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Eigenvalues of Gaussian beta ensemble (GSE)



Gaussian Unitary Ensemble (GUE)

GUEy is the probability measure on Hy := {A € CN*N | A* = A}
on Hermitian matrices with density
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Gaussian Unitary Ensemble (GUE)

GUEy is the probability measure on Hy := {A € CN*N | A* = A}
on Hermitian matrices with density

1 Trace
Zn - ex p{ }H daj; H d¥Rta; d3aj;.

1<i<j<N

If A€ Hpy is GUEp-distributed, its real eigenvalues
X1 < xo < S xy—1 S Xy

are random and their distribution is:

1
Eigen(,i)(xl,--- JXN) = —75v H )? H e 2%

(2)
ZN" 1<idi<n k=1

We call this the GUE (eigenvalue) density.



Global asymptotics of Hermite N—particle ensemble

Consider the empirical measures

N
1 N ) T

BN = — g 0 , wherex; <--- < xp is Eigeny’—distributed.
N — W

Theorem (Wigner '55)

The (random) probability measures i converge weakly, in
probability, to the semicircle distribution — with density
(=1 o
s(t) :=1,_ —

{—2<t<2} o
i.e. for any f € Cp(R):

im Eyccn, [ /R f(t)uN(dt)] - / © H(0)s(t) dt.
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Global asymptotics of GUE eigenvalues
Consider the empirical measures

N
1 N O
BN = — g 0x , where x; <---<xpyis Eigen,,’—distributed.
N = N

Theorem (Wigner '55)

The (random) probability measures p converge weakly, in
probability, to the semicircle distribution — with density

V4 —t?

s(t) == 1 a<r<oy - Ton




Eigenvalues of Gaussian Beta Ensemble (GSE)

For general 5 > 0, we study the random N-tuple
xp <X < - S XN-1 S XN

determined by the probability measure

Eigen

(8)
N

(Xla"' 7XN)

1
ZI(VB) 1<

[T Gomx]] e

i<j<N

N

k=1

X




Eigenvalues of Gaussian Beta Ensemble (GSE)

For general 8 > 0, we study the random N-tuple
X1 <xp < - S Xy—1 S XN

determined by the probability measure

N

. 1 1,

Eigen,)(x1, -+, xw) = ) [T i—x)[]e> ¢
2y’ 1<i<j<n k=1

Why?
1. For 8 =1&4, it's the eigenvalue density of Gaussian Orthogonal
Ensemble (GOE) & Gaussian Symplectic Ensemble (GSE).

2. Relation with particle systems in physics (log-gas);
[ is called the inverse temperature.



Global asymptotics of GSE eigenvalues

Nothing changes if 5 > 0 is fixed: as N — oo, then
N
1 e (B) g
BN = — Zéi’ where x; < -+ < xpy is Eigeny, ’—distributed,
N — N

converge weakly, in probability, to a semicircle distribution.



Global asymptotics of GSE eigenvalues

Nothing changes if 5 > 0 is fixed: as N — oo, then
N
1 e (B) e
BN = — Zéi’ where x; < -+ < xpy is Eigeny, ’—distributed,
N — N

converge weakly, in probability, to a semicircle distribution.
The outlier 8 = 0 case: In this case, the density is
N
_ 1 1.0
Ei en(ﬁ_o)x,---,x = e 2%,
o) = o 1

Then xq,--- ,xy are i.i.d. standard Gaussian r.v.'s. Hence
ifB=0 N—oc0= % Z,N:1 dx, —> Gaussian distribution.



Global asymptotics of GSE eigenvalues at high temp

Theorem (Duy, Shirai '15 & Benaych-Georges, C, Gorin '22)

Consider the empirical measures
N
1 — L
NG = N Z 6%, where x; < --- < xpn IS E/gengvﬁ)—dlstrlbuted.
i=1
In the limit

N
N—oo, B—0T, TB—WyG(O,oo),

the measures iy g converge weakly, in probability, to certain
probability measure ji.,, which can be completely described.




Global asymptotics of Hermite N—particle S—ensemble at

high temperature
For a perfect matching m = {Bx1,- -+, By} of {1,---,2n}, draw the
arc diagram. Define roof(7) := # roofs with no intersections.

1 2 3 4 5 6 7 8
7 ={1,6}U{2,7} U{3,8} L {4,5}.
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Global asymptotics of Hermite N—particle S—ensemble at

high temperature
For a perfect matching m = {Bx1,- -+, By} of {1,---,2n}, draw the
arc diagram. Define roof(7) := # roofs with no intersections.

1 2 3 4 5 6 7 8
7= {1,6} LI{2,7} U{3,8} U {4,5}.
roof(m) = 2.
Theorem (Benaych-Georges, Cuenca, Gorin '22)

The limiting measure [ is uniquely determined by its moments:

| *ma) = 3 (7 + 1)oof),

e perfect matchings 7 of {1,--- ,k}



Limits as v — 0" and v — ¢

| e > (3 + 1))

perfect matchings = of {1,--- ,k}




Limits as v — 0" and v — ¢

| e > (3 + 1)

perfect matchings = of {1,--- ,k}

Comments:
1. If k is odd, the k-th moment of 1., is zero.
2. If k=2nand v — 07, then
RHS = number of perfect matchings of {1,2,---,2n}
= (@n-1)2n—3)---3-1.

3. If k =2n and v — oo (need to divide by 4" first), then
RHS = number of noncrossing perfect matchings of {1,2,--- 2n}

(2n)!

= Catalan number Cn = m
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General theorems and proof ideas



Recall: Levy's continuity theorem

Let {un}n>1, 4 be probability measures on R€.
The Fourier transform of pp is

on®) = [ K(ER) @),

where X := (x1,- -+ ,x4), @:= (a1, , aq),

K(a,x) = ei(axit+adaxq)
,X) .

Similarly, let ¢(X) be the Fourier transform of .



Recall: Levy's continuity theorem

Let {un}n>1, 4 be probability measures on R€.
The Fourier transform of pp is

on®) = [ K(ER) @),

where X := (x1,- -+ ,x4), @:= (a1, , aq),
K(3,R) e ellormttan)
Similarly, let ¢(X) be the Fourier transform of .

Theorem

un — o weakly <= ¢n(X) — ¢(X) pointwise.

Intuition: At least when all measures are compactly supported, use

kit kg
ki ka | _ 9 4
By [31 "'ad} = —— & 9(X)
aX 1 .. -X d
1 d X1:"':Xd:0



Multivariate Bessel functions

Theorem (Benaych-Georges, Cuenca, Gorin '22)

(Abbreviated) LLN for empirical measures of x; < -+ < xp <=
Taylor coeffs of the logarithm of 3-Fourier transforms converge.




Multivariate Bessel functions

Theorem (Benaych-Georges, Cuenca, Gorin '22)

(Abbreviated) LLN for empirical measures of x; < -+ < xp <=
Taylor coeffs of the logarithm of 3-Fourier transforms converge.

Our -Fourier transform = Dunkl transform relies on a kernel
K(a, X) that depends on 3, the multivariate Bessel function:

K(ax) = B{(@x), B>0

defined from the (differential, symmetrized) Dunkl operators P,((ﬂ):

B(’B)(a X) is symmetric in the variables x, -+, xp,

B\ (a,0) = 1,

(B)B(B) (Za> (5)*~) Vk=1,2,---.



How to think of the Bessel generating function?

k k
B=0) _ (0 (9
P = <3X1> - +<3XN> ’

B(B 0)(—* ) — Z e31X + +aNX0.(N)'
. UES(N)

@ When 8 =0:



How to think of the Bessel generating function?
@ When 8 =0:

k k
B=0) _ (O . (9
Po 7= (3X1> " +<3XN> ’

B(B 0) —* —» — Z ealx + —‘,—aNX( N)
. JGS(N)

@ When 8 = 2: they are the HCIZ, spherical integral
BI(V/B:2)(57 )—(’) — eTrace(UD(é’)U* D(’?))Haar(dU),
U(n)
where D(a) := diag(a), D(X) := diag(X); the integral is over
the Haar probability measure on U(N).
o When 8 =1, 4 BY=Y(a, %), B="(a,%) are spherical
integrals over orthogonal and symplectic compact groups.



How to think of the Bessel generating function?
@ When 8 =0:

k k
(3=0) _ (0 9
Po 7= (3X1> " +<3XN> ’

B(B 0) 3 —» _ Z %o (1 1+ tanXo (v Ny
. JGS(N)

@ When 8 = 2: they are the HCIZ, spherical integral
BI(V/B:2)(57 )—(’) — eTrace(UD(é’)U* D(’?))Haar(dU),
U(n)
where D(a) := diag(a), D(X) := diag(X); the integral is over
the Haar probability measure on U(N).
o When 8 =1, 4 BY=Y(a, %), B="(a,%) are spherical
integrals over orthogonal and symplectic compact groups.

@ They are limits of Macdonald polynomials.



Our general approach

The idea is to apply moment / operator method to the S-Fourier
transform

6 (x) = /R B R) dun (@)
by analogy with classical theory
ei(axattanxn) BI(\IB)(av X)
ok ok

8X{‘+ +8x,’\‘, k



Our general approach

The idea is to apply moment / operator method to the S-Fourier
transform

G{(x) = / ) B\ (&, %) dun (),
by analogy with classical theoﬁfy
eiaxattanxy) __ BI(\IB)(57 %)
0 o ()

S b P
8X{‘ ax,’\‘, k

S

172 ()

i=1

s

ki ki

=Epy [H(al +--tay)
i=1

xy=--=xny=0




Our general approach

S

H P/Efﬁ) (eln(cﬁ)>

i=1

x1=+=xy=0

These equations link:
analytic info of G,(Vﬁ) +> probabilistic info of uy.

In the high temperature limit, they link:
limits of Taylor coeffs of In(G,(V’B)) +> limits of moments of .



The first main theorem

S
ki ki
H(al +-Fay)

i=1

1:11 P (enici))

x1=--=xny=0

Theorem (Benaych-Georges, Cuenca, Gorin '22)
LLN <= limits of Taylor coeffs ofln(G,(V’B)), ie. TFAE:

(1) There exist my, my, - - such that
imnv—soe By [N Ty (2 + -+ af)| =TTy mi.
(2) There exist k1, k2, -+ such that

im L. In(G{") = ke/l, VIEE Zsq,
N—so0, B—0+ o 6x1 e mxy =0 B
o (8) ol .
im % — 0, if [{i1,-- i)} > 2.
Nosou Bs0+ Oxi, -+ - Ox;, n(en) im0 it il 2

V.

The moments of the limiting measure in the LLN are my, mp, - --



Moments of the limiting measure

In example of eigenvalues of GBEy, the 8-Fourier Transform is:

2 2
X244 x
G/(vﬁ)(xl,'“ , XN) = exp (1 5 N) ,

soky =1, k1 =kzg=kg=---=0.

What are the corresponding moments my's?



Moments of the limiting measure

In example of eigenvalues of GBEy, the 8-Fourier Transform is:

2 2
X244 x
G/(\/B)(Xl,"' , XN) = exp (1 5 N) ,

soky =1, k1 =kzg=kg=---=0.
What are the corresponding moments my's?
The first few relations my's <> k¢'s are:
my = K1
= (y4 1)ko + K32
= (v4 1)(y +2)k3 + 3(y + 1) koK1 + &3
my = (7+ 1)(y +2)(y + 3)ka + (v + 1)(27 + 3)w3 +

The second main theorem of [BG — C — G] is an explicit formula.



The second main theorem: moments of limiting measure
For a set partition m = {By,- -, Bn} of {1,2,---  k}, draw the
arc diagram of 7 and define the weight
Hp (v +[Bi| =
(v + p(i)!

i=1

1 2 3 4 5 6 7 8

{1,---,8} ={1,3,5,7} u{2,4,8} L {6}.
p(i) := # roofs of B; with some intersection.
|Bi| := size of the block B;.




The second main theorem: moments of limiting measure
For a set partition m = {By,- -, Bn} of {1,2,---  k}, draw the
arc diagram of 7 and define the weight
H p(i)! (v +[Bi] —1)! .
7+ p(1))!

i=1

1 2 3 4 5 6 7 8

{1,---,8} ={1,3,5,7} u{2,4,8} L {6}.
p(i) := # roofs of B; with some intersection.
|Bi| := size of the block B;.

p(1) = p(3) = 0, p(2) = 2 = W, () = 2(y + 1)(7 +2)(y + 3).




The second main theorem: moments of limiting measure
For a set partition m = {By,- -, Bn} of {1,2,---  k}, draw the
arc diagram of 7 and define the weight
Hp (v +[Bi| =
(v + p(i)!

i=1

1 2 3 4 5 6 7 8

{1,---,8} ={1,3,5,7} u{2,4,8} L {6}.
p(i) := # roofs of B; with some intersection.
|Bi| := size of the block B;.

p(1) = p(3) = 0, p(2) = 2 = W, () = 2(y + 1)(7 +2)(y + 3).

Theorem (Benaych-Georges, Cuenca, Gorin '22)

my = Z W’y(ﬂ-)H”\B\’ szl

set partitions w of {1, ,k} Bew
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~v-cumulants and ~-semifree probability

The relation my's <> k;4's generalizes the relation between
moments <> cumulants of a probability measure (at v = 0), and
between moments <« free cumulants (at v = c0).

We call k¢'s the y-semifree cumulants.

Problem
Study the v-Semifree Probability.




~v-cumulants and ~-semifree probability

The relation my's <> k;4's generalizes the relation between
moments <> cumulants of a probability measure (at v = 0), and
between moments <« free cumulants (at v = c0).

We call k¢'s the y-semifree cumulants.

Problem
Study the v-Semifree Probability.

For example,

1. Conjecture: Given probability measures u, v of compact
support, and y-semifree cumulants {x} }s>1, {k} }¢>1, there exists
a unique probability measure ;1 B, v of compact support such that

pByy b
Ky =Ky +hry, £>1

This would be the y-Semifree Convolution of p and v.



~v-cumulants and ~-semifree probability

2. Assuming the conjecture, classify the infinitely divisible laws
with respect to the operation of y-semifree convolution.

3. Theorem (BG — C — G "22). (LLN and connection to RMT)
If the empirical measures of (a1 < --- < ap), (b1 < -+ < by)
converge weakly to p, v, then the eigenvalues (¢ < --- < cy) of
the B3-sum Ay +3 By converge in the high temperature regime to
the ~-semifree convolution B, v.

etc, etc.
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Discrete ensembles: The Jack-Plancherel measure

Begin with the Burnside identity for symmetric group Sy:

> dim(A)? =

AeYy
where A ranges over partitions of size N:
Yyi={A=M>X>>0) st [\[=> A=
i>1
N!
dim(\) = = dim. of an irred. Sy-module.

[Lsea(al(s) +1(s) + 1)



Discrete ensembles: The Jack-Plancherel measure

Begin with the Burnside identity for symmetric group Sy:

> dim(A)? =

AeYy
where A ranges over partitions of size N:
Yyi={A=M>X>>0) st [\[=> A=
i>1
dim(\) N di fanirred. S dul
im(\) = = dim. of an irred. Sy-module.
[Lsex(a(s) +1(s) +1)
Definition
The Plancherel measure is the measure on Yy is:
. 2 I
Planch® () = M) _ N

Nt [Lsea(a(s) +1(s) + 1)*




Limits of the Plancherel measure

-normalized partition

1
VN

Large

Young diagram of partition (5,4, 1)



Limits of the Plancherel measure

Young diagram of partition (5,4, 1) Large ﬁ—normalized partition

Theorem (Vershik-Kerov '77 & Logan-Shepp '77)

The ﬁ—norma/ized profiles of Planch®)—distributed partitions

A € Yy converge as N — oo to

w(u) = {ﬁ(u arcsin(u/2) + V4 — u?), if |u] <2,

|ul, if lu] > 2.




The a-Jack-Plancherel measure

Definition
The a-Jack-Plancherel measure is the measure on Yy is:
N
Planch(®)()) := a

[Lsex(ca(s) + I(s) + 1)(ca(s) + I(s) + )

This is a “-ensemble-type measure” with § = 2/a.
Use a-anisotropic partitions with boxes /o x (1/+/c).



The a-Jack-Plancherel measure

Definition
The a-Jack-Plancherel measure is the measure on Yy is:
N
Planch(®)()) := a

[Lsex(ca(s) + I(s) + 1)(ca(s) + I(s) + )

This is a “-ensemble-type measure” with § = 2/a.
Use a-anisotropic partitions with boxes /o x (1/+/c).

Y Y

a-anisotropic partition (4,3,1) with a = 1/4

Image taken from [Dolega-Sniady, Gaussian fluctuations of Jack-deformed random Young diagrams, PTRF '19].



High temp limits of a-Jack-Plancherel measure

Theorem (Dolega-Sniady '19)

The ﬁ—normalized profiles of a-anisotropic Planch(® -distributed
partitions A € Yy converge in the high temperature regime

N— oo, a—oo, N/a—ge(0,00),

to certain limit shape wg : R — R>q such that wg(u) = |u
whenever |u| > 0.

’




High temp limits of a-Jack-Plancherel measure

Theorem (Dolega-Sniady '19)

The ﬁ—normalized profiles of a-anisotropic Planch(® -distributed
partitions A € Yy converge in the high temperature regime

N— oo, a—oo, N/a—ge(0,00),

to certain limit shape wg : R — R>q such that wg(u) = |u
whenever |u| > 0.

’

But what is the limit shape wg?
Where are the beautiful formulas for the moments?
[Cuenca, Dolega, Moll '22+] to the rescue!



High temp limits of a-Jack-Plancherel measure
The process is a bit indirect: consider the Markov-Krein
correspondence w — v,,, which makes an association:

shapes w : R — R>q — probability measures K[w] on R.

Our heroes are the Kerov's transition measures K[wg]



High temp limits of a-Jack-Plancherel measure

The process is a bit indirect: consider the Markov-Krein
correspondence w — v, which makes an association:

shapes w : R — R>q — probability measures K[w] on R.

Our heroes are the Kerov's transition measures K[wg]

Theorem (Cuenca-Dolega-Moll '22+)

The limit shapes wg are uniquely determined by the moments of

Vwg, Which have nice combinatorial formulas:

/Rxm Kwg](dx) = 3 g I P2 T IR P,

Motzkin paths P of length m

j=0

y

ZAN

/TN

Image taken from Wolfram MathWorld - Motzkin number



Thank you for your attention)

1 2 3 4 5 6 7 8
roof(m) =2

Wy(m) = (v + 1)) = (v +1)?

1 2 3 4 5 6 7 8
020120
m

W () = TT7, Bt —
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