First-passage resetting (and some other first-passage problems)

Julien Randon-Furling [with B. de Bruyne, S. Redner; P. Salminen, P. Vallois; P. Krapivsky]

SAMM - Univ. Paris 1 Panthéon-Sorbonne | FP2M - CNRS | MSDA - UM6P

A

UNIVERSITÉ PARIS 1 PANTHÉON SORBONNE

UnIVERSITE PARIS 1-PANTHÉON-SORBONNE

First-passage resetting

Optimization in first-passage resetting

Multi-particle first-passage resetting

A first-passage problem for the Brownian supremum

A first-passage problem for the Brownian range

Introduction: Brownian motion, resetting, first passage etc.

Topics in this talk include:
\triangleright stochastic processes - specifically Brownian motion
\triangleright first-passage problems - [see eg A Guide to First-Passage Processes, Redner 2001]
\triangleright resetting of a stochastic process:
\diamond restart at regular fixed times [textbook, see eg Ex. 22 in Grimmett \& Stirzaker]
\diamond restart at random times indep. of the process: eg stochastic resetting with exp. dist. times admits optimal rate [see Evans \& Majumdar 2011, and review by Evans, Majumdar, Schehr 2020]
\diamond restart at random times dep. on the process: elementary/instantaneous return process [Feller 1953, Sherman 1957], Brownian motion with rebirth [Grigorescu \& Kang 2007] first-passage resetting [de Bruyne, R-F, Redner 2020]
\triangleright path transformations - i.e. bijections between sets of sample paths

First-passage resetting

First-passage resetting in Brownian motion: semi-infinite geometry

\triangleright Brownian particle starting at the origin, with diffusion constant D
\triangleright when it reaches $L \longrightarrow$ instantaneously reset to the origin
\triangleright and so on - successive "first"-passage/reset times t_{1}, t_{2}, \ldots

Pdf for $n^{\text {th }}$ reset time? Pdf for position at t ? Number of resets? (recall that average time between two resets is infinite)

First-passage resetting in Brownian motion: pdf of the $n^{\text {th }}$ reset
\triangleright Define: $F_{n}(L, t)=$ pdf for the $n^{\text {th }}$ reset to occur at time t.
\triangleright One has the renewal equation:

$$
F_{n}(L, t)=\int_{0}^{t} d t^{\prime} F_{n-1}\left(L, t^{\prime}\right) F_{1}\left(L, t-t^{\prime}\right), \quad n>1
$$

Convolution structure \longrightarrow Laplace transform:

$$
\begin{gathered}
\widetilde{F}_{n}(L, s)=\left[\widetilde{F}_{1}(L, s)\right]^{n}=\left[e^{-L \sqrt{s / D}}\right]^{n}=e^{-n L \sqrt{s / D}} \\
F_{n}(L, t)=\frac{n L}{\sqrt{4 \pi D t^{3}}} e^{-n^{2} L^{2} / 4 D t}
\end{gathered}
$$

\uparrow pdf for $n^{\text {th }}$ reset at $t=$ pdf for $1^{\text {st }}$ passage at $n L$ at t

First-passage resetting in Brownian motion: pdf for the position at t

$$
P(x, t) \mathrm{d} x=\operatorname{Prob}(\text { particle in }[x, x+\mathrm{d} x] \text { at time } t)
$$

\triangleright Introduce the propagator with absorption at L,

$$
G(x, L, t)=\left[e^{-x^{2} / 4 D t}-e^{-(x-2 L)^{2} / 4 D t}\right] / \sqrt{4 \pi D t}
$$

\triangleright Then one has the forward renewal equation:

$$
P(x, t)=G(x, L, t)+\sum_{n \geq 1} \int_{0}^{t} d t^{\prime} F_{n}\left(L, t^{\prime}\right) G\left(x, L, t-t^{\prime}\right)
$$

\triangleright or equivalently the backward renewal equation:

$$
P(x, t)=G(x, L, t)+\int_{0}^{t} d t^{\prime} F_{1}\left(L, t^{\prime}\right) P\left(x, t-t^{\prime}\right)
$$

First-passage resetting in Brownian motion: pdf for the position at t

Again, convolution structure \longrightarrow Laplace transform:

$$
\widetilde{P}(y, s)=\frac{\widetilde{G}\left(y, y_{L}, s\right)}{1-\widetilde{F}_{1}\left(y_{L}, s\right)}=\frac{1}{\sqrt{4 D s}} \frac{\left[e^{-|y|}-e^{-\left|y-2 y_{L}\right|}\right]}{1-e^{-y_{L}}}
$$

$$
\text { with reduced variables } y=x \sqrt{s / D} \text { and } y_{L}=L \sqrt{s / D} .
$$

2 distinct cases $- \begin{cases}0 \leq y \leq y_{L} & \text { i.e. } 0 \leq x \leq L \\ y<0 & \text { i.e. } x<0\end{cases}$

First-passage resetting in Brownian motion: pdf for the position at t

Computing $P(x, t)-$ when $0 \leq x \leq L$ i.e. $0 \leq y \leq y_{L}$
$\widetilde{P}(y, s)=\frac{1}{\sqrt{4 D s}}\left[e^{-y}-e^{-\left(2 y_{L}-y\right)}\right] \sum_{n \geq 0} e^{-n y_{L}}=\frac{1}{\sqrt{4 D s}} \sum_{n \geq 0}\left[e^{-\left(y+n y_{L}\right)}-e^{-\left[(n+2) y_{L}-y\right]}\right]$,
from which

$$
P(x, t)=\frac{1}{\sqrt{4 \pi D t}} \sum_{n \geq 0}\left[e^{-(x+n L)^{2} / 4 D t}-e^{-[x-(n+2) L]^{2} / 4 D t}\right] .
$$

In the long-time limit, $t \gg 1$

$$
P(x, t) \simeq \frac{1}{\sqrt{\pi D t}} \frac{L-x}{L}
$$

\leftrightarrow balance between diffusive flux exiting at $x=L$ and re-injected at $x=0$.

First-passage resetting in Brownian motion: pdf for the position at t

Computing $P(x, t)-$ when $x<0$ i.e. $y<0$

$$
\widetilde{P}(y, s)=\frac{1}{\sqrt{4 D s}}\left[\frac{e^{y}-e^{y-2 y_{L}}}{1-e^{-y_{L}}}\right]=\frac{1}{\sqrt{4 D s}}\left[e^{y}+e^{\left(y-y_{L}\right)}\right]
$$

from which

$$
P(x, t)=\frac{1}{\sqrt{4 \pi D t}}\left[e^{-x^{2} / 4 D t}+e^{-(x-L)^{2} / 4 D t}\right] .
$$

\rightarrow i.e. superposition of paths from 0 and paths from L... Interpretation?

First-passage resetting in Brownian motion: pdf for the position at t

Computing $P(x, t)-$ when $x<0$ i.e. $y<0$

$$
\widetilde{P}(y, s)=\frac{1}{\sqrt{4 D s}}\left[\frac{e^{y}-e^{y-2 y_{L}}}{1-e^{-y_{L}}}\right]=\frac{1}{\sqrt{4 D s}}\left[e^{y}+e^{\left(y-y_{L}\right)}\right]
$$

from which

$$
P(x, t)=\frac{1}{\sqrt{4 \pi D t}}\left[e^{-x^{2} / 4 D t}+e^{-(x-L)^{2} / 4 D t}\right] .
$$

\rightarrow i.e. superposition of paths from 0 and paths from L - easy with path transformation

First-passage resetting in Brownian motion: pdf for the position at t

First-passage resetting in Brownian motion: number of resets
\triangleright Define: $Q_{n}(L, t)=\operatorname{Prob}($ exactly n resets occur up to time $t)$.

$$
Q_{n}(L, t)=\int_{0}^{t} d t^{\prime}\left[F_{n}\left(L, t^{\prime}\right)-F_{n+1}\left(L, t^{\prime}\right)\right]=\operatorname{erf}\left(\frac{(n+1) L}{\sqrt{4 D t}}\right)-\operatorname{erf}\left(\frac{n L}{\sqrt{4 D t}}\right)
$$

\triangleright Backward renewal equation for the average number of resets $\mathcal{N}(t)$:

$$
\mathcal{N}(t)=\int_{0}^{t} d t^{\prime} F_{1}\left(L, t^{\prime}\right)\left(1+\mathcal{N}\left(t-t^{\prime}\right)\right)
$$

\triangleright Laplace transforming:

$$
\begin{aligned}
& \tilde{\mathcal{N}}(s)=\frac{\tilde{F}_{1}(L, s)}{s\left[1-\widetilde{F}_{1}(L, s)\right]}=\frac{e^{-y_{L}}}{s\left(1-e^{-y_{L}}\right)} \\
& \mathcal{N}(t) \simeq \sqrt{\frac{4 D t}{\pi L^{2}}} \quad \text { when } t \gg 1
\end{aligned}
$$

Optimization in first-passage resetting

Consider now:

$\triangleright x(t)$ models the operating point of a system;
$\triangleright x(t) \geq 0$ and if $x(t)=L$ the system breaks down, incurring a cost C;
\triangleright control mechanism modelled by a drift v.

And seek to maximize:

$$
\mathcal{F}=\lim _{T \rightarrow \infty} \frac{1}{T}\left[\frac{1}{L} \int_{0}^{T}\langle x(t)\rangle d t-C \mathcal{N}(T)\right] .
$$

Convection diffusion equation for the pdf $P(x, t)$:

$$
\partial_{t} P+v \partial_{x} P=D \partial_{x x} P+\left.\delta(x)\left(-D \partial_{x} P+v P\right)\right|_{x=L},
$$

subject to the initial and boundary conditions

$$
\left\{\begin{array}{l}
\left.\left(D \partial_{x} P-v P\right)\right|_{x=0}=\delta(t), \\
P(L, t)=P(x, 0)=0 .
\end{array}\right.
$$

It admits a steady-state solution,

$$
P(x) \simeq \frac{1}{L} \times \frac{1-e^{-2 \mathrm{Pe}(L-x) / L}}{1-\mathrm{Pe}^{-1} e^{-\mathrm{Pe}} \sinh (\mathrm{Pe})},
$$

where $\mathrm{Pe} \equiv v L / 2 D$ is the Péclet number.

First-passage resetting in Brownian motion: optimization

From the steady-state solution, one obtains the normalized first moment:

$$
\frac{\langle x\rangle}{L}=\frac{1}{L} \int_{0}^{L} x P(x) \mathrm{d} x=\frac{\left(2 \mathrm{Pe}^{2}-2 \mathrm{Pe}+1\right) e^{2 \mathrm{Pe}}-1}{2 \mathrm{Pe}\left[(2 \mathrm{Pe}-1) e^{2 \mathrm{Pe}}+1\right]} .
$$

Again with a backward equation, one also obtains the average number of breakdowns:

$$
\mathcal{N}(T) \simeq \frac{4 \mathrm{Pe}^{2}}{2 \mathrm{Pe}-1+e^{-2 \mathrm{Pe}}} \frac{T}{L^{2} / D} .
$$

Hence:

$$
\mathcal{F} \simeq \frac{\left(2 \mathrm{Pe}^{2}-2 \mathrm{Pe}+1\right) e^{2 \mathrm{Pe}}-1}{2 \mathrm{Pe}\left[(2 \mathrm{Pe}-1) e^{2 \mathrm{Pe}}+1\right]}-\frac{4 \mathrm{Pe}^{2}}{2 \mathrm{Pe}-1+e^{-2 \mathrm{Pe}}} \frac{C}{L^{2} / D}
$$

First-passage resetting in Brownian motion: optimization

Objective function \mathcal{F} in terms of Péclet number $\operatorname{Pe} \equiv v L / 2 D$ for different values of normalized cost $C^{\prime} \equiv C /\left(L^{2} / D\right)$.

First-passage resetting in Brownian motion: variations

Variations include:
\triangleright delay for "repairs" after breakdown [de Bruyne, R-F, Redner 2020, 2021a]
\triangleright boundary recession [de Bruyne, R-F, Redner 2021a, 2022]
\triangleright higher-dimensional cases [Sherman 1957, de Bruyne, R-F, Redner 2021a]
\triangleright reset at random point [Feller 1953, Sherman 1957, Grigorescu, Kang 2007]
\triangleright multi-particle resetting [de Bruyne, R-F, Redner 2021b]

Multi-particle first-passage resetting

Multi-particle first-passage resetting

\triangleright multi-particle resetting: eg two "altruistic" particles

Multi-particle first-passage resetting

\triangleright Compare "altruistic" vs "individualistic" systems - eg for $N=2$ agents
Use order statistics $+X_{a}(t)=\frac{x_{1}(t)+x_{2}(t)}{2}$ follows a BM with diff. cst $D_{\|}=D / 2$

(a) Survival probability

(b) Median "wealth" of agents

Multi-particle first-passage resetting

\triangleright Compare "altruistic" vs "individualistic" systems - eg for $N=16$ agents
Use order statistics $+X_{a}(t)=\frac{x_{1}(t)+\ldots x_{N}(t)}{2}$ follows a BM with diff. cst $D_{\|}=D / N$

A first-passage problem for the Brownian supremum

A (toy) foraging problem (by P. Krapivsky)

\triangleright "forager" on a line \rightarrow Brownian walker with position $B(t)$
\triangleright one unit of "food" per unit length, no food replenishment

- "metabolism": walker stockpiles, needs one unit of food per unit time
\triangleright survival probability?

One-sided version

\triangleright "forager" on a line \rightarrow Brownian walker with position $B(t)$
\triangleright one unit of "food" per unit length, no food replenishment
\triangleright "metabolism": walker needs one unit of food per unit time
\triangleright food on >0 side only

One-sided version: a hitting-time problem for the supremum

Letting

$$
M(s)=\sup _{0 \leq \tau \leq s} B(\tau)
$$

Survival probability is:

$$
P(t)=\operatorname{Prob}(M(s)>s, \forall s \leq t)
$$

A hitting-time problem for the supremum

Survival probability $P(t)=\operatorname{Prob}(M(s)>s, \forall s \leq t)$ \downarrow

$$
f(t)=-\frac{\mathrm{d}}{\mathrm{~d} t} P(t)
$$

Probability density function (pdf) of extinction time

$$
\|
$$

Pdf of first hitting time for $M(s)$ on the diagonal, $\inf _{s>0}\{M(s)-s=0\}$

Idea: look at paths with $M(t)=t$

Path going extinct at $t \Rightarrow M(t)=t$, but...

Idea: look at paths with $M(t)=t$

Path going extinct at $t \Rightarrow M(t)=t$, but...

$$
M(t)=t \nRightarrow \text { path going extinct at } t
$$

Idea: look at paths with $M(t)=t$
Path going extinct at $t \Rightarrow M(t)=t$, but...

$$
M(t)=t \nRightarrow \text { path going extinct at } t
$$

because path could have gone extinct before.

Time

Idea: look at paths with $M(t)=t$

Path going extinct at $t \Rightarrow M(t)=t$, but...

$$
M(t)=t \nRightarrow \text { path going extinct at } t
$$

because path could have gone extinct before.

$$
f(t)=\overbrace{\text { pdf }(M(t)=t)}^{\text {paths with } M(t)=t}-\underbrace{g(t)}_{\begin{array}{c}
\text { paths with } M(t)=t \\
\text { and }
\end{array}} \begin{gathered}
M(s)=s \text { for some } s<t
\end{gathered}
$$

Idea: look at paths with $M(t)=t$

Path going extinct at $t \Rightarrow M(t)=t$, but...

$$
M(t)=t \nRightarrow \text { path going extinct at } t
$$

because path could have gone extinct before.

$$
f(t)=\overbrace{\sqrt{\frac{2}{\pi t}} \exp \left(-\frac{t}{2}\right)}^{\text {paths with } M(t)=t} \underbrace{g(t)}_{\begin{array}{c}
\text { paths with } M(t)=t \\
\text { and } \\
M(s)=s \text { for some } s<t
\end{array}}
$$

A path transformation (1)

Given a path with $M(t)=t$ and $M(s)=s$ for some $s<t$, define:
\triangleright hitting time of $M(s)=s$:

$$
\tau_{0}=\inf \{r>0, B(r)=M(s) \text { i.e. } B(r)=s\}
$$

\triangleright first time level s is hit after τ_{0} :

$$
\delta=\inf \left\{r>\tau_{0}, B(r) \geq M(s) \text { i.e. } B(r) \geq s\right\}
$$

A path transformation (1)

Given a path with $M(t)=t$ and $M(s)=s$ for some $s<t$, define:
\triangleright hitting time of $M(s)=s$:

$$
\tau_{0}=\inf \{r>0, B(r)=M(s) \text { i.e. } B(r)=s\}
$$

\triangleright first time level s is hit after τ_{0} :

$$
\delta=\inf \left\{r>\tau_{0}, B(r) \geq M(s) \text { i.e. } B(r) \geq s\right\}
$$

Then
\triangleright Note: path between τ_{0} and δ is a (downward) excursion

A path transformation (1)

Given a path with $M(t)=t$ and $M(s)=s$ for some $s<t$, define:
\triangleright hitting time of $M(s)=s$:

$$
\tau_{0}=\inf \{r>0, B(r)=M(s) \text { i.e. } B(r)=s\}
$$

\triangleright first time level s is hit after τ_{0} :

$$
\delta=\inf \left\{r>\tau_{0}, B(r) \geq M(s) \text { i.e. } B(r) \geq s\right\}
$$

Then
\triangleright Note: path between τ_{0} and δ is a (downward) excursion
\triangleright Idea : extract this excursion \& use it to hit a new global maximum $>t$

A path transformation (1)

\triangleright Define hitting time of the global maximum,

$$
\tau_{*}=\inf \{r>0, B(r)=M(t) \text { i.e. } B(r)=t\}
$$

A path transformation (1)

$$
K \ll \Delta \gg 1-14+
$$

\triangleright extract excursion \& bring "forward" (to τ_{0}) the $\left[\delta, \tau_{*}\right]$ part
\triangleright insert then the excursion transformed into an (upward) first passage bridge
\triangleright insert the final, post- τ_{*} part shifted upward as needed

A path transformation (1)

$$
K<\triangle D \ggg \pm+
$$

\triangleright extract excursion \& bring "forward" (to τ_{0}) the $\left[\delta, \tau_{*}\right]$ part
\triangleright insert then the excursion transformed into an (upward) first passage bridge
\triangleright insert the final, post- τ_{*} part shifted upward as needed
\rightarrow obtain a path with global maximum $>t$

A path transformation (2)

Start with a Brownian path having $M(t)>t$, and set:

$$
\tau_{1}=\inf \{s>0, B(s)=t\}, \quad \tau_{*}=\inf \{s>0, B(s)=M(t)\}
$$

and

$$
\tau_{2}=\inf \{s>0, B(s)=[M(t)+t] / 2\} .
$$

A path transformation (2)

Note that $B(0)-0=0$ and $B\left(\tau_{1}\right)-\tau_{1}=t-\tau_{1}>\tau_{2}-\tau_{1}$, so

$$
\left.\exists \tau_{0} \in\right] 0, \tau_{1}\left[\text { s.t. } \tau_{0}=\inf \left\{s>0, B(s)-s=\tau_{2}-\tau_{1}\right\} .\right.
$$

A path transformation (2)

Note that $B(0)-0=0$ and $B\left(\tau_{1}\right)-\tau_{1}=t-\tau_{1}>\tau_{2}-\tau_{1}$, so

$$
\left.\exists \tau_{0} \in\right] 0, \tau_{1}\left[\text { s.t. } \tau_{0}=\inf \left\{s>0, B(s)-s=\tau_{2}-\tau_{1}\right\} .\right.
$$

A path transformation (2)

Decompose the Brownian path as follows:
\triangleright take the τ_{1} to τ_{*} part out,
\triangleright form an excursion of duration $\tau_{*}-\tau_{1}$ with subpath $\left[\tau_{1}, \tau_{*}\right]$
\triangleright insert excursion (downward) at time τ_{0}
\triangleright append then the $\left[\tau_{0}, \tau_{1}\right]$ part and the post- τ_{*} part

\rightarrow obtain a path with $M(t)=t$, "dying" (for sure) at time $s=\tau_{0}+\tau_{2}-\tau_{1}$.

Recall:

$$
f(t)=\overbrace{\sqrt{\frac{2}{\pi t}} \exp \left(-\frac{t}{2}\right)}^{\text {paths with } M(t)=t} \underbrace{g(t)} \begin{gathered}
\text { paths with } M(t)=t \\
\text { and } \\
M(s)=s \text { for some } s<t
\end{gathered}
$$

Now:

$$
f(t)=\overbrace{\sqrt{\frac{2}{\pi t}} \exp \left(-\frac{t}{2}\right)}^{\text {paths with } M(t)=t}-\underbrace{\underbrace{g(t)}}_{\text {paths with } M(t)>t}
$$

That is,

$$
f(t)=\sqrt{\frac{2}{\pi t}} \exp \left(-\frac{t}{2}\right)-\int_{t}^{\infty} \sqrt{\frac{2}{\pi t}} \exp \left(-\frac{m^{2}}{2 t}\right) d m
$$

Finally:

$$
f(t)=\sqrt{\frac{2}{\pi t}} \exp \left(-\frac{t}{2}\right)-\operatorname{erfc}\left(\sqrt{\frac{t}{2}}\right)
$$

PDF of extinction time in the one-sided case

Finally:

$$
f(t)=\sqrt{\frac{2}{\pi t}} \exp \left(-\frac{t}{2}\right) \quad-\quad \operatorname{erfc}\left(\sqrt{\frac{t}{2}}\right)
$$

Two other approaches:
\triangleright look at the reciprocal process of $M(s)-s$
\rightarrow this is a spectrally positive Lévy process
\triangleright show that the first passage time of $M(t)-t$ is distributed like the sojourn time above 0 of the process $B(t)-t$
R.A. Doney Hitting probabilities for spectrally positive Lévy processes, Journal of the LMS, 2(3):566-576 (1991)

A first-passage problem for the Brownian range

Two-sided version: Brownian range

\triangleright "forager" on a line \rightarrow Brownian walker with position $B(t)$
\triangleright one unit of "food" per unit length, no food replenishment
\triangleright "metabolism": walker needs one unit of food per unit time
\triangleright food on both sides

Letting

$$
R(s)=\sup _{0 \leq \tau \leq s} B(\tau)-\inf _{0 \leq \tau \leq s} B(\tau)
$$

Survival probability is now:

$$
P(t)=\operatorname{Prob}(R(s)>s, \forall s \leq t)
$$

Two-sided version: a hitting-time problem for the range

Letting

$$
R(s)=\sup _{0 \leq \tau \leq s} B(\tau)-\inf _{0 \leq \tau \leq s} B(\tau)
$$

Survival probability is now:

$$
P(t)=\operatorname{Prob}(R(s)>s, \forall s \leq t)
$$

Two-sided version: a hitting-time problem for the range

Letting

$$
R(s)=\sup _{0 \leq \tau \leq s} B(\tau)-\inf _{0 \leq \tau \leq s} B(\tau)
$$

Survival probability is now:

$$
P(t)=\operatorname{Prob}(R(s)>s, \forall s \leq t)
$$

Idea: look at paths with $R(t)=t$

Path going extinct at $t \Rightarrow R(t)=t$, but...

$$
R(t)=t \nRightarrow \text { path going extinct at } t
$$

because path could have gone extinct before.

$$
f(t)=\overbrace{\operatorname{pdf}(R(t)=t)}^{\text {paths with } R(t)=t}-\underbrace{g(t)}_{\substack{\text { paths with } R(t)=t \\ \text { and }}}
$$

Idea: look at paths with $R(t)=t$
Path going extinct at $t \Rightarrow R(t)=t$, but...

$$
R(t)=t \nRightarrow \text { path going extinct at } t
$$

because path could have gone extinct before.

$$
f(t)=\overbrace{\frac{8}{\sqrt{2 \pi t}} \sum_{k=1}^{\infty}(-1)^{k-1} k^{2} e^{-\frac{k^{2} t}{2}}}^{\text {W. Feller, Ann. Math. Statist. 22, 427 (1951) }} \begin{gather*}
\begin{array}{c}
\text { paths with } R(t)=t \\
\text { paths with } R(t)=t \\
\text { and }
\end{array} \\
R(s)=s \text { for some } s<t
\end{gather*}
$$

— ongoing work with P. Salminen, P. Vallois \& P. Krapivsky

Many thanks for the invitation and for your attention!

