XXX chain: spinons, bound states and form factors.

N. Kitanine
IMB, Université de Bourgogne-Franche-Comté
Randomness, Integrability and Universality Florence
25 May 2022
in collaboration with: G. Kulkarni
SciPost Phys. 6, 076 (2019), arXiv:1903.09058
SIGMA 17, 112 (2021) arXiv: 2105.10244

- Typeset by FoilTEX - Galileo Galilei Institute, 2022

XXZ spin chain

Defined on a one-dimensional lattice with M sites, with Hamiltonian, $H=H^{(0)}-h S_{z}$,

$$
\begin{aligned}
& H^{(0)}=\sum_{m=1}^{M}\left\{\sigma_{m}^{x} \sigma_{m+1}^{x}+\sigma_{m}^{y} \sigma_{m+1}^{y}+\Delta\left(\sigma_{m}^{z} \sigma_{m+1}^{z}-1\right)\right\}, \\
& S_{z}=\frac{1}{2} \sum_{m=1}^{M} \sigma_{m}^{z}, \quad\left[H^{(0)}, S_{z}\right]=0 .
\end{aligned}
$$

$\sigma_{m}^{x, y, z}$ are the local spin operators (in the spin- $\frac{1}{2}$ representation) associated with each site m of the chain and $\Delta=\cos (\zeta), \zeta$ real or imaginary, is the anisotropy parameter, h external magnetic field; $h \geqslant 0$. We impose the periodic boundary conditions.

If $\Delta=1$ XXX Heisenberg chain (1928), solved by H. Bethe (1931).
For $h=0$ if $\Delta>1$ - massive antiferromagnetic regime, $|\Delta|<1$ - massless regime.

Form Factors

Form factors: matrix elements of local fields, local spin operators $\sigma_{m}^{a}, a=x, y, z$
$\left|\Psi_{g}\right\rangle$ the ground state of the model $\left|\Psi_{e}\right\rangle$ - an excited state
The most basic form factors

$$
\left|\mathcal{F}_{a}\left(\Psi_{e}\right)\right|^{2}=\frac{\left\langle\Psi_{g}\right| \sigma_{m}^{a}\left|\Psi_{e}\right\rangle\left\langle\Psi_{e}\right| \sigma_{m}^{a}\left|\Psi_{g}\right\rangle}{\left\langle\Psi_{g} \mid \Psi_{g}\right\rangle\left\langle\Psi_{e} \mid \Psi_{e}\right\rangle}
$$

Then more advanced questions can be studied like matrix elements of currents

- Integrable QFT - F. Smirnov 1992 bootstrap approach
- Massive XXZ, M. Jimbo and T. Miwa 1995 q-vertex operator approach
- General XXZ, N.K, J.M. Maillet, V. Terras, 1999 Algebraic Bethe ansatz approach

Massless models: computation of the correlation functions through the form factors seems to be a strange idea (at least). However the integrable systems are very special!

- Dynamical correlation functions at zero temperature:

$$
f_{a}(m, t)=\left\langle\sigma_{m+1}^{a}(t) \sigma_{1}^{a}(0)\right\rangle=\sum_{\Psi_{e}} \exp \left(i t \Delta E_{e}-i m \Delta p_{e}\right)\left|\mathcal{F}_{a}\left(\Psi_{e}\right)\right|^{2}
$$

Turns out to be an excellent tool of asymptotic analysis.

- Dynamical structure factors:

$$
S(k, \omega)=\int_{-\infty}^{\infty} d t \sum_{m=-\infty}^{\infty} f_{a}(m, t) \exp (i m k-i t \omega)
$$

Experimentally mesurable quantity : can be computed numerically from the form factors (J.S. Caux et al.) and asymptotically (edge exponents).

State of the art

Analytic computation of the form factors, two main approaches:

- q-vertex operator approach: Multiple integral representations for $h=0, \Delta \geqslant 1$, infinite chain.
- Advantages: explicit results for the simplest excited states
- Disadvantages: No access to the bound states, difficulties to get past 4 spinons

- Algebraic Bethe ansatz approach: Determinant representations for the finite chain, all the regimes.
- Advantages: Access to the asymptotics, all the regimes, possibility to treat bound states
- Disadvantages: Final results always contain Fredholm determinants, difficulties to take the $h=0$ limit.

The explicit results from the q-vertex operator approach were never reproduced from the ABA (with one exception: spontaneous magnetisation)

XXX chain: Algebraic Bethe ansatz

L.D. Faddeev, E.K. Sklyanin, L.A. Takhtajan (1979). Main object: quantum monodromy matrix:

$$
T_{a}(\lambda)=\left(\begin{array}{ll}
A(\lambda) & B(\lambda) \\
C(\lambda) & D(\lambda)
\end{array}\right)_{a} .
$$

- Diagonal elements \longrightarrow commuting conserved charges: transfer matrix

$$
\mathcal{T}(\lambda)=\operatorname{tr}_{a} T_{a}(\lambda)=A(\lambda)+D(\lambda), \quad[\mathcal{T}(\lambda), \mathcal{T}(\mu)]=0
$$

- Hamiltonian:

$$
H=\left.2 i \frac{\partial}{\partial \lambda} \log \mathcal{T}(\lambda)\right|_{\lambda=\frac{i}{2}}, \quad[H, \mathcal{T}(\lambda)]=0
$$

- Non-diagonal elements \longrightarrow creation/annihilation operators.

Bethe states

Off-shell Bethe states:

$$
\left|\Psi\left(\left\{\lambda_{1}, \ldots, \lambda_{N}\right\}\right)\right\rangle=B\left(\lambda_{1}\right) \ldots B\left(\lambda_{N}\right)|0\rangle, \quad|0\rangle=|\uparrow \uparrow \ldots \uparrow\rangle
$$

For any Bethe state we define Baxter polynomial and exponential counting function

$$
q(\lambda)=\prod_{j=1}^{N}\left(\lambda-\lambda_{j}\right), \quad \mathfrak{a}(\lambda)=\left(\frac{\lambda-\frac{i}{2}}{\lambda+\frac{i}{2}}\right)^{M} \frac{q(\lambda+i)}{q(\lambda-i)} .
$$

if the Bethe equations are satisfied (on-shell Bethe state)

$$
\mathfrak{a}\left(\lambda_{j}\right)+1=0, \quad j=1, \ldots N
$$

then it is an eigenstate of the transfer matrix and the Hamiltonian

$$
\mathcal{T}(\mu)|\Psi(\{\lambda\})\rangle=\tau(\mu)|\Psi(\{\lambda\})\rangle, \quad \tau(\mu)=(\mathfrak{a}(\mu)+1) \frac{q(\mu-i)}{q(\mu)}
$$

Multiplet structure

XXX chain: additional $\mathfrak{s u}(2)$ symmetry:

$$
\left[\mathcal{T}(\lambda), S_{a}\right]=0, \quad a=x, y, z
$$

On-shell Bethe vectors are $\mathfrak{s u}(2)$ highest weight vectors

$$
S_{+}|\Psi(\{\lambda\})\rangle=0, \quad S_{+}=\sum_{m=1}^{M} \sigma_{m}^{+} .
$$

For XXX there are solutions of Bethe equations only if $N \leqslant \frac{M}{2}$. For $N=\frac{M}{2}-k$ they generate $2 k+1$ multiplets
$\left|\Psi_{\ell}(\{\lambda\})\right\rangle=S_{-}^{\ell}|\Psi(\{\lambda\})\rangle, \quad \ell=0, \ldots, 2 k, \quad \mathcal{T}(\mu)\left|\Psi_{\ell}(\{\lambda\})\right\rangle=\tau(\mu)\left|\Psi_{\ell}(\{\lambda\})\right\rangle$
Multiplets can be seen as Bethe states with infinite rapidities $\lim _{\lambda \rightarrow \infty} \lambda B(\lambda)=S_{-}$.

The ground state

Ground state solution of the Bethe equations

$$
\mathfrak{a}\left(\lambda_{j}\right)+1=0, \quad j=1, \ldots N
$$

Yang and Yang 66: $N=\frac{M}{2}$ (singlet), all the roots are real. There is no holes i.e. all the real zeroes of $\mathfrak{a}_{g}(\lambda)+1$ are Bethe roots.

The ground state density

The Bethe roots fill the real line with some density in the thermodynamic limit:

$$
\frac{1}{M} \sum_{j=1}^{\frac{M}{2}} f\left(\lambda_{j}\right)=\int_{-\infty}^{\infty} f(\lambda) \rho(\lambda) d \lambda+o\left(\frac{1}{M}\right) .
$$

The ground state density solves the Lieb equation

$$
\rho_{g}(\lambda)+\frac{1}{2 \pi i} \int_{-\infty}^{\infty} K(\lambda-\mu) \rho_{g}(\mu) d \mu=\frac{1}{2 \pi i} t(\lambda-i / 2)
$$

Where $t(\lambda)=\frac{i}{\lambda(\lambda+i)}$ and $K(\lambda)=t(\lambda)+t(-\lambda)$.
The ground state solution:

$$
\rho(\lambda)=\frac{1}{2 \cosh (\pi \lambda)}
$$

Excitations: spinons

Holes (spinons) μ_{h} is not a Bethe root but:

$$
\mathfrak{a}_{e}\left(\mu_{h}\right)+1=0
$$

Number of holes n_{h} is always even, $N=\frac{M}{2}-\frac{n_{h}}{2}$ if all roots are real.

Complex roots: strings

Complex roots: if μ_{+}is one of the Bethe roots then $\mu_{-}=\bar{\mu}_{+}$is also a root (bound state). For a finite chain with large M the simplest configuration: 2-string:

$$
\mu_{+}=\mu_{c}+\frac{i}{2}-i \delta, \quad \mu_{-}=\mu_{c}-\frac{i}{2}+i \delta
$$

Where $\mu_{c} \in \mathbb{R}$ - string center and $\delta=O\left(M^{-\infty}\right)$ - string deviation.

Complex roots: close pairs and quartets

Destri, Lowenstein 1982; Babelon, de Vega, Viallet 1983.
Close pair: $\mu_{+}, \mu_{-}, \quad 0<\Im\left(\mu_{+}\right)<1$. Note: 2 -string is a close pair. Otherwise close pairs form quartets:

$$
\mu_{+}, \quad \mu_{-}+i-i \delta, \quad \mu_{+}-i+i \delta, \quad \mu_{-} .
$$

Complex roots: wide pairs

Wide pair: $\mu_{+}, \mu_{-}, \Im\left(\mu_{+}\right)>1$.

Excited states

We denote n_{h} - number of holes (even), n_{s} - number of 2-strings, n_{q} - number of quartets, n_{w} - number of wide pairs. Total number of Bethe roots

$$
N=\frac{M}{2}-\frac{n_{h}}{2}+n_{s}+2 n_{q}+2 n_{w}, \quad N \leqslant \frac{M}{2}
$$

Positions of holes $\mu_{h_{a}} \in \mathbb{R}, a=1, \ldots n_{h}$ (arbitrary in the thermodynamic limit). The position of complex roots are defined from the position of holes from the higher level Bethe equations Destri, Lowenstein 1982; Babelon, de Vega, Viallet 1983.

$$
\prod_{a=1}^{n_{h}} \frac{z_{j}-\mu_{h_{a}}-\frac{i}{2}}{z_{j}-\mu_{h_{a}}+\frac{i}{2}} \prod_{k=1}^{n_{c}} \frac{z_{j}-z_{k}+i}{z_{j}-z_{k}-i}+1=0, \quad j=1, \ldots, n_{c}
$$

here $n_{c}=n_{s}+2 n_{q}+2 n_{w}$,
$z_{j}=\mu_{c}$ for a 2 string
$z_{j}=\mu_{+}-\frac{i}{2}, \quad z_{j+1}=\mu_{-}+\frac{i}{2}$ for a quartet and a wide pair.

Energy and momentum

The complex roots don't influence energy and momentum, they depend only on hole positions (spinon rapidities).

$$
\begin{aligned}
& \Delta E \equiv E_{e}-E_{g}=\sum_{a=1}^{n_{h}} \varepsilon\left(\mu_{h_{a}}\right), \quad \varepsilon(\mu)=\frac{\pi}{2 \cosh \pi \mu}, \\
& \Delta P \equiv P_{e}-P_{g}=\sum_{a=1}^{n_{h}} p\left(\mu_{h_{a}}\right), \quad p(\mu)=\frac{\pi}{2}-\arctan (\sinh \pi \mu) .
\end{aligned}
$$

With fixed spinon rapidities $2^{n} h$-fold degeneracy.
Example: two-spinon sector, 4-fold degenerate:

- singlet with two holes $\mu_{h_{1}}, \mu_{h_{2}}$ and one 2-string $\mu_{c}+\frac{i}{2}, \mu_{c}-\frac{i}{2}$, higher level Bethe equations have only one solution: $\mu_{c}=\frac{1}{2}\left(\mu_{h_{1}}+\mu_{h_{2}}\right)$
- triplet with two holes $\mu_{h_{1}}, \mu_{h_{2}}$ and no complex roots

Form factors and multiplet structure

We want to compute:

$$
\left|\mathcal{F}_{z}\right|^{2}=\frac{\left\langle\Psi_{e}\right| \sigma_{m}^{z}\left|\Psi_{g}\right\rangle\left\langle\Psi_{g}\right| \sigma_{m}^{z}\left|\Psi_{e}\right\rangle}{\left\langle\Psi_{g} \mid \Psi_{g}\right\rangle\left\langle\Psi_{e} \mid \Psi_{e}\right\rangle}
$$

for XXX no difference between x, y or z form factors.
It is easy to see from $\sigma_{m}^{z}=\left[S^{+}, \sigma_{m}^{-}\right]$that there are non-trivial form factors only for the triplet states $\left(N=\frac{M}{2}-1\right)$ and

$$
\begin{aligned}
\left\langle\Psi_{e_{1}}\right| \sigma_{m}^{z}\left|\Psi_{g}\right\rangle & =-2\left\langle\Psi_{e_{0}}\right| \sigma_{m}^{+}\left|\Psi_{g}\right\rangle \\
\left\langle\Psi_{g}\right| \sigma_{m}^{z}\left|\Psi_{e_{1}}\right\rangle & =\left\langle\Psi_{g}\right| \sigma_{m}^{+}\left|\Psi_{e_{2}}\right\rangle \\
\left\langle\Psi_{e_{1}} \mid \Psi_{e_{1}}\right\rangle & =2\left\langle\Psi_{e_{0}} \mid \Psi_{e_{0}}\right\rangle
\end{aligned}
$$

Form factors and inverse problem

Quantum inverse problem: local operators in terms of the monodromy matrix elements N.K., J.M. Maillet and V. Terras 1999:

$$
\begin{aligned}
\sigma_{m}^{z} & =\mathcal{T}^{m-1}\left(\frac{i}{2}\right)\left\{A\left(\frac{i}{2}\right)-D\left(\frac{i}{2}\right)\right\} \mathcal{T}^{-m}\left(\frac{i}{2}\right), \\
\sigma_{m}^{-} & =\mathcal{T}^{m-1}\left(\frac{i}{2}\right) B\left(\frac{i}{2}\right) \mathcal{T}^{-m}\left(\frac{i}{2}\right), \\
\sigma_{m}^{+} & =\mathcal{T}^{m-1}\left(\frac{i}{2}\right) C\left(\frac{i}{2}\right) \mathcal{T}^{-m}\left(\frac{i}{2}\right) .
\end{aligned}
$$

Due to the commutation relations of the monodromy matrix elements everything expressed in terms of scalar products of off-shell and on-shell multiplet Bethe states.

$$
\left|\mathcal{F}_{z}\right|^{2}=-\frac{\tau_{e}\left(\frac{i}{2}\right)}{\tau_{g}\left(\frac{i}{2}\right)} \frac{\left\langle\Psi_{e_{0}}\right| C\left(\frac{i}{2}\right)\left|\Psi_{g}\right\rangle\left\langle\Psi_{g}\right| C\left(\frac{i}{2}\right)\left|\Psi_{e_{2}}\right\rangle}{\left\langle\Psi_{g} \mid \Psi_{g}\right\rangle\left\langle\Psi_{e_{0}} \mid \Psi_{e_{0}}\right\rangle},
$$

Scalar products and norms

N. Slavnov, 1989: $\left\{\lambda_{1}, \ldots \lambda_{N}\right\}$ - solution of Bethe equations, $\left\{\mu_{1}, \ldots \mu_{N}\right\}$ - generic set of parameters.

$$
\begin{aligned}
\langle\Psi(\{\mu\}) \mid \Psi(\{\lambda\})\rangle & =\frac{\prod_{k=1}^{N} q\left(\mu_{k}-i\right)}{\prod_{j>k}\left(\lambda_{j}-\lambda_{k}\right)\left(\mu_{k}-\mu_{j}\right)} \operatorname{det}_{N} \mathcal{M}(\{\lambda\} \mid\{\mu\}), \\
\mathcal{M}_{j, k}(\{\lambda\} \mid\{\mu\}) & =\mathfrak{a}\left(\mu_{k}\right) t\left(\mu_{k}-\lambda_{j}\right)-t\left(\lambda_{j}-\mu_{k}\right), \quad t(\lambda)=\frac{i}{\lambda(\lambda+i)} .
\end{aligned}
$$

Norms of the on-shell Bethe states are given by the Gaudin formula

$$
\begin{aligned}
\langle\Psi(\{\lambda\}) \mid \Psi(\{\lambda\})\rangle & =(-1)^{N} \frac{\prod_{j=1}^{N} q\left(\lambda_{j}-i\right)}{\prod_{j \neq k}\left(\lambda_{j}-\lambda_{k}\right)} \operatorname{det} \mathcal{N}(\{\lambda\}), \\
\mathcal{N}_{j, k}(\{\lambda\}) & =\mathfrak{a}^{\prime}\left(\lambda_{j}\right) \delta_{j, k}-K\left(\lambda_{j}-\lambda_{k}\right), \quad K(\lambda)=t(\lambda)+t(-\lambda) .
\end{aligned}
$$

Slavnov formula can be adapted for the multiplet states Foda, Wheeler 2012.
Finite chain determinant representation for the factors form factors corresponding to arbitrary triplet excited state:

$$
\begin{aligned}
\left|\mathcal{F}_{z}\right|^{2}= & -2 \prod_{j=1}^{\frac{M}{2}-1} \frac{q_{g}\left(\mu_{j}-i\right)}{q_{e}\left(\mu_{j}-i\right)} \prod_{k=1}^{\frac{M}{2}} \frac{q_{e}\left(\lambda_{k}-i\right)}{q_{g}\left(\lambda_{k}-i\right)} \\
& \times \frac{\operatorname{det}_{\frac{M}{2}} \mathcal{M}\left(\{\lambda\} \left\lvert\,\left\{\mu_{1} \ldots \mu_{\frac{M}{2}-1}, \frac{i}{2}\right\}\right.\right) \operatorname{det}_{\frac{M}{2}+1} \mathcal{M}^{(2)}\left(\{\mu\} \left\lvert\,\left\{\lambda_{1}, \ldots \lambda_{\frac{M}{2}}, \frac{i}{2}\right\}\right.\right)}{\operatorname{det}_{\frac{M}{2}} \mathcal{N}(\{\lambda\}) \operatorname{det}_{\frac{M}{2}-1} \mathcal{N}(\{\mu\})} .
\end{aligned}
$$

Here $\mathcal{M}^{(2)}$ - Foda Wheeler variant of the Slavnov matrix for triplets (two extra rows).

$$
\mathcal{M}_{j, k}^{(\ell)}(\{\lambda\} \mid\{\mu\})=\mathfrak{a}\left(\mu_{k}\right)\left(\mu_{k}+i\right)^{j-N-1}-\mu_{k}^{j-N-1}, \quad \text { for } j>N
$$

Computation of determinants

The main idea is extremely simple: we compute the following matrices

$$
\begin{aligned}
& F_{g}=\mathcal{N}^{-1}(\{\lambda\}) \mathcal{M}\left(\{\lambda\} \left\lvert\,\left\{\mu_{1} \ldots \mu_{\frac{M}{2}-1}, \frac{i}{2}\right\}\right.\right), \\
& F_{e}=\mathcal{N}^{(2)-1}(\{\mu\}) \mathcal{M}^{(2)}\left(\{\mu\} \left\lvert\,\left\{\lambda_{1}, \ldots \lambda_{\frac{M}{2}}, \frac{i}{2}\right\}\right.\right),
\end{aligned}
$$

For the first (ground state) matrix: system of linear equations

$$
\mathfrak{a}_{g}^{\prime}\left(\lambda_{j}\right) F_{g_{j, k}}-\sum_{a=1}^{\frac{M}{2}} K\left(\lambda_{j}-\lambda_{a}\right) F_{g_{a, k}}=\mathfrak{a}_{g}\left(\mu_{k}\right) t\left(\mu_{k}-\lambda_{j}\right)-t\left(\lambda_{j}-\mu_{k}\right) .
$$

We set

$$
\mathfrak{a}_{g}^{\prime}\left(\lambda_{j}\right) F_{g_{j, k}}=G_{g}\left(\lambda_{j} ; \mu_{k}\right)
$$

Linear equations \longrightarrow Contour integral equation for $G_{g}(\lambda ; \mu)$

$$
G_{g}\left(\lambda ; \mu_{k}\right)-\frac{1}{2 \pi i} \oint_{\Gamma} d \nu K(\lambda-\nu) \frac{G_{g}\left(\nu ; \mu_{k}\right)}{1+\mathfrak{a}_{g}(\nu)}=\left(\mathfrak{a}_{g}\left(\mu_{k}\right)+1\right) t\left(\mu_{k}-\lambda\right)
$$

We set

$$
G_{g}(\lambda ; \mu)=\left(1+\mathfrak{a}_{g}(\mu)\right) \rho_{g}(\lambda ; \mu)
$$

Thermodynamic limit \longrightarrow Integral equation

$$
\rho_{g}(\lambda ; \mu)-\frac{1}{2 \pi i} \int_{\mathbb{R}+i \epsilon} d \nu K(\lambda-\nu) \rho_{g}(\nu ; \mu)=t(\mu-\lambda) .
$$

Lieb equation for the density of Bethe roots!
Solution:

$$
F_{g_{j, k}}=\frac{\mathfrak{a}_{g}\left(\mu_{k}\right)+1}{\mathfrak{a}_{g}^{\prime}\left(\lambda_{j}\right)} \frac{\pi}{\sinh \pi\left(\mu_{k}-\lambda_{j}\right)}
$$

F_{e} is slightly more complicated (holes contributions, Foda-Wheeler rows) but also has this basic Cauchy structure.

Example without complex roots:

$$
\begin{gathered}
F_{e_{j, k}}=\frac{\mathfrak{a}_{e}\left(\lambda_{k}\right)+1}{\mathfrak{a}_{e}^{\prime}\left(\mu_{j}\right)}\left(\frac{\pi}{\sinh \pi\left(\lambda_{k}-\mu_{j}\right)}\right. \\
\left.-2 \pi i \sum_{a=1}^{n_{h}} \frac{\rho_{h}\left(\mu_{j}-\mu_{h_{a}}\right)}{\mathfrak{a}_{e}^{\prime}\left(\mu_{h_{a}}\right)} \frac{\pi}{\sinh \pi\left(\lambda_{k}-\mu_{h_{a}}\right)}\right), \quad j \leqslant \frac{M}{2}-1 \\
F_{e \frac{M}{2}, k}=\mathfrak{a}_{e}\left(\lambda_{k}\right)-1, \quad F_{e \frac{M}{2}+1, k}=\mathfrak{a}_{e}\left(\lambda_{k}\right)\left(\lambda_{k}+i\right)-\lambda_{k}
\end{gathered}
$$

Composed only of Cauchy columns! Very similar structure with the complex roots.

Structure of results

After this step typically the form factor is written as a product of two Cauchy determinants and determinants of a $n_{h} \times n_{h}$ matrix and a $n_{c} \times n_{c}$ matrix.

$$
\left.\begin{array}{rl}
\left|\mathcal{F}_{z}\right|^{2}=-2 \prod_{j=1}^{M / 2} \frac{\tau_{e}\left(\lambda_{j}\right)}{\tau_{g}\left(\lambda_{j}\right)} \prod_{k=1}^{M / 2-1} \frac{\tau_{g}\left(\mu_{k}\right)}{\tau_{e}\left(\mu_{k}\right)} \operatorname{det} \mathcal{C}_{g} \frac{M}{2} \operatorname{det} \mathcal{C}_{e} \\
\frac{M}{2}+1
\end{array}\right] \frac{\prod_{j=1}^{M / 2} \prod_{k=1}^{M / 2-1}\left(\lambda_{j}-\mu_{k}\right)^{2}}{\prod_{j \neq k}^{M / 2}\left(\lambda_{j}-\lambda_{k}\right) \prod_{j \neq k}^{M / 2-1}\left(\mu_{j}-\mu_{k}\right)} \mathrm{de}
$$

$\mathcal{C}_{j k}=\frac{\pi}{\sinh \pi\left(\mu_{k}-\lambda_{j}\right)}$ - Cauchy determinant (can be computed)

Thermodynamic limit: 2-spinon case

Two-spinon form factor: no complex roots, the only "extra" matrix

$$
\mathcal{Q}_{e}=\left(\begin{array}{cc}
\frac{1}{a_{e}^{\prime}\left(\mu_{h_{1}}\right)} & \frac{1}{a_{e}^{\prime}\left(\mu_{h_{2}}\right)} \\
\frac{\mu_{h_{1}}+\frac{i}{2}}{\mathfrak{a}_{e}^{\prime}\left(\mu_{h_{1}}\right)} & \frac{\mu_{h_{2}}+\frac{i}{2}}{a_{e}^{\prime}\left(\mu_{h_{2}}\right)}
\end{array}\right), \quad \operatorname{det} \mathcal{Q}_{e}=\frac{\mu_{h_{1}}-\mu_{h_{2}}}{\pi^{2} M^{2}} \prod_{a=1}^{2} \cosh \pi \mu_{h_{a}}
$$

With expected scaling $\frac{1}{M^{2}}$. Final result for the scaled form factor:
$\left|\mathcal{Y}\left(\mu_{h_{1}}-\mu_{h_{2}}\right)\right|^{2}=\lim _{M \rightarrow \infty} M^{2}\left|\mathcal{F}_{z}\right|^{2}=\frac{2}{G^{4}\left(\frac{1}{2}\right)}\left|\frac{G\left(\frac{\mu_{h_{1}}-\mu_{h_{2}}}{2 i}\right) G\left(1+\frac{\mu_{h_{1}}-\mu_{h_{2}}}{2 i}\right)}{G\left(\frac{1}{2}+\frac{\mu_{h_{1}}-\mu_{h_{2}}}{2 i}\right) G\left(\frac{3}{2}+\frac{\mu_{h_{1}}-\mu_{h_{2}}}{2 i}\right)}\right|^{2}$.
Where $G(z)$ iz the Barnes G-function (related to the double Γ-function).

$$
G(z+1)=\Gamma(z) G(z), \quad G(1)=1 .
$$

Relation with q-vertex operator approach

Using integral representations for $\log G(z)$ we obtain

$$
\begin{aligned}
\left|\mathcal{Y}\left(\mu_{h_{1}}-\mu_{h_{2}}\right)\right|^{2} & =2 e^{-I\left(\mu_{h_{1}}-\mu_{h_{2}}\right)}, \\
& I\left(\mu_{h_{1}}-\mu_{h_{2}}\right)=\int_{0}^{\infty} \frac{d t}{t} e^{t} \frac{\cos \left(2\left(\mu_{h_{1}}-\mu_{h_{2}}\right) t\right) \cosh (2 t)-1}{\cosh (t) \sinh (2 t)}
\end{aligned}
$$

This reproduces the result for the two-spinon form factor obtained in the q-vertex operator framework from the M. Jimbo and T. Miwa multiple integral formulas by A. H. Bougourzi, M. Couture and M. Kacir

Starting from four-spinon case the things become more interesting as we use a different basis with respect to the Jimbo-Miwa approach.

General case

General excited state with n_{h} spinons and $n_{c}=n_{s}+2 n_{q}+2 n_{w}$ complex roots
General representation: pre-factor (Cauchy determinants) and finite size determinant

$$
\lim _{M \rightarrow \infty} M^{n_{h}}\left|\mathcal{F}_{z}\right|^{2}=\prod_{j>k}\left|\mathcal{Y}\left(\mu_{h_{j}}-\mu_{h_{k}}\right)\right|^{2} \mathcal{R}\left(\mu_{h}, \mu_{c}\right) \operatorname{det}_{n_{c}} \widehat{\mathcal{Q}_{g}} \operatorname{det} \widehat{n_{h}} \widehat{\mathcal{Q}_{e}} .
$$

Here $\mathcal{R}\left(\mu_{h}, \mu_{c}\right)$ - rational function of holes and complex roots $\widehat{\mathcal{Q}_{g}}$ and $\widehat{\mathcal{Q}_{e}}$ - finite matrices also written in terms of positions of holes and complex roots. Includes also a Higher level Gaudin matrix

Simpler form for finite matrices: work in progress.
Interesting interplay with Jimbo-Miwa-Smirnov fermionic approach.

Conclusion and outlook

Advantages of the new approach:

- Explicit results, no Fredholm determinants.
- We know how to deal with bound states
- Possibility to apply in a systematic way for all the regimes of the XXZ chain

Open problems: out-of-equilibrium systems, overlaps instead of form factors

- Second densification (holes, complex roots distributed with some density)
- Can we apply this method far from the ground state?
- Macroscopic changes in the system (quenches).

