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Gaussian Unitary Ensemble (GUE)

GUEN is the probability measure on HN := {A ∈ CN×N | A∗ = A}
on Hermitian matrices with density

1

ZN
· exp

{
−Trace(A2)

2

} N∏
i=1

daii
∏

1≤i<j≤N
d<aij d=aij .

If A ∈ HN is GUEN -distributed, its real eigenvalues
x1 ≤ x2 ≤ · · · ≤ xN−1 ≤ xN

are random and their distribution is:

Eigen
(2)
N (x1, · · · , xN) =

1

Z
(2)
N

∏
1≤i<j≤N

(xi − xj)
2

N∏
k=1

e−
1
2
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k

We call this the GUE (eigenvalue) density.
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Global asymptotics of Hermite N–particle ensemble

Consider the empirical measures

µN :=
1

N

N∑
i=1

δ xi√
N

, where x1 ≤ · · · ≤ xN is Eigen
(2)
N –distributed.

Theorem (Wigner ’55)

The (random) probability measures µN converge weakly, in
probability, to the semicircle distribution — with density

s(t) := 1{−2≤t≤2} ·
√

4− t2

2π
,

i.e. for any f ∈ Cb(R):

lim
N→∞

E x1≤···≤xN

[∫
R
f (t)µN(dt)

]
=

∫ 2

−2
f (t)s(t) dt.



Global asymptotics of GUE eigenvalues
Consider the empirical measures
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Eigenvalues of Gaussian Beta Ensemble (GβE)

For general β ≥ 0, we study the random N-tuple
x1 ≤ x2 ≤ · · · ≤ xN−1 ≤ xN

determined by the probability measure

Eigen
(β)
N (x1, · · · , xN) =

1

Z
(β)
N

∏
1≤i<j≤N

(xi − xj)
β

N∏
k=1

e−
1
2
x2
k

Why?

1. For β = 1 & 4, it’s the eigenvalue density of Gaussian Orthogonal
Ensemble (GOE) & Gaussian Symplectic Ensemble (GSE).

2. Relation with particle systems in physics (log-gas);
β is called the inverse temperature.
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Global asymptotics of GβE eigenvalues

Nothing changes if β > 0 is fixed: as N →∞, then

µN :=
1

N

N∑
i=1

δ xi√
N

, where x1 ≤ · · · ≤ xN is Eigen
(β)
N –distributed,

converge weakly, in probability, to a semicircle distribution.

The outlier β = 0 case: In this case, the density is

Eigen
(β=0)
N (x1, · · · , xN) =

1

(2π)N/2

N∏
k=1

e−
1
2
x2
k .

Then x1, · · · , xN are i.i.d. standard Gaussian r.v.’s. Hence
if β = 0, N →∞ =⇒ 1

N

∑N
i=1 δxi −→ Gaussian distribution.
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Global asymptotics of GβE eigenvalues at high temp

Theorem (Duy, Shirai ’15 & Benaych-Georges, C, Gorin ’22)

Consider the empirical measures

µN,β :=
1

N

N∑
i=1

δ xi
N
, where x1 ≤ · · · ≤ xN is Eigen

(β)
N –distributed.

In the limit

N →∞, β → 0+,
Nβ

2
→ γ ∈ (0,∞),

the measures µN,β converge weakly, in probability, to certain
probability measure µγ which can be completely described.



Global asymptotics of Hermite N–particle β–ensemble at
high temperature

For a perfect matching π = {B1, · · · ,Bn} of {1, · · · , 2n}, draw the
arc diagram. Define roof(π) := # roofs with no intersections.

1 2 3 4 5 6 7 8

π = {1, 6} t {2, 7} t {3, 8} t {4, 5}.

roof(π) = 2.

Theorem (Benaych-Georges, Cuenca, Gorin ’22)

The limiting measure µγ is uniquely determined by its moments:∫ ∞
−∞

xk µγ(dx) =
∑

perfect matchings π of {1,··· ,k}

(γ + 1)roof(π).
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Limits as γ → 0+ and γ →∞

∫ ∞
−∞

xk µγ(dx) =
∑

perfect matchings π of {1,··· ,k}

(γ + 1)roof(π)

Comments:

1. If k is odd, the k-th moment of µγ is zero.

2. If k = 2n and γ → 0+, then
RHS = number of perfect matchings of {1, 2, · · · , 2n}

= (2n − 1)(2n − 3) · · · 3 · 1.

3. If k = 2n and γ →∞ (need to divide by γn first), then
RHS = number of noncrossing perfect matchings of {1, 2, · · · , 2n}

= Catalan number Cn =
(2n)!

(n + 1)!n!
.
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Recall: Levy’s continuity theorem
Let {µN}N≥1, µ be probability measures on Rd .
The Fourier transform of µN is

φN(~x) :=

∫
Rd

K (~a,~x)µN(~a).

where ~x := (x1, · · · , xd), ~a := (a1, · · · , ad),

K (~a,~x) := e i(a1x1+···+adxd ).

Similarly, let φ(~x) be the Fourier transform of µ.

Theorem

µN → µ weakly⇐⇒ φN(~x)→ φ(~x) pointwise.

Intuition: At least when all measures are compactly supported, use

Eµ
[
ak1

1 · · · a
kd
d

]
=

∂k1+···+kd

∂xk1
1 · · · x

kd
d

φ(~x)

∣∣∣∣∣
x1=···=xd=0

.
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Multivariate Bessel functions

Theorem (Benaych-Georges, Cuenca, Gorin ’22)

(Abbreviated) LLN for empirical measures of x1 ≤ · · · ≤ xN ⇐⇒
Taylor coeffs of the logarithm of β-Fourier transforms converge.

Our β-Fourier transform = Dunkl transform relies on a kernel
K (~a,~x) that depends on β, the multivariate Bessel function:

K (~a,~x) = B
(β)
N (~a,~x), β ≥ 0

defined from the (differential, symmetrized) Dunkl operators P
(β)
k :

B
(β)
N (~a,~x) is symmetric in the variables x1, · · · , xN ,

B
(β)
N (~a,~0) = 1,

P
(β)
k B

(β)
N (~a,~x) =

(
N∑
i=1

aki

)
·B(β)

N (~a,~x), ∀k = 1, 2, · · · .
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How to think of the Bessel generating function?

When β = 0:

P
(β=0)
k =

(
∂

∂x1

)k
+ · · ·+

(
∂

∂xN

)k
,

B
(β=0)
N (~a,~x) =

1

N!

∑
σ∈S(N)

ea1xσ(1)+···+aNxσ(N) .

When β = 2: they are the HCIZ, spherical integral

B
(β=2)
N (~a,~x) :=

∫
U(N)

eTrace(UD(~a)U∗D(~x))Haar(dU),

where D(~a) := diag(~a), D(~x) := diag(~x); the integral is over
the Haar probability measure on U(N).

When β = 1, 4: B
(β=1)
N (~a,~x), B

(β=4)
N (~a,~x) are spherical

integrals over orthogonal and symplectic compact groups.

They are limits of Macdonald polynomials.
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Our general approach

The idea is to apply moment / operator method to the β-Fourier
transform

G
(β)
N (~x) :=

∫
RN

B
(β)
N (~a,~x) dµN(~a),

by analogy with classical theory

e i(a1x1+···+aNxN) −→ B
(β)
N (~a,~x)

∂k

∂xk1
+ · · ·+ ∂k

∂xkN
−→ P

(β)
k

s∏
i=1

P
(β)
ki

(
G

(β)
N

)∣∣∣∣∣
x1=···=xN=0

= EµN

[
s∏

i=1

(aki1 + · · ·+ akiN )

]
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Our general approach

s∏
i=1

P
(β)
ki

(
e ln(Gβ

N )
)∣∣∣∣∣

x1=···=xN=0

= EµN

[
s∏

i=1

(aki1 + · · ·+ akiN )

]

These equations link:

analytic info of G
(β)
N ↔ probabilistic info of µN .

In the high temperature limit, they link:

limits of Taylor coeffs of ln(G
(β)
N ) ↔ limits of moments of µN .



The first main theorem

s∏
i=1

P
(β)
ki

(
e ln(Gβ

N )
)∣∣∣∣∣

x1=···=xN=0

= EµN

[
s∏

i=1

(aki1 + · · ·+ akiN )

]

Theorem (Benaych-Georges, Cuenca, Gorin ’22)

LLN ⇐⇒ limits of Taylor coeffs of ln(G
(β)
N ), i.e. TFAE:

(1) There exist m1,m2, · · · such that

limN→∞ EµN
[
N−s

∏s
i=1 (aki1 + · · ·+ akiN )

]
=
∏s

i=1 mki .

(2) There exist κ1, κ2, · · · such that

lim
N→∞, β→0+

1

`!
· ∂

`

∂x`1
ln (G

(β)
N )

∣∣∣∣
x1=···=xN=0

= κ`/`, ∀ ` ∈ Z≥1,

lim
N→∞, β→0+

∂r

∂xi1 · · · ∂xir
ln (G

(β)
N )

∣∣∣∣
x1=···=xN=0

= 0, if |{i1, · · · , ir}| ≥ 2.

The moments of the limiting measure in the LLN are m1,m2, · · · .



Moments of the limiting measure

In example of eigenvalues of GβEN , the β-Fourier Transform is:

G
(β)
N (x1, · · · , xN) = exp

(
x2

1 + · · ·+ x2
N

2

)
,

so κ2 = 1; κ1 = κ3 = κ4 = · · · = 0.

What are the corresponding moments mk ’s?

The first few relations mk ’s ↔ κ`’s are:

m1 = κ1

m2 = (γ + 1)κ2 + κ2
1

m3 = (γ + 1)(γ + 2)κ3 + 3(γ + 1)κ2κ1 + κ3
1

m4 = (γ + 1)(γ + 2)(γ + 3)κ4 + (γ + 1)(2γ + 3)κ2
2 + · · ·

· · ·
The second main theorem of [BG – C – G] is an explicit formula.
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The second main theorem: moments of limiting measure
For a set partition π = {B1, · · · ,Bm} of {1, 2, · · · , k}, draw the
arc diagram of π and define the weight

Wγ(π) :=
m∏
i=1

p(i)! (γ + |Bi | − 1)!

(γ + p(i))!
.

1 2 3 4 5 6 7 8

{1, · · · , 8} = {1, 3, 5, 7} t {2, 4, 8} t {6}.
p(i) := # roofs of Bi with some intersection.
|Bi | := size of the block Bi .

p(1) = p(3) = 0, p(2) = 2⇒Wγ(π) = 2(γ + 1)(γ + 2)(γ + 3).

Theorem (Benaych-Georges, Cuenca, Gorin ’22)

mk =
∑

set partitions π of {1,··· ,k}

Wγ(π)
∏
B∈π

κ|B|, ∀ k ≥ 1.
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γ-cumulants and γ-semifree probability

The relation mk ’s ↔ κ`’s generalizes the relation between
moments ↔ cumulants of a probability measure (at γ = 0), and
between moments ↔ free cumulants (at γ =∞).

We call κ`’s the γ-semifree cumulants.

Problem

Study the γ-Semifree Probability.

For example,

1. Conjecture: Given probability measures µ, ν of compact
support, and γ-semifree cumulants {κµ` }`≥1, {κν` }`≥1, there exists
a unique probability measure µ�γ ν of compact support such that

κ
µ�γν
` = κµ` + κµ` , ` ≥ 1.

This would be the γ-Semifree Convolution of µ and ν.
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γ-cumulants and γ-semifree probability

2. Assuming the conjecture, classify the infinitely divisible laws
with respect to the operation of γ-semifree convolution.

3. Theorem (BG – C – G ’22). (LLN and connection to RMT)
If the empirical measures of (a1 ≤ · · · ≤ aN), (b1 ≤ · · · ≤ bN)
converge weakly to µ, ν, then the eigenvalues (c1 ≤ · · · ≤ cN) of
the β-sum AN +β BN converge in the high temperature regime to
the γ-semifree convolution µ�γ ν.

etc, etc.
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Discrete ensembles: The Jack-Plancherel measure

Begin with the Burnside identity for symmetric group SN :∑
λ∈YN

dim(λ)2 = N!,

where λ ranges over partitions of size N:

YN := {λ = (λ1 ≥ λ2 ≥ · · · ≥ 0) s. t. |λ| =
∑
i≥1

λi = N},

dim(λ) =
N!∏

s∈λ(a(s) + l(s) + 1)
= dim. of an irred. SN -module.

Definition

The Plancherel measure is the measure on YN is:

Planch(1)(λ) :=
dim(λ)2

N!
=

N!∏
s∈λ(a(s) + l(s) + 1)2

.
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Limits of the Plancherel measure

Young diagram of partition (5, 4, 1) Large 1√
N

-normalized partition

Theorem (Vershik-Kerov ’77 & Logan-Shepp ’77)

The 1√
N

–normalized profiles of Planch(1)–distributed partitions

λ ∈ YN converge as N →∞ to

ω(u) :=

{
2
π (u arcsin(u/2) +

√
4− u2), if |u| ≤ 2,

|u|, if |u| ≥ 2.
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The α-Jack-Plancherel measure

Definition

The α-Jack-Plancherel measure is the measure on YN is:

Planch(α)(λ) :=
αN · N!∏

s∈λ(αa(s) + l(s) + 1)(αa(s) + l(s) + α)
.

This is a “β-ensemble-type measure” with β = 2/α.
Use α-anisotropic partitions with boxes

√
α× (1/

√
α).

α-anisotropic partition (4, 3, 1) with α = 1/4

Image taken from [Dolega-Sniady, Gaussian fluctuations of Jack-deformed random Young diagrams, PTRF ’19].



The α-Jack-Plancherel measure

Definition

The α-Jack-Plancherel measure is the measure on YN is:

Planch(α)(λ) :=
αN · N!∏

s∈λ(αa(s) + l(s) + 1)(αa(s) + l(s) + α)
.

This is a “β-ensemble-type measure” with β = 2/α.
Use α-anisotropic partitions with boxes

√
α× (1/

√
α).

α-anisotropic partition (4, 3, 1) with α = 1/4

Image taken from [Dolega-Sniady, Gaussian fluctuations of Jack-deformed random Young diagrams, PTRF ’19].



High temp limits of α-Jack-Plancherel measure

Theorem (Dolega-Sniady ’19)

The 1√
N

-normalized profiles of α-anisotropic Planch(α)-distributed

partitions λ ∈ YN converge in the high temperature regime

N →∞, α→∞, N/α→ g ∈ (0,∞),

to certain limit shape ωg : R→ R≥0 such that ωg (u) = |u|,
whenever |u| � 0.

But what is the limit shape ωg?

Where are the beautiful formulas for the moments?

[Cuenca, Dolega, Moll ’22+] to the rescue!
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High temp limits of α-Jack-Plancherel measure
The process is a bit indirect: consider the Markov-Krein
correspondence ω → νω, which makes an association:

shapes ω : R→ R≥0 −→ probability measures K [ω] on R.

Our heroes are the Kerov’s transition measures K [ωg ]

Theorem (Cuenca-Dolega-Moll ’22+)

The limit shapes ωg are uniquely determined by the moments of
νωg , which have nice combinatorial formulas:∫
R
xm K [ωg ](dx) =

∑
Motzkin paths P of length m

g−|H
→(P)|/2 ·

∏
j≥0

j |H
→(P; j)|.

Image taken from Wolfram MathWorld - Motzkin number
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Thank you for your attention)

1 2 3 4 5 6 7 8

roof(π) = 2
Wγ(π) = (γ + 1)roof(π) = (γ + 1)2

1 2 3 4 5 6 7 8

p(1) = 0, p(2) = 2, p(3) = 0

Wγ(π) =
∏m

i=1
p(i)! (γ+|Bi |−1)!

(γ+p(i))! = 2(γ + 1)(γ + 2)(γ + 3)
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