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Origin and applications of the 
correspondence between classical 

and quantum integrable theories
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No Liouville theorem: NOT solvable



Sketch of a PLAN: 


1)Motivations: in many research topics Thermodynamic Bethe 
Ansatz appears with different physical meanings. So far, a little in 
gauge theory, not in GR, BH physics (to me): it is a possible tool. 


2) Traditional TBA: particle scattering in 2D QFT, I way 


3)AdS/CFT Operator Product Expansion Form factor series for null polygonal 

WLs re-sums to TBA at strong coupling: II way. 


4 ) O rd i n a r y D iffe re n t i a l E q . I n t e g r a b l e M o d e l s 
correspondence: functional, integral eqs. Gauge th, BH. III way.


5) PDE/IM with masses enlarge the view, then why ODE/IM?

→

→

2

Classical Integrable system=classical Lax pair

2D CFT 

ORIGIN:←



Ubiquitous discontinuity formulae, e.g. Kontsevich-Soibelman (Donaldson-Thomas 
invariants): WKB (Dalabaere-Pham), resurgence,(compactified) susy gauge 
theories wall-crossing of BPS states entails (Gaiotto-Moore-Neitzke)





which are nothing but TBA EQS: more that one year later, scattering interpretation 


the reality condition (5.4). Hence a solution of (5.11) is a solution of the Riemann-Hilbert

problem.14

Using the explicit form of the Kontsevich-Soibelman factors from (2.16), we have

(XS!)γ = Xγ
∏

γ′∈(Γu)!

(1 − σ(γ′)Xγ′)
Ω(γ′;u)〈γ,γ′〉 (5.12)

(with (Γu)! defined in (5.5)). Plug this into (5.11) to get the final integral equation for X :

Xγ(ζ) = X sf
γ (ζ) exp



−
1

4πi

∑

γ′

Ω(γ′;u)〈γ, γ′〉

∫

!γ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1 − σ(γ′)Xγ′(ζ

′))



 .

(5.13)

As we have mentioned, equation (5.13) is a form of the Thermodynamic Bethe Ansatz. See

Appendix E.

In Appendix C we argue that (5.13) has a solution for sufficiently large R, and describe

its expansion as R → ∞ for u away from the walls. The first nontrivial approximation is

Xγ(ζ) ∼ X sf
γ (ζ) exp



−
1

4πi

∑

γ′

Ω(γ′;u)〈γ, γ′〉

∫

!γ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1 − σ(γ′)X sf

γ′ (ζ
′))



 ,

(5.14)

and is essentially a linear superposition of the 1-instanton corrections that we found in the

abelian theory. Higher-order corrections involve multilinears in the Ω(γ′;u), and have an

R dependence which identifies them as multi-instanton contributions.

Our arguments in Appendix C are closely related to ones given in [11] in the finite-

dimensional tt∗ context. In fact, our approach leads to a simplification of the asymptotic

analysis even in the finite-dimensional case; hence in Appendix C we re-analyze that case

as well.

Global issues

By solving the Riemann-Hilbert problem, we have obtained a map X : M̃u → T̃u depending

on the choice of the local quadratic refinement σ(γ). This choice affects the Riemann-

Hilbert problem through the definition of the discontinuities Kγ . However, the solution

X depends on σ in a simple way. Recall that for any two refinements σ,σ′ there is some

c(σ,σ′) ∈ Γ∗
u/2Γ∗

u such that σ(γ)σ′(γ) = (−1)γ·c(σ,σ
′). Given a solution X [σ] of (5.11) with

refinement σ, there is a corresponding solution X [σ′] with refinement σ′,

X [σ′]
γ (u, θ; ζ) = (−1)γ·c(σ,σ

′)X [σ]
γ (u, θ + cπ; ζ). (5.15)

It follows that if we use the refinement to identify M̃u ( Mu and also T̃u ( Tu, we obtain

X : Mu → Tu which is independent of the choice of refinement.

14Note that although the Riemann-Hilbert problem is invariant under diffeomorphisms of fMu the equa-

tion (5.11) is not; its solution is unique, not unique up to diffeomorphism.
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and expand it in powers of ζ. This gives three equations:

R∂RA
(−1)
ζ − [A(0)

R ,A(−1)
ζ ] = [A(0)

ζ ,A(−1)
ζ ] + A(−1)

ζ , (D.7)

R∂RA
(0)
ζ − [A(0)

R ,A(0)
ζ ] = 2[A(1)

ζ ,A(−1)
ζ ], (D.8)

R∂RA
(1)
ζ − [A(0)

R ,A(1)
ζ ] = [A(1)

ζ ,A(0)
ζ ] + A(1)

ζ . (D.9)

These equations are strongly reminiscent of the Nahm equations, differing from them only

by the two extra linear pieces on the right hand side. These extra pieces are dominant at

large radius. An alternative strategy to derive the large R asymptotics is again an iterative

solution of these three equations around the semiflat solution.

Another interesting set of “isomonodromic” equations can be derived by similarly

expanding [∂u −Au, ζ∂ζ −Aζ ] = 0:

0 = [A(−1)
u ,A(−1)

ζ ], (D.10)

∂

∂u
A(−1)
ζ − [A(0)

u ,A(−1)
ζ ] = [A(−1)

u ,A(0)
ζ ] −A(−1)

u , (D.11)

∂

∂u
A(0)
ζ − [A(0)

u ,A(0)
ζ ] = [A(−1)

u ,A(1)
ζ ], (D.12)

∂

∂u
A(1)
ζ − [A(0)

u ,A(1)
ζ ] = [A(1)

u ,A(0)
ζ ] + A(−1)

u , (D.13)

0 = [A(1)
u ,A(1)

ζ ]. (D.14)

E. A relation to the Thermodynamic Bethe Ansatz

Note added Nov. 20, 2009:

It was pointed out to us some time ago by A. Zamolodchikov that one of the central

results of this paper, equation (5.13), is in fact a version of the Thermodynamic Bethe

Ansatz [45]. In this appendix we explain that remark. Another relation between four-

dimensional super Yang-Mills theory and the TBA has recently been discussed by Nekrasov

and Shatashvili [46].

The TBA equations for an integrable system of particles a with masses ma, at inverse

temperature β, with integrable scattering matrix Sab(θ − θ′), where θ is the rapidity, are

εa(θ) = maβ cosh θ −
∑

b

∫ +∞

−∞

dθ′

2π
φab(θ − θ′) log(1 + eβµb−εb(θ′)) (E.1)

where φab(θ) = −i ∂∂θ log Sab(θ). Here the scattering matrix is diagonal, that is, the soliton

creation operators obey Φa(θ)Φb(θ′) = Sab(θ − θ′)Φb(θ′)Φa(θ).

We can put the logarithm of (5.13) in the form of (E.1) as follows. Clearly the particle

labels a, b, . . . correspond to γ, γ′, . . . . Now let Zγ = eiαγ |Zγ |, where αγ is real and only

defined modulo 2π. For any γ we can make the change of variables ζ = −eiαγ+θ, so that

the BPS ray *γ is mapped out by −∞ < θ < ∞. Under this change of variables the semiflat

coordinate (3.11) becomes

logX sf
γ = −2πR|Zγ | cosh θ + iϕγ . (E.2)
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circumference R

more general

3

Ubiquitus TBA 



Ubiquitus TBA 
The same mathematical problem for very different physical problem: gluon 
scattering amplitudes/Wilson loops (null polygon) in N=4 STRONG gauge 
theory dual to minimal string area (thanks to AdS/CFT): same TBA. 


We re-summed the OPE (FF) series of Wl (collinear limit) to TBA.


The general phenomenon on the background is the so-called  linear 

Ordinary Differential Equation Integrable Model (ODE IM) 
correspondence (2D CFTs), possibly extended to linear PDE (Massive QFTs). 
The II way to TBA.


Recently we proposed an advance (different ODE) which identifies NS (SW 
with one Omega background) periods with integrable quantities T,Q: functional 
and integral eqs.. I will give you a flavour. Gauge motivation.


ORIGIN: IM ODE. TBA from QFTs part of general integrability structure: 
QQ, TQ, TT, Y system and ONE single (complex) Non Linear Integral Equation 
(TBA eqs. re-sum to it): general benefit. In common with SPIN CHAINS.

→ →

→



Motivation: finite size spectrum and the space of theories: 

flows from conformal theories  non perturbative physics↔

massive
massless

CFT-UV

CFT-IR
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• Physics Bethe eqs: propagation of a test (blu) particle and its 
scattering on the others (green)= 1

• This implies a sort of microscopic S matrix, valid at finite size 
(periodic) for spin chains. Not for field theories!

Spin chain lenght L

• In field theories, same form eqs. with S-matrix, valid only at  
infinite size. For finite size, not exact energy. 

<latexit sha1_base64="F/Mgp6yasyxfbjhypC8qndRp0L0=">AAACGHicbVDLSgMxFM3Ud31VXboJFqGC1Jki6qYgunHhQtHaQh9DJr21oUkmJhmhDP0MN/6KGxeKuHXn35jWLrR6IHA451xu7okUZ8b6/qeXmZqemZ2bX8guLi2vrObW1m9MnGgKFRrzWNciYoAzCRXLLIea0kBExKEa9U6HfvUetGGxvLZ9BU1BbiXrMEqsk8LcHrRSpkKOzwe4oXTcDlNRDnZFQ8Id5oNW6vSrggvsqlDslIMwl/eL/gj4LwnGJI/GuAhzH412TBMB0lJOjKkHvrLNlGjLKIdBtpEYUIT2yC3UHZVEgGmmo8MGeNspbdyJtXvS4pH6cyIlwpi+iFxSENs1k95Q/M+rJ7Zz1EyZVIkFSb8XdRKObYyHLeE200At7ztCqGbur5h2iSbUui6zroRg8uS/5KZUDA6Kpcv9/PHJuI55tIm2UAEF6BAdozN0gSqIogf0hF7Qq/foPXtv3vt3NOONZzbQL3gfX8NDnvI=</latexit>

eiplL
LY

m=1,m 6=l

S(pl, pm) = 1

free phase scattering phase

S

6

e . g . =
pl − pm − i
pl − pm + i

(Thermodynamic) Bethe Ansatz
Zamolodchikov;…….;DF,Tateo;…



1) Direct theory: ground state energy/anomalous dimension 
(gauge theory)  cannot be computed exactly at finte L: E0 = Δ0 ≃

Computation of the LxR torus partition in two ways

space L

time R

7

<latexit sha1_base64="F/Mgp6yasyxfbjhypC8qndRp0L0=">AAACGHicbVDLSgMxFM3Ud31VXboJFqGC1Jki6qYgunHhQtHaQh9DJr21oUkmJhmhDP0MN/6KGxeKuHXn35jWLrR6IHA451xu7okUZ8b6/qeXmZqemZ2bX8guLi2vrObW1m9MnGgKFRrzWNciYoAzCRXLLIea0kBExKEa9U6HfvUetGGxvLZ9BU1BbiXrMEqsk8LcHrRSpkKOzwe4oXTcDlNRDnZFQ8Id5oNW6vSrggvsqlDslIMwl/eL/gj4LwnGJI/GuAhzH412TBMB0lJOjKkHvrLNlGjLKIdBtpEYUIT2yC3UHZVEgGmmo8MGeNspbdyJtXvS4pH6cyIlwpi+iFxSENs1k95Q/M+rJ7Zz1EyZVIkFSb8XdRKObYyHLeE200At7ztCqGbur5h2iSbUui6zroRg8uS/5KZUDA6Kpcv9/PHJuI55tIm2UAEF6BAdozN0gSqIogf0hF7Qq/foPXtv3vt3NOONZzbQL3gfX8NDnvI=</latexit>

eiplL
LY

m=1,m 6=l

S(pl, pm) = 1

finite L ≃
large L → ∞



1) Direct theory: ground state exact energy dominates 
partition function as :
R → ∞

Computation of the LxR torus partition in two ways

space L

time R

<latexit sha1_base64="05eUjrakqJRdLI0cO3U5ArwYX5w=">AAACEXicbVDLSgMxFM34rPVVdekmWISCWGZE1I1Q1IXLKvaBnaFk0ts2mHmQ3BHL0F9w46+4caGIW3fu/BvTx0JbDwQO59yT3Bw/lkKjbX9bM7Nz8wuLmaXs8srq2npuY7Oqo0RxqPBIRqruMw1ShFBBgRLqsQIW+BJq/t35wK/dg9IiCm+wF4MXsE4o2oIzNFIzV7g9deEhbuxf09QdXpf6MoE+dS9AImvafW/PbUWom7m8XbSHoNPEGZM8GaPczH2ZHE8CCJFLpnXDsWP0UqZQcAn9rJtoiBm/Yx1oGBqyALSXDlfo012jtGg7UuaESIfq70TKAq17gW8mA4ZdPekNxP+8RoLtEy8VYZwghHz0UDuRFCM6qIe2hAKOsmcI40qYXSnvMsU4mhKzpgRn8svTpHpQdI6KB1eH+dLZuI4M2SY7pEAcckxK5JKUSYVw8kieySt5s56sF+vd+hiNzljjzBb5A+vzB/z/nSI=</latexit>

Z = exp[�R�0] + . . .
<latexit sha1_base64="zGitZ7sj9D+DtRV9B8srO620v64=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRF1ItQ/ACPFewHNCFsttt26WYTdidCCf0bXjwo4tU/481/47bNQVsfDDzem2FmXpgIrtFxvq3Cyura+kZxs7S1vbO7V94/aOk4VZQ1aSxi1QmJZoJL1kSOgnUSxUgUCtYORzdTv/3ElOaxfMRxwvyIDCTvc0rQSJ53ywSSwLm6C5ygXHGqzgz2MnFzUoEcjaD85fVimkZMIhVE667rJOhnRCGngk1KXqpZQuiIDFjXUEkipv1sdvPEPjFKz+7HypREe6b+nshIpPU4Ck1nRHCoF72p+J/XTbF/6WdcJikySeeL+qmwMbanAdg9rhhFMTaEUMXNrTYdEkUomphKJgR38eVl0qpV3fNq7eGsUr/O4yjCERzDKbhwAXW4hwY0gUICz/AKb1ZqvVjv1se8tWDlM4fwB9bnD8kUkN8=</latexit>

�0 = E0
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<latexit sha1_base64="F/Mgp6yasyxfbjhypC8qndRp0L0=">AAACGHicbVDLSgMxFM3Ud31VXboJFqGC1Jki6qYgunHhQtHaQh9DJr21oUkmJhmhDP0MN/6KGxeKuHXn35jWLrR6IHA451xu7okUZ8b6/qeXmZqemZ2bX8guLi2vrObW1m9MnGgKFRrzWNciYoAzCRXLLIea0kBExKEa9U6HfvUetGGxvLZ9BU1BbiXrMEqsk8LcHrRSpkKOzwe4oXTcDlNRDnZFQ8Id5oNW6vSrggvsqlDslIMwl/eL/gj4LwnGJI/GuAhzH412TBMB0lJOjKkHvrLNlGjLKIdBtpEYUIT2yC3UHZVEgGmmo8MGeNspbdyJtXvS4pH6cyIlwpi+iFxSENs1k95Q/M+rJ7Zz1EyZVIkFSb8XdRKObYyHLeE200At7ztCqGbur5h2iSbUui6zroRg8uS/5KZUDA6Kpcv9/PHJuI55tIm2UAEF6BAdozN0gSqIogf0hF7Qq/foPXtv3vt3NOONZzbQL3gfX8NDnvI=</latexit>

eiplL
LY

m=1,m 6=l

S(pl, pm) = 1

finite L ≃
large L → ∞



Computation of the LxR torus partition in two ways

time L

space R

9

2) Mirror theory (space time): 

Bethe eqs. (derived from those 1) 
in space  become exact! 


Finite L not longer a problem: 
The rmodynamics /s ta t i s t i ca l 
mechanics at temperature T=1/L 
(Yang) gives the minimal free 
energy  :  

↔
<latexit sha1_base64="NTSbi+G+MIbbwJkd4G10bgmHZmo=">AAAB/HicbVBNS8NAEN34WetXtEcvi0XwVJIi6rHoxWMV+wFNKJvtpl262YTdiRJC/StePCji1R/izX/jts1BWx8MPN6bYWZekAiuwXG+rZXVtfWNzdJWeXtnd2/fPjhs6zhVlLVoLGLVDYhmgkvWAg6CdRPFSBQI1gnG11O/88CU5rG8hyxhfkSGkoecEjBS367ceYoPR0CUih+xx2UIWd+uOjVnBrxM3IJUUYFm3/7yBjFNIyaBCqJ1z3US8HOigFPBJmUv1SwhdEyGrGeoJBHTfj47foJPjDLAYaxMScAz9fdETiKtsygwnRGBkV70puJ/Xi+F8NLPuUxSYJLOF4WpwBDjaRJ4wBWjIDJDCFXc3IrpiChCweRVNiG4iy8vk3a95p7X6rdn1cZVEUcJHaFjdIpcdIEa6AY1UQtRlKFn9IrerCfrxXq3PuatK1YxU0F/YH3+ABJ4lQ0=</latexit>

R ! 1

fmin(L)
<latexit sha1_base64="mdI+TpepwUjRvCP9MH/Y7zQuv0Q=">AAACFXicbVDNSgMxGMzW//pX9eglWISKWnZF1IsgevHgQcW2Yrss2fTbNpjNLklWLMu+hBdfxYsHRbwK3nwb07UHbR0IDDPfJF/GjzlT2ra/rMLY+MTk1PRMcXZufmGxtLRcV1EiKdRoxCN57RMFnAmoaaY5XMcSSOhzaPi3J32/cQdSsUhc6V4Mbkg6ggWMEm0kr7R1c9iC+7i5fYnTVn5d6vMEMnyGAy8NmcgqZxuZu9lqR1p5pbJdtXPgUeIMSBkNcO6VPk2OJiEITTlRqunYsXZTIjWjHLJiK1EQE3pLOtA0VJAQlJvma2R43ShtHETSHKFxrv5OpCRUqhf6ZjIkuquGvb74n9dMdHDgpkzEiQZBfx4KEo51hPsV4TaTQDXvGUKoZGZXTLtEEqpNkUVTgjP85VFS36k6e9Wdi93y0fGgjmm0itZQBTloHx2hU3SOaoiiB/SEXtCr9Wg9W2/W+89owRpkVtAfWB/foMuefw==</latexit>

Z = exp[�RLfmin(L)] + . . .



• ground state energy/anomalous dimension in 1) given by 
thermodynamic free energy computed in the mirror theory 2). 

• Minimising a functional  non linear integral eq., whose solution 
furnishes energies/ dimensions (as integrals on it):


• Other states/operators  excited states: analytic continuation of the 
solution which only modifies the driving term  

⟹

⟸
Ẽ(θ |θi)

<latexit sha1_base64="r1MhpeTBRIGz8HQFhbcm2wMYvpI="></latexit>

lnQ(✓) = Ẽ(✓) +

Z 1

�1

1

cosh (✓ � ✓0)
ln

⇥
1 +Q2(✓0)}

⇤
d✓0

<latexit sha1_base64="vOgtD5sqJfhyudg5e6ngdyfeslY="></latexit>

� ⇠
Z 1

�1

dp̃

d✓
ln

⇥
1 +Q2(✓)}

⇤
d✓
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exp[−RΔ0(L)] = exp[−RLfmin(L)]

⟹
known

 pseudoenergyQ2(θ) = e−ϵ(θ) = Y(θ) so that ϵ(θ) = m cosh θ − ∫
+∞

−∞

dθ′￼
2

1
cosh(θ − θ′￼)

ln[1 + e−ϵ(θ′￼)]



Overview with two research lines 1: Scaling functions via LIEs 2: Short operators via the Thermodynamic Bethe Ansatz An exercise and some details. Summary and Perspectives

Vacuum/Excited states Thermodynamic Bethe Ansatz

I Vacuum equations of the form

✏a(u) = µa + ẽa(u)�
X

b

Z
dv Ka,b(u, v) ln(1 + e�✏b(v))

with mirror energy ẽa(u) as driving term and scattering factors

Ka,b(u, v) / @v ln Sa,b(u, v)

I Excited states E(L) are connected to the vacuum by analytic
continuation in some parameter (e.g. µa and L) ) additional
inhomogeneous terms in the equations

P
i ln Sa,b(u, ui) depending on

TBA complex singularities ui :

e�✏a(ui ) = �1

these are the exact Bethe roots (with wrapping).
I ) Delicate and massive numerical work for analytic continuation.

Davide Fioravanti Sezione INFN di Bologna

Ambivalence of the Correspondence.



From the vacuum TBA to  Y-system





, u p o n i n v e r t i n g 
universal kernel 1/cosh into the shift operator 
on the l.h.s..Subtlety: from physical to universal kernels. 

[ ] ( )P. Dorey, R. TateorNuclear Physics B 563 PM 1999 573–602 591

6. Y-systems and dilogarithm identities

As mentioned in Section 4, there is a second set of functional relations, the so-called
Y-system, closely related to the T-system discussed in the previous sections. The
relation between these two systems is

Y E sCnq1 E Cny1 E 6.1Ž . Ž . Ž . Ž .n

and the Y ’s fulfill the relation

Y vE Y vy1E s 1qY E 1qY E . 6.2Ž . Ž . Ž . Ž . Ž .Ž . Ž .n n nq1 ny1

Ž Ž . Ž . .For M integer or half-integer and ls0, this system truncates Y E sY E s0 ,0 2M
w xand it coincides with the A -related Y-system discussed in 4 .2My1

On the other hand, the Y-functions are related to the solutions of TBA equations. In
this framework they encode finite-size effects in integrable quantum field theories, and,
through the consideration of ultraviolet limits, lead to certain remarkable sum rules for

Ž .the Rogers dilogarithm function involving the stationary Es0 solutions of the system
Ž .6.2 . For M integer and ls0, for example, the relevant sum rule is

2My16 1 2My1
L s sc , 6.3Ž .Ý UV2 ž /1qY 0 Mq1p Ž .nns1

Ž .where c is the central charge of the Z parafermionic conformal field theory, L xUV 2M
is the Rogers dilogarithm

x log y log 1yyŽ . Ž .1L x sy dy q , 6.4Ž . Ž .H2 1yy y0

Ž . Ž .and the values of the constants Y 0 involved in 6.3 aren

nq2 n
sin p sin pž /ž /2Mq2 2Mq2

Y 0 s . 6.5Ž . Ž .n p
2sin ž /2Mq2

Ž .With some additional complications, sum rules similar to 6.3 can be written for any
w x w x Ž .rational M 34 and arbitrary l. In 35 a generalisation of 6.3 involving the E-depen-

Ž . Ž . Ždent Y-functions was proposed. For an arbitrary solution Y E to 6.2 but again withn
.M an integer and ls0 the result is

2My1 2Mq16 1
L s2 2My1 . 6.6Ž . Ž .Ý Ý2 kž /p 1qY v EŽ .nns1 ks0

Dilogarithms also appear in certain volume calculations in three-dimensional manifolds
Ž w x. w xsee for example Ref. 36 , and related to this idea is the fact 37 that the general

Ž .solution to 6.2 can be expressed using cross ratios

ayc bydŽ . Ž .
a,b ,c,d s . 6.7Ž . Ž .

ayd bycŽ . Ž .

Yn(E) = e−ϵn(u), E = e2u



Overview with two research lines 1: Scaling functions via LIEs 2: Short operators via the Thermodynamic Bethe Ansatz An exercise and some details. Summary and Perspectives

Excited states via the Y-system

I Alternative route: for simpler integrable theories (like quantum
Sine-Gordon) we proposed and checked all the states - including the
ground state! - must satisfy the same functional equations, the so-called
Y -system:

Ya(u) ⌘ e�✏a(u).

In a nutshell, we loose the information concerning the inhomogeneous
terms as they are zero-modes of the ’TBA-operator’ (a multi-shift
operator with incidence matrix), i.e. ln Sa,b(u, ui) (sort of solution of
Y -system). Universal, but we recover the specific forcing term/state by
behaviour at u = ±1. Besides, these terms form the Aymptotic Bethe
Ansatz, once the non-linear integrals are forgotten. No true systematics.

I Novelty:additional discontinuity equations on the cuts of the rapidity
u-planes. We ’derived’ the dressing factor from these relations (limitation
of this ’explanation’).

Davide Fioravanti Sezione INFN di Bologna

Ambivalence of the Correspondence.



A second way to TBA: the OPE for 
null polygonal WLs

Theory: N=4 SYM in planar limit  


Exponential of circulation of the gauge field = quantum area of II B 
string theory on   (Alday, Maldacena; Korchemky, Sokachev,……)


Light-like polygons can be decomposed into light-like Pentagons 
(and Squares): an Operator Product Expansion (OPE)


Simplest example: Hexagon into two Pentagons P String Flux tube


The same as two-point correlation function <PP> into Form-
Factors in quantum integrable 2D field theories 

� = Ncg
2
YM , Nc ! 1

AdS5 ⇥ S5

→

DF,Piscaglia,Rossi;

Basso,Sever,Vieira…

dual



In a picture:


Which mathematically means:


W=𝚺 exp(-rE)<0|P|n><n|P|0>


=<PP>: the same as 2D Form Factor (FF) decomposition


Form-Factors obey axioms with the S-matrix: 1)Watson eqs., 2) Monodromy 
(q-KZ), 3) Kinematic Poles, 4) Bound-state eqs. etc.


We had to modify the 2) (and 3)) (for twist fields)


Eigen-states |n>? 2D excitations over the GKP folded string (of length=2 ln 
s) which stretches from the boundary to boundary (for large s) of AdS.

4
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56
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4’
=P(12341’) P(14’456)

In general: E-5 shared squares, E-4 pentagons

Multi-P correlation function:general m,n transition

hexagon



FFs series summing to TBA (DF, Piscaglia, Rossi)

Quite unique example of Form-Factor series re-
summation. Result: thermodynamic bubble Ansatz of 
string minimal area at strong coupling (Alday-Gaiotto-Maldacena)


The key idea: Hubbard-Stratonovich transformation 
replaces the infinite sums with a path integral


                     : saddle  point eqs. are TBA eqs.
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IMPORTANT LESSON

•Classical string equations (strong coupling), 
i.e. classical (Lax) integrable system is solved 
by quantum TBA


•Surprise: yes, because there is classical 
dynamics; no, because there were classical 
static potentials leading to TBA (next slide).


•A serious mystery: quantum string integrability 



ODE/IM Correspondence (III way) 
(Dorey,Tateo,BLZ,DF, Dunning,Suzuki,Frenkel,Bender,Masoero,….. >1998)

Simplest example: Schrödinger eq. on the half line  (Stokes line)





we fix the subdominant solution such that at complex infinity





Changing anti-Stokes sector =  this solution becomes dominant
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Ž . 2Mup the problem on the half-line 0,` with the potential x , so long as the boundary
condition at xs0 is chosen correctly. The even wavefunctions are picked out by the

X Ž . Ž .Neumann condition c 0 s0, and the odd by the Dirichlet condition c 0 s0.2 k 2 kq1
These two spectral problems thus yield the even and odd spectral subdeterminants for
the whole-line problem directly.
The problem of finding spectral determinants related to the Q-operators at general

w x Ž .values of p was addressed in 10 , where it was found that the problem 1.1 should be
modified to

d2 l lq1Ž .
2My qx q c x sEc x 1.6Ž . Ž . Ž .2 2ž /dx x

Ž .on the half-line 0,` . Imposing the two possible power-like behaviours at xs0,
Ž . lq1 Ž . ylnamely c x Ax and c x Ax , results in two different spectral problems, and

Ž Ž . 2 .their spectral determinants are proportional to the functions A l, 2 lq1 b r4 andq
Ž Ž . 2 .A l, 2 lq1 b r4 respectively.y
Much of this work rested on the so-called quantum Wronskian relation satisfied by

w x w xthe operators Q and Q 8 . But a key feature of 7,8 was another functional equation,q y
Ž .relating the Q-operators to further operators T l , sometimes called quantum transfer

matrices. Called the T-Q relation, it is

T l Q l sQ qy1l qQ ql , 1.7Ž . Ž . Ž . Ž .Ž ." " "

where

qseipb 2 . 1.8Ž .
< : Ž . Ž . ² < Ž . < :The vacua p are also eigenstates of the T l , and if we set T l, p s pT l p

then the T-Q relation for these vacuum eigenvalues can be written as

T l, p A l, p se. 2p i pA qy1l, p qe" 2p i pA ql, p , 1.9Ž . Ž . Ž . Ž .Ž ." " "

w xan equation that was also obtained in 11 .
In this paper we point out that this relation also has a natural interpretation in the

context of the Schrodinger equation, thus finding a role for the T operators at general b¨ ˆ
and p in the ‘Schrodinger picture’. This leads to an alternative derivation of the results¨

w xof 1,10 , and a novel interpretation of the fusion relations and their truncations. It also
has the bonus, for integer values of M, of providing a simple proof of the T-system
conjecture alluded to above. All of this material is contained in Sections 2–6, while
Section 7 applies the results to a problem in quantum mechanics, and Section 8
discusses duality properties. Finally, Section 9 contains our conclusions, and an ap-
pendix details the calculation of a certain asymptotic used in Section 2.

2. The general T-Q relation

w xThe results of 12,13 provide a convenient framework for our discussion, and we
begin with a quick summary of some of this material.
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Consider the differential equation

d2
y qP x c x s0 2.1Ž . Ž . Ž .2ž /dx

Ž . 2M Žfor general complex values of x. For our purposes we must set P x sx yEq l lq
. y2 w x Ž .1 x . In 12,13 P x was taken to be a polynomial in x, restricting 2M to be a

Ž .positive integer, and l lq1 to be zero. Allowing 2M to be a general real number
Ž .larger thany2, or l lq1 to be non-zero, should not change the result quoted below in

Ž .any essential way, though it will usually introduce a branch point in c x at xs0.
w xModulo this proviso, we have 12,13 :

Ž . Ž .Eq. 2.1 has a solution ysy x,E,l such that

Ž . Ž1. y is an entire function of x,E though, for the reason just mentioned, x must in
.general be considered to live on a suitable cover of the punctured complex plane .

2. y and yXsdyrdx admit the asymptotic representations
1

yMr2 Mq1y;x exp y x , 2.2Ž .ž /Mq1
1

X Mr2 Mq1y ;yx exp y x 2.3Ž .ž /Mq1
as x tends to infinity in any closed sector contained in the sector

3p
< <arg x - . 2.4Ž .

2Mq2

ŽFurthermore, the solution y is uniquely characterised by this information. Note though
Ž .that the asymptotic 2.2 is only valid as given if M)1. Extra terms appear for M(1,

consistent with the WKB result that the solution which decays as x q` is asymptoti-
Ž .y1r4 Ž x Ž .1r2 . .cally proportional to P x exp yH P t dt .

Let SS denote the sectork

2kp p
arg xy - . 2.5Ž .

2Mq2 2Mq2
Ž .From 2.2 it follows that y tends to zero as x tends to infinity in SS , and to infinity as0

x tends to infinity in SS and SS . More technically, one says that y is subdominant iny1 1
SS , and dominant in SS . To find solutions subdominant in other sectors, consider0 "1
Ž . Ž .y x sy ax,E,l for any constant a. This function solves the equationˆ

d2 l lq1Ž .
2Mq2 2M 2y qa x ya Eq y x s0 . 2.6Ž . Ž .ˆ2 2ž /dx x

2Mq2 Ž y2 . Ž .Thus if a s1, y ax,a E,l is another solution to the original problem 2.1 .
Ž Ž ..Setting vsexp p ir Mq1 we therefore have a set of solutions

y 'y x ,E,l sv kr2 y vyk x ,v 2 kE,l , 2.7Ž . Ž . Ž .k k

Žwith y subdominant in SS and dominant in SS . Our convention differs fromk k k"1
w x kr2 .12,13 by the factor of v , which is included for later convenience.
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important M > 0

Changes sign



Discrete Symmetry Breaking

Omega symmetry of the eq. not of the solution which rotates by 
 (quantum group)








About x=infinity, irregular singularity.


Lambda symmetry, about x=0, regular singularity:
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= q

as x → +∞, and let

D±(E, l) =
∞
∏

n=1

(

1 −
E

E±
n

)

. (18)

Simple WKB analysis of the equation (12) shows that

E±
n ∼ n

2α
1+α as n → ∞ (19)

and therefore for α > 1 these products converge, and (18) defines entire functions of E. It

is easy to see that in the special case l = 0 the sets
{

E+
n

}∞

n=1
and

{

E−
n

}∞

n=1
become the

components of the spectrum of (1) associated with odd and even sectors, respectively, and

so for l = 0 the functions (18) reduce to (9). In what follows we will show that for α > 1

and all values of p

A±(λ, p) = D±(ρλ2, 2p/β2 − 1/2) . (20)

We start with an observation that the following transformations of the variables

(x, E, l),

Λ̂ : x → x , E → E , l → −1 − l , (21)

Ω̂ : x → qx , E → q−2E , l → l (22)

with q = e
iπ

1+α , leave the equation (12) unchanged while acting nontrivially on its solutions.

As usual, the equation (12) admits a unique solution which decays at large x; we denote

this solution as χ(x, E, l) and fix its normalization by the condition

χ(x, E, l) : χ(x, E, l) → x−α
2 exp

{

−
x1+α

1 + α
+ O(x1−α)

}

as x → +∞ . (23)

The transformation Ω̂ applied to χ(x, E, l) yields another solution, and the pair of functions

χ+(x, E) = χ(x, E, l) , χ−(x, E) = i q−
1
2 χ(qx, q−2E, l) (24)

form a basis in the space of solutions of (12). It is not difficult to check that

W
[

χ+,χ−
]

= 2 , (25)

i.e. the solutions (24) are indeed linearly independent. The solutions (15) can always be

expanded in this basis, in particular

ψ+ = C(E, l)χ+ + D(E, l)χ− , (26)

4
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as x → +∞, and let

D±(E, l) =
∞
∏

n=1

(

1 −
E

E±
n

)

. (18)

Simple WKB analysis of the equation (12) shows that

E±
n ∼ n

2α
1+α as n → ∞ (19)

and therefore for α > 1 these products converge, and (18) defines entire functions of E. It

is easy to see that in the special case l = 0 the sets
{

E+
n

}∞

n=1
and

{

E−
n

}∞

n=1
become the

components of the spectrum of (1) associated with odd and even sectors, respectively, and

so for l = 0 the functions (18) reduce to (9). In what follows we will show that for α > 1

and all values of p

A±(λ, p) = D±(ρλ2, 2p/β2 − 1/2) . (20)

We start with an observation that the following transformations of the variables

(x, E, l),

Λ̂ : x → x , E → E , l → −1 − l , (21)

Ω̂ : x → qx , E → q−2E , l → l (22)

with q = e
iπ

1+α , leave the equation (12) unchanged while acting nontrivially on its solutions.

As usual, the equation (12) admits a unique solution which decays at large x; we denote

this solution as χ(x, E, l) and fix its normalization by the condition

χ(x, E, l) : χ(x, E, l) → x−α
2 exp

{

−
x1+α

1 + α
+ O(x1−α)

}

as x → +∞ . (23)

The transformation Ω̂ applied to χ(x, E, l) yields another solution, and the pair of functions

χ+(x, E) = χ(x, E, l) , χ−(x, E) = i q−
1
2 χ(qx, q−2E, l) (24)

form a basis in the space of solutions of (12). It is not difficult to check that

W
[

χ+,χ−
]

= 2 , (25)

i.e. the solutions (24) are indeed linearly independent. The solutions (15) can always be

expanded in this basis, in particular

ψ+ = C(E, l)χ+ + D(E, l)χ− , (26)

4

with some nonsingular coefficients C(E, l) and D(E, l). The transformations (21) and (22)

act on the solutions (15) and (24) as follows,
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Ω̂ψ± = q1/2±l±1/2 ψ± ; Ω̂χ+ = −i q
1
2 χ− , Ω̂χ− = −i q

1
2 χ+ + uχ− (28)

with some coefficient u = u(E, l). It follows from (28) that

C(E, l) = −i q−l− 1
2 D(q−2E, l) . (29)

Also, applying (27) to (26) one obtains

ψ− = D(E,−l − 1) χ− − i ql+ 1
2 D(q−2E,−l − 1) χ+ . (30)

Let us mention here a useful identity

D(E, l) =
1

2
W

[

χ+,ψ+
]

. (31)
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ql+ 1
2 D(q2E, l) D(E,−l − 1) − q−l− 1

2 D(E, l) D(q2E,−l − 1) = ql+ 1
2 − q−l− 1

2 , (33)

which is identical to (6).

To prove our statement (20) it remains to show that the coefficient D(E, l) in (26)

coincides with the function D+(E, l) defined in (18). Both are entire functions of E. As

follows from (26), these functions share the same set of zeroes in the variable E and hence

F (E, l) = log
(

D+(E, l)/D(E, l)
)

is an entire function of E. However, E → ∞ asymptotic

form of D+(E, l) is controlled by asymptotic n → ∞ density of the eigenvalues E+
n which

can be computed semiclassically. The result shows that F (E, l) → 0 as E → ∞ and hence

F (E, l) = 0.

5

around x = 0 ψ+ ≃ xl+1 ψ− ≃ x−l
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! 4A consequence of these facts is that each pair y , y provides a set of linearlyk kq1
Ž .independent solutions to the second-order equation 2.1 , and any other solution can be

expanded in terms of them. In particular,
˜y x ,E,l sC E,l y x ,E,l qC E,l y x ,E,l . 2.8Ž . Ž . Ž . Ž . Ž . Ž .ky1 k k k kq1

˜The functions C and C are called the Stokes multipliers for y with respect to yk k ky1 k
2 ˜ ˜ 2Ž . Ž . Ž . Ž . Ž .and y . It follows from 2.7 that C E,l sC v E,l and C E,l sC v E,l .kq1 k ky1 k ky1

˜ ˜ ŽFor brevity we will write C and C as C and C respectively. Again, we differ slightly0 0
˜w xfrom the conventions of 12,13 , where the abbreviations C and C were instead reserved

˜ .for C and C .1 1
The Stokes multipliers can be expressed in terms of Wronskians. Recall that the

w x Ž . Ž .Wronskian W f , g of two functions f x and g x is defined as
w x X XW f , g s fg y f g . 2.9Ž .

Ž . w xIf f and g both solve a Schrodinger equation such as 2.1 , then W f , g is independent¨
of x; furthermore, it vanishes if and only if f and g are linearly dependent. Taking the

Ž .Wronskian of 2.8 at ks0 with y and y shows that1 0

W Wy1 ,1 y1,0˜Cs , Csy , 2.10Ž .
W W0,1 0,1

w xwhere we used the abbreviation W for W y , y . These Wronskians are entirek ,k k k1 2 1 2
functions of E and l. Since y and y are independent, W never vanishes, and C and0 1 0,1
C̃ are also entire.

˜ w x Ž .In fact, all of the C are identically equal toy1 12,13 . This follows from 2.10 andk
Ž . Ž 2 . Ž . Žthe relations W E,l sW v E,l and W E,l s2 i. The second of thesek q1,k q1 k ,k 0,11 2 1 2

is found by evaluating W as x tends to infinity in the sectors SS or SS , where the0,1 0 1
Ž .asymptotic behaviours of y and y and their derivatives are determined by 2.2 and0 1

Ž . . Ž . Ž ) ) ) .) Ž . Ž .2.3 . Since y x,E,l sy x ,E ,l , it also follows from 2.10 that C E,l isy1 1
real whenever E and l are real.

Ž .The basic Stokes relation 2.8 at ks0 is therefore
C E,l y x ,E,l sy x ,E,l qy x ,E,l 2.11Ž . Ž . Ž . Ž . Ž .0 y1 1

with
1

C E,l s W E,l . 2.12Ž . Ž . Ž .y1 ,12 i
Ž .If 2.11 is rewritten in terms of y it becomes

C E,l y x ,E,l svy1r2 y v x ,vy2E,l qv1r2 y vy1 x ,v 2E,l 2.13Ž . Ž . Ž . Ž . Ž .
Ž . Ž .With x formally set to zero, this has exactly the form of 1.9 for A l, p , albeit at theq

2 2p i p 1r2 Žspecific value b r4 of p for which e sv . It also matches the T-Q relation for
2 Ž . Ž . w xA at psyb r4, but since A l, p sA l,yp 8 this is not an independenty y q

. Ž .result. However, this tactic only works when l lq1 s0. Otherwise, the resulting
Ž .equation in E is either trivial or meaningless: if l lq1 -0, that is y1- l-0, then

Ž . Ž . Ž .y xs0,E,l is identically zero, while if l lq1 )0 then y xs0,E,l is almost
everywhere infinite.

Ž .The problem arises because any solution to 2.1 is a linear combination of one
solution, cq, behaving near xs0 as x lq1, and one, cy, behaving there as xyl. Both of

Ck C̃k k = 0 y−1 = Cy0 + C̃y1
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Ž . Ž 2 . Ž . Žthe relations W E,l sW v E,l and W E,l s2 i. The second of thesek q1,k q1 k ,k 0,11 2 1 2

is found by evaluating W as x tends to infinity in the sectors SS or SS , where the0,1 0 1
Ž .asymptotic behaviours of y and y and their derivatives are determined by 2.2 and0 1

Ž . . Ž . Ž ) ) ) .) Ž . Ž .2.3 . Since y x,E,l sy x ,E ,l , it also follows from 2.10 that C E,l isy1 1
real whenever E and l are real.

Ž .The basic Stokes relation 2.8 at ks0 is therefore
C E,l y x ,E,l sy x ,E,l qy x ,E,l 2.11Ž . Ž . Ž . Ž . Ž .0 y1 1

with
1

C E,l s W E,l . 2.12Ž . Ž . Ž .y1 ,12 i
Ž .If 2.11 is rewritten in terms of y it becomes

C E,l y x ,E,l svy1r2 y v x ,vy2E,l qv1r2 y vy1 x ,v 2E,l 2.13Ž . Ž . Ž . Ž . Ž .
Ž . Ž .With x formally set to zero, this has exactly the form of 1.9 for A l, p , albeit at theq

2 2p i p 1r2 Žspecific value b r4 of p for which e sv . It also matches the T-Q relation for
2 Ž . Ž . w xA at psyb r4, but since A l, p sA l,yp 8 this is not an independenty y q

. Ž .result. However, this tactic only works when l lq1 s0. Otherwise, the resulting
Ž .equation in E is either trivial or meaningless: if l lq1 -0, that is y1- l-0, then

Ž . Ž . Ž .y xs0,E,l is identically zero, while if l lq1 )0 then y xs0,E,l is almost
everywhere infinite.

Ž .The problem arises because any solution to 2.1 is a linear combination of one
solution, cq, behaving near xs0 as x lq1, and one, cy, behaving there as xyl. Both of



If l=0, no singularity in x=0, then Baxter TQ-relation





but keeping  , it still works 





In fact ‘scattering coefficients’ = spectral determinants





are projections on the : zeroes Bethe roots


2D physics: The original transfer matrix T and Q are operators, in 
statistical field theory or spin chain, here eigenvalues, i.e. functions. 
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Ž . 2Mup the problem on the half-line 0,` with the potential x , so long as the boundary
condition at xs0 is chosen correctly. The even wavefunctions are picked out by the

X Ž . Ž .Neumann condition c 0 s0, and the odd by the Dirichlet condition c 0 s0.2 k 2 kq1
These two spectral problems thus yield the even and odd spectral subdeterminants for
the whole-line problem directly.
The problem of finding spectral determinants related to the Q-operators at general

w x Ž .values of p was addressed in 10 , where it was found that the problem 1.1 should be
modified to

d2 l lq1Ž .
2My qx q c x sEc x 1.6Ž . Ž . Ž .2 2ž /dx x

Ž .on the half-line 0,` . Imposing the two possible power-like behaviours at xs0,
Ž . lq1 Ž . ylnamely c x Ax and c x Ax , results in two different spectral problems, and

Ž Ž . 2 .their spectral determinants are proportional to the functions A l, 2 lq1 b r4 andq
Ž Ž . 2 .A l, 2 lq1 b r4 respectively.y
Much of this work rested on the so-called quantum Wronskian relation satisfied by

w x w xthe operators Q and Q 8 . But a key feature of 7,8 was another functional equation,q y
Ž .relating the Q-operators to further operators T l , sometimes called quantum transfer

matrices. Called the T-Q relation, it is

T l Q l sQ qy1l qQ ql , 1.7Ž . Ž . Ž . Ž .Ž ." " "

where

qseipb 2 . 1.8Ž .
< : Ž . Ž . ² < Ž . < :The vacua p are also eigenstates of the T l , and if we set T l, p s pT l p

then the T-Q relation for these vacuum eigenvalues can be written as

T l, p A l, p se. 2p i pA qy1l, p qe" 2p i pA ql, p , 1.9Ž . Ž . Ž . Ž .Ž ." " "

w xan equation that was also obtained in 11 .
In this paper we point out that this relation also has a natural interpretation in the

context of the Schrodinger equation, thus finding a role for the T operators at general b¨ ˆ
and p in the ‘Schrodinger picture’. This leads to an alternative derivation of the results¨

w xof 1,10 , and a novel interpretation of the fusion relations and their truncations. It also
has the bonus, for integer values of M, of providing a simple proof of the T-system
conjecture alluded to above. All of this material is contained in Sections 2–6, while
Section 7 applies the results to a problem in quantum mechanics, and Section 8
discusses duality properties. Finally, Section 9 contains our conclusions, and an ap-
pendix details the calculation of a certain asymptotic used in Section 2.

2. The general T-Q relation

w xThe results of 12,13 provide a convenient framework for our discussion, and we
begin with a quick summary of some of this material.

l ≠ 0
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Ž . Ž .these are zero at xs0 if l lq1 -0, whilst one or other is infinite if l lq1 )0.
Ž .However, rather than considering the functions y x,E,l at xs0 directly, we can take a

w x q y qhint from the result of 10 and project onto either c or c . We choose to fix c by
the x 0 asymptotic

cq x ,E,l ;x lq1qO x lq3 . 2.14Ž . Ž . Ž .
Since cy, the other solution, behaves as xyl , this only determines cq uniquely if
Re l)y3r2. If necessary, cq can be defined outside this domain by analytic

Ž . Ž .continuation. In particular, since l only appears in 2.1 in the combination l lq1 , we
can continue from l to y1y l and define cy as

cy x ,E,l 'cq x ,E,y1y l . 2.15Ž . Ž . Ž .
This procedure does bring some subtleties, to which we shall return Section 5 below, but
they do not affect the arguments of this section. In discussions of the radial Schrodinger¨

Ž w x w x. qŽ .equation see, for example, Ch. 2 of Ref. 14 or Ch. 4 of Ref. 15 c x,E,l for
Re l)y1r2 is sometimes called the regular solution.

Ž . "In analogy to 2.7 , we define ‘shifted’ solutions c :k

c "'c " x ,E,l sv kr2c " vyk x ,v 2 kE,l . 2.16Ž . Ž . Ž .k k

Ž .These also solve the original problem 2.1 . By considering the x 0 limit it is easily
seen that

c " x ,E,l sv. kŽ lq1r2.c " x ,E,l . 2.17Ž . Ž . Ž .k

w " xŽ . w "xŽ 2 .We also have W y ,c E,l sW y ,c v E,l , sok q1 k q1 k k1 2 1 2

" " kŽ lq1r2. "W y ,c E,l sv W y ,c E,lŽ . Ž .k k k

" kŽ lq1r2. " 2 ksv W y ,c v E,l . 2.18Ž . Ž .
Ž . "We can now take the Wronskian of both sides of 2.11 with c . Defining

. "D E,l 'W y x ,E,l ,c x ,E,l 2.19Ž . Ž . Ž . Ž .
Ž . Ž .and using Eq. 2.18 , the Stokes relation 2.11 becomes

C E,l D. E,l sv. Ž1r2ql .D. vy2E,l qv" Ž1r2ql .D. v 2E,l 2.20Ž . Ž . Ž . Ž . Ž .
Ž . Ž ip rŽMq1. ipb 2 .and 1.9 has indeed been matched, provided v is equal q that is, e se ,

and v lq1r2 is equal to e2p i p. These are the same relations between M and b , and l
w xand p, as obtained in 1,10 , found here by an alternative route.

Ž .To establish the precise relation between the functions appearing in Eqs. 1.9 and
Ž .2.20 , we can use the fact that, when combined with certain analyticity properties, T-Q

w x qŽ . yŽ .relations of this kind are extremely restrictive 7,8,16 . Since D E,l sD E,y ly1 ,
yŽ . Ž .we need only consider D E,l . In addition to 2.20 , we have

Ž . yi : C and D are entire functions of E;
Ž . yii : If l is real and larger thany1r2, then the zeroes of D all lie on the positive
real axis of the complex-E plane;
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ψ± En =



From the TQ relation or the QQ-system (more fundamental), n=0 (n=1 definition of T) of 





the whole integrability machinery develops functional equations; here we just need pay attention to 
their derivation/interpretation from the ODE


Fused T relations


 


which brings the TT-system or discrete Hirota eq.





with the ODE identification with the Wronskian   .  
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Ž . Ž . Ž . Ž .tiable functions, so that given four arbitrary functions f x , g x , h x and l x , and
arbitrary constants a ,b ,g ,d , we have

w x w x w x w x w xW a fqbg ,g hqd l sagW f ,h qadW f ,l qbgW g ,h qbdW g ,l .
5.1Ž .

Ž . " y q4For almost all l exceptions will be discussed below , the functions c ,c introduced
Ž . Ž .in 2.14 and 2.15 provide an alternative basis for the space of solutions to the

Ž . w "x .differential equation 2.1 . In particular, using the results W y,c sD and
w y qxW c ,c s2 lq1, we have

2 lq1 y x ,E,l sDy E,l cy x ,E,l yDq E,l cq x ,E,l , 5.2Ž . Ž . Ž . Ž . Ž . Ž . Ž .
Ž . Ž .More generally, the shifted solutions defined by 2.7 and 2.16 satisfy

2 lq1 y x ,E,l sDy v 2 kE,l cy x ,E,l yDq v 2 kE,l cq x ,E,l .Ž . Ž . Ž . Ž . Ž . Ž .k k k

5.3Ž .
Ž .Taking the Wronskian 5.3 at ksy1 with the same equation at ksn, shifting E to

1yn Ž . Žn.Ž . Ž .v E and then using the formula 4.21 for C E , property 5.1 and the results
q q y yW c ,c sW c ,c s0,k p k p

y q Žkyp.Ž lq1r2.W c ,c s 2 lq1 v 5.4Ž . Ž .p k

Ž .valid at arbitrary ‘shifts’ p and k , we find

4 lq2 i C Žn. E sv Žnq1.Ž lq1r2.Dy v nq1E,l Dq vyny1E,lŽ . Ž . Ž . Ž .
yvyŽ nq1.Ž lq1r2.Dy vyny1E,l Dq v nq1E,l . 5.5Ž . Ž . Ž .

In the context of integrable quantum field theory, a corresponding set of relations was
w xgiven in 8 ,

2 isin 2p p T l sqŽ4 jq2. pr b 2
A q jq1r2l, p A qyjy1r2l, pŽ . Ž . Ž . Ž .j q y

yqyŽ4 jq2. pr b 2
A qyjy1r2l, p A q jq1r2l, p , 5.6Ž .Ž . Ž .q y

Ž . Ž .where js0, 1r2, 1 . . . With the identifications 2.27 and 2.28 , and using the result
Ž . 23.16 , the two sets of relations agree if, as before, qsv and 2 prb s lq1r2. At

Ž . w x Ž .js0, 5.6 is the ‘quantum Wronskian’ relation of 8 , while the ns0 case of 5.5 was
Ž . w xfirst found for M an integer and ls0 in 3 . The match between these two was a key
w xingredient in 1,10 .

w x w xThe ‘T-system conjecture’ of 1 , proved in 6 , is a simple corollary of this result. If
Ž .ls0 and M is an integer, then 5.5 at nsM becomes

C ŽM . E sDq yE Dy yE sD yE , 5.7Ž . Ž . Ž . Ž . Ž .M

the second equality following because at ls0, Dq and Dy are the even and odd
Ž . ŽM .Ž .spectral subdeterminants respectively for the full-line problem 1.1 . Since C E s

Ž 1r2 .T nE , this establishes the conjectured relation between D and the vacuumMr2 M
Ž w xexpectation value T . Note though the small differences in notation from Ref. 1 : asMr2

well as the negation of E already mentioned in the Introduction, a half-integer j has
been used to index the T operators in this paper, in line with the conventions of Refs.
w x w x w x8,29,30 , while in 1 the index was integer-valued. Thus in 1 the correspondence was

.with T rather than T .M Mr2
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4. Fusion relations and monodromy

The T-Q relation is not the only functional equation which arises in the context of the
Ž w x.T- and Q-operators see, for example, Refs. 8,11,27–30 . Further relations are conve-

niently expressed using the ‘fused’ T-operators T , which can be built up by a processj
known as fusion from the basic operator T. Introducing a half-integer valued index
js0, 1r2, 1, . . . , the first set of fusion relations, sometimes called a T-system, reads as
follows:

T qy1r2l T q1r2l s1qT l T l , 4.1Ž . Ž . Ž .Ž . Ž .j j jq1r2 jy1r2

Ž . Ž . Ž .where T l '1 and T l 'T l . The fused T’s can also be obtained from0 1r2

T l T q jq1r2l sT q jq1l qT q jl 4.2Ž . Ž .Ž . Ž . Ž .j jy1r2 jq1r2

or

T l T qyjy1r2l sT qyjy1l qT qyjl . 4.3Ž . Ž .Ž . Ž . Ž .j jy1r2 jq1r2

< :The vacuum states p are also eigenstates of these fused T-operators. In this section we
Ž . ² < Ž . < :shall show that the vacuum expectation values T l ' pT l p arise naturally inj j

Ž .the context of the Schrodinger equation 2.1 , leading to a reinterpretation of the fusion¨
relations and their truncations in terms of the behaviour of solutions to this equation
under analytic continuation.

# 4As remarked earlier, each pair of functions y , y provides a basis for the spacem mq1
Ž .of solutions to 2.1 . So far, we have only examined the expansion of y in the basisky1

# 4y , y , but it is natural to ask about other possibilities. To this end, we extend thek kq1
˜Ž .definition 2.8 of C and C by settingk k

Žm. ˜Žm.y sC y qC y 4.4Ž .ky1 k kqmy1 k kqm

Ž1. ˜Ž1. ˜Ž . # 4so that C sC and C sC sy1 . The change from the y , y basis tok k k k kqmy1 kqm
# 4 Žm.the y , y basis is then effected by a 2=2 matrix C asky1 k k

Ž .m Žm.˜C Cy y k kky1 kqmy1Žm. Žm.sC , C s . 4.5Ž .k ky y Žmy1. Žmy1.ž / ž / ˜k kqm ž /C Ckq1 kq1

This matrix depends on E and l, but not x. The following properties are immediate:

CŽm. E,l sCŽm. v 2E,l , 4.6Ž . Ž . Ž .k ky1

C y11 0 kŽ0. Ž1.C s , C s . 4.7Ž .k kž / ž /0 1 1 0

# 4Further relations reflect the fact that the change from the basis y , y tokqmqny1 kqmqn
# 4 # 4 # 4y , y , followed by the change from y , y to y , y , has thekqmy1 kqm kqmy1 kqm ky1 k
same effect as accomplishing the overall change in one go:

CŽm.CŽn. sCŽmqn. . 4.8Ž .k kqm k
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Tn/2(E1/2) = C(n)(E) =
1
2i

W−1,n(ω−n+1(E)
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ŽThese express the consistency of the analytic continuations, and can be thought of as
.monodromy relations. Consider first the case ms1. We have
Ž . Ž .n Žn. nq1 Žnq1.˜ ˜C C C CC y1 kq1 kq1 k kk s , 4.9Ž .ž / Žny1. Žny1. Žn. Žn.˜ ˜ž / ž /1 0 C C C Ckq2 kq2 kq1 kq1

which gives two non-trivial relations

C C Žn. yC Žny1.sC Žnq1. 4.10Ž .k kq1 kq2 k

and

˜Žn. ˜Žny1. ˜Žnq1.C C yC sC . 4.11Ž .k kq1 kq2 k

In addition, we have the initial conditions

C Ž0.s1, C Ž1.sC , 4.12Ž .k k k

˜Ž0. ˜Ž1.C s0, C sy1. 4.13Ž .k k

˜Ž2. Ž1.Ž .The ns1 case of 4.11 shows that C syC syC ; and then the more generalk k k
equality

˜Žn. Žny1.C syC 4.14Ž .k k

Ž . Ž .follows on comparing 4.11 with 4.10 . If we now set

C Žn. E sC Žn. vynq1E , 4.15Ž . Ž . Ž .0

Ž .then 4.10 is equivalent to

C E C Žn. v nq1E sC Žny1. v nq2E qC Žnq1. v nE , 4.16Ž . Ž . Ž . Ž . Ž .
Ž . Ž0.Ž . Ž .and this matches the fusion relation 4.2 . Since C E s1sT E and, from the last0

Ž1.Ž . Ž . Ž 1r2 .section, C E sC E sT nE , this establishes the basic equality1r2

C Žn. E sT nE1r2 . 4.17Ž . Ž . Ž .nr2

Ž . Ž .It is easy to check that the fusion relation 4.3 emerges in a similar manner from 4.8
Ž .at ns1. To recover the T-system 4.1 , one more piece of information is needed.

Ž .Taking Wronskians in 4.4 yields
1 1

Žm. Žm.˜C s W , C sy W . 4.18Ž .k ky1,kqm k ky1,kqmy12 i 2 i
Ž .An immediate consequence is the recovery of 4.14 , but we also obtain

C Žm.syC Žymy2. . 4.19Ž .k kqmq1

Ž . Žm. Žym.Using this result, the nsym case of 4.8 , namely C C s1, implies thatk kqm

C Žmy1. vy1E C Žmy1. vE yC Žm. E C Žmy2. E s1 . 4.20Ž . Ž . Ž . Ž . Ž .
Ž . Ž .Given the identification 4.21 , this is the T-system 4.1 , evaluated on the vacuum state

< : Ž .p . Finally, the formula 4.18 allows the function T to be expressed alternatively innr2
terms of a Wronskian,

1
1r2 Žn. ynq1T nE sC E s W v E . 4.21Ž . Ž . Ž . Ž .nr2 y1,n2 i

This will be relevant in Section 7 below.



Finally the Y-system for the invariant quantity





which easily brings the T-system into the Y-system form





Upon taking the log, inverting the shift operator on the 
l.h.s., and using a suitable asymptotic as zero-mode, we 
can obtain non-linear integral equations with universal 
kernel 1/cosh, equivalent to physical TBA eqs. 

: solution up to quadratures.  
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6. Y-systems and dilogarithm identities

As mentioned in Section 4, there is a second set of functional relations, the so-called
Y-system, closely related to the T-system discussed in the previous sections. The
relation between these two systems is

Y E sCnq1 E Cny1 E 6.1Ž . Ž . Ž . Ž .n

and the Y ’s fulfill the relation

Y vE Y vy1E s 1qY E 1qY E . 6.2Ž . Ž . Ž . Ž . Ž .Ž . Ž .n n nq1 ny1

Ž Ž . Ž . .For M integer or half-integer and ls0, this system truncates Y E sY E s0 ,0 2M
w xand it coincides with the A -related Y-system discussed in 4 .2My1

On the other hand, the Y-functions are related to the solutions of TBA equations. In
this framework they encode finite-size effects in integrable quantum field theories, and,
through the consideration of ultraviolet limits, lead to certain remarkable sum rules for

Ž .the Rogers dilogarithm function involving the stationary Es0 solutions of the system
Ž .6.2 . For M integer and ls0, for example, the relevant sum rule is

2My16 1 2My1
L s sc , 6.3Ž .Ý UV2 ž /1qY 0 Mq1p Ž .nns1

Ž .where c is the central charge of the Z parafermionic conformal field theory, L xUV 2M
is the Rogers dilogarithm

x log y log 1yyŽ . Ž .1L x sy dy q , 6.4Ž . Ž .H2 1yy y0

Ž . Ž .and the values of the constants Y 0 involved in 6.3 aren

nq2 n
sin p sin pž /ž /2Mq2 2Mq2

Y 0 s . 6.5Ž . Ž .n p
2sin ž /2Mq2

Ž .With some additional complications, sum rules similar to 6.3 can be written for any
w x w x Ž .rational M 34 and arbitrary l. In 35 a generalisation of 6.3 involving the E-depen-

Ž . Ž . Ždent Y-functions was proposed. For an arbitrary solution Y E to 6.2 but again withn
.M an integer and ls0 the result is

2My1 2Mq16 1
L s2 2My1 . 6.6Ž . Ž .Ý Ý2 kž /p 1qY v EŽ .nns1 ks0

Dilogarithms also appear in certain volume calculations in three-dimensional manifolds
Ž w x. w xsee for example Ref. 36 , and related to this idea is the fact 37 that the general

Ž .solution to 6.2 can be expressed using cross ratios

ayc bydŽ . Ž .
a,b ,c,d s . 6.7Ž . Ž .

ayd bycŽ . Ž .
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Yn(E) = e−ϵn(θ), E = e2θ



2D CFT dictionary

Eigenvalues of statistical mechanics operators 
Q and T on the conformal primary (dimension)


     


with minimal model central charge    
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Let '(u) be a free chiral Bose field, i.e. the operator-valued function

'(u) = iQ + iPu +
X

n6 =0

a�n

n
einu. (2.1)

Here P,Q and an, n = ±1,±2, . . ., are operators which satisfy the commutation rela-
tions of the Heisenberg algebra

[Q,P ] =
i

2
�2; [an, am] =

n

2
�2�n+m,0 (2.2)

with real �. The variable u is interpreted as a complex coordinate on the 2D cylinder of
a circumference 2⇡. As follows from (2.1) the field '(u) is a quasi-periodic function of
u, i.e.

'(u + 2⇡) = '(u) + 2⇡iP. (2.3)

Let Fp be the Fock space, i.e. the space generated by a free action of the operators an

with n < 0 on the vacuum vector | pi which satisfies

an | pi = 0, for n > 0;
P | pi = p | pi.

(2.4)

The composite field

��2T (u) =: '0(u)2 : +(1� �2)'00(u) +
�2

24
(2.5)

is called the energy-momentum tensor; it is a periodic function of u and its Fourier
modes

Ln =
Z

⇡

�⇡

du

2⇡


T (u) +

c

24

�
einu (2.6)

generate the Virasoro algebra with the central charge (1.3) [17], [18]. It is well known
that for generic values of the parameters� and p the Fock spaceFp realizes an irreducible
highest weight Virasoro module V1 with the highest weight 1 related to p as

1 =
⇣ p

�

⌘2
+

c � 1
24

. (2.7)

For particular values of these parameters, when null-vectors appear inFp,V1 is obtained
from Fp by factoring out all the invariant subspaces. The space

F̂p = �
1

n=�1
Fp+n�2 (2.8)

admits the action of the exponential fields

V±(u) =: e±2'(u) : . (2.9)

Also, let E,F and H be canonical generating elements of the algebra Uq

�
sl(2)

�
[19],

i.e.
[H,E] = 2E, [H,F ] = �2F, [E,F ] =

qH
� q�H

q � q�1 , (2.10)

where q is given by (1.2) . Let j be a non-negative integer or half-integer number. We
denote ⇡j an irreducible 2j + 1 dimensional matrix representation of Uq

�
sl(2)

�
so that
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Ž .iii : If y1yMr2- l-Mr2, then the zeroes of C all lie away from the positive
real axis of the complex-E plane;
Ž . yiv : If M)1 then D has the large-E asymptotic

a0 my < < < <logD E,l ; yE , E `, arg yE -p , 2.21Ž . Ž . Ž . Ž .
2

Ž .where ms Mq1 r2M and
` 1 1 11r2 12M Ma s2 t q1 y t dtsy G y y G 1q ; 2.22Ž . Ž .H0 2ž / ž /' 2M 2Mp0

Ž .v : If Es0 then
2 lq1

1q1 2 lq1 22Mq2yD 0,l s G 1q 2Mq2 . 2.23Ž . Ž . Ž .ž /' 2Mq2p

Ž . Ž . yProperty i follows from the definition 2.19 of D as a Wronskian, given that the
Ž .functions involved are themselves entire functions of E. Property ii is also straightfor-

yŽ . Ž .ward, since a zero of D E,l signals the existence of an eigenfunction for 1.6 at that
value of E, decaying as x lq1 as x 0, and exponentially as x q`. The self-adjoint
nature of this problem for l)y1r2 then ensures the reality of these zeroes. For l)0,

Ž . ) Ž .the potential is everywhere positive and multiplying 1.6 by c x and integrating
from 0 to ` shows that all of the eigenvalues E must also all be positive. For

Ž . 2y1r2- l-0 the centrifugal term in the potential, l lq1 rx , is negative but the
Ž .same style of argument can be applied to the transformed Eq. A.3 , with the conclusion

Ž .that the eigenvalues are again all positive. Property iii is more delicate, and further
discussion will be postponed until Section 3, where a partial result will be established.

Ž .Finally, property iv follows from a WKB analysis, which is outlined in Appendix A,
Ž .and property v from a mapping of the problem at Es0 into an exactly solvable case,

given in Section 3 below.
Ž .We now claim that for M)1 and y1r2- l-Mr2, the T-Q relation 2.20 and

Ž . Ž . Ž . yŽ .properties i – v characterise the functions C E,l and D E,l uniquely. Further-
more, with the identifications

1 2 lq1
2b s , ps 2.24Ž .

Mq1 4Mq4
Ž . Ž . Ž .the same T-Q relation and the same properties i – v hold for the functions T l, p and

Ž . w x 2 Ž . Ž .A l, p of 8 , save for l replacing E in i , the asymptotic in iv becomingq
2m1 m2 2< <log A l, p ; Mq1 G a yl , l `,Ž . Ž . Ž .q 0ž /2m

< 2 <arg yl -p , 2.25Ž . Ž .
Ž . Ž .and A 0, p being equal to one rather than the value given in v . The asymptotics canq

be made to agree by setting
y11y1r2m1r2lsnE , ns 2Mq2 G 2.26Ž . Ž .ž /2m
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finite-size system (say, with the spatial coordinate compactified on a circle of circum-
ference R) this problem becomes highly nontrivial and so far its solution is known to a
very limited extent. The most important progress here has been made with the help of
the so-called Thermodynamic Bethe Ansatz (TBA) approach [5], [6]. TBA allows one
to find the eigenvalues associated with the ground state of the system (in particular the
ground-state energy) in terms of solutions of the nonlinear integral equation (TBA equa-
tion). However it is not clear how the combination of thermodynamic and relativistic
ideas which is used in the traditional derivation of the TBA equation can be extended to
include the excited states.

The above diagonalization problem is very similar to that treated in solvable lattice
models. In the lattice theory very powerful algebraic and analytic methods of diago-
nalization of the Baxter’s families of commuting transfer-matrices are known [2], [7];
these methods are further developed in the Quantum Inverse Scattering Method (QISM)
[8], [9]. Of course many IQFT can be obtained by taking continuous limits of solvable
lattice models and the method based on commuting transfer-matrices can be used to
solve these QFT. This is essentially the way IQFT are treated in the QISM. However, for
many IQFT (notably, for most of IQFT defined as perturbed CFT [10]) the associated
solvable lattice models are not known. Besides, it seems to be conceptually important to
develop the above methods directly in continuous QFT, in particular, to find continuous
QFT versions of the Baxter’s commuting transfer-matrices.

This problem was addressed in our recent paper [1] where we concentrated attention
on the case ofConformal FieldTheory (CFT),more specifically on c < 1CFT.We should
stress here that although the structure of the space of states and the energy spectrum in
CFT are relatively well understood the diagonalization of the full set of the local IM
remains a very nontrivial open problem. In [1] we have constructed an infinite set of
operator valued functions Tj(�), where j = 0, 12 , 1,

3
2 , ... and � is a complex variable.

These operators (we will exhibit their explicit form in Sect. 2) act invariantly in the
irreducible highest weight Virasoro module V1 and they commute between themselves
for any values of �, i.e.

Tj(�) : V1 ! V1,

[Tj(�),Tj0 (�0)] = 0.
(1.1)

The operatorsTj(�) are defined in terms of certain monodromymatrices associated with
2j + 1 dimensional representations of the quantum algebra Uq(sl2) where

q = ei⇡�
2
, (1.2)

and � is related to the Virasoro central charge as

c = 13� 6
�
�2 + ��2�. (1.3)

Evidently, the operators Tj(�) are CFT versions of the commuting transfer-matrices of
the Baxter’s lattice theory. We will still call these operators “transfer-matrices” although
the original meaning of this term [7] apparently is lost. As we have shown in [1], in CFT
the operators Tj(�) enjoy particularly simple analytic properties, namely they are entire
functions of �2 with an essential singularity at �2 = 1 and their asymptotic behavior
near this point is described in terms of the local IM. Therefore the operators Tj(�) can
be thought of as the generating functions for the local IM since all the information about
their eigenvalues is contained in the eigenvalues ofTj(�). The operatorsTj(�) are shown
to obey the “fusion relations” which for any rational value of �2 in (1.2) provide a finite
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finite-size system (say, with the spatial coordinate compactified on a circle of circum-
ference R) this problem becomes highly nontrivial and so far its solution is known to a
very limited extent. The most important progress here has been made with the help of
the so-called Thermodynamic Bethe Ansatz (TBA) approach [5], [6]. TBA allows one
to find the eigenvalues associated with the ground state of the system (in particular the
ground-state energy) in terms of solutions of the nonlinear integral equation (TBA equa-
tion). However it is not clear how the combination of thermodynamic and relativistic
ideas which is used in the traditional derivation of the TBA equation can be extended to
include the excited states.

The above diagonalization problem is very similar to that treated in solvable lattice
models. In the lattice theory very powerful algebraic and analytic methods of diago-
nalization of the Baxter’s families of commuting transfer-matrices are known [2], [7];
these methods are further developed in the Quantum Inverse Scattering Method (QISM)
[8], [9]. Of course many IQFT can be obtained by taking continuous limits of solvable
lattice models and the method based on commuting transfer-matrices can be used to
solve these QFT. This is essentially the way IQFT are treated in the QISM. However, for
many IQFT (notably, for most of IQFT defined as perturbed CFT [10]) the associated
solvable lattice models are not known. Besides, it seems to be conceptually important to
develop the above methods directly in continuous QFT, in particular, to find continuous
QFT versions of the Baxter’s commuting transfer-matrices.

This problem was addressed in our recent paper [1] where we concentrated attention
on the case ofConformal FieldTheory (CFT),more specifically on c < 1CFT.We should
stress here that although the structure of the space of states and the energy spectrum in
CFT are relatively well understood the diagonalization of the full set of the local IM
remains a very nontrivial open problem. In [1] we have constructed an infinite set of
operator valued functions Tj(�), where j = 0, 12 , 1,

3
2 , ... and � is a complex variable.

These operators (we will exhibit their explicit form in Sect. 2) act invariantly in the
irreducible highest weight Virasoro module V1 and they commute between themselves
for any values of �, i.e.

Tj(�) : V1 ! V1,

[Tj(�),Tj0 (�0)] = 0.
(1.1)

The operatorsTj(�) are defined in terms of certain monodromymatrices associated with
2j + 1 dimensional representations of the quantum algebra Uq(sl2) where

q = ei⇡�
2
, (1.2)

and � is related to the Virasoro central charge as

c = 13� 6
�
�2 + ��2�. (1.3)

Evidently, the operators Tj(�) are CFT versions of the commuting transfer-matrices of
the Baxter’s lattice theory. We will still call these operators “transfer-matrices” although
the original meaning of this term [7] apparently is lost. As we have shown in [1], in CFT
the operators Tj(�) enjoy particularly simple analytic properties, namely they are entire
functions of �2 with an essential singularity at �2 = 1 and their asymptotic behavior
near this point is described in terms of the local IM. Therefore the operators Tj(�) can
be thought of as the generating functions for the local IM since all the information about
their eigenvalues is contained in the eigenvalues ofTj(�). The operatorsTj(�) are shown
to obey the “fusion relations” which for any rational value of �2 in (1.2) provide a finite



Descendent/excited states

The potential acquires an extra piece

 with double poles


They satisfy algebraic equations, similar to 
Bethe’ ones (monster potentials).


As 2D QFT: no masses, conformal as the 
following. 

∑
j

2
(x − xj)2



The example of the D3 brane and 
ODE/IM correspondence

The ODE describing the scalar perturbation of Black Hole 


Change of variables                                             

to bring it into the integrability form    


Basis of solutions going to zero (subdominant) BH b.cs. 
 

r = Le
y
2 ωL = − 2ieθ P =

1
2

(l + 2)

ϕ = e
y
4ψ

→
U0(y) ≃

1

2
exp{−θ/2 − y/4}exp{−2eθ+y/2}, ℜy → + ∞ ; V0(y) ≃

1

2
exp{−θ/2 + y/4}exp{−2eθ−y/2}, ℜy → − ∞

…Gubser,Hashimoto;Bianchi,Consoli,Grillo,Morales;Di Russo…

d2ϕ
dr2

+ ω2 (1 +
L4

r4 ) −
(l + 2)2 − 1

4

r2
ϕ = 0

−
d2

dy2
ψ + [e2θ(ey + e−y) + P2] ψ = 0

DF,Gregori



Discrete Symmetry Breaking

Lambda and Omega  symmetries of the ODE 
not of the solutions which rotate as

  
and generate the dominant (big) solutions: 

  by repeated action.


ODE/IM fundamental Wronskian is the same 
as the gravitational one  

Λ : θ → θ + i
π
2

y → y + πi , Ω : θ → θ + i
π
2

y → y − πi

Uk = ΛkU0 Vk = ΩkV0

Q(θ, P2) = W[U0, V0]



Quasinormal modes=Bethe roots

Proper eigen-frequencies of the back hole


We can compute them playing with Wronskian:


Eventually taking the Wronskian , 
as in scattering theory, the QQ-system

W[V0, V1] = i

iV0(y) = Q(θ + iπ/2)U0(y) − Q(θ)U1(y)

iV1(y) = Q(θ + iπ)U0(y) − Q(θ + iπ/2)U1(y)

Q(θ + iπ/2)Q(θ − iπ/2) = 1 + Q(θ)2

Q(θn) = 0

Unitarity



• Upon taking the log and inverting the shift operator 

 w e o b t a i n t h e 

Thermodynamic Bethe Ansatz equation 

• Sort of solution up to quadratures. Important: Q is the spectral 
determinant.

s * l = l(θ + iπ/2) + l(θ − iπ/2) ⇒ s−1 ∼
1

cosh

29

ln Q(θ) = −
8 π3

Γ2( 1
4 )

eθ + ∫
∞

−∞

ln [1 + Q2(θ′￼)]
cosh(θ − θ′￼)

dθ′￼

2π



T, Q and the SW-NS periods 

(DF, D. Gregori; Grassi, Marino, Gu; He,…)

We quantise/deform the quadratic SW differential into the Mathieu eq. (NS or in the AGT correspondence it is 
the level 2 null vector eq.)





Namely, quantum SW differential    and periods





ODE/IM treatment of this eq. uses its non-compact (generalised) version: two irregular singularities (M=-2)





Gauge/integrability change of variable


1 Essentials of N = 2 SU(2) Seiberg-Witten gauge theory

According to Seiberg-Witten theory [1], the low energy effective Lagrangian of 4d N = 2 SUSY SU(2) pure
gauge theory is expressed through an holomorphic function FSW(a(0)) called prepotential. It may be thought of as
constructed from the Seiberg-Witten one-cycle period a

(0) = 2h�i (� is the scalar field) and its (Legendre) dual

a
(0)
D = @FSW/@a

(0):

a
(0)(u,⇤) =

1

2⇡

Z ⇡

�⇡

p
2u� 2⇤2 cos z dz = ⇤

p
2(u/⇤2 + 1) 2F1(�

1

2
,
1

2
, 1;

2

1 + u/⇤2
) , (1.1)

a
(0)
D (u,⇤) =

1

2⇡

Z arccos(u/⇤2)�i0

� arccos(u/⇤2)�i0

p
2u� 2⇤2 cos z dz = �i⇤

(u/⇤2 � 1)

2
2F1(

1

2
,
1

2
, 2;

1� u/⇤2

2
) , (1.2)

which are functions of the modulus u = htr�2i (for fixed parameter ⇤1) upon eliminating u to obtain a
(0)
D (a(0))

(and finally integrating). The N = 2 SYM classical action enjoys a U(1)R R-symmetry, which is broken to Z8 by
one-loop and instanton corrections. Eventually it is broken down to Z4 by the vacuum, so that the (spontaneously)
broken part, which is a Z2, i.e. u ! �u, connects two equivalent vacua [1]: we will see that somehow this broken
symmetry plays an important rôle also in the deformed theory.

The exact partition function for N = 2 SYM theories, with all instanton corrections, has been obtained through
equivariant localisation techniques in [2, 3]: two super-gravity parameters, ✏1 and ✏2, the omega background deform
space-time. When both ✏1 , ✏2 ! 0, the logarithm of the partition function reproduces the Seiberg-Witten prepoten-
tial FSW [3]. The latter can also be thought of as a successive limit of the Nekrasov-Shatashvili (NS) limiting theory
[4], defined by the quantisation/deformation (of SW) ✏1 = }, ✏2 ! 0.

More specifically, having in mind the AGT corresponding Liouville field theory [5, 6] and precisely its level
2 degenerate field equation [7], we may think of it as a quantisation/deformation2 of the quadratic SW differential
which takes up the form of the Mathieu equation

� }2
2

d
2

dz2
 (z) + [⇤2 cos z � u] (z) = 0 . (1.3)

For the deformed prepotential FNS (logarithm of the partition function) may be derived as above by eliminating u

between the two deformed cycle periods [8]

a(}, u,⇤) = 1

2⇡

Z ⇡

�⇡
P(z; }, u,⇤) dz , aD(}, u,⇤) =

1

2⇡

Z arccos (u/⇤2)�i0
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Alternatively, we can use Matone’s formula for the prepotential [9], generalised for the deformations in [10].
This letter is organised as follows. In Section 2 we develop a very efficient and general idea of computing the

large energy and small } WKB expansion of the wave function (cf. also [11]), which we apply to give efficient
recursive formulæ for the NS-deformed periods modes. In Section 3 we present the analysis of the ODE/IM corre-
spondence for the Liouville integrable model, deeply based on an unfinished work [12] by the late scholar Al. B.

1We may calculate the first integral for u > ⇤2 while the second one for u < ⇤2 along a continuous (without jumps, and hence changing
sheet) path in z and then analytically continue in u; we will analyse better the complex structure below, in Section 5.

2We shall prefer this latter denotation as the former generates sometimes confusion with gauge theory quantisation.
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as well as the periodicity of T [12]

T (✓ + i⇡(1� p)) = T (✓) T̃ (✓ + i⇡p) = T̃ (✓) . (3.12)

Also the Liouville Y -system can be obtained from the QQ-system, by defining Y (✓) = Q(✓+ i⇡a/2)Q(✓� i⇡a/2),
where a = 1� 2p

Y (✓ + i⇡/2)Y (✓ � i⇡/2) =
⇣
1 + Y (✓ + ia⇡/2)

⌘⇣
1 + Y (✓ � ia⇡/2)

⌘
. (3.13)

This functional equation can be inverted into the Thermodynamic Bethe Ansatz (TBA) for the pseudoenergy "(✓) =
� lnY (✓)
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8
p
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Z 1
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�
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⇥
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⇤ d✓0

2⇡
,

(3.14)

with the coefficient of the forcing term (zero-mode) fixed as given by the leading order of Q below, (4.7). This TBA
equation goes into that in [12, 26, 27] upon a real shift on ✓. In it P does not appear explicitly, but (numerically)
in the asymptotic linear behaviour of "(✓, P 2) ' +4qP✓, P > 0, at ✓ ! �1 [12], which matches the analytic
computation of the wronskian (3.6) via 1 + Y (✓) = Q(✓ + i⇡/2)Q(✓ � i⇡/2) (on the other hand from (3.13) we
only know that Y must diverge).
The self-dual GME (b = 1 in (3.2)) is known in literature as modified Mathieu equation:

⇢
� d

2

dy2
+ 2e2✓ cosh y + P

2

�
 (y) = 0 , (3.15)

and is the non-compact version of equation (1.3), so establishing a contact with gauge theory (which importantly
exhibits two irregular singularities). In particular, the discrete symmetry (3.5) is an enhanced (by the covering
y = lnx) version of the original Z2 spontaneously broken symmetry (in the x variable) of SW [1]. Since a = 0 then
Q

2 = Y = exp[�"] and the TBA becomes an integral equation for the Baxter’s Q function [12]
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4 One-step large energy recursion and local integrals of motion

We wish here to compute the Baxter’s Q function Q and then the Liouville Local Integrals of Motion (LIM). About
Q, (3.7) says that it can regarded as the regularised value of the solution V0 (3.4) at y ! +1:
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y
2b
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We can write V0 (3.4) in terms of ⇧(w) = �i d ln( 4
p
cb(y)V0(w))/dw in a convergent form of (2.5)
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e
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(4.2)

where cb(y) = ��(y) = e
y/b + e

�yb and dw =
p
�(y)dy = �i

p
cb(y)dy. Now, we can write the asymptotic

expansion of the Q function (4.1) for ✓ ! +1, by using formula (2.8), as we are integrating on R and hence can

6

Since the recursion for the Gelfand-Dikii coefficients is one-step, using formula (4.9) and (4.10) is a very efficient
way of computing the I2n�1, which have also been checked numerically by exploiting TBA equation (3.14). Besides,
we have repeated the calculations in the case of the minimal models and have found the same formulæ in terms of c
and � (as expected).

For b = 1 the recursion formula (4.10) simplifies hugely, so that we can write closed formulæ for the self-dual
Liouville LIM

I2n�1(b = 1, P 2) =
nX

k=0

⌥n,kP
2k (4.15)

at any n, as polynomials in P
2 with the first leading terms: ⌥n,n = (�1)n, ⌥n,n�1 = (�1)n 1

12n(n� 1
2), ⌥n,n�2 =

(�1)n 1
1440(n� 1)n(n� 1

2)(7n� 3
2)

5.

5 Baxter’s T and Q functions at self-dual point as Seiberg-Witten periods

This section is devoted at the b = 1 case, where we first analyse an important connexion between T (✓) = T̃ (✓)
and the Floquet exponent, as anticipated numerically by [12]. Then, we give both T and Q two peculiar SW
theory interpretations. As anticipated, in the self-dual GME (3.15), we shall rotate the real into the imaginary axis,
z = �iy � ⇡, and obtain the Mathieu equation

� d
2

dz2
 (z, ✓) +

h
2e2✓ cos z � P

2
i
 (z, ✓) = 0 . (5.1)

According to Floquet theorem, there exist two linearly independent (quasi-periodic) solutions of the Mathieu equa-
tion (5.1) of the form  +(z) = e

⌫z
p(z) and  �(z) = e

�⌫z
p(�z), with periodic p(z) = p(z + 2⇡) and monodromy

exponent ⌫ = ⌫(✓, P ), the Floquet index. Al. B. Zamolodchikov conjectured that the cosine of the Floquet index is
equal to the Baxter’s T function for the self dual Liouville model b = 1

T (✓, P 2) = 2 cosh
�
2⇡⌫(✓, P 2)

 
. (5.2)

We can gain some hints on the reason of this relation upon looking at the unique TQ relation (3.11) at b = 1

T (✓) =
Q(✓ + i⇡/2)

Q(✓)
+

Q(✓ � i⇡/2)

Q(✓)
, (5.3)

where in the r.h.s. there are these wronskians (cf. (3.6) et seq.) Q(✓) = W [U0, V0](✓), Q(✓±i⇡/2) = W [U±1, V0](✓),
all expressible in the Floquet basis. Nevertheless, we will leave the proof to another occasion since this identity has
a very relevant interpretation in gauge theory once we add the other important ingredient, namely the coincidence
of the quantum SW period (1.4) a = �i⌫ with the Floquet exponent (in any case we do have many numerical
and asymptotic checks of this relation besides the comparison with the few instanton Nekrasov partition function in
terms of Young diagrams6. More precisely, the Mathieu ODE/IM equation (5.1) coincides with the Seiberg-Witten
one (1.3), provided we set the change of variables

}
⇤

= e
�✓

,
u

⇤2
=

P
2

2e2✓
. (5.4)

Thus, the above (5.2) can be interpreted as a direct connexion between the Baxter’s T function and the quantum SW
period (1.4):

T (}, u,⇤) ⌘ T (✓, P 2) = 2 cos {2⇡a(}, u,⇤)} . (5.5)

5Hasmik Poghosyan has solved (4.10) for general b.
6We are seriously indebted with Rubik Poghossian and Hasmik Poghosyan on this point!
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Integrability/gauge identification





The fundamental relation of the theory: QQ-SYSTEM 





which gives with  the Y-system (very simple 
case!) from which the  gauge TBA eqs.


T(ℏ, u, Λ) ≡ T(θ, P2) = iW[V1, V−1] = 2 cos {2πa(ℏ, u, Λ)}

6 Functional relations, gauge TBA and Z2 symmetry

As we have a gauge interpretation (5.5) and (5.13) of the self-dual Liouville integrability Baxter’s T and Q functions,
respectively, we can search for a gauge interpretation of the integrability functional relations (the QQ system, the
TQ relation, the periodicity relation, cf. Section 3 with b = 1). First, we write the QQ relation (3.9) at b = 1, and
then the same in the gauge variables (5.4)

1+Q
2(✓, P 2) = Q(✓� i⇡/2, P 2)Q(✓+ i⇡/2, P 2) , 1+Q

2(✓, u) = Q(✓� i⇡/2,�u)Q(✓+ i⇡/2,�u) , (6.1)

where we have considered that ✓ ! ✓ ⌥ i⇡/2 means u ! �u (as P 2 is fixed). The latter equation, the gauge QQ

system, has been verified by using the expansion (5.15) in several complex regions of u, in particular in the circle
|u| < ⇤2. In the present case it is a ’square root’ of the Y system and then gives us the gauge TBA equations. In
fact, we can take the logarithm of both members and invert to obtain an explicit expression for lnQ(✓, u). As usual,
this inversion possesses zero-modes and so does not fix completely the forcing term. For it we need to consider the
asymptotic expansion (5.15) as Re ✓ ! +1, lnQ(✓, u) ' 2⇡ia(0)D (u,⇤)e✓/⇤. In this way we find a TBA integral
equation for the deformed dual period �2 lnQ(✓, u) = "(✓, u) = �4⇡iaD(}(✓), u) and then we close the system
by writing the same for modulus u ! �u

"(✓, u,⇤) = �4⇡ia(0)D (u,⇤)
e
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� 2

Z 1

�1
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2⇡
.

(6.2)

In contrast with Liouville TBA (where was no P ), the forcing terms have non-trivial u-dependences, the SW periods
indeed, which can be interpreted (as in [23]) as the mass of a BPS state of a monopole and dyon (via Bilal-Ferrari
[15] formulæ, i.e. (6.7) for n = 0), respectively. Actually, the quantum period

2⇡iaD(}(✓),�u,⇤) = 2⇡ia(0)D (�u,⇤)
e
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Z 1

�1

ln [1 + exp {4⇡iaD(}(✓0), u,⇤)}]
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d✓
0

2⇡
. (6.3)

can take the place of the first period a(}, u) (linked to T in any case) as the latter can be expressed in terms of
the former two via (6.5). From the large ✓ asymptotic expansion of the integral part, we find all the quantum dual
periods modes (m � 1), as well

2⇡i a(m)
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Z 1

�1
e
✓0(2m�1) ln

h
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⇡
. (6.4)

By solving with numerical iterations the two coupled equations of gauge TBA (6.2), we tested these expressions
with the analytic WKB recursive periods (2.13, 2.14) for a region of the complex plane slightly larger than |u| < ⇤2.
The u = 0 unique equation from (6.2) was conjectured numerically in [28].

Consider now the TQ relation (3.11) at b = 1, which we also write in the gauge variables (5.4)

T (✓, P 2) =
Q(✓ � i⇡/2, P 2) +Q(✓ + i⇡/2, P 2)

Q(✓, P 2)
, T (✓, u) =

Q(✓ � i⇡/2,�u) +Q(✓ + i⇡/2,�u)

Q(✓, u)
(6.5)

For the asymptotic } ! 0 analysis of the latter relation, we keep only the dominant exponents (fixed by SW order
(5.17))
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11

Y = Q2 = e−ε

6 Functional relations, gauge TBA and Z2 symmetry

As we have a gauge interpretation (5.5) and (5.13) of the self-dual Liouville integrability Baxter’s T and Q functions,
respectively, we can search for a gauge interpretation of the integrability functional relations (the QQ system, the
TQ relation, the periodicity relation, cf. Section 3 with b = 1). First, we write the QQ relation (3.9) at b = 1, and
then the same in the gauge variables (5.4)

1+Q
2(✓, P 2) = Q(✓� i⇡/2, P 2)Q(✓+ i⇡/2, P 2) , 1+Q

2(✓, u) = Q(✓� i⇡/2,�u)Q(✓+ i⇡/2,�u) , (6.1)

where we have considered that ✓ ! ✓ ⌥ i⇡/2 means u ! �u (as P 2 is fixed). The latter equation, the gauge QQ

system, has been verified by using the expansion (5.15) in several complex regions of u, in particular in the circle
|u| < ⇤2. In the present case it is a ’square root’ of the Y system and then gives us the gauge TBA equations. In
fact, we can take the logarithm of both members and invert to obtain an explicit expression for lnQ(✓, u). As usual,
this inversion possesses zero-modes and so does not fix completely the forcing term. For it we need to consider the
asymptotic expansion (5.15) as Re ✓ ! +1, lnQ(✓, u) ' 2⇡ia(0)D (u,⇤)e✓/⇤. In this way we find a TBA integral
equation for the deformed dual period �2 lnQ(✓, u) = "(✓, u) = �4⇡iaD(}(✓), u) and then we close the system
by writing the same for modulus u ! �u

"(✓, u,⇤) = �4⇡ia(0)D (u,⇤)
e
✓

⇤
� 2

Z 1

�1

ln [1 + exp{�"(✓0,�u,⇤)}]
cosh (✓ � ✓0)

d✓
0

2⇡

"(✓,�u,⇤) = �4⇡ia(0)D (�u,⇤)
e
✓

⇤
� 2

Z 1

�1

ln [1 + exp{�"(✓0, u,⇤)}]
cosh (✓ � ✓0)

d✓
0

2⇡
.

(6.2)

In contrast with Liouville TBA (where was no P ), the forcing terms have non-trivial u-dependences, the SW periods
indeed, which can be interpreted (as in [23]) as the mass of a BPS state of a monopole and dyon (via Bilal-Ferrari
[15] formulæ, i.e. (6.7) for n = 0), respectively. Actually, the quantum period

2⇡iaD(}(✓),�u,⇤) = 2⇡ia(0)D (�u,⇤)
e
✓

⇤
+

Z 1

�1

ln [1 + exp {4⇡iaD(}(✓0), u,⇤)}]
cosh (✓ � ✓0)

d✓
0

2⇡
. (6.3)

can take the place of the first period a(}, u) (linked to T in any case) as the latter can be expressed in terms of
the former two via (6.5). From the large ✓ asymptotic expansion of the integral part, we find all the quantum dual
periods modes (m � 1), as well

2⇡i a(m)
D (u,⇤) = �⇤1�2m(�1)m

Z 1

�1
e
✓0(2m�1) ln

h
1 + exp{�"(✓0,�u,⇤))}

i
d✓

0

⇡
. (6.4)

By solving with numerical iterations the two coupled equations of gauge TBA (6.2), we tested these expressions
with the analytic WKB recursive periods (2.13, 2.14) for a region of the complex plane slightly larger than |u| < ⇤2.
The u = 0 unique equation from (6.2) was conjectured numerically in [28].

Consider now the TQ relation (3.11) at b = 1, which we also write in the gauge variables (5.4)

T (✓, P 2) =
Q(✓ � i⇡/2, P 2) +Q(✓ + i⇡/2, P 2)

Q(✓, P 2)
, T (✓, u) =

Q(✓ � i⇡/2,�u) +Q(✓ + i⇡/2,�u)

Q(✓, u)
(6.5)

For the asymptotic } ! 0 analysis of the latter relation, we keep only the dominant exponents (fixed by SW order
(5.17))

exp
n
� sgn (Im u)2⇡i

1X

n=0

e
✓(1�2n)

a
(n)(+u)

o
.
= exp

n
�2⇡

1X

n=0

e
✓(1�2n)

h
sgn (Im u)(�1)na(n)D (�u)+ia

(n)
D (u)

io
.

(6.6)

11

dyon, i.e. strong coupling spectrum 

integrability gauge

integrability gauge

Q(ℏ, u, Λ) ≡ Q(θ, P2) = exp{2πiaD(ℏ, u, Λ)}

monopole



Quantum integrability tells more: e.g. T weak 
coupling spectrum (  electric), inside TQ-system  

With periodicity: quantum Bilal-Ferrari relations 
(  symmetry breaking)


Namely, T and Q are generating functions, 
integrability interpretation, for conserved charges: 
small  asymptotic expansion. Also for 
quantum periods (zero order=Seiberg-Witten).

→
a

u ! �u
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ℏ/Λ = e−θ ≪ 1

T(θ)Q(θ) = Q(θ − iπ/2) + Q(θ + iπ/2)
2 cos {2πa} exp{2πiaD}



Connexion formula of spectral determinant 
with instanton prepotential  


quantisation easily follows from

AD = ∂ℱ/∂a

Q = 0 ⇒ AD(a, Λn, ℏ) = iπn , n ∈ ℤ

Q(a, Λ, ℏ) = i
sinh AD

sinh 2πia

Aminov,Grassi,Hatsuda;Bonelli,Iossa,Lichtig,Panea,Tanzini



Unexpected surprise





previous eq. is the   case describes Liouville 
field theory vacua


                


Self-dual point of the symmetry   ! And 
somehow previous  or 


Coincidence? Meaning of this Liouville field theory?

form (3.1) not adequate for the large rapidity expansion, as e↵ appears with two different powers. We have solved
this problem by the shift y ! y + ↵

b�1/b
b+1/b , after which the GME acquires the modified Schrödinger form:

⇢
� d

2

dy2
+ e

2✓(ey/b + e
�yb) + P

2

�
 (y) = 0 (3.2)

with the rapidity ✓ defined as ✓ = ↵/(b + b
�1). In the rest of this Section we will summarise our understanding of

draft paper [12] by using the GME (3.2). It has the subdominant asymptotic solutions: for Re y ! +1, within
|Im (✓ + y

2b)| <
3
2⇡ and for Re y ! �1, within |Im (✓ � by

2 )| <
3
2⇡, respectively

U0(y) '
1p
2
exp

n
�✓/2� y/4b

o
exp

⇢
�2be✓+y/2b

�
Re y ! +1 ; (3.3)

V0(y) '
1p
2
exp

n
�✓/2 + yb/4

o
exp

⇢
�2

b
e
✓�yb/2

�
Re y ! �1 . (3.4)

Other solutions can be generated applying on these the following discrete symmetries of the GME (3.2)

⇤b : ✓ ! ✓ + i⇡
b

q
y ! y +

2⇡i

q
, ⌦b : ✓ ! ✓ + i⇡

1

bq
y ! y � 2⇡i

q
(3.5)

where q = b + 1/b: concisely Uk = ⇤k
bU0 and Vk = ⌦k

bV0, with Uk invariant under ⌦b and Vk under ⇤b. We
may interpret this phenomenon as a spontaneous symmetry breaking for the differential equation (vacua are the
solutions). Now we apply these (broken) symmetries to derive interesting functional and integral equations for the
gauge theory. On the other hand, the symmetry ⇧ : ✓ ! ✓ + i⇡ would not do the same job in the present case with
two irregular singularities as it transforms simultaneously U0 ! U1 and V0 ! V1 (differently from [23] and [24]
with only one irregular singularity, see also [25] for a detailed examination of the two kinds of symmetries).

In fact, we will prove correct (as conjectured by [12]) to define the Baxter’s Q function as the wronskian

Q(✓, P 2) = W [U0, V0] . (3.6)

Definition (3.6) gives rise to Q(✓ + i⇡p) = W [U1, V0](✓) upon action of ⇤b: these are equivalent to the linear
dependence

iV0(y) = Q(✓ + i⇡p)U0(y)�Q(✓)U1(y) , (3.7)

where p = b/q (from the asymptotic calculation W [U1, U0] = i). Which is transformed by ⌦b into

iV1(y) = Q(✓ + i⇡)U0(y)�Q(✓ + i⇡(1� p))U1(y) , (3.8)

namely Q(✓+i⇡(1�p)) = W [U0, V1](✓) and Q(✓+i⇡) = W [U1, V1](✓). The basilar functional relation (anticipated
for the massive theory by other means in [26]), the QQ relation is obtained by taking the wronskian W [V0, V1] (= i

from asymptotics) between the right hand sides

1 +Q(✓ + i⇡(1� p))Q(✓ + i⇡p) = Q(✓ + i⇡)Q(✓) . (3.9)

If we define the two (dual) T functions as

T (✓) = Q(✓ � i⇡p)Q(✓ + i⇡)�Q(✓ + i⇡p)Q(✓ + i⇡(1� 2p)) , T̃ (✓) = T (✓)
���
b!1/b

, (3.10)

(also T = iW [U�1, U1] and T̃ = �iW [V�1, V1]) by using the QQ relation (3.9), these two Baxter’s TQ relations
follow

T (✓)Q(✓) = Q(✓ + i⇡p) +Q(✓ � i⇡p) T̃ (✓)Q(✓) = Q(✓ + i⇡(1� p)) +Q(✓ � i⇡(1� p)) , (3.11)
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b = 1
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b → 1/b
β = ib M < − 1



Generalisations

Intersection of four stacks of D3 branes (extremal 
Kerr BH; equal charges: Reissner-Nöstrom BH)


which becomes in integrability form


, but results on Schwarzshild, Kerr ( )..…Nf = 2 Nf = 3

d2ϕ
dr2

+ −
(l + 1

2 )2 − 1
4

r2
+ ω2

4

∑
k=0

Σk

rk
ϕ = 0

−
d2

dy2
ψ + [e2θ(e2y + e−2y) + 2eθ(M1ey + M2e−y) + P2] ψ = 0



The ODE IM correspondence→
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Schrödinger equation        Scattering data→
On this side we find:

, Energies=QNMsQ(θn) = 0

 Bethe rootsθn

From spectral determinant  wave function→

Integrable Model

On this side  we can use:

ODE

WKB and other ODE 
powerful techniques 

ODE may be simpler!!



The ODE IM 
correspondence?

←

Inverting the arrow means reconstructing from a (given) 
Quantum Integrable System the Ordinary Differential 
Equation (or something similar) which gives it. 


In other words, understanding the the origin of the 
correspondence (and maybe of integrability). And ODE 
may be simpler.


But possible only with masses.



PDE Massive integrable theories 
(GMN, LZ, DF-Rossi)

→
•The 2D conformal potential is a static limit, instead in 
presence of mass it is given by a flow: solution of classical 
sinh-Gordon equation


• Conformal limit ( ): change of variable , polynomial 

 scaling  and 

 fixed when ,        



•

z̄ = 0 dw = p(z)dz

p(z, ⃗c ) = z2N +
2N−1

∑
n=0

cnzn zeθ/(1+N) = x

cneθ(2N−n)/(1+N) = ccft
n θ → + ∞

η ≃ l ln(zz̄) ⇒ u+ +
f′￼′￼

f
= −

1
p(z)

l(l + 1)
z2

and the corresponding wave functions as above ψ±(w′, w̄′|λ) = X±(w′, w̄′|λ)e−iw′λ+iw̄′λ−1
satisfy, for

0 < Im θ < π, the same Schrödinger equation (1.29), which finally extends to

∂2

∂w′2ψ±(w
′, w̄′|λ) + λ2ψ±(w

′, w̄′|λ) = u±(w
′; w̄′)ψ±(w

′, w̄′|λ) , |Imθ| < π . (1.35)

Moreover, because of (1.26,1.16) the wave functions satisfy a ’dynamical’ TQ relation:

ψ±(w
′, w̄′|θ + iπ)− ψ±(w

′, w̄′|θ − iπ) = ±iT
(
θ + i

τ

2
,'c
)
ψ±(w

′, w̄′|θ) , (1.36)

which holds for general w′, w̄′. Now, in order to establish the correct connection between the wave functions

and the Q-functions, we need extra information on the solutions of (1.35). We start by remarking that,

since the invariance property X±(w′, w̄′|λ) = X∓(−w̄′,−w′|λ−1) entails

ψ±(w
′, w̄′|λ) = ψ∓(−w̄′,−w′|λ−1) , (1.37)

we can obtain analogous Schrödinger equations in w̄′

∂2

∂w̄′ 2ψ
bar
± (w′, w̄′|λ) + λ−2ψbar

± (w′, w̄′|λ) = u±(−w̄′;−w′)ψbar
± (w′, w̄′|λ) Imλ < 0. (1.38)

Their solutions are given by those in w′ (1.35) by ψbar
± (w′, w̄′|λ) = ψ∓(w′, w̄′|λ) (or viceversa). This helps

to reformulate the Schrödinger equations (1.35, 1.38) with potentials

u±
(
w′, w̄′) = ± ∂2

∂w2
η̂(w, w̄)−

(
∂

∂w
η̂(w, w̄)

)2

, w′ = −iw, w̄′ = iw̄ (1.39)

from the Lax matrix linear problem (1.1) and (1.2), whose consistency condition [D, D̄] = 0 gives

∂2

∂w∂w̄
η̂ = 2 sinh 2η̂ , (1.40)

the classical sinh-Gordon equation. In addition, the two solutions ψ± of (1.35) are related by a Darboux

transformation, in the sense that the Darboux transformed field

ψD
± =

∂ψ±
∂w

± ∂η̂

∂w
ψ± (1.41)

satisfies the same Schrödinger equation as ψ∓ respectively. The potential appearing in the Schrödinger

problem depends on the transfer matrix: in fact, it can be obtained by solving (by iterations or Laplace

transform) the Marchenko-like equation for the function K±(w′, w′; w̄′) and has the form of a double

derivative of the logarithm of a tau function, τ±,

u±(w
′; w̄′) = −2

d

dw′
K±(w′, w′; w̄′)

2π
= −2

∂2

∂w′2 ln τ±(w
′, w̄′) (1.42)

ln τ±(w
′, w̄′) = ln det(1± V̂ ) = Tr ln(1± V̂ ) , V̂ (θ, θ′) =

T
(
θ + i τ2 ,'c

)

4π

e−2iw′eθ+2iw̄′e−θ

cosh θ−θ′
2

(1.43)

As a consequence of (1.39), we also obtain an expression for the classical sinh-Gordon field

η̂(w, w̄) = ln τ+(−iw, iw̄)−ln τ−(−iw, iw̄) =
+∞∑

n=1

2

2n− 1

∫ 2n−1∏

i=1

dθi
4π

T

(
θi +

iτ

2
,'c

)
e−2weθi−2w̄e−θi

cosh θi−θi+1

2

. (1.44)
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satisfy, for

0 < Im θ < π, the same Schrödinger equation (1.29), which finally extends to
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τ
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ψ±(w

′, w̄′|θ) , (1.36)

which holds for general w′, w̄′. Now, in order to establish the correct connection between the wave functions

and the Q-functions, we need extra information on the solutions of (1.35). We start by remarking that,

since the invariance property X±(w′, w̄′|λ) = X∓(−w̄′,−w′|λ−1) entails

ψ±(w
′, w̄′|λ) = ψ∓(−w̄′,−w′|λ−1) , (1.37)
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from the Lax matrix linear problem (1.1) and (1.2), whose consistency condition [D, D̄] = 0 gives

∂2

∂w∂w̄
η̂ = 2 sinh 2η̂ , (1.40)

the classical sinh-Gordon equation. In addition, the two solutions ψ± of (1.35) are related by a Darboux

transformation, in the sense that the Darboux transformed field

ψD
± =

∂ψ±
∂w

± ∂η̂

∂w
ψ± (1.41)

satisfies the same Schrödinger equation as ψ∓ respectively. The potential appearing in the Schrödinger

problem depends on the transfer matrix: in fact, it can be obtained by solving (by iterations or Laplace

transform) the Marchenko-like equation for the function K±(w′, w′; w̄′) and has the form of a double

derivative of the logarithm of a tau function, τ±,

u±(w
′; w̄′) = −2

d

dw′
K±(w′, w′; w̄′)

2π
= −2

∂2

∂w′2 ln τ±(w
′, w̄′) (1.42)

ln τ±(w
′, w̄′) = ln det(1± V̂ ) = Tr ln(1± V̂ ) , V̂ (θ, θ′) =

T
(
θ + i τ2 ,'c

)

4π

e−2iw′eθ+2iw̄′e−θ

cosh θ−θ′
2

(1.43)

As a consequence of (1.39), we also obtain an expression for the classical sinh-Gordon field

η̂(w, w̄) = ln τ+(−iw, iw̄)−ln τ−(−iw, iw̄) =
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n=1
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and the corresponding wave functions as above ψ±(w′, w̄′|λ) = X±(w′, w̄′|λ)e−iw′λ+iw̄′λ−1
satisfy, for

0 < Im θ < π, the same Schrödinger equation (1.29), which finally extends to

∂2

∂w′2ψ±(w
′, w̄′|λ) + λ2ψ±(w

′, w̄′|λ) = u±(w
′; w̄′)ψ±(w

′, w̄′|λ) , |Imθ| < π . (1.35)

Moreover, because of (1.26,1.16) the wave functions satisfy a ’dynamical’ TQ relation:

ψ±(w
′, w̄′|θ + iπ)− ψ±(w

′, w̄′|θ − iπ) = ±iT
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τ

2
,'c
)
ψ±(w

′, w̄′|θ) , (1.36)

which holds for general w′, w̄′. Now, in order to establish the correct connection between the wave functions

and the Q-functions, we need extra information on the solutions of (1.35). We start by remarking that,

since the invariance property X±(w′, w̄′|λ) = X∓(−w̄′,−w′|λ−1) entails

ψ±(w
′, w̄′|λ) = ψ∓(−w̄′,−w′|λ−1) , (1.37)

we can obtain analogous Schrödinger equations in w̄′

∂2

∂w̄′ 2ψ
bar
± (w′, w̄′|λ) + λ−2ψbar

± (w′, w̄′|λ) = u±(−w̄′;−w′)ψbar
± (w′, w̄′|λ) Imλ < 0. (1.38)

Their solutions are given by those in w′ (1.35) by ψbar
± (w′, w̄′|λ) = ψ∓(w′, w̄′|λ) (or viceversa). This helps

to reformulate the Schrödinger equations (1.35, 1.38) with potentials
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(
w′, w̄′) = ± ∂2

∂w2
η̂(w, w̄)−

(
∂

∂w
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)2

, w′ = −iw, w̄′ = iw̄ (1.39)

from the Lax matrix linear problem (1.1) and (1.2), whose consistency condition [D, D̄] = 0 gives

∂2

∂w∂w̄
η̂ = 2 sinh 2η̂ , (1.40)

the classical sinh-Gordon equation. In addition, the two solutions ψ± of (1.35) are related by a Darboux

transformation, in the sense that the Darboux transformed field

ψD
± =

∂ψ±
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± ∂η̂

∂w
ψ± (1.41)

satisfies the same Schrödinger equation as ψ∓ respectively. The potential appearing in the Schrödinger

problem depends on the transfer matrix: in fact, it can be obtained by solving (by iterations or Laplace

transform) the Marchenko-like equation for the function K±(w′, w′; w̄′) and has the form of a double

derivative of the logarithm of a tau function, τ±,
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′; w̄′) = −2
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dw′
K±(w′, w′; w̄′)
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= −2
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∂w′2 ln τ±(w
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ln τ±(w
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T
(
θ + i τ2 ,'c

)

4π

e−2iw′eθ+2iw̄′e−θ

cosh θ−θ′
2

(1.43)

As a consequence of (1.39), we also obtain an expression for the classical sinh-Gordon field

η̂(w, w̄) = ln τ+(−iw, iw̄)−ln τ−(−iw, iw̄) =
+∞∑

n=1

2

2n− 1

∫ 2n−1∏

i=1

dθi
4π

T

(
θi +

iτ

2
,'c

)
e−2weθi−2w̄e−θi

cosh θi−θi+1

2
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−
d2

dx2
ψcft + (p(x, ⃗c cft) +

l(l + 1)
x2 ) ψcft = 0 , p(x, ⃗c cft) = x2N +

2N−1

∑
n=0

ccft
n xn



• All the integrable structures (NOT only TBA) can be derived in this full 
generalisation because of the discrete broken symmetries (DF-Rossi):  


• and in addition


• so that the QQ-SYSTEM originates


• which generates all the other integrability functional and integral equations: 
e.g. the Non Linear Integral Equation (which sum up many TBA eqs.),
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2N their number is 2N , whilst the number of TBA equations is 2N(2N�1)/2 (quadratic grow); moreover,

the procedure to write NLIEs is undoubtedly simpler than (and should shed light on) the corresponding

one for TBA, which passes through (N � 1)(2N � 1) ’wall crossings’. In addition, from the ideological

point of view the NLIEs, being equivalent to the infinite Bethe Ansatz equations, lie at the heart of the

integrability of the problem, and one can express in terms of their solutions all the relevant quantities,

such as the Q functions, the transfer matrices eigenvalues T and the Y functions. We will provide explicit

expressions for all that at the end of Section 3.

The paper is organised as follows: in the next Section 2 we sketch quickly the derivation of all the

functional relations which will be better analysed in [9]. Then, Section 3 is the core of the paper, as we

derive a system of NLIEs and propose an expression for the free energy in terms of solutions of the NLIEs.

Our results for the free energy are tested analytically in some simple cases (Section 4) and numerically in

many examples (Section 5), finding perfect agreement with analogous computations made by using TBA.

Finally in Section 6 we study the ’conformal limit’ in which the auxiliary linear problem reduces to a

Schrödinger equation: our set of NLIEs reduces - as expected - to the NLIEs introduced in [10, 11].

2 Functional relations

As sketched in the introduction, we start from the linear problem (the bar means complex conjugation)

D = 0, D̄ = 0 , (2.1)

with 2

D = @z +
1

2
@z⌘�

3 � e
✓
⇥
�
+
e
⌘ + �

�
p(z,~c)e�⌘

⇤
, (2.2)

D̄ = @z̄ �
1

2
@z̄⌘�

3 � e
�✓

⇥
�
�
e
⌘ + �

+
p̄(z,~c)e�⌘

⇤
. (2.3)

The polynomial

p(z,~c) = z
2N +

2N�2X

n=0

cnz
n (2.4)

depends on a 2N � 1-ple of complex coe�cients ~c = (c0, ..., c2N�2) or moduli.

Zero curvature condition [D, D̄] = 0 constraints the ’potential’ ⌘(z, z̄;~c) to be solution of the classical

modified Sinh-Gordon equation

@z@z̄⌘ � e
2⌘ + p(z,~c)p̄(z,~c)e�2⌘ = 0 , (2.5)

To completely specify ⌘, we impose the condition ⌘ = l ln zz̄ + O(1) as |z| ! 0, for |l| < 1/2. Operating

in such a way we are extending framework of [13] by introducing the moduli ~c (besides c0) and the AdS3

string problem representing the WL [14] which is regular in z = 0, i.e. l = 0, with a twist l. The same

extension holds for the series of homogeneous Sine-Gordon models [15].

The linear problem has two symmetries. The first one acts as

⌦̂ : z ! ze
i⇡
N , ✓ ! ✓ � i⇡

N
, ~c ! ~c

R
, ~c

R = (c0, c1e
� i⇡

N , ..., cne
� i⇡n

N , ..., c2N�2e
2i⇡
N ) . (2.6)

2We are considering su(2) fundamental representations: �i are Pauli matrices and �± = 1
2 (�1 ± i�2); for generalisations

see for instance [12].
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which connects two eigenvalues Q±(θ,"c), Q−functions, of a Q (Baxter) operator. We have that |2l| < 1,

2N is a positive integer, θ is the so-called spectral parameter and Q±(θ,"c) are, by assumption, entire

functions of θ, from which, in our perspective, the next physical quantities ensue. In fact, from (1.3) we

can derive Bethe equations, the TQ-, T - and the Y -systems as we have sketched in [5] and will summarise

below. In writing (1.3) we made the hypothesis that Q± depend also on a vector of 2N complex coefficients

"c = (c0, ..., c2N−1), the moduli, and on its ’rotated’ version:

"c → "cR = (c0, ..., cne
−iπ n

N , ..., ) . (1.4)

In the different picture of [5] (1.3) is a consequence of the use of the so called Ω-symmetry [5]. Another

important assumption is the quasi-periodicity of the functions Q±,

Q±
(
θ − iτ,"cR

)
= e∓iπ(l+ 1

2)Q±(θ,"c) , (1.5)

with τ = π + π/N , whose application removes from (1.3) the dependence on the ’rotation’, but also on

N in the shifts, so that eventually one is left with a universal form for the QQ system,

eiπlQ+(θ,"c)Q−(θ + iπ,"c) + e−iπlQ−(θ,"c)Q+(θ + iπ,"c) = −2 cosπl . (1.6)

To continue the parallel, this has been obtained in [5] by using the invariance of (1.1) under the so-called

Π-symmetry (and the quasi-periodicity proven).

Now we move our steps from (1.6) and derive everything, in the end the associated Lax problem (1.1)

and (1.2). First of all, let us introduce a very useful quadratic construct of Q±, the transfer matrix

eigenvalue,

T (θ,"c) =
i

2 cosπl

[
e−2iπlQ+(θ + iπ,"c)Q−(θ − iπ,"c)− e2iπlQ+(θ − iπ,"c)Q−(θ + iπ,"c)

]
. (1.7)

Combining relation (1.3) with the quasi-periodicity (1.5) we arrive at the functional relation

Q±
(
θ + iτ − iπ,"cR

−1
)
+Q±

(
θ − iτ + iπ,"cR

)
= T (θ,"c)Q±(θ,"c) , (1.8)

with shifts depending on τ . Relation (1.8) is in the usual form of the Baxter TQ-relation for integrable

models. However, for our aims it is more convenient to combine (1.6) with (1.7) to arrive to the relation

e∓iπ(l+ 1
2)Q±(θ + iπ,"c) + e±iπ(l+ 1

2)Q±(θ − iπ,"c) = T (θ,"c)Q±(θ,"c) , (1.9)

which is a new TQ-system in a universal form, in the sense that the moduli do not rotate (and thus is

more effective in their presence) and the shifts on the spectral parameter do not depend on N . Relation

(1.9) expresses the transfer matrix T via the Baxter auxiliary functions Q±, or in reverse yields Q± as

solutions of a finite difference second order equation, given the ’potential’ T . And en passant we remark

that (1.9, 1.5) constrain it to be periodic

T (θ + iτ,"c) = T (θ,"cR) , (1.10)

so that the Q± are the Floquet solutions. In the end, it is also quite natural to assume the Q and T

functions to be real-analytic (bar represents complex conjugation):

Q̄±(θ,"c) = Q±(θ̄,̄"c) , T̄ (θ,"c) = T (θ̄,̄"c) . (1.11)
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which connects two eigenvalues Q±(θ,"c), Q−functions, of a Q (Baxter) operator. We have that |2l| < 1,

2N is a positive integer, θ is the so-called spectral parameter and Q±(θ,"c) are, by assumption, entire

functions of θ, from which, in our perspective, the next physical quantities ensue. In fact, from (1.3) we

can derive Bethe equations, the TQ-, T - and the Y -systems as we have sketched in [5] and will summarise

below. In writing (1.3) we made the hypothesis that Q± depend also on a vector of 2N complex coefficients

"c = (c0, ..., c2N−1), the moduli, and on its ’rotated’ version:

"c → "cR = (c0, ..., cne
−iπ n

N , ..., ) . (1.4)

In the different picture of [5] (1.3) is a consequence of the use of the so called Ω-symmetry [5]. Another

important assumption is the quasi-periodicity of the functions Q±,

Q±
(
θ − iτ,"cR

)
= e∓iπ(l+ 1

2)Q±(θ,"c) , (1.5)

with τ = π + π/N , whose application removes from (1.3) the dependence on the ’rotation’, but also on

N in the shifts, so that eventually one is left with a universal form for the QQ system,

eiπlQ+(θ,"c)Q−(θ + iπ,"c) + e−iπlQ−(θ,"c)Q+(θ + iπ,"c) = −2 cosπl . (1.6)

To continue the parallel, this has been obtained in [5] by using the invariance of (1.1) under the so-called

Π-symmetry (and the quasi-periodicity proven).

Now we move our steps from (1.6) and derive everything, in the end the associated Lax problem (1.1)

and (1.2). First of all, let us introduce a very useful quadratic construct of Q±, the transfer matrix

eigenvalue,

T (θ,"c) =
i

2 cosπl

[
e−2iπlQ+(θ + iπ,"c)Q−(θ − iπ,"c)− e2iπlQ+(θ − iπ,"c)Q−(θ + iπ,"c)

]
. (1.7)

Combining relation (1.3) with the quasi-periodicity (1.5) we arrive at the functional relation

Q±
(
θ + iτ − iπ,"cR

−1
)
+Q±

(
θ − iτ + iπ,"cR

)
= T (θ,"c)Q±(θ,"c) , (1.8)

with shifts depending on τ . Relation (1.8) is in the usual form of the Baxter TQ-relation for integrable

models. However, for our aims it is more convenient to combine (1.6) with (1.7) to arrive to the relation

e∓iπ(l+ 1
2)Q±(θ + iπ,"c) + e±iπ(l+ 1

2)Q±(θ − iπ,"c) = T (θ,"c)Q±(θ,"c) , (1.9)

which is a new TQ-system in a universal form, in the sense that the moduli do not rotate (and thus is

more effective in their presence) and the shifts on the spectral parameter do not depend on N . Relation

(1.9) expresses the transfer matrix T via the Baxter auxiliary functions Q±, or in reverse yields Q± as

solutions of a finite difference second order equation, given the ’potential’ T . And en passant we remark

that (1.9, 1.5) constrain it to be periodic

T (θ + iτ,"c) = T (θ,"cR) , (1.10)

so that the Q± are the Floquet solutions. In the end, it is also quite natural to assume the Q and T

functions to be real-analytic (bar represents complex conjugation):

Q̄±(θ,"c) = Q±(θ̄,̄"c) , T̄ (θ,"c) = T (θ̄,̄"c) . (1.11)

3

Baxter: period

which connects two eigenvalues Q±(θ,"c), Q−functions, of a Q (Baxter) operator. We have that |2l| < 1,

2N is a positive integer, θ is the so-called spectral parameter and Q±(θ,"c) are, by assumption, entire

functions of θ, from which, in our perspective, the next physical quantities ensue. In fact, from (1.3) we

can derive Bethe equations, the TQ-, T - and the Y -systems as we have sketched in [5] and will summarise

below. In writing (1.3) we made the hypothesis that Q± depend also on a vector of 2N complex coefficients

"c = (c0, ..., c2N−1), the moduli, and on its ’rotated’ version:

"c → "cR = (c0, ..., cne
−iπ n

N , ..., ) . (1.4)

In the different picture of [5] (1.3) is a consequence of the use of the so called Ω-symmetry [5]. Another

important assumption is the quasi-periodicity of the functions Q±,

Q±
(
θ − iτ,"cR

)
= e∓iπ(l+ 1

2)Q±(θ,"c) , (1.5)

with τ = π + π/N , whose application removes from (1.3) the dependence on the ’rotation’, but also on

N in the shifts, so that eventually one is left with a universal form for the QQ system,

eiπlQ+(θ,"c)Q−(θ + iπ,"c) + e−iπlQ−(θ,"c)Q+(θ + iπ,"c) = −2 cosπl . (1.6)

To continue the parallel, this has been obtained in [5] by using the invariance of (1.1) under the so-called

Π-symmetry (and the quasi-periodicity proven).

Now we move our steps from (1.6) and derive everything, in the end the associated Lax problem (1.1)

and (1.2). First of all, let us introduce a very useful quadratic construct of Q±, the transfer matrix

eigenvalue,

T (θ,"c) =
i

2 cosπl

[
e−2iπlQ+(θ + iπ,"c)Q−(θ − iπ,"c)− e2iπlQ+(θ − iπ,"c)Q−(θ + iπ,"c)

]
. (1.7)

Combining relation (1.3) with the quasi-periodicity (1.5) we arrive at the functional relation

Q±
(
θ + iτ − iπ,"cR

−1
)
+Q±

(
θ − iτ + iπ,"cR

)
= T (θ,"c)Q±(θ,"c) , (1.8)

with shifts depending on τ . Relation (1.8) is in the usual form of the Baxter TQ-relation for integrable

models. However, for our aims it is more convenient to combine (1.6) with (1.7) to arrive to the relation

e∓iπ(l+ 1
2)Q±(θ + iπ,"c) + e±iπ(l+ 1

2)Q±(θ − iπ,"c) = T (θ,"c)Q±(θ,"c) , (1.9)

which is a new TQ-system in a universal form, in the sense that the moduli do not rotate (and thus is

more effective in their presence) and the shifts on the spectral parameter do not depend on N . Relation

(1.9) expresses the transfer matrix T via the Baxter auxiliary functions Q±, or in reverse yields Q± as

solutions of a finite difference second order equation, given the ’potential’ T . And en passant we remark

that (1.9, 1.5) constrain it to be periodic

T (θ + iτ,"c) = T (θ,"cR) , (1.10)

so that the Q± are the Floquet solutions. In the end, it is also quite natural to assume the Q and T

functions to be real-analytic (bar represents complex conjugation):

Q̄±(θ,"c) = Q±(θ̄,̄"c) , T̄ (θ,"c) = T (θ̄,̄"c) . (1.11)
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Universal( ):Π̂

which connects two eigenvalues Q±(✓,~c), Q�functions, of a Q (Baxter) operator. We have that |2l| < 1,

2N is a positive integer, ✓ is the so-called spectral parameter and Q±(✓,~c) are, by assumption, entire

functions of ✓, from which, in our perspective, the next physical quantities ensue. In fact, from (1.3) we

can derive Bethe equations, the TQ-, T - and the Y -systems as we have sketched in [5] and will summarise

below. In writing (1.3) we made the hypothesis that Q± depend also on a vector of 2N complex coe�cients

~c = (c0, ..., c2N�1), the moduli, and on its ’rotated’ version:

~c ! ~cR = (c0, ..., cne
�i⇡ n

N , ..., ) . (1.4)

In the di↵erent picture of [5] (1.3) is a consequence of the use of the so called ⌦-symmetry [5]. Another

important assumption is the quasi-periodicity of the functions Q±,

Q±
�
✓ � i⌧,~cR

�
= e⌥i⇡(l+ 1

2)Q±(✓,~c) , (1.5)

with ⌧ = ⇡ + ⇡/N , whose application removes from (1.3) the dependence on the ’rotation’, but also on

N in the shifts, so that eventually one is left with a universal form for the QQ system,

ei⇡lQ+(✓,~c)Q�(✓ + i⇡,~c) + e�i⇡lQ�(✓,~c)Q+(✓ + i⇡,~c) = �2 cos⇡l . (1.6)

To continue the parallel, this has been obtained in [5] by using the invariance of (1.1) under the so-called

⇧-symmetry (and the quasi-periodicity proven).

Now we move our steps from (1.6) and derive everything, in the end the associated Lax problem (1.1)

and (1.2). First of all, let us introduce a very useful quadratic construct of Q±, the transfer matrix

eigenvalue,

T (✓,~c) =
i

2 cos⇡l

h
e�2i⇡lQ+(✓ + i⇡,~c)Q�(✓ � i⇡,~c)� e2i⇡lQ+(✓ � i⇡,~c)Q�(✓ + i⇡,~c)

i
. (1.7)

Combining relation (1.3) with the quasi-periodicity (1.5) we arrive at the functional relation

T (✓,~c)Q±(✓,~c) = Q±
⇣
✓ + i⌧ � i⇡,~cR

�1
⌘
+Q±

�
✓ � i⌧ + i⇡,~cR

�
, (1.8)

with shifts depending on ⌧ . Relation (1.8) is in the usual form of the Baxter TQ-relation for integrable

models. However, for our aims it is more convenient to combine (1.6) with (1.7) to arrive to the relation

T (✓,~c)Q±(✓,~c) = e⌥i⇡(l+ 1
2)Q±(✓ + i⇡,~c) + e±i⇡(l+ 1

2)Q±(✓ � i⇡,~c) , (1.9)

which is a new TQ-system in a universal form, in the sense that the moduli do not rotate (and thus is

more e↵ective in their presence) and the shifts on the spectral parameter do not depend on N . Relation

(1.9) expresses the transfer matrix T via the Baxter auxiliary functions Q±, or in reverse yields Q± as

solutions of a finite di↵erence second order equation, given the ’potential’ T . And en passant we remark

that (1.9, 1.5) constrain it to be periodic

T (✓ + i⌧,~c) = T (✓,~cR) , (1.10)

so that the Q± are the Floquet solutions. In the end, it is also quite natural to assume the Q and T

functions to be real-analytic (bar represents complex conjugation):

Q̄±(✓,~c) = Q±(✓̄,̄~c) , T̄ (✓,~c) = T (✓̄,̄~c) . (1.11)
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no rotation

1 Exactly from quantum to classical (without approximations)

One remarkable correspondence of modern mathematical physics is the so-called ODE/IM correspondence

[1]. In a nutshell, it starts from the monodromies of a suitable Schrödinger equation and surprisingly

derives the eigenvalues of two celebrated Baxter operators, the Q and T (functions), in the case of 2D

Conformal Field Theories (CFTs). The natural evolution of this correspondence, with moduli, i.e. masses,

and for the ground state, has been proposed by [2] and then [3]: they introduced first order di↵erential

2⇥ 2 matrix operators D, D̄, instead of second order di↵erential scalar one, and studied monodromies of

the solutions of the Lax linear problems

D = 0 , D̄ = 0 , (1.1)

with D and D̄ given by

D =
@

@w
+

1

2

@⌘̂

@w
�3 � e✓+⌘̂�+ � e✓�⌘̂�� , D̄ =

@

@w̄
� 1

2

@⌘̂

@w̄
�3 � e�✓+⌘̂�� � e�✓�⌘̂�+ , (1.2)

with ⌘̂(w, w̄) a 2D classical scalar field1. The coe�cients of these monodromies generate a set functional

relations, the T - and Y -systems [4], or equivalently the Thermodynamic Bethe Ansatz (TBA) equations

of some integrable Quantum Field Theory (QFT) (Sine-Gordon and generalisations with many mass

scales). Importantly, they introduced in the Lax operators a set of parameters, the moduli (~c below),

which turn out, in the end, to parametrise the masses of the QFT. What was lacking in this scenario was

a systematic way to understand how to derive a classical system from a quantum one: in this letter we

propose a procedure to realise this program. In other words, we want to start from a quantum integrable

model and then derive in a precise way a classical model associated to it. In doing this, we start from a

precise definition of an integrable system (field or lattice theory) in terms of Q functions (eigenvalues of

Q operators) and functional relations satisfied by them, the so-called QQ-system. Along the lines of [5]

all the other integrable structures, Baxter’s and universal TQ- system, Thermodynamic Bethe Ansatz [6]

and Non Linear Integral Equations [7] for the counting functions, the T - and Y - systems, can be derived.

Yet, the main idea below is that we need only to convert the universal TQ-system into a linear integral

equation and then, by suitable Fourier transform, to a Volterra equation. At this point we shall naturally

introduce the dynamical space w, w̄ of the ODE/IM correspondence by converting it into a Marchenko-

like equation [8]. Eventually, from this equation we derive two classical linear Lax problems, exactly the

ones above (1.1, 1.2). We provide the details for this specific case, describing scattering amplitudes or

Wilson loops with a null polygonal boundary in AdS3 in N = 4 SYM at strong coupling, but ostensibly

the method can be adapted to general cases. To corroborate this statement, we give here only hints of

a similar construction for the XXZ chain at the (Stroganov’s) super-symmetric point [10] for brevity’ s

sake. Yet, in a longer paper [12] these hints will fit into a proper and general method for establishing an

ODE/IM correspondence for the spin chains.

In the case of scattering amplitudes/Wilson loops in N = 4 SYM at strong coupling our starting

hypothesis is the QQ-system (2.20) of [5]2,

Q+

✓
✓ +

i⇡

2N
,~c

◆
Q�

✓
✓ � i⇡

2N
,~cR

◆
�Q+

✓
✓ � i⇡

2N
,~cR

◆
Q�

✓
✓ +

i⇡

2N
,~c

◆
= �2i cos⇡l , (1.3)

1The classical integrable equation, the Sine-Gordon one in this case, emerges as zero curvature condition [D, D̄] = 0.
2In relation (2.20) of [5] an extra phase factor, denoted ei�(✓+

i⇡
2N ,~c), with � di↵erent from zero only in particular cases, is

also present. Inclusion of this factor will not alter the conclusions of this letter, but would render notations more unwieldy.

Therefore, for clarity’s sake, we decided to omit it in this brief note.
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, change of the sign of momentum k (GMN)Π̂ : θ → θ − iπ
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From quantum integrable 
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•How to define a quantum integrable system? 
For us it is fine encoding the conserved 
charges into Q which satisfy QQ-system:


•and being a Bloch-Floquet solution

1 Exactly from quantum to classical (without approximations)

One remarkable correspondence of modern mathematical physics is the so-called ODE/IM correspondence

[1]. In a nutshell, it starts from the monodromies of a suitable Schrödinger equation and surprisingly

derives the eigenvalues of two celebrated Baxter operators, the Q and T (functions), in the case of 2D

Conformal Field Theories (CFTs). The natural evolution of this correspondence, with moduli, i.e. masses,

and for the ground state, has been proposed by [2] and then [3]: they introduced first order di↵erential

2⇥ 2 matrix operators D, D̄, instead of second order di↵erential scalar one, and studied monodromies of

the solutions of the Lax linear problems

D = 0 , D̄ = 0 , (1.1)

with D and D̄ given by

D =
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with ⌘̂(w, w̄) a 2D classical scalar field1. The coe�cients of these monodromies generate a set functional

relations, the T - and Y -systems [4], or equivalently the Thermodynamic Bethe Ansatz (TBA) equations

of some integrable Quantum Field Theory (QFT) (Sine-Gordon and generalisations with many mass

scales). Importantly, they introduced in the Lax operators a set of parameters, the moduli (~c below),

which turn out, in the end, to parametrise the masses of the QFT. What was lacking in this scenario was

a systematic way to understand how to derive a classical system from a quantum one: in this letter we

propose a procedure to realise this program. In other words, we want to start from a quantum integrable

model and then derive in a precise way a classical model associated to it. In doing this, we start from a

precise definition of an integrable system (field or lattice theory) in terms of Q functions (eigenvalues of

Q operators) and functional relations satisfied by them, the so-called QQ-system. Along the lines of [5]

all the other integrable structures, Baxter’s and universal TQ- system, Thermodynamic Bethe Ansatz [6]

and Non Linear Integral Equations [7] for the counting functions, the T - and Y - systems, can be derived.

Yet, the main idea below is that we need only to convert the universal TQ-system into a linear integral

equation and then, by suitable Fourier transform, to a Volterra equation. At this point we shall naturally

introduce the dynamical space w, w̄ of the ODE/IM correspondence by converting it into a Marchenko-

like equation [8]. Eventually, from this equation we derive two classical linear Lax problems, exactly the

ones above (1.1, 1.2). We provide the details for this specific case, describing scattering amplitudes or

Wilson loops with a null polygonal boundary in AdS3 in N = 4 SYM at strong coupling, but ostensibly

the method can be adapted to general cases. To corroborate this statement, we give here only hints of

a similar construction for the XXZ chain at the (Stroganov’s) super-symmetric point [10] for brevity’ s

sake. Yet, in a longer paper [12] these hints will fit into a proper and general method for establishing an

ODE/IM correspondence for the spin chains.

In the case of scattering amplitudes/Wilson loops in N = 4 SYM at strong coupling our starting

hypothesis is the QQ-system (2.20) of [5]2,
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2N
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1The classical integrable equation, the Sine-Gordon one in this case, emerges as zero curvature condition [D, D̄] = 0.
2In relation (2.20) of [5] an extra phase factor, denoted ei�(✓+

i⇡
2N ,~c), with � di↵erent from zero only in particular cases, is

also present. Inclusion of this factor will not alter the conclusions of this letter, but would render notations more unwieldy.

Therefore, for clarity’s sake, we decided to omit it in this brief note.
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which connects two eigenvalues Q±(✓,~c), Q�functions, of a Q (Baxter) operator. We have that |2l| < 1,

2N is a positive integer, ✓ is the so-called spectral parameter and Q±(✓,~c) are, by assumption, entire

functions of ✓, from which, in our perspective, the next physical quantities ensue. In fact, from (1.3) we

can derive Bethe equations, the TQ-, T - and the Y -systems as we have sketched in [5] and will summarise

below. In writing (1.3) we made the hypothesis that Q± depend also on a vector of 2N complex coe�cients

~c = (c0, ..., c2N�1), the moduli, and on its ’rotated’ version:

~c ! ~cR = (c0, ..., cne
�i⇡ n

N , ..., ) . (1.4)

In the di↵erent picture of [5] (1.3) is a consequence of the use of the so called ⌦-symmetry [5]. Another

important assumption is the quasi-periodicity of the functions Q±,

Q±
�
✓ � i⌧,~cR

�
= e⌥i⇡(l+ 1

2)Q±(✓,~c) , (1.5)

with ⌧ = ⇡ + ⇡/N , whose application removes from (1.3) the dependence on the ’rotation’, but also on

N in the shifts, so that eventually one is left with a universal form for the QQ system,

ei⇡lQ+(✓,~c)Q�(✓ + i⇡,~c) + e�i⇡lQ�(✓,~c)Q+(✓ + i⇡,~c) = �2 cos⇡l . (1.6)

To continue the parallel, this has been obtained in [5] by using the invariance of (1.1) under the so-called

⇧-symmetry (and the quasi-periodicity proven).

Now we move our steps from (1.6) and derive everything, in the end the associated Lax problem (1.1)

and (1.2). First of all, let us introduce a very useful quadratic construct of Q±, the transfer matrix

eigenvalue,

T (✓,~c) =
i

2 cos⇡l

h
e�2i⇡lQ+(✓ + i⇡,~c)Q�(✓ � i⇡,~c)� e2i⇡lQ+(✓ � i⇡,~c)Q�(✓ + i⇡,~c)

i
. (1.7)

Combining relation (1.3) with the quasi-periodicity (1.5) we arrive at the functional relation

T (✓,~c)Q±(✓,~c) = Q±
⇣
✓ + i⌧ � i⇡,~cR

�1
⌘
+Q±

�
✓ � i⌧ + i⇡,~cR

�
, (1.8)

with shifts depending on ⌧ . Relation (1.8) is in the usual form of the Baxter TQ-relation for integrable

models. However, for our aims it is more convenient to combine (1.6) with (1.7) to arrive to the relation

T (✓,~c)Q±(✓,~c) = e⌥i⇡(l+ 1
2)Q±(✓ + i⇡,~c) + e±i⇡(l+ 1

2)Q±(✓ � i⇡,~c) , (1.9)

which is a new TQ-system in a universal form, in the sense that the moduli do not rotate (and thus is

more e↵ective in their presence) and the shifts on the spectral parameter do not depend on N . Relation

(1.9) expresses the transfer matrix T via the Baxter auxiliary functions Q±, or in reverse yields Q± as

solutions of a finite di↵erence second order equation, given the ’potential’ T . And en passant we remark

that (1.9, 1.5) constrain it to be periodic

T (✓ + i⌧,~c) = T (✓,~cR) , (1.10)

so that the Q± are the Floquet solutions. In the end, it is also quite natural to assume the Q and T

functions to be real-analytic (bar represents complex conjugation):

Q̄±(✓,~c) = Q±(✓̄,̄~c) , T̄ (✓,~c) = T (✓̄,̄~c) . (1.11)
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which connects two eigenvalues Q±(θ,"c), Q−functions, of a Q (Baxter) operator. We have that |2l| < 1,

2N is a positive integer, θ is the so-called spectral parameter and Q±(θ,"c) are, by assumption, entire

functions of θ, from which, in our perspective, the next physical quantities ensue. In fact, from (1.3) we

can derive Bethe equations, the TQ-, T - and the Y -systems as we have sketched in [5] and will summarise

below. In writing (1.3) we made the hypothesis that Q± depend also on a vector of 2N complex coefficients

"c = (c0, ..., c2N−1), the moduli, and on its ’rotated’ version:

"c → "cR = (c0, ..., cne
−iπ n

N , ..., ) . (1.4)

In the different picture of [5] (1.3) is a consequence of the use of the so called Ω-symmetry [5]. Another
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The two properties (1.9, 1.5) are general and to be specific they have to be equipped with the asymptotic

behaviour of Q±, which usually fixes the integrable model and also the state thereof. To make a definite

example we choose the asymptotic behaviour typical of ground state of massive integrable theories:

lim
Re✓!±1

ln
h
Q±

⇣
✓ + i

⌧

2
,~c
⌘i

⇠ �w0(~c)e
✓ � w̄0(~c)e

�✓ , |Im✓| < ⌧

2
, (1.12)

where w0(~c), w̄0(~c) are renormalisation group (RG) times (as we will see below) which drive the asymp-

totics when the imaginary part of the spectral parameter is half the period. Now, in order to make (1.12)

compatible with real-analyticity (1.11) and quasi-periodicity it follows

w̄0(̄~c) = w0(~c
R�1

) . (1.13)

Now, we transform the functional equation (1.9) by use of (1.5, 1.11, 1.12, 1.13) into a handier integral

equation

Q±
⇣
✓ + i

⌧

2
,~c
⌘
= q(✓,~c)± (1.14)

±
Z +1

�1

d✓0

4⇡
tanh

✓ � ✓0

2
T
⇣
✓0 + i

⌧

2
,~c
⌘
e�w0(~c)(e✓+e✓

0
)�w̄0(~c)(e�✓+e�✓0 )e±(✓�✓0)lQ±

⇣
✓0 + i

⌧

2
,~c
⌘
,

valid in the strip |Im✓| < ⇡, where the massive field theory driving term

q(✓,~c) = C±e
± i⇡

4 ±(✓+ i⇡
2 )le�w0(~c)e✓�w̄0(~c)e�✓

, C± 2 R , (1.15)

is a consequence of (1.12). Outside the strip |Im✓| < ⇡ the functions Q±
�
✓ + i ⌧2 ,~c

�
are continued analyt-

ically. To prove it, we can ’invert’ the ±i⇡/2 shift operator (in the l.h.s. of (1.9)) by applying the tanhx

integral kernel by virtue the (residue) relation

lim
✏!0+


tanh

✓
x+

i⇡

2
� i✏

◆
� tanh

✓
x� i⇡

2
+ i✏

◆�
= 2⇡i�(x) , x 2 R . (1.16)

Then, the driving term of (1.14) is the zero mode of the shift operator which reproduces the asymptotics

(1.12); the shift of half the period guarantees quasi-periodicity (1.5) provided (1.11) and (1.13).

A crucial observation concerns the fact that equation (1.14) is ill-defined because of a divergence of

the integral (at large ✓). However, its form suggests a regularisation by the introduction of an auxiliary

space, which will turn out to be just the independent variables of the ODE side of the correspondence;

we will see this in the following. Let us start from stripping o↵ from Q± the model depending terms

C±X±(✓,~c) = e⌥
i⇡
4 e⌥(✓+

i⇡
2 )lew0(~c)e✓+w̄0(~c)e�✓

Q±
⇣
✓ + i

⌧

2
,~c
⌘
, (1.17)

so that (1.14) becomes the ’universal integral’ equation

X±(✓,~c) = 1±
Z +1

�1

d✓0

4⇡
tanh

✓ � ✓0

2
T
⇣
✓0 + i

⌧

2
,~c
⌘
E(✓0,~c)X±(✓

0,~c) , (1.18)

where

E(✓,~c) = e�2w0(~c)e✓�2w̄0(~c)e�✓ ' lim
Re✓!±1

Q±
�
✓ + i ⌧2 ,~c

�

Q±
�
✓ + i ⌧2 � i⇡,~c

� (1.19)

depends on the asymptotic behaviour of Q±. A heuristically crucial point is that it has the form of two

plane waves upon identification of �iw0(~c), iw̄0(~c) with space and of e±✓ with momenta variables. In
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depends on the asymptotic behaviour of Q±. A heuristically crucial point is that it has the form of two

plane waves upon identification of �iw0(~c), iw̄0(~c) with space and of e±✓ with momenta variables. In

4
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• satisfies a universal integral equation
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• with peculiar kernel (solitons behind the corner)


• direct consequence of the asymptotics of Q.
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The two properties (1.9, 1.5) are general and to be specific they have to be equipped with the asymptotic
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depends on the asymptotic behaviour of Q±. A heuristically crucial point is that it has the form of two

plane waves upon identification of �iw0(~c), iw̄0(~c) with space and of e±✓ with momenta variables. In
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depends on the asymptotic behaviour of Q±. A heuristically crucial point is that it has the form of two

plane waves upon identification of �iw0(~c), iw̄0(~c) with space and of e±✓ with momenta variables. In
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• Upon Fourier transforming :


• Volterra equation for 


• almost Marchenko eq. but the scattering data


• which depends (in a intricate way) on  because of T 

λ = eθ

K±(w′￼0, ξ; w̄′￼0)

w′￼0 = − iw0 = − ir
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other words, we define the (complex) momenta � = e✓, �0 = e✓
0
and make explicit the dependence of

X±(✓,~c) = X±(w0
0, w̄

0
0|�) on them and on (Wick rotated variables) w0

0 = �iw0, w̄0
0 = iw̄0 to allow its

Fourier transform,

K±(w
0
0, ⇠; w̄

0
0) =

Z +1�i✏

�1�i✏
d�ei(⇠�w0

0)�[X±(w
0
0, w̄

0
0|�)� 1] , (1.20)

enter the stage. Upon plugging it into equation (1.18), we obtain a Volterra equation, valid for ⇠ > w0
0,

since (1.20) is zero otherwise

K±(w
0
0, ⇠; w̄

0
0)± F (w0

0 + ⇠; w̄0
0)±

Z +1

w0
0

d⇠0

2⇡
K±(w

0
0, ⇠

0; w̄0
0)F (⇠0 + ⇠; w̄0

0) = 0 , (1.21)

which has almost the structure of a Marchenko-type equation [8], apart from the form of the ’scattering

data’

F (x; w̄0
0) = i

Z +1

0
d�0e�ix�0+2iw̄0

0/�
0
T (�0ei

⌧
2 ) , (1.22)

which depends on w0
0 = �iw0 (in an intricate way) because T does. Yet, we can amend it and give it

the precise structure of Marchenko-like equations so that to realise a clear connection to a Schrödinger

problem. In fact, we need to consider an extension of (1.21, 1.22) by promoting the quantities w0(~c) =

iw0
0(~c), w̄0(~c) = �iw̄0

0(~c) to independent dynamical variables

w = iw0, w̄ = �iw̄0 , (1.23)

respectively. This amounts indeed to introducing the auxiliary space of the derivatives of the ODE, whilst

the transfer matrix T (which contains w0
0 and w̄0

0) is left unscathed. In other words we are extending

the RG parameters w0(~c), w̄0(~c) with a (complex) two dimensional space w0, w̄0, which eventually will

constitute the configuration space for the ODE side of the correspondence. Besides, the variability of

the moduli ~c makes this promotion of w0(~c), w̄0(~c), which control the ’sizes’ of the model, rather well

motivated, although the deep meaning and relevance of the extra space of the ODE/IM in a RG perspective

are still to be better investigated. This means in formulæ that the Volterra equation (1.21) generalises

to a Marchenko-like equation for K± [8],
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where the known term is
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0
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T (�0ei
⌧
2 ,~c) . (1.25)

We now clarify our strategy: we extend Q functions Q(✓ + i⌧/2,~c) to dynamical functions X±(w0, w̄0|�)
satisfying well defined equations in the space (w0, w̄0). We expect that, when suitably continued to the

point (w0, w̄0) = (�iw0(~c), iw̄0(~c)), the quantities X± should be connected to the integrability functions

Q±. However, this limiting procedure is delicate and to correctly perform it we should pass through a

Schrödinger equation. To define it, we start from the dynamical extension of (1.18)
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We now clarify our strategy: we extend Q functions Q(✓ + i⌧/2,~c) to dynamical functions X±(w0, w̄0|�)
satisfying well defined equations in the space (w0, w̄0). We expect that, when suitably continued to the

point (w0, w̄0) = (�iw0(~c), iw̄0(~c)), the quantities X± should be connected to the integrability functions
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• NEW IDEA: promote  to new 
dynamical variables  everywhere except in T:


• 


• Marchenko-like eq. (!) with ‘good’ scattering data


•

w0( ⃗c ) = iw′￼0( ⃗c )
w = iw′￼
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other words, we define the (complex) momenta � = e✓, �0 = e✓
0
and make explicit the dependence of
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enter the stage. Upon plugging it into equation (1.18), we obtain a Volterra equation, valid for ⇠ > w0
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since (1.20) is zero otherwise
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which depends on w0
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• Finally we can derive the Schroedinger eq. for 


• the wave-function (plane wave multiplication)


• extension of the Q-function to this new ODE/IM space


• Promotion  means that i t is a 
‘holographic’ RG space?

w′￼(0) = − ir → w′￼(z)
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Then, the Marchenko-like equations (1.24) come out upon Fourier transforming with the definition

K±(w
0, ⇠; w̄0) =

Z +1�i✏

�1�i✏
d�ei(⇠�w0)�[X±(w

0, w̄0|�)� 1] . (1.27)

Obviously, all these manoeuvres hold if ⇠, w0 are real. However, once we have solved the Marchenko-like

equation (1.24) with ⇠, w0 real, we can analytically continue the functions K±(w0, ⇠; w̄0) to complex ⇠, w0.

Actually, this can also be made easier by converting the (1.24) to Schrödinger equations in the extra

ODE/IM space (w0, w̄0). In details, to find X±(w0, w̄0|�), we shall use the inverse of (1.27):

X±(w
0, w̄0|�)� 1 =

Z +1

�1

d⇠

2⇡
e�i(⇠�w0)�K±(w

0, ⇠; w̄0) =

Z +1

w0

d⇠

2⇡
e�i(⇠�w0)�K±(w

0, ⇠; w̄0) , (1.28)

which holds for Im� < 0, namely �⇡ < Im✓ < 0. Of course, we need to restore the plane wave behaviour

by setting  ±(w0, w̄0|�) = X±(w0, w̄0|�)e�iw0�+iw̄0��1
, di↵erentiate twice (1.28) and use (1.24) to arrive to

the anticipated Schrödinger equations

@2

@w02 ±(w
0, w̄0|�) + �2 ±(w

0, w̄0|�) = u±(w
0; w̄0) ±(w

0, w̄0|�) , Im� < 0, (1.29)

with potential

u±(w
0; w̄0) = �2

d

dw0
K±(w0, w0; w̄0)

2⇡
, (1.30)

determined by the solution of the Marchenko-like equation (1.24) 3. Despite this specific case, the method

of passing from a linear integral equation to a di↵erential one holds in full generality and thus can be

applied to a variety of cases. As we have highlighted the only subtle issue is the plane wave asymptotic

behaviour. So far, by means of Marchenko-like equation (1.24) we have derived the Schrödinger equations

(1.29) only for Im ✓ < 0 because the integration in (1.27) runs slightly below the real axis. Therefore,

to cover the domain Im ✓ > 0 we need to integrate, instead, slightly above the real axis and define the

Fourier transform

K̃±(w
0, ⇠; w̄0) =

Z +1+i✏

�1+i✏
d�ei(⇠�w0)�[X±(w

0, w̄0|�)� 1] , (1.31)

which leads us to similar Marchenko-like equations

K̃±(w
0, ⇠; w̄0)⌥ F (w0 + ⇠; w̄0)⌥

Z w0

�1

d⇠0

2⇡
K̃±(w

0, ⇠0; w̄0)F (⇠0 + ⇠; w̄0) = 0 , ⇠ < w0 . (1.32)

Actually, thanks to the presence of the same known function F in the Marchenko-like equations (1.24,1.32),

there is a simple relation between their solutions:

K±(w
0, ⇠; w̄0) = �K̃±(w

0, ⇠; w̄0) . (1.33)

The inverse of (1.31) furnishes X±(w0, w̄0|�) of (1.26) for 0 < Im ✓ < ⇡

X±(w
0, w̄0|�)� 1 =

Z w0

�1

d⇠

2⇡
e�i(⇠�w0)�K̃±(w

0, ⇠; w̄0) (1.34)

3 ±(w
0, w̄0|�) = X±(w

0, w̄0|�)e�iw0�+iw̄0��1
are actually the Jost solutions.
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Summary: TQ eq.  Marchenko eq. (Fourier)⟹



Some Perspectives
The machine is ready: extension to more complicated 
higher rank systems: let us find the ODEs! 

Non-linear integral or functional equations are powerful and 
are the monodromies of a ODE or PDE. There is any deep 
reason why these (TBA) are reproduced by an integrable 
Form Factor series of a ‘weird’ scattering theory?


NS limit  ODE/IM description:  
quantum ODE/IM? q-TBA? Similarly about classical string.


On the contrary: meaning of  for our Liouville field 
theory (not AGT)?

ϵ1 = ℏ, ϵ2 = 0 → ϵ2 ≠ 0

b ≠ 1



Thanks


