Quantum Field Theory II

Hank Lamm

-

Disclaimer: Problems and solutions via my aesthetic

- If it ain't broke, don't fix it
- Premature optimization is the root of all evil
- QCD is my target

Fundamentally, HEP requires QC ${ }^{[2]}$

[1]
Kassal, I., J. D. Whitfield, A. Perdomo-Ortiz, M.-H. Yung, and A. Aspuru-Guzik. In: Annual review of physical chemistry 62 (2011).
[2]
Bauer, C. W. et al. In: (Apr. 2022). arXiv: 2204.03381 [quant-ph].

Gut check!

Suppose we wanted to run a circuit on a $\mathbf{1 0 0 q}$ with each qubit is acting on by an entangling gate. Could we achieve 50% overall success if the gate fidelity is $\mathbf{9 5 \%}$? 99\%?

This is the biggest thing to remember about current QC

Gut check!

Suppose we wanted to run a circuit on a $\mathbf{1 0 0 q}$ with each qubit is acting on by a $3 q$ entangling gate. Could we achieve 50% overall success if the gate fidelity is $\mathbf{9 5 \%}$? $\mathbf{9 9 \%}$?

QFT is about infinities and how to regulate them

I'm sometimes going to talk about lattice actions

$$
\langle x| e^{-i H t}|y\rangle=\int \mathcal{D} \phi e^{i S}
$$

The anisotropic Wilson action is

$$
\begin{equation*}
S_{\mathrm{W}}=\frac{1}{g_{t}^{2}} \xi \sum_{t} \operatorname{Tr} U_{t}+\frac{1}{g_{s}^{2}} \frac{1}{\xi} \sum_{s} \operatorname{Tr} U_{s} \tag{1}
\end{equation*}
$$

thru transfer matrix ${ }^{[3]},\langle i| e^{-a_{0} H}|j\rangle$ derives the $H_{K S}$

$$
\begin{equation*}
H_{K S}=\frac{c}{a_{s}}\left[\frac{g_{H}^{2}}{2} \sum_{l} E_{l}^{2}+\frac{1}{g_{H}^{2}} \sum_{p} \operatorname{Tr} U_{p}\right] \tag{2}
\end{equation*}
$$

...but this derivation requires an approximation to get E_{l}^{2} !

- $H_{K S}$ isn't the Hamiltonian, but a choice with $O\left(a_{s}^{2}\right)$ errors
[3] Creutz, M. Quarks, gluons and lattices. Cambridge Monographs on Mathematical Physics. Cambridge, UK: Cambridge Univ. Press, June 1985.

LFT has been successful beyond our wildest dreams

$$
S_{\infty}=\int d^{4} x\left[-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\bar{q}(i \not D-m) q\right]
$$

$$
S_{W}=\sum_{x}\left[\beta \operatorname{Re} \operatorname{Tr}\left(1-U_{p}\right)+S_{f}\right] \text { with } U_{p}=U_{1} U_{2} U_{3}^{\dagger} U_{4}^{\dagger} \text { and } U_{i}=e^{i a_{\mu} A^{\mu}}
$$

Wick rotate $t \rightarrow i \tau$ then sample from $e^{-S_{R}}$
LFT can compute most $\left\langle\psi_{i}\right| \prod_{n} \mathcal{O}_{n}\left(\tau_{n}\right)\left|\psi_{i}\right\rangle=\frac{\int \mathcal{D} \phi e^{-S_{R}} \prod_{n} \mathcal{O}_{n}\left(\tau_{n}\right)}{\int \mathcal{D} \phi e^{-S_{R}}}$

So many choices of fermions

Nielsen-Ninomiya theorem: Assuming locality, hermiticity, and translational symmetry, any lattice chiral fermions have doublers Ginsparg-Wilson equation: Introduce a concept of lattice chiral symmetry that recovered true chiral symmetry in the continunum

$$
D \gamma_{5}+\gamma_{5} D=a D \gamma_{5} D
$$

(1) Staggered (KS) Fermions: Spin-taste components on different lattice sites in hypercube
(2) Wilson Fermions: add a new term to give additional mass to doublers
(3) Domain wall Fermions: Increase dimensionality
(9) Overlap Fermions: Use nonlocal operator to remove doublers
(5) ...others

These are categories, which can be improved to remove lattice artifacts Not all are formulated in Hamiltonian (aka for QC)...if you want a research project

So ahead of the curve, the curve becomes a sphere

What about Monte Carlos?

When the state space gets too big, to evaulate $\int \mathrm{d} x p(x)$, randomly sample values according to $p(x)$

THE JOURNAL OF CHEMICAL PHYSICS
VOLUME 21. NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

Nicholas Metropolis, Arlanna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scientific Laboratory, Los Alamos, New Mexico
AND

Ebward Teller,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere system bave been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term virial coefficient expansion.

Monte Carlo methods present a practical solution...

- As $N \rightarrow \infty,\langle\mathcal{O}\rangle \rightarrow \mathcal{O}_{\text {exact }}$.
- Computable uncertainty which decreases as N grows!
- ...but what if $p\left(x_{i}\right) \neq[0,1]$ (e.g. e^{-S} is not real)

Monte Carlo methods present a practical solution...

- Reweighting: assign probabilities $\left|p\left(x_{i}\right)\right|$ and make the relative sign, σ_{i} part of the observable
- ...but what happens when the cancellations are strong?

...but struggle with sign problems

- Sign problem: when stochastic sampling requires precise cancellations of positive and negative contributions, which is generically exponentially bad in particle number or volume
- $\int_{-1}^{1} \mathrm{~d} x \int_{-1}^{1} \mathrm{~d} y[\Theta(-x)-\Theta(x)]=0$

Sign(al-to-noise) problems stymie HEP

For finite-density, $S_{I} \neq 0$! For dynamics, $S_{R}=0$!

Stated succinctly...

$|\psi\rangle$ is a complex-valued probability amplitude

What do I gain with a quantum computer? ${ }^{[4]}$

$$
\left\langle\psi_{i}\right| \prod_{n} \mathcal{O}_{n}\left(t_{n}\right)\left|\psi_{i}\right\rangle=\left\langle\psi_{i}\right| e^{i H t_{0}} \mathcal{O}_{0} e^{i H \delta t} \mathcal{O}_{1} \ldots e^{-i H T}\left|\psi_{i}\right\rangle
$$

QC can efficently represent superpositions and entanglement
Digital QC provide entangled qubits and gates, not field theories.

What "champagne problems" need to be solved?

- Encoding: How are fields represented as registers?
- Initalize: How can registers be set to a state?
- Propagate: How can gates evolve states?
- Evaluate: How can observables be computed?

- Mitigate: Can LFT-specific QEC/QEM be cheaply designed?

Fermions on quantum computers

Most quantum computers are built from bosonic degrees of freedom
This is a problem... since fermions anticommute, $\left\{\psi_{a}, \psi_{b}\right\}=\delta_{a b}$ Fermionic states are fully antisymmetric \Longrightarrow nontrivial map to qudits

Most common...but there are others

- Jordan-Wigner: $a_{j}=-\left(\otimes_{k=1}^{j-1} Z_{k}\right) \otimes \sigma_{j} \Longrightarrow$ Good in $1+1$ d, but...

- Bravyi-Kitaev: Uses parity get $\mathcal{O}(\log (m))$ gates

Can be application limited e.g. some work poorly for LGT What about QEC+fermion encodings? ${ }^{[5]}$
..if you want a research project
[5]
Landahl, A. J. and B. C. A. Morrison. In: (Oct. 2021). arXiv: 2110.10280 [quant-ph].

All things considered...

Exploring Digitizations of Quantum Fields for Quantum Devices
Erik Gustafson, ${ }^{1}$ Hiroki Kawai, ${ }^{2,+}$ Henry Lamm, ${ }^{3, ~} \dagger$ Indrakshi Raychowdhury, ${ }^{4, \ddagger}$
Hersh Singh, ${ }^{5,6,8}$ Jesse Stryker, ${ }^{4,6,1}$ and Judah Unmuth-Yockey ${ }^{7}$
${ }^{1}$ University of Iowa, Iowa City, Iowa, 52242*
${ }^{2}$ Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
${ }^{3}$ Fermi National Accelerator Laboratory, Batavia, Illinois, 60510, USA
${ }^{4}$ Maryland Center for Fundamental Physics and Department of Physics,
University of Maryland, College Park, MD 20742, USA
${ }^{5}$ Department of Physics, Box 90305, Duke University, Durham, North Carolina 27708, USA
${ }^{6}$ Institute for Nuclear Theory, University of Washington, Seattle, WA 98195, USA ${ }^{7}$ Syracuse University, Syracuse $N Y^{\dagger \dagger}$
In this LOI we undertake to enumerate promising digitization schemes for quantum fields that could allow near-term calculations on quantum devices. Further we discuss the outstanding questions that must be resolved in evaluating their potential, providing potential benchmarking on the way to practical quantum advantage in high energy physics.

Lots of choices for digitizing gauge bosons ${ }^{[6]}$:

- Some combination of: Hamiltonian, basis, and truncation
- I am going to focus on discrete subgroups

What qualities make a GOOD scheme?

- What quantum resources are required to get physical point?
- What symmetries are being broken in digitization?
- Can the scheme be simulated classically?

Example of digitization:

Start from Kogut-Susskind Hamiltonian (a lattice-reg'd version of H):

$$
H_{K S}=\frac{c}{a_{s}}\left[\frac{g_{H}^{2}}{2} \sum_{l} E_{l}^{2}+\frac{1}{g_{H}^{2}} \sum_{p} \operatorname{Tr} U_{p}\right]
$$

Notice there are two natural basis: E_{I}-basis \& U-basis
Truncate the basis, e.g. $E_{I} \leq E_{\max }$ but now you aren't using $H_{K S}$

$$
H_{\text {trunc }}=\frac{c}{a_{s}}\left[\frac{g_{H}^{2}}{2} \sum_{l} E_{l}^{2}+\frac{1}{g_{H}^{2}} \sum_{p} \operatorname{Tr} U_{p}\right]+\mathcal{O}_{\text {trunc }}
$$

$\mathcal{O}_{\text {trunc }}$ may break symmetries, unitarity - and could be relevant operator - and will be affected by noise

This ls not a frlvialteyg

- This defines your EFT
- Qubit costs scale as function of a_{s}
- Continuum theory approximated can change.
- Mixing of matrix elements under renormalization

- $O_{\text {trunc }}$ is not necessarily obtained from replacement e.g. $U \rightarrow U+\delta$ but can be lowest dimension operator which breaks symmetry

Discrete subgroups allow plug-and-play ${ }^{[7][8][9]}$

Replace $G \rightarrow H$ in $e^{-S}, e^{-i \mathcal{H}}$

- $S U(3) \rightarrow \mathbb{V}$ reduces qubits by $O\left(10^{2}\right)$
- I believe endgame will be 3×3 matrices

Bhanot, G. In: Phys. Lett. 108B (1982), Hackett, D. C. et al. In: Phys. Rev. A99 (2019).

Approximating Continuous Gauge Groups

For any finite group, we can map elements g_{i} to integers i. Then encode g_{i} into qubits via the bit-string of the integer For example: $\left|g_{23}\right\rangle=|23\rangle=|10111\rangle$

What might a register look like? ${ }^{[10]}$

Multi- $|g\rangle$ per Qudit

Discrete groups can't reach continuum ${ }^{[11][12][13]}$

Integrating over ϕ leads to $S_{\text {eff }}$ with new irreps of G

$[11]$	Fradkin, E. H. and S. H. Shenker. In: Phys. Rev. D 19 (1979).
$[12]$	Horn, D., M. Weinstein, and S. Yankielowicz. In: Phys. Rev. D 19 (1979).
$[13]$	Labastida, J. M. F., E. Sanchez-Velasco, R. E. Shrock, and P. Wills. In: Phys. Rev. D 34 (1986).

So, discrete groups are continuous groups+Higgs

- Starting from G coupled to ϕ
- The rep of ϕ determines the breaking $G \rightarrow H$
- Higher rep (larger H) \rightarrow smaller a_{f}

- Dislike this? note that $S O(4)$ is never recovered for $O(1 / a)$ states
- On-going work to understand how Higgs couples to Nonabelian $G^{[14]}$

So how can we predict a_{f} ? ${ }^{[15]}$

$$
\beta_{f, U(1)}=\frac{\log (1+\sqrt{2})}{1-\cos \left(\frac{2 \pi}{N}\right)} \approx \kappa_{2} N^{2}, \text { which extends to } \beta_{f, S U\left(N_{c}\right)} \approx \kappa N^{\frac{N_{c}^{2}-1}{2}}
$$

But whereas \mathbb{Z}_{N} can be taken to ∞, limited number for $\operatorname{SU}\left(N_{c}\right)$

$$
\beta \propto \frac{1}{\log (a)} \Longrightarrow a_{f} \propto e^{-\beta_{f}}
$$

So the important question is $a_{s}>a_{f}$?

[^0]
What do we know from Wilson Action?

- $U(1) \rightarrow \mathbb{Z}_{N}, N>4$
- $\operatorname{SU}(2) \rightarrow \mathbb{B O}, \mathbb{B I}$
- $S U(3) \rightarrow \mathbb{V}$ has $\beta_{f}=3.935(5)<\beta_{s} \approx 6$
- One 1152 qubit $S U(3)$ link vs $\sim 4^{3}$ lattice of 11 qubits for \mathbb{V} link

But why use the Wilson action?

The Wilson action is inadequate for many issues

$$
S_{W}=\beta \operatorname{Re} \operatorname{Tr}\left[1-U_{p}\right] \approx-\frac{1}{4} F_{\mu \nu} F_{\mu \nu}+\frac{1}{12} a^{2} D_{\mu} F_{\mu \nu} D_{\mu} F_{\mu \nu}
$$

... which can be treated with Symanzik improvement ${ }^{[16]}$

$$
\begin{aligned}
S_{L W}= & \beta \operatorname{Re} \operatorname{Tr}\left[1-U_{p}\right]+\beta_{2} \operatorname{Re} \operatorname{Tr}\left[1-U_{r t}\right]+\beta_{3} \operatorname{Re} \operatorname{Tr}\left[1-U_{p a r}\right] \\
& \approx-\frac{1}{4} F_{\mu \nu} F_{\mu \nu}+O\left(a^{4}\right)
\end{aligned}
$$

but you could also add local terms proportional to other irreps...e.g. ${ }^{[17]}$

$$
\begin{equation*}
S_{M}=\beta \operatorname{Re} \operatorname{Tr}\left[1-U_{p}\right]+\beta_{a} \operatorname{Re} \operatorname{Tr}\left[U_{p}\right] \operatorname{Tr}\left[U_{p}^{\dagger}\right] \tag{3}
\end{equation*}
$$

'Same' physics at $\beta_{W} \equiv f\left(\beta_{f}, \beta_{a}\right)$ have diff. errors ${ }^{[18]}$

Figure 6: Lines of constant physics as predicted by perturbation theory (dotted lines) and tadpole improved perturbation theory (dashed lines) together with the deconfinement transitions for $N_{t}=2,4,6$, and 8 .

Modifed actions can lower truncation needed ${ }^{[19]}$

$$
f(z)=\beta_{0}+\frac{1}{2} \beta_{4}\left(z+z^{-1}\right)+\beta_{2} z^{2} .
$$

[19]

Can modified actions help $S(1080)$?

Define a trajectory to study continuum limit

Classical "State Prepartion" with operator basis

$$
\text { Cij }(\tau)\rangle=\langle\beta| O(0) O_{i}^{\dagger}(\tau)|\beta\rangle=
$$

10,016 independent operators from $p=0$ operators across 20 symmetry sectors with $n_{\text {smear }}=2,4,6,8$ levels of stout-smearing ${ }^{[20]}$.

[20]

Seems to work for glueballs ${ }^{[21]}$

Low-lying glueball masses are consistent with $S U(3)$

irrep	$S(1080)$	$S U(3)^{[22]}$	$S U(3)^{[23]}$
A_{1}^{++}	$1.301(20)$	$1.319(8)$	$1.391(37)$
A_{1}^{-+}	$2.090(31)$	$2.049(17)$	$2.089(20)$
E^{++}	$1.899(21)$	$1.902(7)$	$1.946(17)$

$S(1080)$ reproduces $S U(3)$ at $\mathbf{1 0} \times$ higher energy than $T_{c} \sqrt{t_{0}} \approx 0.25$
$S(1080)$ good until at least $\mathcal{O}\left(10^{5}\right)$ qubit devices
[22] Athenodorou, A. and M. Teper. In: JHEP 11 (2020). arXiv: 2007.06422 [hep-lat]. Chen, Y. et al. In: Phys. Rev. D73 (2006). arXiv: hep-lat/0510074 [hep-lat].

What might a galactic algorithm look like?

Quantum Algorithms for Quantum Field Theories

Stephen P. Jordan, ${ }^{1+}$ Keith S. M. Lee, ${ }^{2}$ John Preskill ${ }^{3}$
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (ϕ^{4} theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the

Vacuum Prep+Adiabatic evolution+Trotterization+Measurements ${ }^{[24]}$ Example: $|\langle p p| U(t)| \pi \pi \pi \pi\rangle\left.\right|^{2}$ needs $\mathcal{O}\left(10^{8}\right)$ logical qubits $\approx\left(\frac{4 \mathrm{fm}}{0.05 \mathrm{fm}}\right)^{3} \times(3$ links $\times 11$ qubits +3 colors $\times 2$ flavors $\times 2$ spins $\times 1$ qubit $)$

凡ow do I time evolve a quantum field?

What is trotterization?

$$
\begin{aligned}
\mathcal{U}(t)= & e^{-i H t} \approx\left(e^{-i \delta t \frac{H_{V}}{2}} e^{-i \delta t H_{K}} e^{-i \delta t \frac{H_{V}}{2}}\right)^{\frac{t}{\delta t}} \\
& \approx \exp \left\{-i t\left(H_{K}+H_{V}+\frac{\delta t^{2}}{24}\left(2\left[H_{K},\left[H_{K}, H_{V}\right]\right]-\left[H_{V},\left[H_{V}, H_{K}\right]\right]\right)\right)\right\}
\end{aligned}
$$

- δt is bare $c\left(a, a_{t}\right)$ not physical a_{t}
- Introduces higher dimension operators
- Eigenstates mix at $a_{t} \neq 0 \rightarrow$ quantum smearing?

UV states could really be a problem

Unlike Euclidean, they don't naturally dissipate
Your digitization affects trotter-mixing into UV \& must be investigated Reduced mixing \Longrightarrow larger $a_{t} \Longrightarrow$ shallower circuits

Approaching the continuum ${ }^{[25]}$

- Hamiltonian limit: $a_{t} \rightarrow 0$ (unnecessarily expensive)
- Continuum limit: $a_{t}, a \rightarrow 0$ (the one that I want)
- Fix $\xi=a / a_{t}$ to efficiently get QFT
[25] Carena, M., H. Lamm, Y.-Y. Li, and W. Liu. In: Phys. Rev. D 104 (2021). arXiv: 2107.01166 [hep-lat].

What low-level primatives are required for LGT? ${ }^{[26]}$

How do we build $U_{K}=e^{i H_{K}}$ and $U_{V}=e^{i H_{V}}$?

- Inversion gate: $\mathfrak{U}_{-1}|g\rangle=\left|g^{-1}\right\rangle$
- Multiplication gate: $\mathfrak{U}_{\times}|g\rangle|h\rangle=|g\rangle|g h\rangle$

- Fourier Transform gate: $\mathfrak{U}_{F} \sum_{g \in G} f(g)|g\rangle=\sum_{\rho \in \hat{G}} \hat{f}(\rho)_{i j}|\rho, i, j\rangle$

$$
\begin{aligned}
& =\overline{\mathfrak{U}_{F}^{\dagger}}=\overline{\mathfrak{U}_{\text {phase }}}=\mathfrak{U}_{F}= \\
& =\overline{\mathfrak{U}_{F}^{\dagger}}=\overline{\mathfrak{U}_{\text {phase }}}=\mathfrak{U}_{F}= \\
& =\mathscr{U}_{F}^{\dagger}=\mathfrak{U}_{\text {phase }}=\mathfrak{U}_{F}= \\
& =\mathfrak{U}_{F}^{\dagger}=\mathfrak{U}_{\text {phase }}=\mathfrak{U}_{F}=
\end{aligned}
$$

Small steps with $D_{2^{N}}$ for quantum leaps

All-to-all connectivity

$$
N_{C N O T}=21 N_{q}-31
$$

Linear connectivity

$$
N_{C N O T} \leq 126 N_{q}^{2}-438 N_{q}+372
$$

Ancilla qubits: $N_{q}-1$

Primitive gates on Rigetti[${ }^{[27]}$

Primitive gates for D_{4} have $\geq 80 \%$ fidelity - CCPHASE critical!
(a) Trace gate, $f=0.857$

(b) Fourier gate, $f=0.920$

Kogut-Susskind ${ }^{[28]}$ is not only Hamiltonian ${ }^{[20]}$

$$
H_{\mathrm{co}}=\frac{1}{2} \int \mathrm{~d}^{d} x \operatorname{Tr}\left[\mathbf{E}^{2}(\mathbf{x})+\mathbf{B}^{2}(\mathbf{x})\right]
$$

$$
H_{K S}=K_{K S}+V_{K S}+\mathcal{O}\left(a^{2}\right)
$$

Including additional terms reduces discretization effects

$$
\begin{aligned}
& H_{l}=K_{I}+V_{I}+\mathcal{O}\left(a^{4}\right) \\
& V_{I}=\beta_{V 0} V_{K S}+\beta_{V 1} V_{\text {rect }}+\beta_{V 2} V_{\text {bent }} \\
& K_{I}=\beta_{K 0} K_{K S}+\beta_{K 1} K_{2 L}
\end{aligned}
$$

$\gtrsim 2^{d}$ fewer qubits without increasing gate cost

Reducing resources with improved Hamiltonians ${ }^{[30]}$

Larger $a_{s} \Longrightarrow$ fewer qubits for fixed discretization error

Can we implement this Hamiltonian today?

Quantum Fidelity for $\mathcal{U}_{V_{\text {rect }}}$ for \mathbb{Z}_{2} is $\lesssim 55 \%$ on ibm_perth

$P\left(w_{H}\right)$ is probability of measuring a state with $w_{H} 1$'s in it e.g. $|001010\rangle$ has $w_{H}=2$

Noiseless results would be $P\left(w_{H}=0\right)=1$

How do I compute $\langle\Psi| \prod_{n} \mathcal{O}\left(t_{n}\right)|\Psi\rangle$? ${ }^{[31]}$

Want to measure $\langle O(t)\rangle$? Measure the qubits, or phase estimation Acting on a quantum state $|\Psi\rangle$ with the first Hermitian $\mathcal{O}\left(t_{0}\right)$ leads to...

So what is to be done?
Perturb $H \rightarrow H+\epsilon \mathcal{O} \delta(t)$, and take derivatives:

$$
\langle\Psi| \mathcal{O}(t) \mathcal{O}(0)|\Psi\rangle=\frac{\partial}{\partial \epsilon_{t}} \frac{\partial}{\partial \epsilon_{0}}\langle\Psi| e^{-i H t} e^{-i \mathcal{O} \epsilon_{t}} e^{i H t} e^{i \mathcal{O} \epsilon_{0}}|\Psi\rangle
$$

Deriving Lattice Hamiltonian Operators ${ }^{[32]}$

$$
\eta=\frac{V}{T} \int_{0}^{\infty} \mathrm{d} t\left\langle T_{12}(t) T_{12}(0)\right\rangle
$$

We construct a lattice Hamiltonian version of $T_{\mu \nu}$ that depends on $F_{\mu \nu}$

TABLE I. Gauge-invariant lattice operators in the Hamiltonian formalism in $3+1 d$ dimensions: naive operators with $O(a)$ errors and improved operators with errors that are $O\left(a^{2}\right)$. Components of the energy-momentum tensor $T_{\mu \nu}$ are constructed as linear combinations of these operators according to Eq. (8). The plaquette \hat{P} and clover \hat{C} are defined in Eq. (10) and Eq. (15), respectively. Spatial indices are $i \neq j \neq k$.

Operator	$O(a)$	$O\left(a^{2}\right)$
$\operatorname{Tr} F_{0 i} F_{0 i}(n)$	$\frac{g_{s}^{2}}{a^{4}} \operatorname{Tr}\left[\pi_{n, i}^{2}\right]$	$\sum_{x=0,1} \frac{g_{s}^{2}}{2 n^{4}} \operatorname{Tr}\left[\pi_{n-x \hat{i}, i}^{2}\right]$
$\operatorname{Tr} F_{0 i} F_{0 j}(n)$	$\frac{g_{s}^{2}}{a^{4}} \operatorname{Tr}\left[\pi_{n, i} \pi_{n, j}\right]$	$\begin{gathered} \frac{g_{s}^{2}}{4 a^{4}}\left(\operatorname{Tr}\left[\hat{\pi}_{n, i} \hat{\pi}_{n, j}\right]+\operatorname{Tr}\left[\hat{\pi}_{n, i} \hat{U}_{n-\hat{j}, j}^{\dagger} \hat{\pi}_{n-\hat{j}, j} \hat{U}_{n-\hat{j}, j}\right]+\operatorname{Tr}\left[\hat{U}_{n-\hat{i}, i}^{\dagger} \hat{\pi}_{n-i} \hat{U}_{n-\hat{i}, i} \hat{\pi}_{n, j}\right]\right. \\ \left.+\operatorname{Tr}\left[\hat{U}_{n-\hat{i}, i}^{\dagger} \hat{\pi}_{n-\hat{i}, i} \hat{U}_{n-\hat{i}, i} \hat{U}_{n-\hat{\jmath}, j}^{\dagger} \hat{\pi}_{n-\hat{j}, j} \hat{U}_{n-\hat{j}, j}\right]\right) \end{gathered}$
$\operatorname{Tr} F_{0 j} F_{i j}(n)$	$-\frac{1}{a^{4}} \operatorname{Tr}\left[\hat{\pi}_{n, j} \operatorname{Im} \hat{P}_{i j}(n)\right]$	$-\frac{1}{2 a^{4}}\left(\operatorname{Tr}\left[\hat{\pi}_{n, j} \operatorname{Im} \hat{C}_{i j}(n)\right]+\operatorname{Tr}\left[\hat{U}_{n-\hat{j}, j}^{\dagger} \hat{\pi}_{n-\hat{j}, j} \hat{U}_{n-\hat{j}, j} \operatorname{Im} \hat{C}_{i j}(n)\right]\right)$
$\operatorname{Tr} F_{i j} F_{i j}(n)$	$\frac{2}{g_{S}^{2} a^{4}} \operatorname{Re} \operatorname{Tr}\left[1-\hat{P}_{i j}(n)\right]$	$\sum_{x=0,1} \sum_{y=0,1} \frac{1}{2 g_{s}^{2} a^{4}} \operatorname{Re} \operatorname{Tr}\left[1-\hat{P}_{i j}(n-x \hat{i}-y \hat{j})\right]$
$\operatorname{Tr} F_{i j} F_{k j}(n)$	$\operatorname{Tr}\left[\hat{F}_{i j}^{N}(n) \hat{F}_{k j}^{N}(n)\right]$	$\operatorname{Tr}\left[\hat{F}_{i j}^{C}(n) \hat{F}_{k j}^{C}(n)\right]$

What will it take for practical quantum advantage?

$$
N_{\text {qudits }} \propto N_{\text {dof }} \times\left[\frac{L}{a}\right]^{d} \&
$$

$$
N_{\text {gates }} \propto N_{\mathcal{U}}\left(N_{\text {dof }}[L / a]^{d}\right) \times\left[\frac{T}{a_{t}}\right]
$$

- Hadron scattering: $L, T=O(10) \mathrm{fm}, a, a_{t}=O(0.1) \mathrm{fm}^{[33]}$
- Transport coefficients: $L, T=O(1) \mathbf{f m}, a, a_{t}=O(1) \mathbf{f m}^{[34]}$
- $\mathcal{U}_{\eta \text { circ }} \sim$ Thermal state prep + Quench + Trotterization

Slide from Davoudi \& Savage Snowmass 2022 talk

Dynamics in the Schwinger Model - Abelian Gauge Theory

- $1+1 \operatorname{dim}$ QED -

Innesbruck

ORNL-Washington-Basque

Innesbruck

As we walk in, $1+1 d$ gauge could be trouble

- Nondynamic gauge field \Longrightarrow removable
- Dramatic optimizations may not generalize
- Solvable ${ }^{[35]} \Longrightarrow$ no quantum advantage
- Often "superrenormalizable" /conformal \Longrightarrow lots of simplifications

FIG. 2. Spectra for $N=3$, baryon number $B=0,1$, and 2 as a function of $g / m ; K$ fixed.

Error mitigation crucial to question of NISQ QA

Specialized Error Mitigation and Correction ${ }^{[36][37]}$

Halimeh, J. C. and P. Hauke. In: Phys. Rev. Lett. 125 (2020). arXiv: 2001.00024 [cond-mat.quant-gas]. Rajput, A., A. Roggero, and N. Wiebe. In: (Dec. 2021). arXiv: 2112.05186 [quant-ph].

Today's estimate: $\mathcal{O}\left(10^{8}\right)$ q \& $\mathcal{O}\left(10^{55}\right)$ T-gates ${ }^{[38]}$

"...99.998\% of the gate counts stem from QFOPs...The SU(3) HI collision problem is...> 3 yrs of runtime on an exa-scale quantum supercomputer."

- pp scattering on $(L / a)^{d}=100^{3}$ lattice
- Observables dictate $L / a, T / a_{t}, d \Longrightarrow$ fewer qubits
- Kogut-Susskind Hamiltonian
- Improved Hamiltonians will increase $a \Longrightarrow$ fewer qubits
- Truncate to $\Lambda=10$ in the electric field values (24q)
- Better truncations allow fewer qubits per link near continuum
- Trotterization $\mathcal{U}(T)$ with loose error bound $\epsilon_{\text {Trotter }}$
- Other methods: variational, QDRIFT, qubitization ...
- Decomposing specific unitaries into gates introduces $\epsilon_{\text {synthesis }}$
- Different platforms: Analog, Digital, CV, Qudits
- $\epsilon \equiv \epsilon_{\text {Trotter }}+\epsilon_{\text {synthesis }}=10^{-8}$
- Current theoretical errors can be $\mathcal{O}(1)$

Cracking RSA and Quantum Chemistry need $\mathcal{O}\left(10^{7}\right)$ q \& $\mathcal{O}\left(10^{20}\right)$!

It's time to go

- Devices are expected to rapidly scale
- Theorists should be engaged early
- Toy models simulations in $\lesssim 5$ years
- Investigate desirable properties
- Entanglement in QG? Viscosity?, Cosmology?
- Must improve over expensive algorithms
- e.g. Consider theory errors, tighter bound on trotterization, reduce QFOPs
- Need to develop workforce with new skills

[^0]: [15] Petcher, D. and D. H. Weingarten. In: Phys. Rev. D22 (1980), Hartung, T., T. Jakobs, K. Jansen, J. Ostmeyer, and C. Urbach. In: (Jan. 2022). arXiv: 2201.09625 [hep-lat].

