Global asymptotics of particle systems at high temperature

Cesar Cuenca
Harvard University

May 23, 2022 @ Galileo Galilei Institute, Florence, Italy

Based on work w/ Florent Benaych-Georges \& Vadim E. Gorin

Plan of the talk

Eigenvalues of Gaussian beta ensemble (G $\beta \mathrm{E}$)

General theorems and proof ideas

Further questions
γ-Semifree Probability
Discrete Ensembles

Plan of the talk

Eigenvalues of Gaussian beta ensemble (G $\beta \mathrm{E}$)

General theorems and proof ideas

Further questions
γ-Semifree Probability
Discrete Ensembles

Gaussian Unitary Ensemble (GUE)

GUE_{N} is the probability measure on $\mathcal{H}_{N}:=\left\{A \in \mathbb{C}^{N \times N} \mid A^{*}=A\right\}$ on Hermitian matrices with density

$$
\frac{1}{\mathcal{Z}_{N}} \cdot \exp \left\{-\frac{\operatorname{Trace}\left(A^{2}\right)}{2}\right\} \prod_{i=1}^{N} d a_{i i} \prod_{1 \leq i<j \leq N} d \Re a_{i j} d \Im a_{i j}
$$

Gaussian Unitary Ensemble (GUE)

GUE_{N} is the probability measure on $\mathcal{H}_{N}:=\left\{A \in \mathbb{C}^{N \times N} \mid A^{*}=A\right\}$ on Hermitian matrices with density

$$
\frac{1}{\mathcal{Z}_{N}} \cdot \exp \left\{-\frac{\operatorname{Trace}\left(A^{2}\right)}{2}\right\} \prod_{i=1}^{N} d a_{i i} \prod_{1 \leq i<j \leq N} d \Re a_{i j} d \Im a_{i j}
$$

If $A \in \mathcal{H}_{N}$ is GUE_{N}-distributed, its real eigenvalues

$$
x_{1} \leq x_{2} \leq \cdots \leq x_{N-1} \leq x_{N}
$$

are random and their distribution is:

$$
\operatorname{Eigen}_{N}^{(2)}\left(x_{1}, \cdots, x_{N}\right)=\frac{1}{Z_{N}^{(2)}} \prod_{1 \leq i<j \leq N}\left(x_{i}-x_{j}\right)^{2} \prod_{k=1}^{N} e^{-\frac{1}{2} x_{k}^{2}}
$$

We call this the GUE (eigenvalue) density.

Global asymptotics of Hermite N-particle ensemble

Consider the empirical measures
$\mu_{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\frac{x_{i}}{\sqrt{N}}}, \quad$ where $x_{1} \leq \cdots \leq x_{N}$ is $\operatorname{Eigen}_{N}^{(2)}$-distributed.

Theorem (Wigner '55)
The (random) probability measures μ_{N} converge weakly, in probability, to the semicircle distribution - with density

$$
s(t):=\mathbf{1}_{\{-2 \leq t \leq 2\}} \cdot \frac{\sqrt{4-t^{2}}}{2 \pi}
$$

i.e. for any $f \in C_{b}(\mathbb{R})$:

$$
\lim _{N \rightarrow \infty} \mathbb{E}_{x_{1} \leq \cdots \leq x_{N}}\left[\int_{\mathbb{R}} f(t) \mu_{N}(d t)\right]=\int_{-2}^{2} f(t) s(t) d t
$$

Global asymptotics of GUE eigenvalues

Consider the empirical measures
$\mu_{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\frac{x_{i}}{\sqrt{N}}}, \quad$ where $x_{1} \leq \cdots \leq x_{N}$ is $\operatorname{Eigen}_{N}^{(2)}$-distributed.
Theorem (Wigner '55)
The (random) probability measures μ_{N} converge weakly, in probability, to the semicircle distribution - with density

$$
s(t):=\mathbf{1}_{\{-2 \leq t \leq 2\}} \cdot \frac{\sqrt{4-t^{2}}}{2 \pi}
$$

Eigenvalues of Gaussian Beta Ensemble (G $\beta \mathrm{E}$)

For general $\beta \geq 0$, we study the random N-tuple

$$
x_{1} \leq x_{2} \leq \cdots \leq x_{N-1} \leq x_{N}
$$

determined by the probability measure

$$
\operatorname{Eigen}_{N}^{(\beta)}\left(x_{1}, \cdots, x_{N}\right)=\frac{1}{Z_{N}^{(\beta)}} \prod_{1 \leq i<j \leq N}\left(x_{i}-x_{j}\right)^{\beta} \prod_{k=1}^{N} e^{-\frac{1}{2} x_{k}^{2}}
$$

Eigenvalues of Gaussian Beta Ensemble (G $\beta \mathrm{E}$)

For general $\beta \geq 0$, we study the random N-tuple

$$
x_{1} \leq x_{2} \leq \cdots \leq x_{N-1} \leq x_{N}
$$

determined by the probability measure

$$
\operatorname{Eigen}_{N}^{(\beta)}\left(x_{1}, \cdots, x_{N}\right)=\frac{1}{Z_{N}^{(\beta)}} \prod_{1 \leq i<j \leq N}\left(x_{i}-x_{j}\right)^{\beta} \prod_{k=1}^{N} e^{-\frac{1}{2} x_{k}^{2}}
$$

Why?

1. For $\beta=1 \& 4$, it's the eigenvalue density of Gaussian Orthogonal Ensemble (GOE) \& Gaussian Symplectic Ensemble (GSE).
2. Relation with particle systems in physics (log-gas);
β is called the inverse temperature.

Global asymptotics of $\mathrm{G} \beta \mathrm{E}$ eigenvalues

Nothing changes if $\beta>0$ is fixed: as $N \rightarrow \infty$, then
$\mu_{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\frac{x_{i}}{\sqrt{N}}}, \quad$ where $x_{1} \leq \cdots \leq x_{N}$ is Eigen ${ }_{N}^{(\beta)}$-distributed, converge weakly, in probability, to a semicircle distribution.

Global asymptotics of $\mathrm{G} \beta \mathrm{E}$ eigenvalues

Nothing changes if $\beta>0$ is fixed: as $N \rightarrow \infty$, then

$$
\mu_{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\frac{x_{i}}{\sqrt{N}}}, \quad \text { where } x_{1} \leq \cdots \leq x_{N} \text { is Eigen }{ }_{N}^{(\beta)} \text {-distributed, }
$$

converge weakly, in probability, to a semicircle distribution.
The outlier $\beta=0$ case: In this case, the density is

$$
\operatorname{Eigen}_{N}^{(\beta=0)}\left(x_{1}, \cdots, x_{N}\right)=\frac{1}{(2 \pi)^{N / 2}} \prod_{k=1}^{N} e^{-\frac{1}{2} x_{k}^{2}}
$$

Then x_{1}, \cdots, x_{N} are i.i.d. standard Gaussian r.v.'s. Hence if $\beta=0, N \rightarrow \infty \Longrightarrow \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}} \longrightarrow$ Gaussian distribution.

Global asymptotics of $\mathrm{G} \beta \mathrm{E}$ eigenvalues at high temp

Theorem (Duy, Shirai '15 \& Benaych-Georges, C, Gorin '22)
Consider the empirical measures
$\mu_{N, \beta}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\frac{x_{i}}{N}}, \quad$ where $x_{1} \leq \cdots \leq x_{N}$ is Eigen ${ }_{N}^{(\beta)}$-distributed.
In the limit

$$
N \rightarrow \infty, \quad \beta \rightarrow 0^{+}, \quad \frac{N \beta}{2} \rightarrow \gamma \in(0, \infty),
$$

the measures $\mu_{N, \beta}$ converge weakly, in probability, to certain probability measure μ_{γ} which can be completely described.

Global asymptotics of Hermite N-particle β-ensemble at high temperature

For a perfect matching $\pi=\left\{B_{1}, \cdots, B_{n}\right\}$ of $\{1, \cdots, 2 n\}$, draw the arc diagram. Define $\operatorname{roof}(\pi):=\#$ roofs with no intersections.

$$
\pi=\{1,6\} \sqcup\{2,7\} \sqcup\{3,8\} \sqcup\{4,5\} .
$$

Global asymptotics of Hermite N-particle β-ensemble at high temperature

For a perfect matching $\pi=\left\{B_{1}, \cdots, B_{n}\right\}$ of $\{1, \cdots, 2 n\}$, draw the arc diagram. Define $\operatorname{roof}(\pi):=\#$ roofs with no intersections.

$$
\begin{gathered}
\pi=\{1,6\} \sqcup\{2,7\} \sqcup\{3,8\} \sqcup\{4,5\} . \\
\operatorname{roof}(\pi)=2 .
\end{gathered}
$$

Global asymptotics of Hermite N-particle β-ensemble at high temperature

For a perfect matching $\pi=\left\{B_{1}, \cdots, B_{n}\right\}$ of $\{1, \cdots, 2 n\}$, draw the arc diagram. Define $\operatorname{roof}(\pi):=\#$ roofs with no intersections.

Theorem (Benaych-Georges, Cuenca, Gorin '22)
The limiting measure μ_{γ} is uniquely determined by its moments:

$$
\int_{-\infty}^{\infty} x^{k} \mu_{\gamma}(d x)=\sum_{\text {perfect matchings } \pi \text { of }\{1, \cdots, k\}}(\gamma+1)^{r o o f(\pi)}
$$

Limits as $\gamma \rightarrow 0^{+}$and $\gamma \rightarrow \infty$

$$
\int_{-\infty}^{\infty} x^{k} \mu_{\gamma}(d x)=\sum_{\text {perfect matchings } \pi \text { of }\{1, \cdots, k\}}(\gamma+1)^{\text {roof }(\pi)}
$$

Limits as $\gamma \rightarrow 0^{+}$and $\gamma \rightarrow \infty$

$$
\int_{-\infty}^{\infty} x^{k} \mu_{\gamma}(d x)=\sum_{\text {perfect matchings } \pi \text { of }\{1, \cdots, k\}}(\gamma+1)^{\operatorname{roof}(\pi)}
$$

Comments:

1. If k is odd, the k-th moment of μ_{γ} is zero.
2. If $k=2 n$ and $\gamma \rightarrow 0^{+}$, then

RHS $=$ number of perfect matchings of $\{1,2, \cdots, 2 n\}$

$$
=(2 n-1)(2 n-3) \cdots 3 \cdot 1
$$

3. If $k=2 n$ and $\gamma \rightarrow \infty$ (need to divide by γ^{n} first), then RHS $=$ number of noncrossing perfect matchings of $\{1,2, \cdots, 2 n\}$

$$
=\text { Catalan number } C_{n}=\frac{(2 n)!}{(n+1)!n!}
$$

Plan of the talk

Eigenvalues of Gaussian beta ensemble (G $\beta \mathrm{E}$)

General theorems and proof ideas

Further questions
γ-Semifree Probability
Discrete Ensembles

Recall: Levy's continuity theorem

Let $\left\{\mu_{N}\right\}_{N \geq 1}, \mu$ be probability measures on \mathbb{R}^{d}. The Fourier transform of μ_{N} is

$$
\begin{aligned}
& \phi_{N}(\overrightarrow{\mathbf{x}}):=\int_{\mathbb{R}^{d}} K(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}) \mu_{N}(\overrightarrow{\mathbf{a}}) . \\
& \text { where } \overrightarrow{\mathbf{x}}:=\left(x_{1}, \cdots, x_{d}\right), \overrightarrow{\mathbf{a}}:=\left(a_{1}, \cdots, a_{d}\right) \\
& K(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}):=e^{i\left(a_{1} x_{1}+\cdots+a_{d} x_{d}\right)}
\end{aligned}
$$

Similarly, let $\phi(\overrightarrow{\mathbf{x}})$ be the Fourier transform of μ.

Recall: Levy's continuity theorem

Let $\left\{\mu_{N}\right\}_{N \geq 1}, \mu$ be probability measures on \mathbb{R}^{d}. The Fourier transform of μ_{N} is

$$
\phi_{N}(\overrightarrow{\mathbf{x}}):=\int_{\mathbb{R}^{d}} K(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}) \mu_{N}(\overrightarrow{\mathbf{a}})
$$

where $\overrightarrow{\mathbf{x}}:=\left(x_{1}, \cdots, x_{d}\right), \overrightarrow{\mathbf{a}}:=\left(a_{1}, \cdots, a_{d}\right)$,

$$
K(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}):=e^{i\left(a_{1} x_{1}+\cdots+a_{d} x_{d}\right)} .
$$

Similarly, let $\phi(\overrightarrow{\mathbf{x}})$ be the Fourier transform of μ.
Theorem

$$
\mu_{N} \rightarrow \mu \text { weakly } \Longleftrightarrow \phi_{N}(\overrightarrow{\mathbf{x}}) \rightarrow \phi(\overrightarrow{\mathbf{x}}) \text { pointwise. }
$$

Intuition: At least when all measures are compactly supported, use

$$
\mathbb{E}_{\mu}\left[a_{1}^{k_{1}} \cdots a_{d}^{k_{d}}\right]=\left.\frac{\partial^{k_{1}+\cdots+k_{d}}}{\partial x_{1}^{k_{1}} \cdots x_{d}^{k_{d}}} \phi(\overrightarrow{\mathbf{x}})\right|_{x_{1}=\cdots=x_{d}=0}
$$

Multivariate Bessel functions

Theorem (Benaych-Georges, Cuenca, Gorin '22)
(Abbreviated) LLN for empirical measures of $x_{1} \leq \cdots \leq x_{N} \Longleftrightarrow$ Taylor coeffs of the logarithm of β-Fourier transforms converge.

Multivariate Bessel functions

Theorem (Benaych-Georges, Cuenca, Gorin '22)
(Abbreviated) LLN for empirical measures of $x_{1} \leq \cdots \leq x_{N} \Longleftrightarrow$ Taylor coeffs of the logarithm of β-Fourier transforms converge.

Our β-Fourier transform $=$ Dunkl transform relies on a kernel $K(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}})$ that depends on β, the multivariate Bessel function:

$$
K(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}})=B_{N}^{(\beta)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}), \quad \beta \geq 0
$$

defined from the (differential, symmetrized) Dunkl operators $P_{k}^{(\beta)}$:

$$
B_{N}^{(\beta)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}) \text { is symmetric in the variables } x_{1}, \cdots, x_{N}
$$

$$
B_{N}^{(\beta)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{0}})=1
$$

$$
P_{k}^{(\beta)} B_{N}^{(\beta)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}})=\left(\sum_{i=1}^{N} a_{i}^{k}\right) \cdot B_{N}^{(\beta)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}), \forall k=1,2, \cdots
$$

How to think of the Bessel generating function?

- When $\beta=0$:

$$
\begin{aligned}
P_{k}^{(\beta=0)} & =\left(\frac{\partial}{\partial x_{1}}\right)^{k}+\cdots+\left(\frac{\partial}{\partial x_{N}}\right)^{k} \\
B_{N}^{(\beta=0)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}) & =\frac{1}{N!} \sum_{\sigma \in S(N)} e^{a_{1} x_{\sigma(1)}+\cdots+a_{N} x_{\sigma(N)}} .
\end{aligned}
$$

How to think of the Bessel generating function?

- When $\beta=0$:

$$
\begin{aligned}
P_{k}^{(\beta=0)} & =\left(\frac{\partial}{\partial x_{1}}\right)^{k}+\cdots+\left(\frac{\partial}{\partial x_{N}}\right)^{k}, \\
B_{N}^{(\beta=0)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}) & =\frac{1}{N!} \sum_{\sigma \in S(N)} e^{a_{1} x_{\sigma(1)}+\cdots+a_{N} x_{\sigma(N)}} .
\end{aligned}
$$

- When $\beta=2$: they are the HCIZ, spherical integral

$$
B_{N}^{(\beta=2)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}):=\int_{U(N)} e^{\operatorname{Trace}\left(U D(\overrightarrow{\mathbf{a}}) U^{*} D(\overrightarrow{\mathrm{x}})\right)} \operatorname{Haar}(d U)
$$

where $D(\overrightarrow{\mathbf{a}}):=\operatorname{diag}(\overrightarrow{\mathbf{a}}), D(\overrightarrow{\mathbf{x}}):=\operatorname{diag}(\overrightarrow{\mathbf{x}})$; the integral is over the Haar probability measure on $U(N)$.

- When $\beta=1,4: B_{N}^{(\beta=1)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}), B_{N}^{(\beta=4)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}})$ are spherical integrals over orthogonal and symplectic compact groups.

How to think of the Bessel generating function?

- When $\beta=0$:

$$
\begin{aligned}
P_{k}^{(\beta=0)} & =\left(\frac{\partial}{\partial x_{1}}\right)^{k}+\cdots+\left(\frac{\partial}{\partial x_{N}}\right)^{k} \\
B_{N}^{(\beta=0)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}) & =\frac{1}{N!} \sum_{\sigma \in S(N)} e^{a_{1} x_{\sigma(1)}+\cdots+a_{N} x_{\sigma(N)}} .
\end{aligned}
$$

- When $\beta=2$: they are the HClZ , spherical integral

$$
B_{N}^{(\beta=2)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}):=\int_{U(N)} e^{\operatorname{Trace}\left(U D(\overrightarrow{\mathbf{a}}) U^{*} D(\overrightarrow{\mathrm{x}})\right)} \operatorname{Haar}(d U)
$$

where $D(\overrightarrow{\mathbf{a}}):=\operatorname{diag}(\overrightarrow{\mathbf{a}}), D(\overrightarrow{\mathbf{x}}):=\operatorname{diag}(\overrightarrow{\mathbf{x}})$; the integral is over the Haar probability measure on $U(N)$.

- When $\beta=1,4: B_{N}^{(\beta=1)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}), B_{N}^{(\beta=4)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}})$ are spherical integrals over orthogonal and symplectic compact groups.
- They are limits of Macdonald polynomials.

Our general approach

The idea is to apply moment / operator method to the β-Fourier transform

$$
G_{N}^{(\beta)}(\overrightarrow{\mathbf{x}}):=\int_{\mathbb{R}^{N}} B_{N}^{(\beta)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}) \mathrm{d} \mu_{N}(\overrightarrow{\mathbf{a}})
$$

by analogy with classical theory

$$
\begin{aligned}
e^{i\left(a_{1} x_{1}+\cdots+a_{N} x_{N}\right)} & \longrightarrow B_{N}^{(\beta)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}) \\
\frac{\partial^{k}}{\partial x_{1}^{k}}+\cdots+\frac{\partial^{k}}{\partial x_{N}^{k}} & \longrightarrow P_{k}^{(\beta)}
\end{aligned}
$$

Our general approach

The idea is to apply moment / operator method to the β-Fourier transform

$$
G_{N}^{(\beta)}(\overrightarrow{\mathbf{x}}):=\int_{\mathbb{R}^{N}} B_{N}^{(\beta)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}) \mathrm{d} \mu_{N}(\overrightarrow{\mathbf{a}})
$$

by analogy with classical theory

$$
\begin{aligned}
e^{i\left(a_{1} x_{1}+\cdots+a_{N} x_{N}\right)} & \longrightarrow B_{N}^{(\beta)}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{x}}) \\
\frac{\partial^{k}}{\partial x_{1}^{k}}+\cdots+\frac{\partial^{k}}{\partial x_{N}^{k}} & \longrightarrow P_{k}^{(\beta)}
\end{aligned}
$$

$$
\left.\prod_{i=1}^{s} P_{k_{i}}^{(\beta)}\left(G_{N}^{(\beta)}\right)\right|_{x_{1}=\cdots=x_{N}=0}=\mathbb{E}_{\mu_{N}}\left[\prod_{i=1}^{s}\left(a_{1}^{k_{i}}+\cdots+a_{N}^{k_{i}}\right)\right]
$$

Our general approach

$$
\left.\prod_{i=1}^{s} P_{k_{i}}^{(\beta)}\left(e^{\ln \left(G_{N}^{\beta}\right)}\right)\right|_{x_{1}=\cdots=x_{N}=0}=\mathbb{E}_{\mu_{N}}\left[\prod_{i=1}^{s}\left(a_{1}^{k_{i}}+\cdots+a_{N}^{k_{i}}\right)\right]
$$

These equations link:
analytic info of $G_{N}^{(\beta)} \leftrightarrow$ probabilistic info of μ_{N}.
In the high temperature limit, they link:
limits of Taylor coeffs of $\ln \left(G_{N}^{(\beta)}\right) \leftrightarrow$ limits of moments of μ_{N}.

The first main theorem

$$
\left.\prod_{i=1}^{s} P_{k_{i}}^{(\beta)}\left(e^{\ln \left(G_{N}^{\beta}\right)}\right)\right|_{x_{1}=\cdots=x_{N}=0}=\mathbb{E}_{\mu_{N}}\left[\prod_{i=1}^{s}\left(a_{1}^{k_{i}}+\cdots+a_{N}^{k_{i}}\right)\right]
$$

Theorem (Benaych-Georges, Cuenca, Gorin '22)

$L L N \Longleftrightarrow$ limits of Taylor coeffs of $\operatorname{In}\left(G_{N}^{(\beta)}\right)$, i.e. TFAE:
(1) There exist m_{1}, m_{2}, \cdots such that
$\lim _{N \rightarrow \infty} \mathbb{E}_{\mu_{N}}\left[N^{-s} \prod_{i=1}^{s}\left(a_{1}^{k_{i}}+\cdots+a_{N}^{k_{i}}\right)\right]=\prod_{i=1}^{s} m_{k_{i}}$.
(2) There exist $\kappa_{1}, \kappa_{2}, \cdots$ such that

$$
\left.\lim _{N \rightarrow \infty, \beta \rightarrow 0^{+}} \frac{1}{\ell!} \cdot \frac{\partial^{\ell}}{\partial x_{1}^{\ell}} \ln \left(G_{N}^{(\beta)}\right)\right|_{x_{1}=\cdots=x_{N}=0}=\kappa_{\ell} / \ell, \quad \forall \ell \in \mathbb{Z}_{\geq 1},
$$

$\left.\lim _{N \rightarrow \infty, \beta \rightarrow 0^{+}} \frac{\partial^{r}}{\partial x_{i_{1}} \cdots \partial x_{i_{r}}} \ln \left(G_{N}^{(\beta)}\right)\right|_{x_{1}=\cdots=x_{N}=0}=0, i f\left|\left\{i_{1}, \cdots, i_{r}\right\}\right| \geq 2$.
The moments of the limiting measure in the LLN are m_{1}, m_{2}, \cdots.

Moments of the limiting measure

In example of eigenvalues of $\mathrm{G} \beta \mathrm{E}_{N}$, the β-Fourier Transform is:

$$
G_{N}^{(\beta)}\left(x_{1}, \cdots, x_{N}\right)=\exp \left(\frac{x_{1}^{2}+\cdots+x_{N}^{2}}{2}\right)
$$

so $\kappa_{2}=1 ; \kappa_{1}=\kappa_{3}=\kappa_{4}=\cdots=0$.
What are the corresponding moments m_{k} 's?

Moments of the limiting measure

In example of eigenvalues of $\mathrm{G} \beta \mathrm{E}_{N}$, the β-Fourier Transform is:

$$
G_{N}^{(\beta)}\left(x_{1}, \cdots, x_{N}\right)=\exp \left(\frac{x_{1}^{2}+\cdots+x_{N}^{2}}{2}\right)
$$

so $\kappa_{2}=1 ; \kappa_{1}=\kappa_{3}=\kappa_{4}=\cdots=0$.
What are the corresponding moments m_{k} 's?
The first few relations m_{k} 's $\leftrightarrow \kappa_{\ell}$'s are:

$$
\begin{aligned}
& m_{1}=\kappa_{1} \\
& m_{2}=(\gamma+1) \kappa_{2}+\kappa_{1}^{2} \\
& m_{3}=(\gamma+1)(\gamma+2) \kappa_{3}+3(\gamma+1) \kappa_{2} \kappa_{1}+\kappa_{1}^{3} \\
& m_{4}=(\gamma+1)(\gamma+2)(\gamma+3) \kappa_{4}+(\gamma+1)(2 \gamma+3) \kappa_{2}^{2}+\cdots
\end{aligned}
$$

The second main theorem of $[B G-C-G]$ is an explicit formula.

The second main theorem: moments of limiting measure For a set partition $\pi=\left\{B_{1}, \cdots, B_{m}\right\}$ of $\{1,2, \cdots, k\}$, draw the arc diagram of π and define the weight

$$
W_{\gamma}(\pi):=\prod_{i=1}^{m} \frac{p(i)!\left(\gamma+\left|B_{i}\right|-1\right)!}{(\gamma+p(i))!} .
$$

$$
\{1, \cdots, 8\}=\{1,3,5,7\} \sqcup\{2,4,8\} \sqcup\{6\} .
$$

$p(i):=\#$ roofs of B_{i} with some intersection.
$\left|B_{i}\right|:=$ size of the block B_{i}.

The second main theorem: moments of limiting measure For a set partition $\pi=\left\{B_{1}, \cdots, B_{m}\right\}$ of $\{1,2, \cdots, k\}$, draw the arc diagram of π and define the weight

$$
W_{\gamma}(\pi):=\prod_{i=1}^{m} \frac{p(i)!\left(\gamma+\left|B_{i}\right|-1\right)!}{(\gamma+p(i))!}
$$

$$
\{1, \cdots, 8\}=\{1,3,5,7\} \sqcup\{2,4,8\} \sqcup\{6\}
$$

$p(i):=\#$ roofs of B_{i} with some intersection.
$\left|B_{i}\right|:=$ size of the block B_{i}.
$p(1)=p(3)=0, p(2)=2 \Rightarrow W_{\gamma}(\pi)=2(\gamma+1)(\gamma+2)(\gamma+3)$.

The second main theorem: moments of limiting measure For a set partition $\pi=\left\{B_{1}, \cdots, B_{m}\right\}$ of $\{1,2, \cdots, k\}$, draw the arc diagram of π and define the weight

$$
W_{\gamma}(\pi):=\prod_{i=1}^{m} \frac{p(i)!\left(\gamma+\left|B_{i}\right|-1\right)!}{(\gamma+p(i))!}
$$

$$
\{1, \cdots, 8\}=\{1,3,5,7\} \sqcup\{2,4,8\} \sqcup\{6\} .
$$

$p(i):=\#$ roofs of B_{i} with some intersection.
$\left|B_{i}\right|:=$ size of the block B_{i}.

$$
p(1)=p(3)=0, p(2)=2 \Rightarrow W_{\gamma}(\pi)=2(\gamma+1)(\gamma+2)(\gamma+3) .
$$

Theorem (Benaych-Georges, Cuenca, Gorin '22)

$$
m_{k}=\sum_{\text {set partitions } \pi \text { of }\{1, \cdots, k\}} W_{\gamma}(\pi) \prod_{B \in \pi} \kappa_{|B|}, \quad \forall k \geq 1 .
$$

Plan of the talk

Eigenvalues of Gaussian beta ensemble ($\mathrm{G} \beta \mathrm{E}$)

General theorems and proof ideas

Further questions
γ-Semifree Probability
Discrete Ensembles

γ-cumulants and γ-semifree probability

The relation m_{k} 's $\leftrightarrow \kappa_{\ell}$'s generalizes the relation between moments \leftrightarrow cumulants of a probability measure (at $\gamma=0$), and between moments \leftrightarrow free cumulants (at $\gamma=\infty$).

We call κ_{ℓ} 's the γ-semifree cumulants.
Problem
Study the γ-Semifree Probability.

γ-cumulants and γ-semifree probability

The relation m_{k} 's $\leftrightarrow \kappa_{\ell}$'s generalizes the relation between moments \leftrightarrow cumulants of a probability measure (at $\gamma=0$), and between moments \leftrightarrow free cumulants (at $\gamma=\infty$).

We call κ_{ℓ} 's the γ-semifree cumulants.

Problem

Study the γ-Semifree Probability.
For example,

1. Conjecture: Given probability measures μ, ν of compact support, and γ-semifree cumulants $\left\{\kappa_{\ell}^{\mu}\right\}_{\ell \geq 1},\left\{\kappa_{\ell}^{\nu}\right\}_{\ell \geq 1}$, there exists a unique probability measure $\mu \boxplus_{\gamma} \nu$ of compact support such that

$$
\kappa_{\ell}^{\mu \boxplus \gamma \nu}=\kappa_{\ell}^{\mu}+\kappa_{\ell}^{\mu}, \quad \ell \geq 1 .
$$

This would be the γ-Semifree Convolution of μ and ν.

γ-cumulants and γ-semifree probability

2. Assuming the conjecture, classify the infinitely divisible laws with respect to the operation of γ-semifree convolution.
3. Theorem ($\mathbf{B G} \mathbf{- C - G} \mathbf{~ ' 2 2) . ~ (L L N ~ a n d ~ c o n n e c t i o n ~ t o ~ R M T) ~}$ If the empirical measures of $\left(a_{1} \leq \cdots \leq a_{N}\right),\left(b_{1} \leq \cdots \leq b_{N}\right)$ converge weakly to μ, ν, then the eigenvalues ($c_{1} \leq \cdots \leq c_{N}$) of the β-sum $A_{N}+{ }_{\beta} B_{N}$ converge in the high temperature regime to the γ-semifree convolution $\mu \boxplus_{\gamma} \nu$.
etc, etc.

Plan of the talk

Eigenvalues of Gaussian beta ensemble ($\mathrm{G} \beta \mathrm{E}$)

General theorems and proof ideas

Further questions
γ-Semifree Probability
Discrete Ensembles

Discrete ensembles: The Jack-Plancherel measure

Begin with the Burnside identity for symmetric group S_{N} :

$$
\sum_{\lambda \in \mathbb{Y}_{N}} \operatorname{dim}(\lambda)^{2}=N!
$$

where λ ranges over partitions of size N :

$$
\mathbb{Y}_{N}:=\left\{\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0\right) \text { s.t. }|\lambda|=\sum_{i \geq 1} \lambda_{i}=N\right\}
$$

$\operatorname{dim}(\lambda)=\frac{N!}{\prod_{s \in \lambda}(a(s)+I(s)+1)}=\operatorname{dim}$. of an irred. S_{N}-module.

Discrete ensembles: The Jack-Plancherel measure

Begin with the Burnside identity for symmetric group S_{N} :

$$
\sum_{\lambda \in \mathbb{Y}_{N}} \operatorname{dim}(\lambda)^{2}=N!
$$

where λ ranges over partitions of size N :

$$
\mathbb{Y}_{N}:=\left\{\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0\right) \text { s.t. }|\lambda|=\sum_{i \geq 1} \lambda_{i}=N\right\}
$$

$\operatorname{dim}(\lambda)=\frac{N!}{\prod_{s \in \lambda}(a(s)+I(s)+1)}=$ dim. of an irred. $S_{N^{-}}$module.
Definition
The Plancherel measure is the measure on \mathbb{Y}_{N} is:

$$
\operatorname{Planch}^{(1)}(\lambda):=\frac{\operatorname{dim}(\lambda)^{2}}{N!}=\frac{N!}{\prod_{s \in \lambda}(a(s)+l(s)+1)^{2}} .
$$

Limits of the Plancherel measure

Young diagram of partition $(5,4,1)$

Large $\frac{1}{\sqrt{N}}$-normalized partition

Limits of the Plancherel measure

Young diagram of partition $(5,4,1)$

Large $\frac{1}{\sqrt{N}}$-normalized partition

Theorem (Vershik-Kerov '77 \& Logan-Shepp '77)
The $\frac{1}{\sqrt{N}}$-normalized profiles of Planch $^{(1)}$-distributed partitions $\lambda \in \mathbb{Y}_{N}$ converge as $N \rightarrow \infty$ to

$$
\omega(u):= \begin{cases}\frac{2}{\pi}\left(u \arcsin (u / 2)+\sqrt{4-u^{2}}\right), & \text { if }|u| \leq 2 \\ |u|, & \text { if }|u| \geq 2\end{cases}
$$

The α-Jack-Plancherel measure

Definition

The α-Jack-Plancherel measure is the measure on \mathbb{Y}_{N} is:

$$
\operatorname{Planch}^{(\alpha)}(\lambda):=\frac{\alpha^{N} \cdot N!}{\prod_{s \in \lambda}(\alpha a(s)+I(s)+1)(\alpha a(s)+I(s)+\alpha)} .
$$

This is a " β-ensemble-type measure" with $\beta=2 / \alpha$.
Use α-anisotropic partitions with boxes $\sqrt{\alpha} \times(1 / \sqrt{\alpha})$.

The α-Jack-Plancherel measure

Definition

The α-Jack-Plancherel measure is the measure on \mathbb{Y}_{N} is:

$$
\text { Planch }^{(\alpha)}(\lambda):=\frac{\alpha^{N} \cdot N!}{\prod_{s \in \lambda}(\alpha a(s)+I(s)+1)(\alpha a(s)+I(s)+\alpha)} .
$$

This is a " β-ensemble-type measure" with $\beta=2 / \alpha$.
Use α-anisotropic partitions with boxes $\sqrt{\alpha} \times(1 / \sqrt{\alpha})$.

α-anisotropic partition $(4,3,1)$ with $\alpha=1 / 4$

High temp limits of α-Jack-Plancherel measure

Theorem (Dolega-Sniady '19)
The $\frac{1}{\sqrt{N}}$-normalized profiles of α-anisotropic Planch ${ }^{(\alpha)}$-distributed partitions $\lambda \in \mathbb{Y}_{N}$ converge in the high temperature regime

$$
N \rightarrow \infty, \quad \alpha \rightarrow \infty, \quad N / \alpha \rightarrow g \in(0, \infty)
$$

to certain limit shape $\omega_{g}: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ such that $\omega_{g}(u)=|u|$, whenever $|u| \gg 0$.

High temp limits of α-Jack-Plancherel measure

Theorem (Dolega-Sniady '19)
The $\frac{1}{\sqrt{N}}$-normalized profiles of α-anisotropic Planch ${ }^{(\alpha)}$-distributed partitions $\lambda \in \mathbb{Y}_{N}$ converge in the high temperature regime

$$
N \rightarrow \infty, \quad \alpha \rightarrow \infty, \quad N / \alpha \rightarrow g \in(0, \infty)
$$

to certain limit shape $\omega_{g}: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ such that $\omega_{g}(u)=|u|$, whenever $|u| \gg 0$.

But what is the limit shape ω_{g} ?
Where are the beautiful formulas for the moments?
[Cuenca, Dolega, Moll '22+] to the rescue!

High temp limits of α-Jack-Plancherel measure

 The process is a bit indirect: consider the Markov-Krein correspondence $\omega \rightarrow \nu_{\omega}$, which makes an association:shapes $\omega: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0} \longrightarrow$ probability measures $K[\omega]$ on \mathbb{R}.
Our heroes are the Kerov's transition measures $K\left[\omega_{g}\right]$

High temp limits of α-Jack-Plancherel measure
The process is a bit indirect: consider the Markov-Krein correspondence $\omega \rightarrow \nu_{\omega}$, which makes an association:

$$
\text { shapes } \omega: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0} \longrightarrow \text { probability measures } K[\omega] \text { on } \mathbb{R} \text {. }
$$

Our heroes are the Kerov's transition measures $K\left[\omega_{g}\right]$
Theorem (Cuenca-Dolega-Moll '22+)
The limit shapes ω_{g} are uniquely determined by the moments of $\nu_{\omega_{g}}$, which have nice combinatorial formulas:

$$
\int_{\mathbb{R}} x^{m} K\left[\omega_{g}\right](d x)=\sum_{\text {Motzkin paths } P \text { of length } m} g^{-\left|H^{\rightarrow}(P)\right| / 2} \cdot \prod_{j \geq 0} j^{\left|H^{\rightarrow}(P ; j)\right|}
$$

Thank you for your attention)

$$
\begin{aligned}
& \operatorname{roof}(\pi)=2 \\
& W_{\gamma}(\pi)=(\gamma+1)^{\operatorname{rof}(\pi)}=(\gamma+1)^{2} \\
& p(1)=0, p(2)=2, p(3)=0 \\
& W_{\gamma}(\pi)=\prod_{i=1}^{m} \frac{p(i)!\left(\gamma+\left|B_{i}\right|-1\right)!}{(\gamma+p(i))!}=2(\gamma+1)(\gamma+2)(\gamma+3)
\end{aligned}
$$

