Quantum Algorithms for Hamiltonian Simulation

M. Sohaib Alam
NASA QuAIL / USRA, Ames Research Center

SQMS/GGI Summer School, July 2022

General Idea

Yuri Manin, "Computable and
Uncomputable" (1980)

Richard Feynman, "Simulating physics with computers" (1982)
phenomena-the challenge of explaining quantum mechanical phenomena -has to be put into the argument, and therefore these phenomena have to be understood very well in analyzing the situation. And I'm not happy with all the analyses that go with just the classical theory, because nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy. Thank you.

General Idea

Goal: For a given Hamiltonian H, find a (compilable) unitary U such that for any $\epsilon>0$ and $t>0$

$$
\left\|U-e^{-i H t}\right\|<\epsilon
$$

Allows us to simulate the time dynamics

$$
|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle
$$

May require ancillary qubits

$$
\sup _{|\psi\rangle}| | U|\overline{0}\rangle|\psi\rangle-V|\overline{0}\rangle e^{-i H t}|\psi\rangle \|<\epsilon
$$

Simulation Methods

- Lie-Trotter-Suzuki (Trotterization)
- Linear Combination of Unitaries (LCU)
- Quantum Singular Value Transform (QSVT)

Encodings

$$
\begin{aligned}
& H_{\text {system }} \rightarrow \sum_{i} \alpha_{i} P_{i} \quad|\psi\rangle_{\text {system }} \rightarrow \sum_{j} \beta_{j}|j\rangle \\
& \left\{a_{p}, a_{q}^{\dagger}\right\}=\delta_{p q} \quad \text { (Jordan-Wigner) } \quad a_{p}=\frac{1}{2}(X+i Y) \otimes Z_{p-1} \otimes \cdots \otimes Z_{0} \\
& \left\{a_{p}, a_{q}\right\}=\left\{a_{p}^{\dagger}, a_{q}^{\dagger}\right\}=0 \quad \Rightarrow \quad a_{p}^{\dagger}=\frac{1}{2}(X-i Y) \otimes Z_{p-1} \otimes \cdots \otimes Z_{0} \\
& \text { ("Second quantization") } \\
& \psi\left(\mathbf{x}_{\mathbf{0}} \ldots \mathrm{x}_{\mathrm{N}-\mathbf{1}}\right)= \\
& \frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\phi_{0}\left(\mathbf{x}_{\mathbf{0}}\right) & \phi_{1}\left(\mathbf{x}_{\mathbf{0}}\right) & \ldots & \phi_{M-1}\left(\mathbf{x}_{\mathbf{0}}\right) \\
\phi_{0}\left(\mathbf{x}_{\mathbf{1}}\right) & \phi_{1}\left(\mathbf{x}_{\mathbf{1}}\right) & \ldots & \phi_{M-1}\left(\mathbf{x}_{\mathbf{1}}\right) \\
\cdot & \cdot & . & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\phi_{0}\left(\mathbf{x}_{\mathbf{N}-\mathbf{1}}\right) & \phi_{1}\left(\mathbf{x}_{\mathbf{N}-\mathbf{1}}\right) & \ldots & \phi_{M-1}\left(\mathbf{x}_{\mathbf{N}-\mathbf{1}}\right)
\end{array}\right|=\left|f_{M-1}, \ldots, f_{p}, \ldots, f_{0}\right\rangle \\
& \text { (Field-amplitude basis) } \\
& \hat{\phi}=\left(\begin{array}{ccc}
-\phi_{\max } & \cdots & \\
& -\phi_{\max }+\Delta \phi & \\
\vdots & \ddots & \\
& & \phi_{\max }
\end{array}\right)
\end{aligned}
$$

Suzuki-Lie-Trotter

N-qubit k-local Hamiltonian

$$
H=\sum_{i=1}^{m} H_{i}
$$

$\left[H_{i}, H_{j}\right] \neq 0$
E.g. 5-qubit 2-local

$$
H=X_{1} Y_{3}+Z_{2} Z_{5}+X_{3} Y_{4}+Z_{1} X_{5}
$$

Baker-Campbell-Hausdorff (BCH)

$$
e^{A} e^{B}=e^{A+B+\frac{1}{2}[A, B]+\frac{1}{12}[A,[A, B]]+\ldots}
$$

Suzuki-Lie-Trotter

Lie-Trotter product formula

$$
e^{-i H t}=\lim _{n \rightarrow \infty}\left(e^{-i H_{1} t / n} e^{-i H_{2} t / n} \ldots e^{-i H_{m} t / n}\right)^{n}
$$

Algorithm:

- Exponentiate each of the k-local terms in succession
- Repeat a large number of times

Suzuki-Lie-Trotter

$$
\begin{aligned}
& e^{-i H t}=\left(e^{-i H \Delta t}\right)^{n} \quad \Delta t=t / n \\
& e^{-i H \Delta t} \approx e^{-i H_{1} \Delta t} \ldots e^{-i H_{m} \Delta t}+O\left(\Delta t^{2}\right)
\end{aligned}
$$

C_{H} : (Max) Cost of implementing any single $e^{-i H_{i} t / n}$ term m : Total number of k-local terms
ϵ : Desired accuracy

$$
\text { Total Cost }=n m C_{H} \sim O\left(\frac{t^{2} m C_{H}}{\epsilon}\right)
$$

Suzuki-Lie-Trotter

$$
\begin{aligned}
Z Z: & |00\rangle
\end{aligned} \rightarrow+|00\rangle \quad \begin{aligned}
e^{-i \theta Z Z}: & |00\rangle
\end{aligned} \rightarrow e^{-i \theta}|00\rangle, \begin{array}{ll}
|01\rangle & \rightarrow e^{+i \theta}|01\rangle \\
|01\rangle & \rightarrow-|01\rangle \\
|10\rangle & \rightarrow-|10\rangle \\
|11\rangle & \rightarrow+|11\rangle
\end{array} \quad \Rightarrow \quad|10\rangle \rightarrow e^{+i \theta}|10\rangle
$$

$$
R Z(\theta)=\left(\begin{array}{cc}
e^{-i \frac{\theta}{2}} & 0 \\
0 & e^{i \frac{\theta}{2}}
\end{array}\right)
$$

Suzuki-Lie-Trotter

XOR
Pauli Z's produce XOR in phases
$Z_{1} \ldots Z_{k}\left|b_{1}\right\rangle \ldots\left|b_{k}\right\rangle=(-1)^{b_{1} \oplus \cdots \oplus b_{k}}\left|b_{1}\right\rangle \ldots\left|b_{k}\right\rangle$

So that
$e^{-i \theta Z_{1} \ldots Z_{k}}\left|b_{1}\right\rangle \ldots\left|b_{k}\right\rangle=e^{-i \theta(-1)^{b_{1} \oplus \cdots \oplus b_{k}}}\left|b_{1}\right\rangle \ldots\left|b_{k}\right\rangle$

Note also

$$
\begin{aligned}
& R Z(2 \theta)\left|b_{1} \oplus \cdots \oplus b_{k}\right\rangle=e^{-i \theta(-1)^{b_{1} \oplus \cdots \oplus b_{k}}\left|b_{1} \oplus \cdots \oplus b_{k}\right\rangle \quad b_{i} \oplus b_{i}=0, ~(1)} \\
& b_{i} \oplus b_{i}=0
\end{aligned}
$$

b_{i}	b_{j}	$b_{i} \oplus b_{j}$
0	0	0
0	1	1
1	0	1
1	1	0

Controlled NOT (bitflip) produces XOR on bits

$$
\begin{aligned}
& \mathrm{C}_{i}-\mathrm{NOT}_{j}\left|b_{i}\right\rangle\left|b_{j}\right\rangle=\left|b_{i}\right\rangle\left|b_{i} \oplus b_{j}\right\rangle \\
& \mathrm{C}_{i}-\mathrm{NOT}_{j}\left|b_{i}\right\rangle\left|b_{i} \oplus b_{j}\right\rangle=\left|b_{i}\right\rangle\left|b_{i} \oplus b_{i} \oplus b_{j}\right\rangle=\left|b_{i}\right\rangle\left|b_{j}\right\rangle
\end{aligned}
$$

Suzuki-Lie-Trotter

Prescription to compile $e^{-i \theta Z_{1} \ldots Z_{k}}$

- $\quad \prod_{i=1}^{k-1} \mathrm{C}_{i}-\mathrm{NOT}_{i+1}\left|b_{1}\right\rangle \ldots\left|b_{k}\right\rangle=\left|b_{1}\right\rangle\left|b_{1} \oplus b_{2}\right\rangle \ldots\left|b_{1} \oplus b_{2} \oplus \cdots \oplus b_{k}\right\rangle$
- $R Z_{k}(2 \theta)\left|b_{1}\right\rangle \ldots\left|b_{1} \oplus b_{2} \oplus \cdots \oplus b_{k}\right\rangle=e^{-i \theta(-1)^{b_{1} \oplus \cdots \oplus b_{k}}}\left|b_{1}\right\rangle \ldots\left|b_{1} \oplus b_{2} \oplus \cdots \oplus b_{k}\right\rangle$
- $\prod_{i=k-1}^{1} \mathrm{C}_{i-1}-\mathrm{NOT}_{i}\left|b_{1}\right\rangle\left|b_{1} \oplus b_{2}\right\rangle \ldots\left|b_{1} \oplus b_{2} \oplus \cdots \oplus b_{k}\right\rangle=\left|b_{1}\right\rangle \ldots\left|b_{k}\right\rangle$

Suzuki-Lie-Trotter

$e^{-i \theta Z_{1} \ldots Z_{k}}$

Suzuki-Lie-Trotter

Note that

$$
X=H Z H
$$

$$
Y=(S H) Z(S H)^{\dagger}
$$

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad S=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right)
$$

E.g. $e^{-i \theta X_{1} Y_{2} Z_{3}}=(H \otimes(S H) \otimes I) e^{-i \theta Z_{1} Z_{2} Z_{3}}\left(H \otimes(S H)^{\dagger} \otimes I\right)$

Suzuki-Lie-Trotter

$$
\begin{aligned}
& e^{-i H t}=\left(e^{-i H \Delta t}\right)^{n} \quad \Delta t=t / n \\
& e^{-i H \Delta t} \approx e^{-i H_{1} \Delta t} \ldots e^{-i H_{m} \Delta t}+O\left(\Delta t^{2}\right)
\end{aligned}
$$

C_{H} : (Max) Cost of implementing any single $e^{-i H_{i} t / n}$ term m : Total number of k-local terms
ϵ : Desired accuracy

$$
\text { Total Cost }=n m C_{H} \sim O\left(\frac{t^{2} m C_{H}}{\epsilon}\right) \sim O\left(\frac{t^{2} m k}{\epsilon}\right)
$$

Suzuki-Lie-Trotter

Suzuki higher-order formulas

$$
S_{2}(\Delta t)=e^{-i H_{1} \Delta t / 2} \ldots e^{-i H_{m-1} \Delta t / 2} e^{-i H_{m} \Delta t} e^{-i H_{m-1} \Delta t / 2} \ldots e^{-i H_{1} \Delta t / 2}
$$

yields a better approximation

$$
e^{-i H \Delta t}=S_{2}(\Delta t)+O\left(\Delta t^{3}\right)
$$

Recursive definition

$$
\begin{aligned}
S_{2 k}(\Delta t)= & {\left[S_{2(k-1)}\left(p_{k} \Delta t\right)\right]^{2} S_{2(k-1)}\left(q_{k} \Delta t\right)\left[S_{2(k-1)}\left(p_{k} \Delta t\right)\right]^{2} } \\
& p_{k}=\left(4-4^{1 /(2 k-1)}\right)^{-1}, \quad q_{k}=1-4 p_{k} \\
& e^{-i H \Delta t}=S_{2 k}(\Delta t)+O\left(\Delta t^{2 k+1}\right)
\end{aligned}
$$

Suzuki-Lie-Trotter

$$
\text { Total Cost } \sim \frac{\left(\alpha_{c o m m} t\right)^{1+\frac{1}{2 k}}}{\epsilon^{\frac{1}{2 k}}}
$$

$$
\alpha_{c o m m}=\max _{, i m}\left|\left[H_{i_{1}},\left[H_{i_{i}}, \ldots\left[H_{i_{m-1}}, H_{i_{m}}\right]\right] \ldots\right]\right|^{1 / m}
$$

Linear Combination of Unitaries

Taylor series expansion

$$
\begin{aligned}
e^{-i H t}= & \underbrace{\left(e^{-i H(t / r)}\right)^{r}} \\
V_{r} & =\sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{-i H t}{r}\right)^{k} \\
& \approx \sum_{k=0}^{K} \frac{1}{k!}\left(\frac{-i H t}{r}\right)^{k}
\end{aligned}
$$

Implement $\quad \tilde{V}=\sum_{i} \alpha_{i} U_{i} \quad$ such that $\quad\left\|\tilde{V}-V_{r}\right\|<\epsilon / r$

Linear Combination of Unitaries

Problem

Sum of unitaries is not unitary!
E.g. $\quad \frac{1}{2}(\mathbb{I}+Z)=|0\rangle\langle 0|$

Solution

$|0\rangle \otimes|\psi\rangle$
Use ancillas!

Block encode nonunitary operation in a larger unitary

$$
\left(\begin{array}{cc}
\tilde{V} & \cdot \\
\cdot & .
\end{array}\right)\binom{|\psi\rangle}{ 0}=\binom{\tilde{V}|\psi\rangle}{\cdot}
$$

Linear Combination of Unitaries

Given

$$
A=\sum_{i=1}^{L} \alpha_{i} U_{i}
$$

$$
\alpha_{i}>0
$$

Construct

$$
\begin{aligned}
& U_{P R E P}|\overline{0}\rangle=\frac{1}{\sqrt{|\alpha|_{1}}} \sum_{i=1}^{L} \sqrt{\alpha_{i}}|i\rangle \\
& U_{S E L E C T}=\sum_{i=1}^{L}|i\rangle\langle i| \otimes U_{i}
\end{aligned}
$$

Linear Combination of Unitaries

Success probability

$$
\frac{\| A|\psi\rangle \|^{2}}{\|\alpha\|_{1}^{2}}
$$

$$
\frac{1}{|\alpha|_{1}}|\overline{0}\rangle \otimes A|\psi\rangle+\left|\Phi^{\perp}\right\rangle
$$

$$
(|\overline{0}\rangle\langle\overline{0}| \otimes \mathbb{I})\left|\Phi^{\perp}\right\rangle=0
$$

Linear Combination of Unitaries

Robust Oblivious Amplitude Amplification
Let $W|\overline{0}\rangle|\psi\rangle=\frac{1}{s}|\overline{0}\rangle \tilde{V}|\psi\rangle+\sqrt{1-\frac{1}{s^{2}}}\left|\Phi^{\perp}\right\rangle$

If $\|s-2\| \sim O(\epsilon)$, and $\|\tilde{V}-V\| \sim O(\epsilon)$ where V is unitary, then with the reflection operator $R=2\left(|\overline{0}\rangle\langle\overline{0}| \otimes \mathbb{I}_{s}\right)-\mathbb{I}$,
the unitary $A=W R W^{\dagger} R W$ achieves

$$
\| A|\overline{0}\rangle|\psi\rangle-|\overline{0}\rangle V|\psi\rangle \| \sim O(\epsilon)
$$

Linear Combination of Unitaries

 Reflection operator $R=2|\overline{0}\rangle\langle\overline{0}|-I \quad|\overline{0}\rangle=|0\rangle^{\otimes n}$
Linear Combination of Unitaries

Approximating a single step

$$
V_{r}=e^{-i H t / r} \approx \sum_{k=0}^{K} \frac{1}{k!}(-i H t / r)^{k}=\tilde{V}_{r}
$$

Total accuracy of all steps must be ϵ

$$
\begin{aligned}
K & =O\left(\frac{\log (T / \epsilon)}{\log \log (T / \epsilon)}\right) \Rightarrow\left\|\tilde{V}_{r}-V_{r}\right\| \sim O(\epsilon / r) \\
T & =\left(\alpha_{1}+\cdots+\alpha_{L}\right) t
\end{aligned}
$$

Linear Combination of Unitaries

$$
\begin{gathered}
\tilde{V}_{r}=\sum_{k=0}^{\sum_{l_{1}, \ldots, l_{k}}^{K} \sum_{s=2+O(\epsilon / r)} \frac{(t / r)^{k}}{k!} \alpha_{l_{1}} \ldots \alpha_{l_{k}}\left((-i)^{k} U_{l_{1}} \ldots U_{l_{k}}\right)} \\
U_{P R E P}|\overline{0}\rangle=\frac{1}{\sqrt{\mathcal{K}}} \sum_{k=0}^{K} \sum_{l_{1}, \ldots, l_{k}=1}^{L} \sqrt{\frac{(t / r)^{k}}{k!}} \alpha_{l_{1}} \ldots \alpha_{l_{k}}|k\rangle\left|l_{1}\right\rangle \ldots\left|l_{k}\right\rangle
\end{gathered}
$$

Linear Combination of Unitaries

$$
U_{P R E P}|\overline{0}\rangle=\frac{1}{\sqrt{\mathcal{K}}} \sum_{k=0}^{K} \sum_{l_{1}, \ldots, l_{k}=1}^{L} \sqrt{\frac{(t / r)^{k}}{k!} \alpha_{l_{1}} \ldots \alpha_{l_{k}}}|k\rangle\left|l_{1}\right\rangle \ldots\left|l_{k}\right\rangle
$$

First prepare the $|k\rangle$ register with basis states $|k\rangle=|1\rangle^{\otimes k}|0\rangle^{\otimes K-k}$

$$
\frac{1}{\sqrt{\mathcal{N}}} \sum_{k=0}^{K} \sqrt{\frac{(t / r)^{k}}{k!}}|1\rangle^{\otimes k}|0\rangle^{\otimes K-k}
$$

Linear Combination of Unitaries

$$
\frac{1}{\sqrt{\mathcal{N}}} \sum_{k=0}^{K} \sqrt{\frac{(t / r)^{k}}{k!}}|1\rangle^{\otimes k}|0\rangle^{\otimes K-k}
$$

E.g. $\mathrm{K}=3$

$$
\begin{aligned}
& R Y_{0}\left(\theta_{0}\right)|000\rangle=\cos \left(\theta_{0} / 2\right)|000\rangle+\sin \left(\theta_{0} / 2\right)|100\rangle \\
& \begin{aligned}
C_{0}-R Y_{1}\left(\theta_{1}\right) & \cos \left(\theta_{0} / 2\right)|000\rangle+\sin \left(\theta_{0} / 2\right) \cos \left(\theta_{1} / 2\right)|100\rangle \\
& +\sin \left(\theta_{0} / 2\right) \sin \left(\theta_{1} / 2\right)|110\rangle
\end{aligned} \\
& \begin{aligned}
C_{1}-R Y_{2}\left(\theta_{2}\right) & \\
& \cos \left(\theta_{0} / 2\right)|000\rangle+\sin \left(\theta_{0} / 2\right) \cos \left(\theta_{1} / 2\right)|100\rangle \\
& +\sin \left(\theta_{0} / 2\right) \sin \left(\theta_{1} / 2\right) \cos \left(\theta_{2} / 2\right)|110\rangle \\
& +\sin \left(\theta_{0} / 2\right) \sin \left(\theta_{1} / 2\right) \sin \left(\theta_{2} / 2\right)|111\rangle
\end{aligned}
\end{aligned}
$$

Linear Combination of Unitaries

$$
\cos \left(\theta_{0} / 2\right)=1 / \sqrt{\mathcal{N}}
$$

$\sin \left(\theta_{0} / 2\right) \ldots \sin \left(\theta_{k-1} / 2\right) \cos \left(\theta_{k} / 2\right)=\left[\frac{(t / r)^{k}}{k!}\right]^{1 / 2} / \sqrt{\mathcal{N}}$ $0 \leq k<K$
$\sin \left(\theta_{0} / 2\right) \ldots \sin \left(\theta_{K} / 2\right)=\left[\frac{(t / r)^{K}}{K!}\right]^{1 / 2} / \sqrt{\mathcal{N}}$

Linear Combination of Unitaries

$U_{P R E P}|\overline{0}\rangle=\frac{1}{\sqrt{K}} \sum_{k=0}^{K} \sum_{l_{1}, \ldots, l_{k}=1}^{L} \sqrt{\frac{(t / r)^{k}}{k!} \alpha_{l_{1}} \ldots \alpha_{l_{k}}}|k\rangle\left|l_{1}\right\rangle \ldots\left|l_{k}\right\rangle$

Prepared $\frac{1}{\sqrt{\mathcal{N}}} \sum_{k=0}^{K} \sqrt{\frac{(t / r)^{k}}{k!}}|1\rangle^{\otimes k}|0\rangle^{\otimes K-k} \quad$ using $\mathrm{O}(\mathrm{K})$ gates

Using $\mathrm{O}(\mathrm{K} \log \mathrm{L})$ qubits, prepare $\left(\frac{1}{\sqrt{|\alpha|_{1}}} \sum_{l=0}^{L-1} \sqrt{\alpha_{l}}|l\rangle\right)^{\otimes K}$ using $\mathrm{O}(\mathrm{KL} \log \mathrm{L})$ gates

Linear Combination of Unitaries

$$
|\psi\rangle=\sum_{i=0}^{2^{n}-1} \alpha_{i}|i\rangle \quad\left(L=2^{n}\right)
$$

$$
\beta_{j}^{s}=2 \arcsin \left(\frac{\sqrt{\sum_{l=0}^{2^{s-1}-1}\left|\alpha_{(2 j-1) 2^{s-1}+l}\right|^{2}}}{\sqrt{\sum_{l=0}^{2^{s}-1}\left|\alpha_{(j-1) 2^{s}+l}\right|^{2}}}\right)
$$

Cost $\sim O(L \log L)$

Linear Combination of Unitaries

$$
U_{P R E P}|\overline{0}\rangle=\frac{1}{\sqrt{\mathcal{K}}} \sum_{k=0}^{K} \sum_{l_{1}, \ldots, l_{K}=0}^{L-1} \sqrt{\frac{(t / r)^{k}}{k!} \alpha_{l_{1}} \ldots \alpha_{l_{k}}}|k\rangle\left|l_{1}\right\rangle \ldots\left|l_{K}\right\rangle
$$

$$
\tilde{V}_{r}=\sum_{k=0}^{K} \sum_{l_{1}, \ldots, l_{k}} \underbrace{\frac{(t / r)^{k}}{k!} \alpha_{l_{1}} \ldots \alpha_{l_{k}}\left((-i)^{k} U_{l_{1}} \ldots U_{l_{k}}\right)}_{\text {"Prepare" step }}
$$

Cost $\sim O(K L \log L)$

Linear Combination of Unitaries

Broadly,

$$
U_{S}=\sum_{l=0}^{L-1}|l\rangle\langle l| \otimes U_{l}
$$

For the particular case of Taylor series approach

$$
\begin{aligned}
& U_{\text {SELECT }}:|k\rangle\left|l_{1}\right\rangle \ldots\left|l_{k}\right\rangle\left|l_{k+1}\right\rangle \ldots\left|l_{K}\right\rangle|\psi\rangle \\
& \quad \rightarrow|k\rangle\left|l_{1}\right\rangle \ldots\left|l_{k}\right\rangle\left|l_{k+1}\right\rangle \ldots\left|l_{K}\right\rangle\left((-i)^{k} U_{l_{1}} \ldots U_{l_{k}}\right)|\psi\rangle
\end{aligned}
$$

Implement via

$$
U_{S, j}:\left|b_{j}\right\rangle\left|l_{j}\right\rangle|\psi\rangle \rightarrow\left|b_{j}\right\rangle\left|l_{j}\right\rangle\left(-i U_{l_{j}}\right)^{b_{j}}|\psi\rangle \text { for each } j \in\{1, \ldots, K\}
$$

Linear Combination of Unitaries

> E.g. K=3, L=2

Cost $\sim O(m K L \log L)$
m : locality of U 's

Linear Combination of Unitaries

$$
\begin{aligned}
& \beta_{0}|k=0\rangle(\text { product state })_{K}|\psi\rangle \\
& +\beta_{1}|k=1\rangle\left[\sum_{l=1}^{L}\left|l_{1}\right\rangle(\text { product state })_{K-1}\left(-i \alpha_{l_{1}} U_{l_{1}}\right)|\psi\rangle\right] \\
& +\beta_{2}|k=2\rangle\left[\sum_{l_{1}, l_{2}=1}^{L}\left|l_{1}\right\rangle\left|l_{2}\right\rangle \text { (product state) }{ }_{K-2}(-i)^{2} \alpha_{l_{1}} \alpha_{l_{2}} U_{l_{2}} U_{l_{1}}|\psi\rangle\right] \\
& +\quad \ldots \\
& +\beta_{K}|k=K\rangle\left[\sum_{l_{1}, \ldots, l_{K}=1}^{L}\left|l_{1}\right\rangle \ldots\left|l_{K}\right\rangle(-i)^{K} \alpha_{l_{1}} \ldots \alpha_{l_{K}} U_{l_{K}} \ldots U_{l_{1}}|\psi\rangle\right]
\end{aligned}
$$

Linear Combination of Unitaries

Cost of single segment $\sim O(K L \log L)$

$$
\sim O\left(\frac{L \log L \log (T / \epsilon)}{\log \log (T / \epsilon)}\right)
$$

Total cost $\sim O(r K L \log L)$

$$
T=\left(\sum_{i}\left|\alpha_{i}\right|\right) t
$$

$$
\sim O\left(T \frac{L \log L \log (T / \epsilon)}{\log \log (T / \epsilon)}\right)
$$

Quantum Singular Value Transform

Quantum Signal Processing

There exists a $\vec{\phi}=\left(\phi_{0}, \ldots, \phi_{d}\right)$ such that

$$
e^{i \phi_{0} Z} \prod_{k=1}^{d} W(a) e^{i \phi_{k} Z}=\left(\begin{array}{cc}
P(a) & i Q(a) \sqrt{1-a^{2}} \\
i Q^{\star}(a) \sqrt{1-a^{2}} & P^{\star}(a)
\end{array}\right)
$$

$\left.\begin{array}{l}\text { where } a \in[-1,1] \text { and } W(a)=\left(\begin{array}{cc}a & i \sqrt{1-a^{2}} \\ \text { and } \mathrm{Q}(\mathrm{a}) \text { such that }\end{array}\right) \text {, for any polynomials } \mathrm{P}(\mathrm{a}) \\ i \sqrt{1-a^{2}} \\ a\end{array}\right)$.

- $\operatorname{deg}(P) \leq d, \operatorname{deg}(Q) \leq d-1$
- $\quad P$ has parity $\mathrm{d} \bmod 2$, and Q has parity $(\mathrm{d}-1) \bmod 2$
- $|P|^{2}+\left(1-a^{2}\right)|Q|^{2}=1$

Quantum Singular Value Transform

Quantum Eigenvalue Transform

Given a block encoding of Hamiltonian $\mathcal{H}=\sum_{i} \lambda_{i}\left|\lambda_{i}\right\rangle\left\langle\lambda_{i}\right|$
as $U=\Pi\left[\begin{array}{cc}\mathcal{H} & \cdot \\ \cdot & \cdot\end{array}\right]$, given conditional phase shift $\Pi_{\phi}=e^{i \phi(2 \Pi-I)}$
$\left.\begin{array}{c}U_{\vec{\phi}}=\Pi\left[\begin{array}{c}\Pi \\ \operatorname{Poly}(\mathcal{H}) \\ \cdot\end{array}\right. \\ \cdot\end{array}\right]=\left[\begin{array}{l}{\left[\prod_{k=1}^{d / 2} \Pi_{\phi_{2 k-1}} U^{\dagger} \Pi_{\phi_{2 k}} U\right] \quad \text { even } d} \\ \operatorname{Poly}(\mathcal{H})=\sum_{\lambda} \operatorname{Poly}(\lambda)|\lambda\rangle\langle\lambda| \\ (\operatorname{Poly}(\lambda) \text { has degree } d)\end{array}\left\{\begin{array}{l}\Pi_{\phi_{1}} U\left[\prod_{k=1}^{[d-1) / 2} \Pi_{\phi_{2 k}} U^{\dagger} \Pi_{\phi_{2 k+1}} U\right] \quad \text { odd } d\end{array}\right.\right.$

Quantum Singular Value Transform

Explicit example

$$
\begin{aligned}
U & =\left[\begin{array}{cc}
\mathcal{H} & \sqrt{I-\mathcal{H}^{2}} \\
\sqrt{I-\mathcal{H}^{2}} & -\mathcal{H}
\end{array}\right] \\
U & =Z \otimes \mathcal{H}+X \otimes \sqrt{I-\mathcal{H}^{2}}
\end{aligned}
$$

with action

$$
\begin{aligned}
& U|0\rangle|\lambda\rangle=\lambda|0\rangle|\lambda\rangle+\sqrt{1-\lambda^{2}}|1\rangle|\lambda\rangle \\
& U|1\rangle|\lambda\rangle=-\lambda|1\rangle|\lambda\rangle+\sqrt{1-\lambda^{2}}|0\rangle|\lambda\rangle
\end{aligned}
$$

Quantum Singular Value Transform

Explicit example

$$
\begin{aligned}
U & =\left[\begin{array}{cc}
\mathcal{H} & \sqrt{I-\mathcal{H}^{2}} \\
\sqrt{I-\mathcal{H}^{2}} & -\mathcal{H}
\end{array}\right] \\
U & =\sum_{\lambda}\left[\begin{array}{cc}
\lambda & \sqrt{1-\lambda^{2}} \\
\sqrt{1-\lambda^{2}} & -\lambda
\end{array}\right] \otimes|\lambda\rangle\langle\lambda| \\
& =\sum_{\lambda}\left[\sqrt{1-\lambda^{2}} X+\lambda Z\right] \otimes|\lambda\rangle\langle\lambda|
\end{aligned}
$$

$$
=: \sum R(\lambda) \otimes|\lambda\rangle\langle\lambda|=\bigoplus R(\lambda) \quad \mathcal{H} \text { has been "qubitized" }
$$

Quantum Singular Value Transform

But we can also construct $\mathcal{H} /|\alpha|_{1}=\left(1 /|\alpha|_{1}\right) \sum_{i} \alpha_{i} H_{i}=\langle g| U|g\rangle$
using the operators we constructed for LCU!
$|g\rangle=U_{P R E P}|\overline{0}\rangle=\frac{1}{\sqrt{|\alpha|_{1}}} \sum_{i} \sqrt{\alpha_{i}}|i\rangle$
and
$U=U_{S E L E C T}=\sum_{i}|i\rangle\langle i| \otimes H_{i}$

Quantum Singular Value Transform

$$
\Pi_{\phi}=e^{i \phi(2 \Pi-I)}=e^{i \phi}|g\rangle\langle g|+e^{-i \phi}\left|g^{\perp}\right\rangle\left\langle g^{\perp}\right|
$$

Quantum Singular Value Transform

$$
\Pi_{\phi}=e^{i \phi(2 \Pi-I)}=U_{P R E P}\left(e^{i \phi}|0\rangle\langle 0|+e^{-i \phi}\left|0^{\perp}\right\rangle\left\langle 0^{\perp}\right|\right) U_{P R E P}^{\dagger}
$$

Quantum Singular Value Transform

Hamiltonian simulation

$$
e^{-i \mathcal{H} t}=\cos (\mathcal{H} t)-i \sin (\mathcal{H} t)
$$

Jacobi-Anger expansion

$$
\begin{aligned}
& \cos (x t)=J_{0}(t)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(t) T_{2 k}(x) \\
& \sin (x t)=2 \sum_{k=0}^{\infty}(-1)^{k} J_{2 k+1}(t) T_{2 k+1}(x)
\end{aligned}
$$

$J_{i}(x)$: Bessel function of order i
$T_{i}(x)$: Chebyshev polynomial of order i

Quantum Singular Value Transform

Jacobi-Anger expansion

$$
\begin{aligned}
& \cos (x t)=J_{0}(t)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(t) T_{2 k}(x) \\
& \sin (x t)=2 \sum_{k=0}^{\infty}(-1)^{k} J_{2 k+1}(t) T_{2 k+1}(x)
\end{aligned}
$$

To achieve accuracy $O(\epsilon)$, truncate at $2 \mathrm{k}^{\prime}$ and $2 \mathrm{k}^{\prime}+1$ respectively, where

$$
k^{\prime} \sim \text { Query complexity } \sim O\left(|\alpha|_{1} t+\frac{\log (1 / \epsilon)}{\log \frac{\log (1 / \epsilon)}{|\alpha|_{1} t}}\right)
$$

Summary

Costs

Trotterization

$$
O\left(\frac{\left(\alpha_{c o m m} t\right)^{1+\frac{1}{2 k}}}{\epsilon^{\frac{1}{2 k}}}\right)
$$

LCU
$O\left(|\alpha|_{1} t \frac{L \log L \log (T / \epsilon)}{\log \log (T / \epsilon)}\right)$

QSVT

$$
O\left(|\alpha|_{1} t+\frac{\log (1 / \epsilon)}{\log \frac{\log (\mid / \epsilon)}{|\alpha|_{1} t}}\right)
$$

References

- Seth Lloyd, "Universal Quantum Simulators", Science(1996)
- Suzuki M Proc. Japan Acad. B 69 161-6 (1993), Phys. Lett. A 146 319-23 (1990), J. Math. Phys. 32 400-7 (1991)
- Andrew Childs, Nathan Wiebe, "Hamiltonian Simulation Using Linear Combinations of Unitary Operations", Quantum Information and Computation 12, 901-924 (2012)
- D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma. "Simulating Hamiltonian dynamics with a truncated Taylor series". Physical Review Letters, 114:090502, 2015
- John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang, "Grand Unification of Quantum Algorithms", PRX Quantum 2, 040203 (2021)

References

- Anirban Ch Narayan Chowdhury, "Quantum Algorithms with Applications to Simulating Physical Systems" (PhD thesis, 2019)
- Mikko Möttönen, Juha J. Vartiainen, Ville Bergholm, and Martti M. Salomaa, "Transformation of quantum states using uniformly controlled rotations", Quant. Inf. Comp. 5, 467 (2005)
- Craig Gidney, "Constructing Large Controlled Nots" (Blog post on algassert.com, 2015)

Thank you!

Email: sohaib.alam@nasa.gov; malam@usra.edu

Extra slides

Qubitization

Suppose $H=\langle g| U|g\rangle$

Then $W_{U}=\left(2|\tilde{g}\rangle\langle\tilde{g}| \otimes \mathbb{I}_{s}-\mathbb{I}\right) \tilde{U}$ defines a step of a "quantum walk"

$$
\begin{aligned}
& \tilde{U}=|0\rangle\left\langle\left. 1\right|_{c} \otimes U+\mid 1\right\rangle\left\langle\left. 0\right|_{c} \otimes U^{\dagger}\right. \\
& |\tilde{g}\rangle=|+\rangle_{c}|g\rangle
\end{aligned}
$$

Qubitization
We can construct $H=\langle g| U|g\rangle$
using

$$
|g\rangle=U_{P R E P}|\overline{0}\rangle \quad \text { and }
$$

$U=U_{S E L E C T}$
from the LCU construction.

Qubitization

Circuit for W_{U}

$U=U_{S E L E C T}$

$$
U_{g}=U_{P R E P}
$$

Qubitization

Jacobi-Anger $\quad S_{K}=\sum_{k=-K}^{K} a_{k}\left(-i W_{U}\right)^{k}$
defines an LCU algorithm using W_U, which has been decomposed into a direct sum of 2-dimensional subspaces, i.e. has been "qubitized"

$$
W_{U}=\oplus_{j}\left(\begin{array}{cc}
\lambda_{j} & -\sqrt{1-\lambda_{j}^{2}} \\
\sqrt{1-\lambda_{j}^{2}} & \lambda_{j}
\end{array}\right)
$$

