicity of Glauber dynamics (used by Corwin–Hammond, 2014)
- Essentially only place where ice weights are used (outside of integrable input)
 - Sometimes known as Fortuin-Kasteleyn-Ginibre (FKG) type condition
 - Holds for a broad class of statistical mechanical models (such as six-vertex at $\Delta \leq \frac{1}{2}$)

Proof Outline for Monotonicity

There exist $\mathcal{E}(0) \in \mathfrak{E}$ and $\mathcal{E}'(0) \in \mathfrak{E}'$ with paths $\mathbf{p}_i(0)$ and $\mathbf{p}'_i(0)$, respectively, so that $\mathbf{p}_i(0) \ge \mathbf{p}'_i(0)$.

Run the Glauber dynamics on $(\mathcal{E}(0), \mathcal{E}'(0))$

- Select a face F of Λ uniformly at random
- With probability $\frac{1}{2}$, perform "up-flip" (if possible) in $\mathcal{E}(0)$ and $\mathcal{E}'(0)$ at F
- Otherwise perform "down-flip" in $\mathcal{E}(0)$ and $\mathcal{E}'(0)$ at F
- This produces new (random, coupled) six-vertex ensembles $\mathcal{E}(1) \in \mathfrak{E}$ and $\mathcal{E}'(1) \in \mathfrak{E}'$
- Repeating this, we obtain random, coupled $\mathcal{E}(1), \mathcal{E}(2), \ldots \in \mathfrak{E}$ and $\mathcal{E}'(1), \mathcal{E}'(2), \ldots \in \mathfrak{E}'$

- Monotone preserving property: If each $\mathbf{p}_i(t) \ge \mathbf{p}'_i(t)$, then each $\mathbf{p}_i(t+1) \ge \mathbf{p}'_i(t+1)$
- Then $\mathcal{E}(\infty) = \lim_{t \to \infty} \mathcal{E}(t)$ and $\mathcal{E}'(\infty) = \lim_{t \to \infty} \mathcal{E}'(t)$ are uniform on \mathfrak{E} and \mathfrak{E}' , respectively, since the Glauber dynamics are stationary with respect to these uniform measures, and each $\mathbf{p}_i(\infty) \ge \mathbf{p}'_i(\infty)$ almost surely

Linearity Estimates

- Let $u, v \in \mathbb{Z}^2$, with v northeast of u, and set dist(u, v) = M.
- Let $\ell = \ell(u, v)$ denote the line through *u* and *v*.

Standard estimates for linearity of (possibly conditioned) random walks

- For a uniformly random path **p** from *u* to *v*, $\mathbb{P}\left[\operatorname{dist}(\mathbf{p}, \ell) < \varepsilon M\right] > 1 - C \exp(-c\varepsilon^2 M).$
- For a uniformly random path **p** from *u* to *v* conditioned to lie weakly below (or above) ℓ , $\mathbb{P}[\operatorname{dist}(\mathbf{p}, \ell) < \varepsilon M] > 1 C \exp(-c\varepsilon^2 M)$.

Second statement can formally be deduced from first and monotonicity

Proof of $\Theta \approx \Omega$

Set $u = (0, -\Psi)$, and let w be the first vertex in $\mathbf{p}_1^{\text{aug}}$ above the x-axis such that w is (weakly) below \mathfrak{L}_{Ψ} but the next vertex in $\mathbf{p}_1^{\text{aug}}$ is not.

We condition on the following.

- The paths $\mathbf{p}_2^{\text{aug}}, \mathbf{p}_3^{\text{aug}}, \dots, \mathbf{p}_{N+1}^{\text{aug}}$
- The event that $\mathbf{p}_1^{\text{aug}}$ passes through *w*, and the part of $\mathbf{p}_1^{\text{aug}}$ northeast of *w*

Gibbs property: The law of $\mathbf{p}_1^{\text{aug}}$ southwest of *w* is given by a uniformly random path from *u* to *w*, conditioned to remain weakly below $\mathbf{p}_2^{\text{aug}}$.

Proof of $\Theta \approx \Omega$

Gibbs property: The law of $\mathbf{p}_1^{\text{aug}}$ is given by a uniformly random path in $\mathfrak{E}_{\mathbf{p}_n^{\text{aug}}:\infty}^{u;w}$.

• Let **q** be a uniformly random path in $\mathfrak{E}_{-\infty,\infty}^{u;w}$ (from *u* to *w* without barriers)

- By the linearity estimate, **q** is εN -linear with probability $1 C \exp(-c\varepsilon^2 N)$
- So, if **q** exits the *x*-axis at $(\Gamma, 0)$, then $\mathbb{P}[|\Gamma \Omega| < \varepsilon N] \ge 1 C \exp(-c\varepsilon^2 N)$
- By monotonicity, we may couple p_1^{aug} and q so that $p_1^{\mathrm{aug}} \geq q$ almost surely
- Thus, $\mathbb{P}[\Theta \ge \Omega \varepsilon N] \ge \mathbb{P}[\Gamma \ge \Omega \varepsilon N] \ge 1 C \exp(-c\varepsilon^2 N)$

Proof of $\Theta \approx \Omega$

Gibbs property: The law of $\mathbf{p}_1^{\text{aug}}$ is given by a uniformly random path in $\mathfrak{C}_{\mathbf{p}_n^{\text{aug}}:\infty}^{u;w}$.

- Let **r** be a uniformly random path from *u* to *v*, conditioned to lie weakly below \mathfrak{L}_{Ψ} (so it is uniform on $\mathfrak{E}_{\mathbf{f},\infty}^{u;w}$, for some $\mathbf{f} \ge \mathbf{p}_2^{\mathrm{aug}}$)
- By the linearity estimate, **r** is εN -linear with probability $1 C \exp(-c\varepsilon^2 N)$
- So, if **r** exits the *x*-axis at $(\Upsilon, 0)$, then $\mathbb{P}[|\Upsilon \Omega| < \varepsilon N] \ge 1 C \exp(-c\varepsilon^2 N)$
- By monotonicity, we may couple $\mathbf{p}_1^{\text{aug}}$ and \mathbf{r} so that $\mathbf{p}_1^{\text{aug}} \leq \mathbf{r}$ almost surely
- Thus, $\mathbb{P}[\Theta \leq \Omega + \varepsilon N] \geq \mathbb{P}[\Upsilon \leq \Omega + \varepsilon N] \geq 1 C \exp(-c\varepsilon^2 N)$

Comparing \mathbf{p}_1 and $\mathbf{p}_2^{\text{aug}}$

Seek to stochastically bound \mathbf{p}_1 approximately above / below by $\mathbf{p}_2^{\mathrm{aug}}$

Couple \mathcal{E} and \mathcal{E}_{Ψ} in two ways, such that \mathbf{p}_1 is (weakly) below $\mathbf{p}_2^{\mathrm{aug}}$ under the first and \mathbf{p}_2 is (weakly) above $\mathbf{p}_2^{\mathrm{aug}}$ under the second

2
$$\mathbb{P}\left[\operatorname{dist}(\mathbf{p}_1, \mathbf{p}_2) < \varepsilon N\right] > 1 - C \exp(-c\varepsilon^2 N)$$

First part follows from monotonicity

- View top path in \mathcal{E}_{Ψ} as barrier: Remaining paths below correpsonding \mathcal{E} paths
 - Monotonicity implies coupling so that $p_2 \leq p_2^{\mathrm{aug}}$
- View bottom path in \mathcal{E}_{Ψ} as barrier: Remaining paths above \mathcal{E} paths
 - Montonocity implies coupling so that $\mathbf{p}_2 \geq \mathbf{p}_2^{\mathrm{aug}}$

Proximity of \mathbf{p}_1 and \mathbf{p}_2

Seek to show $\mathbb{P}\left[\operatorname{dist}(\mathbf{p}_1, \mathbf{p}_2) < \varepsilon N\right] > 1 - C \exp(-c\varepsilon^2 N)$

- **()** Show \mathbf{p}_1 and \mathbf{p}_2 are likely "approximately convex"
- **2** Show approximate convexity of \mathbf{p}_2 likely implies $dist(\mathbf{p}_1, \mathbf{p}_2) < \varepsilon N$

Let h = h(p) denote the convex envelope of any path p
Let Ξ = Ξ(p) = max_{v∈p} dist (v, h(p))

Define event $\mathcal{E} = \mathcal{E}(\varepsilon) = \{ \Xi(\mathbf{p}_1) < \varepsilon N \} \cap \{ \Xi(\mathbf{p}_2) < \varepsilon N \}$

• On \mathcal{E} , the paths \mathbf{p}_1 and \mathbf{p}_2 are "approximately convex"

• Show
$$\mathbb{P}[\mathcal{E}] > 1 - C \exp(-c\varepsilon^2 N)$$

Show
$$\mathbb{P}[\mathbf{1}_{\mathcal{E}} \operatorname{dist}(\mathbf{p}_1, \mathbf{p}_2) < 5\varepsilon N] > 1 - \exp(C\varepsilon^2 N)$$

Convexity Implies Proximity

Set $\mathbf{h}_1 = \mathbf{h}(\mathbf{p}_1)$ and $\mathbf{h}_2 = \mathbf{h}(\mathbf{p}_2)$

• On convexity event \mathcal{E} , we have $\operatorname{dist}(\mathbf{p}_1, \mathbf{p}_2) \leq \operatorname{dist}(\mathbf{h}_1, \mathbf{h}_2) + 2\varepsilon N$ Suffices to show $\mathbb{P}[\mathbf{1}_{\mathcal{E}} \operatorname{dist}(\mathbf{h}_1, \mathbf{h}_2) < 3\varepsilon N] > 1 - C \exp(c\varepsilon^2 N)$

• Fix $v_1 \in \mathbf{h}_1$, and let $v_2 \in \mathbf{h}_2$ be such that $\operatorname{dist}(v_1, v_2) = \operatorname{dist}(v_1, \mathbf{h}_2)$ Must show $\mathbb{P}[\mathbf{1}_{\mathcal{E}} \operatorname{dist}(v_1, v_2) < \varepsilon N] > 1 - C \exp(-c\varepsilon^2 N)$

- Let ℓ be line through v_2 orthogonal to line through (v_1, v_2)
- Convexity of h_2 implies $h_2 \subset NW(\ell)$ (is northwest of ℓ)
 - Assume for simplicity that $p_2 \subset \text{NW}(\ell)$
 - Holds after shifting ℓ down by εN , since $\mathbf{1}_{\mathcal{E}} \operatorname{dist}(\mathbf{p}_2, \mathbf{h}_2) < \varepsilon N$ and $\mathbf{h}_2 \subset \operatorname{NW}(\ell)$

Convexity Implies Proximity

Must show that $\mathbb{P}[\mathbf{1}_{\mathcal{E}} \operatorname{dist}(v_1, v_2) < \varepsilon N] > 1 - C \exp(-c\varepsilon^2 N)$

- Condition on **p**₂ and on **p**₁ outside of interval (*u*, *w*)
 - Gibbs property: Then **p**₁ is a uniformly random path starting at *u* and ending at *w*, and conditioned to lie above **p**₂
- Montonicity: Replacing \mathbf{p}_2 with ℓ only "pushes v down"
- Linearity: With probability $1 C \exp(-c\varepsilon^2 N)$, a uniformly random path from *u* to *w* conditioned to stay below ℓ does not go below ℓ by more than εN
- Shows $\mathbb{P}[\mathbf{1}_{\mathcal{E}} \operatorname{dist}(v_1, v_2) < \varepsilon N] > 1 C \exp(-c\varepsilon^2 N)$

Summary

- Established arctic boundaries for domain-wall ice model
- Proceeds by justification of tangent method of Colomo-Sportiello
 - Involves inserting an augmented path in the domain
 - Path should be tangent to arctic boundary
 - Refined partition function asymptotics identify trajectory of the path
 - Integrability only involved through understanding these asymptotics
 - Full solvability / determinantality of the model not required
- Proof involves analysis of non-intersecting path ensembles (reminiscent of ideas used by Corwin–Hammond in very different context)
 - Prove approximate tangency of additional path to arctic boundary of augmented ensemble
 - Gibbs property
 - Monotonicity
 - Prove additional path does not substantially affect arctic boundary
 - Convexity (and Gibbs property / monotonicity)