Measurement catastrophes in quantum jammed states

Saverio Bocini
GGI - 27 May 2022
Université Paris-Saclay

Local perturbations in quantum spin chains

Our specific setup

Some results

Local perturbations in quantum spin chains

About the models we consider

- Quantum spin chains:

- Unitary dynamics:

$$
|\psi(t)\rangle=\mathrm{e}^{-\mathrm{i} t H}|\psi(0)\rangle
$$

- Available experiments:

Local perturbations: an analogy

[picture by Jonathan Cosens]

Effects of local perturbations are typically cancelled by dynamics

Local perturbations: an analogy

Effects of local perturbations are typically cancelled by dynamics

Local perturbations in quantum spin chains

Effects of local perturbations are typically cancelled by dynamics

$$
\begin{aligned}
& \text { e.g. } \\
& \qquad \begin{array}{l}
H=-\sum_{\ell}\left(\sigma_{\ell}^{x} \sigma_{\ell+1}^{x}+\frac{1}{2} \sigma_{\ell}^{z}\right) \\
\left|\psi\left(0^{-}\right)\right\rangle=|G S\rangle \\
\left|\psi\left(0^{+}\right)\right\rangle=\sigma_{0}^{x}\left|\psi\left(0^{-}\right)\right\rangle
\end{array}
\end{aligned}
$$

Local perturbations with everlasting macroscopic effects

The effects of some special perturbations do not fade away with time

$$
\begin{aligned}
& \text { e.g. } \\
& \qquad \begin{array}{l}
H=-\sum_{\ell}\left(\sigma_{\ell}^{x} \sigma_{\ell+1}^{x}+\frac{1}{2} \sigma_{\ell}^{z}\right) \\
\left|\psi\left(0^{-}\right)\right\rangle=|G S\rangle \\
\left|\psi\left(0^{+}\right)\right\rangle=\sigma_{0}^{z}\left|\psi\left(0^{-}\right)\right\rangle
\end{array}
\end{aligned}
$$

Local perturbations with everlasting macroscopic effects

- local transformation linking different symmetry broken GSs

Zauner, Ganahl, Evertz, Nishino, 2015
Eisler, Maislinger, 2020

- global quenches with semi-local charges

Our specific setup

Dual folded XXZ and jammed states

$$
H=\mathcal{J} \sum_{\ell} \frac{1-\sigma_{\ell+1}^{z}}{2}\left(\sigma_{\ell}^{x} \sigma_{\ell+2}^{x}+\sigma_{\ell}^{y} \sigma_{\ell+2}^{y}\right)
$$

Interacting integrable model, special point of Bariev model

Constrained hopping:

Mapping to quasi-particle picture

- divide the spins in couples
- associate a macro-site do each couple
- look at the spin-ups for the quasi-particle of the macro-site

$$
\begin{array}{ll}
\stackrel{\uparrow \downarrow}{\downarrow} & \underline{\downarrow \downarrow} \longmapsto \square \\
\downarrow \uparrow \longmapsto \square
\end{array}
$$

Mapping to quasi-particle picture: dynamics

$\uparrow \downarrow \downarrow \longleftrightarrow \downarrow \uparrow$ translates to nearest-neighbor hopping with hardcore constraint

Mapping to quasi-particle picture: dynamics

$\uparrow \downarrow \downarrow \longleftrightarrow \downarrow \uparrow$ translates to nearest-neighbor hopping with hardcore constraint

- the sequence of particles is preserved
- no possible move \Rightarrow jammed state \leftarrow

Local-measurement protocol

1. Start from a jammed state

2. Flip a spin (it can be seen as the outcome of measure of σ^{x}, followed by measure of σ^{z})

3. Time-evolve

Some results

All reduces to a single hopping impurity

- sequence of particles is preserved by dynamics

- after each application of the Hamiltonian, the state is jammed except for an interface

All reduces to a single hopping impurity

- sequence of particles is preserved by dynamics

- after each application of the Hamiltonian, the state is jammed except for an interface
- single particle problem $\left(\operatorname{dim}=O(L)\right.$ instead of $\left.O\left(2^{L}\right)\right)$
- non-local mapping

Asymptotic profile of magnetisation: an example

Scaling limit $t \rightarrow \infty, \quad \ell / t=$ constant, $x(\ell) \sim \#$ spins up between the origin and ℓ :

$$
\left\langle\sigma_{\ell}^{z}\right\rangle_{t} \sim \begin{cases}1, & \text { for }\left|\cdots \bullet \cdots \uparrow_{\ell} \downarrow \uparrow \cdots\right\rangle \vee|\cdots \uparrow \uparrow \uparrow \uparrow \cdots \bullet \cdots\rangle \\ \frac{2}{\pi} \arcsin \left(\frac{x(\ell)}{4 \mathcal{J} t}\right), & \text { for }\left|\cdots \bullet \cdots \uparrow_{\ell} \uparrow \downarrow \cdots\right\rangle \vee\left|\cdots \uparrow \uparrow \downarrow_{\ell} \cdots \bullet \cdots\right\rangle \\ -\frac{2}{\pi} \arcsin \left(\frac{x(\ell)}{4 \mathcal{J t}}\right), & \text { for }\left|\cdots \bullet \cdots \downarrow_{\ell} \uparrow \uparrow \cdots\right\rangle \vee\left|\cdots \downarrow \uparrow \uparrow_{\ell} \cdots \bullet \cdots\right\rangle \\ -1, & \text { for }\left|\cdots \bullet \cdots \downarrow_{\ell} \uparrow \downarrow \cdots\right\rangle \vee\left|\cdots \downarrow \uparrow \downarrow_{\ell} \cdots \bullet \cdots\right\rangle,\end{cases}
$$

$\left(x(\ell) \sim \frac{2}{3} \ell\right)$
The effects of a local
measurement does not fade away with time!

Vanishing currents

e.g. the current associated to the magnetization (globally conserved)

$$
\begin{aligned}
&\left.\frac{\mathrm{d}}{\mathrm{~d} t} \sigma_{\ell}^{z}(t)\right|_{t=0}=-\underbrace{\mathcal{J} \frac{\mathrm{i}}{2}\left(\sigma_{\ell}^{+} \sigma_{\ell+2}^{-}-\sigma_{\ell}^{-} \sigma_{\ell+2}^{+}\right) \frac{1-\sigma_{\ell+1}^{z}}{2}}_{j_{\ell+1}}+ \\
&+\underbrace{\mathcal{J} \frac{\mathrm{i}}{2}\left(\sigma_{\ell-2}^{+} \sigma_{\ell}^{-}-\sigma_{\ell-2}^{-} \sigma_{\ell}^{+}\right) \frac{1-\sigma_{\ell-1}^{z}}{2}}_{j_{\ell}}
\end{aligned}
$$

$$
\Longrightarrow \quad \begin{array}{lr}
\left\langle j_{\ell}\right\rangle_{t}=0, & \text { for jammed states } \\
\left\langle j_{\ell}\right\rangle_{t}=\mathcal{O}(1 / t), & \text { in our case }
\end{array}
$$

Conclusions

Conclusions

- Solution of the dynamics for an interacting model in a certain jammed sector
- Ballistic profiles emerging from a local perturbation
- No genuine spin transport occurs

Conclusions

- Solution of the dynamics for an interacting model in a certain jammed sector
- Ballistic profiles emerging from a local perturbation
- No genuine spin transport occurs
- Measurement catastrophe as a universal feature of constrained models?
- Universal mechanism(s) behind local perturbation with everlasting macroscopic effects?
- Macroscopic entanglement structure?

Thank you!

