Rigorous results on a frustration-free quantum fully packed loop model Zhao Zhang (SISSA) 30.5.2022, GGI

Manuscript in preparation with Henrik S. Røising (Nordita -> Niels Bohr Institute)

Outline

- Motivation and background
 - weak ergodicity breaking
 - entanglement entropy scaling
- Constrained Hilbert space and Hamiltonian
- Fragmentation and frustration free eigenstates
- Entanglement entropy
- Spectral gap
- Summary and Outlook

Lightning review of ergodicity and its breaking

 $\lim_{t \to \infty} \rho_{\mathcal{A}}(t) = \operatorname{Tr}_{\mathcal{B}}(\rho^{eq}) \approx \rho_{\mathcal{A}}^{eq}, \quad \rho^{eq} = \frac{1}{7}e^{-\beta H}$

Eigenstate thermalization Hypothesis

Weak ETH breaking in constrained Hilbert space

PXP model Hilbert space dim. grows as Fibonacci sequence: 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... Any 2D counterparts? Asymptotically as 1.618^N

Ergodicity in the Quantum Dimer Model

Asked 4 years, 10 months ago Modified 3 years, 9 months ago Viewed 354 times

Background:

The Quantum Dimer Model is a lattice model, where each configuration is a covering of the lattice with nearest-neighbour bonds, like in the figure on the left:

Height model and entanglement

Can this happen in 2D as well?

$$|+|\psi\rangle_{j,j+1}\langle\psi|+|\theta\rangle_{j,j+1}\langle\theta|$$

At least not naively.

Hilbert space grows as: 2, 7, 42, 429, 7436, 218348, ... Asymptotically as $1.299N^2$

$$A(N) = \prod_{n=0}^{N-1} \frac{(3n+1)!}{(N+n)!}$$

How to make them quantum (frustration free)?

 $H_{\partial} = H_{\partial}^{u} + H_{\partial}^{d} + H_{\partial}^{l} + H_{\partial}^{r} + 2N,$ By introducing off-diagonal terms in Hamiltonian $H_{\partial}^{y} = \sum_{x=1}^{N} (-1)^{x} \left| \downarrow \right\rangle \left\langle \downarrow \right|_{x,N},$ $H_{\partial}^{d} = \sum_{x=1}^{N} (-1)^{x+1} \left| \mathbf{i} \right\rangle \left\langle \mathbf{i} \right|_{x,1}$ $H^l_{\partial} = \sum_{y=1}^N (-1)^y \left| \longrightarrow \right\rangle \left\langle \longrightarrow \right|_{1,y},$ $(+1,j))^2, V \to \infty$ $H^r_{\partial} = \sum_{y=1}^N (-1)^{y+1} | \longrightarrow \rangle \langle \longleftarrow |_{N,y}.$ Ergodicity within fixed boundary configuration

$$H = \sum_{p \in \text{bulk}} P_p + H_{\partial},$$

$$P_p = \left(\left| \bigsqcup^{N} \right\rangle - \left| \bigsqcup^{N} \right\rangle \right) \left(\left\langle \bigsqcup^{N} \right| - \left\langle \bigsqcup^{N} \right| \right)_p$$

$$H_0 = V \sum_{i,j=1}^N \left(S_x(i,j) + S_y(i,j) + S_y(i,j+1) + S_x(i,j) \right)$$

$$\implies |\mathrm{GS}\rangle = \frac{1}{\sqrt{A(N)}} \sum_{\mathcal{F}\in\mathrm{FPL with DWBC}} |\mathcal{F}\rangle$$

Dual height representation

$$S_{x}(i+1,j)$$

$$h(i,j+1)$$

$$h(i+1,j+1)$$

$$G_{y}(i,j)$$

$$h(i,j)$$

$$h(i+1,j)$$

$$h(i+1,j)$$

$$G_{x}(i,j)$$

$$H(i+1,j)$$

$$H(i+1,j$$

$$\vec{S}(i,j) = \vec{\nabla}h(i,j) \implies \vec{\nabla} \times \vec{S}(i,j) =$$

$$H_0^* = V \sum_{\langle p,q \rangle} \left((h_p - h_q)^2 - 1 \right)^2, \ V \gg 1$$
$$H^* = \sum_{p \in \text{bulk}} \left(\Pi_p^> + \Pi_p^< - \Pi_p^> h_p^+ \Pi_p^< - \Pi_p^< h_p^- \Pi_p^> \right)$$

 $H_{\partial}^* = h(1,1) - h(1,N+1) - h(N+1,1) + h(N+1,N+1) + 2N.$

2

Hilbert space fragmentation

Inductive proof of ergodicity within Krylov subspaces

$$|2n, \mathcal{S}_n\rangle \propto \sum_{\mathcal{F}\in \mathrm{FPL with }\mathcal{S}_n} |\mathcal{F}
angle$$

Product state eigenstates:

Entanglement entropy

 $S_{\text{topo}} \equiv S_A + S_B + S_C - S_{AB} - S_{BC} - S_{AC} + S_{ABC}$

bulk gapless excitation

Natural ordering of configurations by volume

$$\begin{aligned} |\pi\rangle &= \sum_{\mathcal{F}\in \text{FPL with DWBC1}} \operatorname{sgn}(V(\mathcal{F}) - V_0) |\mathcal{F}\rangle \\ \langle \text{GS}|\pi\rangle &= 0 \qquad \langle \pi|\pi\rangle = A(N) \\ M &= \frac{N^2}{4} \quad \text{mobile plaquettes} \quad \begin{cases} \frac{M+1}{2} \to \frac{N}{2} - 1, \\ \frac{M-1}{2} \to \frac{N}{2} + 1. \end{cases} \end{aligned}$$

total number of such configurations on the bound

$$\langle \pi | H | \pi \rangle = \sum_{\substack{\mathcal{F}', \mathcal{F}' = V_0 \pm 1 \\ = \frac{M+1}{2} \binom{M}{\frac{M+1}{2}}. } \langle \mathcal{F} | H | \mathcal{F}' \rangle$$

$$\lim_{N \to \infty} \frac{\langle \pi | H | \pi \rangle}{\langle \pi | \pi \rangle} \propto N \left(\frac{\sqrt[4]{2}}{3\sqrt{3}/4} \right)^{N^2} \to 0$$

dary
$$\sum_{f=0}^{\frac{M-1}{2}} {\binom{M-1}{2} \choose \frac{M+1}{2}} \equiv {\binom{M}{\frac{M+1}{2}}}{\frac{M+1}{2}} \equiv {\binom{M}{\frac{M+1}{2}}}$$

Link pattern, Wieland gyration and holography dual

Alexander, et. al., PRB, 19'

Dell'Anna, et. al., PRB, 16' Salberger, and Korepin, Rev. Math. Phys., 17'

Chiral edge mode?

Lemm and Mozgunov, J. Math. Phys., 19'

Open questions

- Quantum many-body scar dynamics?
- What if there is kinetic term on boundary or periodic boundary condition?
- Add color degree of freedom to increase entanglement? Movassagh, and Shor, PNAS, 16'
- Current gapless proof doesn't work for q-deformed model, could the be a phase transition at q=1?
- Other lattices and constraints (coming soon)
- Spin Hamiltonian on vertices (coming soon)

S? Turner, et. al., Nature Phys., 18'

Zhang, Ahmadain, Klich, PNAS, 17'

Cano, and Fendley, PRL, 12'