

Measurement catastrophes in quantum jammed states

Saverio Bocini GGI – 27 May 2022

Université Paris-Saclay

Local perturbations in quantum spin chains

Our specific setup

Some results

Local perturbations in quantum spin chains

About the models we consider

• Quantum spin chains:

Unitary dynamics:

 $|\psi(t)
angle = \mathrm{e}^{-\mathrm{i}tH} |\psi(0)
angle$

Available experiments:

Local perturbations: an analogy

[picture by Jonathan Cosens]

Effects of local perturbations are typically cancelled by dynamics

Local perturbations: an analogy

[picture by Jonathan Cosens]

- consider a state with clustering of correlations $\langle \sigma_{\ell_1}^{\alpha_1} ... \sigma_{\ell_n}^{\alpha_n} \rangle_c \to 0,$ $\alpha_j \in \{x, y, z\}, as$ $|\ell_i - \ell_j| \to \infty$
- apply an operator to few adjacent lattice sites

time-evolve

Effects of local perturbations are typically cancelled by dynamics

Local perturbations in quantum spin chains

Effects of local perturbations are typically cancelled by dynamics

Local perturbations with everlasting macroscopic effects

The effects of some special perturbations do not fade away with time

Local perturbations with everlasting macroscopic effects

 local transformation linking different symmetry broken GSs

Zauner, Ganahl, Evertz, Nishino, 2015 Eisler, Maislinger, 2020

Zadnik, SB, Bidzhiev, Fagotti, 2021

quantum jammed states

 global quenches with semi-local charges

Fagotti, 2021

Our specific setup

Dual folded XXZ and jammed states

$$H = \mathcal{J} \sum_{\ell} \frac{1 - \sigma_{\ell+1}^z}{2} (\sigma_{\ell}^x \sigma_{\ell+2}^x + \sigma_{\ell}^y \sigma_{\ell+2}^y)$$

Interacting integrable model, special point of Bariev model

Constrained hopping:

Mapping to quasi-particle picture

- · divide the spins in couples
- associate a macro-site do each couple
- · look at the spin-ups for the quasi-particle of the macro-site

$$e.g. \qquad \underbrace{\uparrow\uparrow\downarrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow}_{l} \stackrel{l}{\vdash\uparrow} \qquad \longmapsto \qquad \boxed{}$$

Mapping to quasi-particle picture: dynamics

 $\uparrow \downarrow \downarrow \longleftrightarrow \downarrow \downarrow \uparrow \text{ translates to nearest-neighbor hopping with} \\ hardcore \ constraint$

Mapping to quasi-particle picture: dynamics

 $\uparrow\downarrow\downarrow \longleftrightarrow \downarrow\downarrow\uparrow \quad \text{translates to nearest-neighbor hopping with} \\ hardcore \ \text{constraint}$

- the sequence of particles is preserved
- · no possible move \Rightarrow jammed state \leftarrow

1. Start from a jammed state

2. Flip a spin (it can be seen as the outcome of measure of σ^x , followed by measure of σ^z)

3. Time-evolve

Some results

All reduces to a single hopping impurity

- sequence of particles is preserved by dynamics
- after each application of the Hamiltonian, the state is jammed except for an interface

All reduces to a single hopping impurity

- sequence of particles is preserved by dynamics
- after each application of the Hamiltonian, the state is jammed except for an interface
- single particle problem
 (dim=O(L) instead of O(2^L))
- non-local mapping

Asymptotic profile of magnetisation: an example

Scaling limit $t \to \infty$, $\ell/t = constant$, $x(\ell) \sim \#spins$ up between the origin and ℓ :

$$\langle \sigma_{\ell}^{\mathbf{Z}} \rangle_{t} \sim \begin{cases} 1, & \text{for } |\cdots \bullet \cdots \uparrow_{\ell} \uparrow \uparrow \cdots \rangle \lor |\cdots \uparrow \uparrow \uparrow_{\ell} \cdots \bullet \cdots \rangle \\ \frac{2}{\pi} \arcsin\left(\frac{\mathbf{X}(\ell)}{4\mathcal{J}t}\right), & \text{for } |\cdots \bullet \cdots \uparrow_{\ell} \uparrow \downarrow \cdots \rangle \lor |\cdots \uparrow \uparrow \downarrow_{\ell} \cdots \bullet \cdots \rangle \\ -\frac{2}{\pi} \arcsin\left(\frac{\mathbf{X}(\ell)}{4\mathcal{J}t}\right), & \text{for } |\cdots \bullet \cdots \downarrow_{\ell} \uparrow \uparrow \cdots \rangle \lor |\cdots \downarrow \uparrow \uparrow_{\ell} \cdots \bullet \cdots \rangle \\ -1, & \text{for } |\cdots \bullet \cdots \downarrow_{\ell} \uparrow \downarrow \cdots \rangle \lor |\cdots \downarrow \uparrow \downarrow_{\ell} \cdots \bullet \cdots \rangle, \end{cases}$$

e.g. the current associated to the magnetization (globally conserved)

$$\frac{\mathrm{d}}{\mathrm{d}t}\sigma_{\ell}^{z}(t)\Big|_{t=0} = -\underbrace{\mathcal{J}\frac{\mathrm{i}}{2}(\sigma_{\ell}^{+}\sigma_{\ell+2}^{-} - \sigma_{\ell}^{-}\sigma_{\ell+2}^{+})\frac{1 - \sigma_{\ell+1}^{z}}{2}}_{j_{\ell+1}} + \underbrace{\mathcal{J}\frac{\mathrm{i}}{2}(\sigma_{\ell-2}^{+}\sigma_{\ell}^{-} - \sigma_{\ell-2}^{-}\sigma_{\ell}^{+})\frac{1 - \sigma_{\ell-1}^{z}}{2}}_{j_{\ell}}}_{j_{\ell}}$$

 $\implies \begin{array}{l} \langle j_{\ell} \rangle_t = 0, & \text{for jammed states} \\ \langle j_{\ell} \rangle_t = \mathcal{O}(1/t), & \text{in our case} \end{array}$

Conclusions

Conclusions

- Solution of the dynamics for an interacting model in a certain jammed sector
- · Ballistic profiles emerging from a local perturbation
- No genuine spin transport occurs

Conclusions

- Solution of the dynamics for an interacting model in a certain jammed sector
- · Ballistic profiles emerging from a local perturbation
- No genuine spin transport occurs

- Measurement catastrophe as a universal feature of constrained models?
- Universal mechanism(s) behind local perturbation with everlasting macroscopic effects?
- Macroscopic entanglement structure?

Thank you!