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Introduction: Brownian motion, resetting, first passage etc.

Topics in this talk include:

. stochastic processes – specifically Brownian motion

. first-passage problems – [see eg A Guide to First-Passage Processes, Redner 2001]

. resetting of a stochastic process:

� restart at regular fixed times [textbook, see eg Ex. 22 in Grimmett & Stirzaker]

� restart at random times indep. of the process:
eg stochastic resetting with exp. dist. times admits optimal rate
[see Evans & Majumdar 2011, and review by Evans, Majumdar, Schehr 2020]

� restart at random times dep. on the process:
elementary/instantaneous return process [Feller 1953, Sherman 1957],
Brownian motion with rebirth [Grigorescu & Kang 2007]

first-passage resetting [de Bruyne, R-F, Redner 2020]

. path transformations – i.e. bijections between sets of sample paths



First-passage resetting



First-passage resetting in Brownian motion: semi-infinite geometry

0

2t1
time

L

t

. Brownian particle starting at the origin, with diffusion constant D

. when it reaches L −→ instantaneously reset to the origin

. and so on — successive “first”-passage/reset times t1, t2, . . .

Pdf for nth reset time? Pdf for position at t? Number of resets?
(recall that average time between two resets is infinite)



First-passage resetting in Brownian motion: pdf of the nth reset

. Define: Fn(L, t) = pdf for the nth reset to occur at time t.

. One has the renewal equation:

Fn(L, t) =

∫ t

0
dt′ Fn−1(L, t

′)F1(L, t − t′), n > 1 .

Convolution structure −→ Laplace transform:

F̃n(L, s) =
[
F̃1(L, s)

]n
=
[
e−L
√

s/D
]n

= e−n L
√

s/D

Fn(L, t) =
n L√
4πD t3

e−n2 L2/4Dt

# pdf for nth reset at t = pdf for 1st passage at n L at t



First-passage resetting in Brownian motion: pdf for the position at t

x

L

0

time
t

P(x , t) dx = Prob ( particle in [x , x + dx ] at time t )



First-passage resetting in Brownian motion: pdf for the position at t

. Introduce the propagator with absorption at L,

G(x , L, t) =
[
e−x2/4Dt − e−(x−2L)2/4Dt]/√4πDt .

. Then one has the forward renewal equation:

P(x , t) = G(x , L, t) +
∑
n≥1

∫ t

0
dt′ Fn(L, t

′)G(x , L, t−t′),

. or equivalently the backward renewal equation:

P(x , t) = G(x , L, t) +

∫ t

0
dt′ F1(L, t

′)P(x , t − t′) .



First-passage resetting in Brownian motion: pdf for the position at t

Again, convolution structure −→ Laplace transform:

P̃(y , s) =
G̃(y , yL, s)

1− F̃1(yL, s)
=

1√
4Ds

[
e−|y| − e−|y−2yL|

]
1− e−yL

,

with reduced variables y = x
√

s/D and yL = L
√

s/D.

2 distinct cases —

0 ≤ y ≤ yL i.e. 0 ≤ x ≤ L

y < 0 i.e. x < 0



First-passage resetting in Brownian motion: pdf for the position at t

Computing P(x , t) – when 0 ≤ x ≤ L i.e. 0 ≤ y ≤ yL

P̃(y , s) =
1√
4Ds

[
e−y − e−(2yL−y)

] ∑
n≥0

e−nyL =
1√
4Ds

∑
n≥0

[
e−(y+nyL) − e−[(n+2)yL−y ]

]
,

from which

P(x , t) =
1√
4πDt

∑
n≥0

[
e−(x + nL)2/4Dt − e−[x−(n+ 2)L]2/4Dt

]
.

In the long-time limit, t � 1

P(x , t) ' 1√
πDt

L− x

L

# balance between diffusive flux exiting at x = L and re-injected at x = 0.



First-passage resetting in Brownian motion: pdf for the position at t

Computing P(x , t) – when x < 0 i.e. y < 0

P̃(y , s) =
1√
4Ds

[
ey−ey−2yL

1− e−yL

]
=

1√
4Ds

[
ey+e(y−yL)

]
,

from which

P(x , t) =
1√
4πDt

[
e−x2/4Dt + e−(x−L)2/4Dt

]
.

# i.e. superposition of paths from 0 and paths from L... Interpretation?



First-passage resetting in Brownian motion: pdf for the position at t

Computing P(x , t) – when x < 0 i.e. y < 0

P̃(y , s) =
1√
4Ds

[
ey−ey−2yL

1− e−yL

]
=

1√
4Ds

[
ey+e(y−yL)

]
,

from which

P(x , t) =
1√
4πDt

[
e−x2/4Dt + e−(x−L)2/4Dt

]
.

# i.e. superposition of paths from 0 and paths from L – easy with path transformation



First-passage resetting in Brownian motion: pdf for the position at t

(a) (b)

(c) (d)

Odd number of resets Even number of resets



First-passage resetting in Brownian motion: number of resets

. Define: Qn(L, t) = Prob(exactly n resets occur up to time t).

Qn(L, t) =

∫ t

0
dt′
[
Fn(L, t

′)− Fn+1(L, t
′)
]
= erf

(
(n + 1)L√

4Dt

)
− erf

(
nL√
4Dt

)

. Backward renewal equation for the average number of resets N (t):

N (t) =

∫ t

0
dt′ F1(L, t

′)
(
1+N (t − t′)

)
.

. Laplace transforming:

Ñ (s) =
F̃1(L, s)

s
[
1− F̃1(L, s)

] =
e−yL

s(1− e−yL)

N (t) '
√

4Dt
πL2 when t � 1



Optimization in first-passage resetting



First-passage resetting in Brownian motion: optimization

Consider now:

. x(t) models the operating point of a system;

. x(t) ≥ 0 and if x(t) = L the system breaks down, incurring a cost C ;

. control mechanism modelled by a drift v .

And seek to maximize:

F = lim
T→∞

1
T

[
1
L

∫ T

0
〈x(t)〉 dt − C N (T )

]
.



First-passage resetting in Brownian motion: optimization

Convection diffusion equation for the pdf P(x , t):

∂tP + v∂xP = D∂xxP + δ(x)(−D∂xP + vP)|x=L ,

subject to the initial and boundary conditions (D∂xP − vP)|x=0 = δ(t) ,

P(L, t) = P(x , 0) = 0 .

It admits a steady-state solution,

P(x) ' 1
L
× 1 − e−2Pe (L−x)/L

1 − Pe−1 e−Pe sinh (Pe)
,

where Pe ≡ vL/2D is the Péclet number.



First-passage resetting in Brownian motion: optimization

From the steady-state solution, one obtains the normalized first moment:

〈x〉
L

=
1
L

∫ L

0
x P(x)dx =

(
2Pe2 − 2Pe+ 1

)
e2Pe − 1

2Pe [(2Pe− 1) e2Pe + 1]
.

Again with a backward equation, one also obtains the average number of breakdowns:

N (T ) ' 4Pe2

2Pe− 1+ e−2Pe
T

L2/D
.

Hence:

F '
(
2Pe2 − 2Pe+ 1

)
e2Pe − 1

2Pe [(2Pe− 1) e2Pe + 1]
− 4Pe2

2Pe− 1+ e−2Pe
C

L2/D
,

with Pe ≡ vL/2D the Péclet number.



First-passage resetting in Brownian motion: optimization
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C ′ = 0.1

C ′ = 0.05

C ′ = 0.01

Pe

F

Objective function F in terms of Péclet number Pe ≡ v L / 2D
for different values of normalized cost C ′ ≡ C / (L2/D).



First-passage resetting in Brownian motion: variations

Variations include:

. delay for “repairs” after breakdown [de Bruyne, R-F, Redner 2020, 2021a]

. boundary recession [de Bruyne, R-F, Redner 2021a, 2022]

. higher-dimensional cases [Sherman 1957, de Bruyne, R-F, Redner 2021a]

. reset at random point [Feller 1953, Sherman 1957, Grigorescu, Kang 2007]

. multi-particle resetting [de Bruyne, R-F, Redner 2021b]



Multi-particle first-passage resetting



Multi-particle first-passage resetting

. multi-particle resetting: eg two “altruistic” particles

2

0

x2

x1

x

1

,x0



Multi-particle first-passage resetting

. Compare “altruistic” vs “individualistic” systems – eg for N = 2 agents

Use order statistics + Xa(t) =
x1(t)+x2(t)

2 follows a BM with diff. cst D‖ = D/2

0.0 2.5 5.0 7.5 10.0
t

0.0

0.5

1.0

S
(x

0
=

1,
t)

altruists (data)

altruists (theory)

1st individualist

2nd individualist

(a) Survival probability

0 1 2 3 4
t

0

1

2

w
(t

)

altruist

total altruists

1st individualist

2nd individualist

total individualists

(b) Median “wealth” of agents



Multi-particle first-passage resetting

. Compare “altruistic” vs “individualistic” systems – eg for N = 16 agents

Use order statistics + Xa(t) =
x1(t)+...xN (t)

2 follows a BM with diff. cst D‖ = D/N
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t
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(x
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altruists

(a) Survival probability

0 20 40
t

0.0

0.5

1.0

1.5

w
(t

)
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total individualists

total altruists

(b) Median “wealth” of agents



A first-passage problem
for the Brownian supremum



A (toy) foraging problem (by P. Krapivsky)

	0

t

Po
sit
io
n

Time

. “forager” on a line → Brownian walker with position B(t)

. one unit of “food” per unit length, no food replenishment

. “metabolism”: walker stockpiles, needs one unit of food per unit time

. survival probability?



One-sided version

	0

t

Po
sit
io
n

Time

. “forager” on a line → Brownian walker with position B(t)

. one unit of “food” per unit length, no food replenishment

. “metabolism”: walker needs one unit of food per unit time

. food on > 0 side only



One-sided version: a hitting-time problem for the supremum

	0

t

Po
sit
io
n

Time
Letting

M(s) = sup
0≤τ≤s

B(τ)

Survival probability is:

P(t) = Prob (M(s) > s, ∀s ≤ t)



A hitting-time problem for the supremum

Survival probability P(t) = Prob (M(s) > s, ∀s ≤ t)

↓

f (t) = − d
dt

P(t)

Probability density function (pdf) of extinction time

‖

Pdf of first hitting time for M(s) on the diagonal, inf
s>0
{M(s)− s = 0}



Idea: look at paths with M(t) = t

Path going extinct at t ⇒ M(t) = t, but...

M(t) = t ; path going extinct at t

because path could have gone extinct before.

	0P
os
iti
on

Time
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Idea: look at paths with M(t) = t

Path going extinct at t ⇒ M(t) = t, but...

M(t) = t ; path going extinct at t

because path could have gone extinct before.

f (t) =

paths with M(t)=t︷ ︸︸ ︷
pdf (M(t) = t) − g(t)︸ ︷︷ ︸

paths with M(t)=t

and

M(s)=s for some s<t



Idea: look at paths with M(t) = t

Path going extinct at t ⇒ M(t) = t, but...

M(t) = t ; path going extinct at t

because path could have gone extinct before.

f (t) =

paths with M(t)=t︷ ︸︸ ︷√
2
πt

exp
(
− t

2

)
− g(t)︸ ︷︷ ︸

paths with M(t)=t

and

M(s)=s for some s<t



A path transformation (1)

Given a path with M(t) = t

and M(s) = s for some s < t, define:

. hitting time of M(s) = s:

τ0 = inf {r > 0,B(r) = M(s) i.e. B(r) = s}

. first time level s is hit after τ0:

δ = inf {r > τ0,B(r) ≥ M(s) i.e. B(r) ≥ s}

	0
τ0 δ

s
t

t

Then

. Note: path between τ0 and δ is a (downward) excursion

. Idea : extract this excursion & use it to hit a new global maximum > t



A path transformation (1)

Given a path with M(t) = t

and M(s) = s for some s < t, define:

. hitting time of M(s) = s:

τ0 = inf {r > 0,B(r) = M(s) i.e. B(r) = s}

. first time level s is hit after τ0:

δ = inf {r > τ0,B(r) ≥ M(s) i.e. B(r) ≥ s}

	0
τ0 δ

s
t

t

Then

. Note: path between τ0 and δ is a (downward) excursion

. Idea : extract this excursion & use it to hit a new global maximum > t



A path transformation (1)

Given a path with M(t) = t

and M(s) = s for some s < t, define:

. hitting time of M(s) = s:

τ0 = inf {r > 0,B(r) = M(s) i.e. B(r) = s}

. first time level s is hit after τ0:

δ = inf {r > τ0,B(r) ≥ M(s) i.e. B(r) ≥ s}

	0
τ0 δ

s
t

t

Then

. Note: path between τ0 and δ is a (downward) excursion

. Idea : extract this excursion & use it to hit a new global maximum > t



A path transformation (1)

	0
τ0 δ

s

τ*

t

ts

. Define hitting time of the global maximum,

τ∗ = inf {r > 0,B(r) = M(t) i.e. B(r) = t}



A path transformation (1)

. extract excursion & bring “forward” (to τ0) the [δ, τ∗] part

. insert then the excursion transformed into an (upward) first passage bridge

. insert the final, post-τ∗ part shifted upward as needed



A path transformation (1)

. extract excursion & bring “forward” (to τ0) the [δ, τ∗] part

. insert then the excursion transformed into an (upward) first passage bridge

. insert the final, post-τ∗ part shifted upward as needed

# obtain a path with global maximum > t



A path transformation (2)

	0
τ1

t

τ2

M(t)

τ*

[M(t)+t]/2

Start with a Brownian path having M(t) > t, and set:

τ1 = inf {s > 0,B(s) = t} , τ∗ = inf {s > 0,B(s) = M(t)} ,

and τ2 = inf {s > 0,B(s) = [M(t) + t] /2}.



A path transformation (2)

	0
τ1

t

τ2

M(t)

τ*

[M(t)+t]/2

Note that B(0)− 0 = 0 and B(τ1)− τ1 = t − τ1 > τ2 − τ1, so

∃ τ0 ∈ ]0, τ1[ s.t. τ0 = inf {s > 0,B(s)− s = τ2 − τ1} .



A path transformation (2)

	0 τ1

t

τ2

M(t)

τ*τ0

[M(t)+t]/2

τ0+τ2-τ1

t

Note that B(0)− 0 = 0 and B(τ1)− τ1 = t − τ1 > τ2 − τ1, so

∃ τ0 ∈ ]0, τ1[ s.t. τ0 = inf {s > 0,B(s)− s = τ2 − τ1} .



A path transformation (2)

	0 τ1

t

τ2

M(t)

τ*τ0

[M(t)+t]/2

τ0+τ2-τ1

t

Decompose the Brownian path as follows:

. take the τ1 to τ∗ part out,

. form an excursion of duration τ∗ − τ1 with subpath [τ1, τ∗]

. insert excursion (downward) at time τ0

. append then the [τ0, τ1] part and the post-τ∗ part



A path transformation (2)

	0

t

s τ*τ0

τ0+τ2-τ1

t

# obtain a path with M(t) = t, “dying” (for sure) at time s = τ0 + τ2 − τ1.



PDF of extinction time in the one-sided case

Recall:

f (t) =

paths with M(t)=t︷ ︸︸ ︷√
2
πt

exp
(
− t

2

)
− g(t)︸ ︷︷ ︸

paths with M(t)=t

and

M(s)=s for some s<t



PDF of extinction time in the one-sided case

Now:

f (t) =

paths with M(t)=t︷ ︸︸ ︷√
2
πt

exp
(
− t

2

)
− g(t)︸ ︷︷ ︸

paths with M(t)>t



PDF of extinction time in the one-sided case

That is,

f (t) =

√
2
πt

exp
(
− t

2

)
−

∫ ∞
t

√
2
πt

exp

(
−m2

2t

)
dm



PDF of extinction time in the one-sided case

Finally:

f (t) =

√
2
πt

exp
(
− t

2

)
− erfc

(√
t

2

)



PDF of extinction time in the one-sided case

Finally:

f (t) =

√
2
πt

exp
(
− t

2

)
− erfc

(√
t

2

)

Two other approaches:

. look at the reciprocal process of M(s)− s

→ this is a spectrally positive Lévy process

. show that the first passage time of M(t)− t

is distributed like the sojourn time above 0 of the process B(t)− t

R.A. Doney Hitting probabilities for spectrally positive Lévy processes, Journal of the LMS, 2(3):566-576 (1991)

J-P Imhof On the time spent above a level by Brownian motion with negative drift Adv. in Appl. Prob., 18(4):1017-1018 (1986)



A first-passage problem
for the Brownian range



Two-sided version: Brownian range

. “forager” on a line → Brownian walker with position B(t)

. one unit of “food” per unit length, no food replenishment

. “metabolism”: walker needs one unit of food per unit time

. food on both sides

Letting
R(s) = sup

0≤τ≤s
B(τ)− inf

0≤τ≤s
B(τ)

Survival probability is now:

P(t) = Prob (R(s) > s, ∀s ≤ t)



Two-sided version: a hitting-time problem for the range

	0
t

Po
sit
io
n

Time

Letting
R(s) = sup

0≤τ≤s
B(τ)− inf

0≤τ≤s
B(τ)

Survival probability is now:

P(t) = Prob (R(s) > s, ∀s ≤ t)



Two-sided version: a hitting-time problem for the range

	0
t

t

t/2

-t/2

-t

Po
sit
io
n

Time

Letting
R(s) = sup

0≤τ≤s
B(τ)− inf

0≤τ≤s
B(τ)

Survival probability is now:

P(t) = Prob (R(s) > s, ∀s ≤ t)



Idea: look at paths with R(t) = t

Path going extinct at t ⇒ R(t) = t, but...

R(t) = t ; path going extinct at t

because path could have gone extinct before.

f (t) =

paths with R(t)=t︷ ︸︸ ︷
pdf (R(t) = t) − g(t)︸ ︷︷ ︸

paths with R(t)=t

and

R(s)=s for some s<t

(1)



Idea: look at paths with R(t) = t

Path going extinct at t ⇒ R(t) = t, but...

R(t) = t ; path going extinct at t

because path could have gone extinct before.

f (t) =

paths with R(t)=t
W. Feller, Ann. Math. Statist. 22, 427 (1951)︷ ︸︸ ︷

8√
2πt

∞∑
k=1

(−1)k−1k2e−
k2t
2 − g(t)︸ ︷︷ ︸

paths with R(t)=t

and

R(s)=s for some s<t

(2)

— ongoing work with P. Salminen, P. Vallois & P. Krapivsky



Many thanks for the invitation and for your attention!
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