Machine Learning and Physics: A Faustian Bargain?

Jeff Byers, NRL/UniPd
Machine Learning at GGI
September 14, 2022

ML: DALL-E 2/OpenAI Text2Image Generator

INPUT_STRING="A photo of physicists discussing machine learning in Florence Italy"

ML: DALL-E 2/OpenAI Text2Image Generator

INPUT_STRING="Impressionist painting of physicists discussing machine learning in Florence Italy"

ML: DALL-E 2/OpenAI Text2Image Generator

INPUT_STRING="Dali painting of physicists discussing machine learning in a bowl of pasta"

Is Machine Learning a Faustian Bargain?

Is Machine Learning a Faustian Bargain?

https://arxiv.org/pdf/2204.06125.pdf

Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process, through which we learn a joint representation space for text and images. Below the dotted line, we depict our text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior to produce an image embedding, and then this embedding is used to condition a diffusion decoder which produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.

Is Machine Learning a Faustian Bargain?

"Algebra is the offer made by the devil to the mathematicians. The devil says: I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvelous machine." - Michael Atiyah

GEOMETRY

ALGEBRA

"curves"

$$
f(x, y)=0
$$

Algorithmic procedure implemented on a computer

MACHINE LEARNING

Physics and Machine Learning

Supervised vs. Unsupervised Learning

Supervised Learning

Information Bottleneck

Goal: Compress the data as much as possible while retaining the relevant information.

Formal description:

$$
p^{*}(s \mid y)=\underset{p(s \mid y)}{\arg \max } \underbrace{\overbrace{I(S, L)}^{\text {Relevance }}-\lambda \overbrace{I(Y, S)}^{\text {Compression }}}_{=\mathcal{F}[p(s \mid y)]}
$$

We want to maximize $\|(S, L)$ to retain relevance.

We want to minimize $I(Y, S)$, to compress the data transferred by the Generative model

The parameter λ is the Lagrange multiplier that tunes between these two competing objectives.

Supervised Learning

What are the issues with labels:

- Labels are NOT independent of the context that created them.
- Labels are EXTREME data compression preserving relevance in that context.
- Labels are a SUPERFICIAL transfer of intelligence into machine learning.

History of Machine Learning

Missing Bayesian techniques, PGM's, statistical techniques (e.g., Naïve Bayes, linear and logistic regression, PCA, $k-N N$, bootstrap, LASSO, Ridge regression), NLDR, logic and relational techniques, sampling techniques like MCMC, etc. Advancements from signal processing ... sparse dictionaries, regularization techniques, ICA, matrix factorizations (NNMF) Also, reinforcement learning, active learning,

Vapnik, Cortes
J.R. Quinlan

Freund, Schapire
Breiman
2
20
$\frac{2}{3}$
0
0
0
0
0
20
0.
0.
0.
0
Freund, Schapire
Neural Network Winter (1970-1985)

Werbos

Backpropagation enables training of multi-layer perceptrons (MLP), ~1985
http://www.erogol.com/brief-history-machine-learning/

Learning Dynamics of Neural Networks

Nonlinear transform of each coordinate of an affine map

$$
y^{i}=\sigma_{.}\left(w_{j}^{i} x^{j}+b^{j}\right)
$$

Neural Network

$$
\mathbf{y}=f_{\mathbf{W}}(\mathbf{x})
$$

Magic: "Inductive Bias" imposed on the network.

Cost Function: $C(\mathbf{W}) \simeq \frac{1}{N} \sum_{n=1}^{N}\left|\mathbf{y}_{n}-f_{\mathbf{W}}\left(\mathbf{x}_{n}\right)\right|^{2}$

Gradient descent:
Automatic Differentiation

$$
w_{i j}(t+1)=w_{i j}(t)-\alpha \frac{\overbrace{\uparrow}}{\underset{\partial C}{\partial w_{i j}}}
$$

More sophisticated choices (e.g., ADAM) are possible.

Stochastic Gradient Descent: Backpropagation on mini-batches

Random sub-samplina of data

Deep Convolutional Neural Networks

How intelligent are neural networks?

Deep Learning: Adversarial Examples

The algorithm is $>99.6 \%$ confident of these labels

"Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images", Anh Nguyen, Jason Yosinski and Jeff Clune, CVPR 2015, p.427-436.

Geometry of Neural Networks

The data lies along a manifold constrained to low-dimensions by the generative mechanism.

However, the Neural Network typically chops up the space with hyperplanes to form non-local decision boundaries for classes.

Deep Learning: Adversarial Examples

Real data Adversarial data

Image X

Image y

Image X

Image y
Nudging images in high-dimensional spaces
"pig"
"airliner"

https://thomas-tanay.github.io/post--L2-regularization/

Generative Adversarial Network (GAN): Bug as Feature

$\begin{aligned} & \text { "This, and the variations that are now being proposed is the } \\ & \text { most interesting idea in the last } 10 \text { years in ML, in my opinion." } \\ & \\ & \text {-Yann LeCun (2016) }\end{aligned}$
More Supervised Learning to the rescue ... LABEL = \{ Real, Fake $\}$

Generative Adversarial Network (GAN): Bug as Feature

"This, and the variations that are now being proposed is the most interesting idea in the last 10 years in ML, in my opinion."
-Yann LeCun (2016)
More Supervised Learning to the rescue ... LABEL = \{ Real, Fake \}

ML Work Flow leads to Gamification

Invent new algorithm

Place in archival literature

Analyze the algorithm

together, difficult to see sub-component interactions (Ablation studies?)

Design choices smashed

Apply to standardized data

My algorithm is like your brain ...

Bio-inspiration!

Biomimetic solution?

Neuromorphic computing
Neural networks

Or not?

$\frac{\text { Propeller }}{\text { Flapping wings }}=\frac{?}{\text { Firing neurons }}$
"Flapping wings" = "Firing neurons"

- Birds are a solution to an engineering problem with physical constraints. The Wright brothers understood the physical problem and then found an appropriate engineering solution different from birds.
- Brains are an evolutionary solution to the statistical constraints of inference from experience. What are those statistical constraints?

"It sort of makes you stop and think, doesn't it."
Ti fa solo fermare e pensare, vero?

Geometry of Machine Learning

Diverse and complex data structures

Event Graphs

But we want to use Linear Algebra and Multivariable Calculus!

Functions acting on these vectors should have:
 manifold Continuity \rightarrow Smoothness \rightarrow Differentiability

Geometry of Machine Learning

STEPS: 1. Form a DATA space, \mathcal{D}, as a high-dimensional vector space, \mathbb{R}^{D}.
2. Identify transformations, S, on the DATA space that leave the similarity measure invariant.
3. Learn the underlying MODEL space, \mathcal{M}, or "embedding" that preserves the invariances of the similarity measure.

A group, G, acting on the set, \mathcal{S}, that leaves the similarity measure invariant:

Geometry of ML: How much data is enough?

Answer: It's not about having "a lot of data", it's about having enough data in the right places to answer a particular question.

Assumption: The distance encodes information about statistical similarity.

$$
-\ln p_{\text {similarity }}\left(y, y^{\prime}\right) \approx \frac{1}{2}\left\|\mathbf{y}-\mathbf{y}^{\prime}\right\|_{2}^{2}
$$

If distant data points are mapped nearby in the model space, then there has to be significant inferential evidence (more data), and likewise if local data points are mapped to large separations by the model.

Geometry of ML: How much data is enough?

To find the best local linear model: We need enough data locally to distinguish curvature from finite sampling noise

Local structure
High-D Noise Balls

Crossover Regime
Noisy Tangent Spaces
(with an envelope)

Large-scale structure

Low-d Manifold

Geometry of ML: Experimental Calibration

1. CALIBRATION

Regression with training data

UNKNOWN
$\boldsymbol{\alpha})$
KNOWN DATA SOURCE or more a MODEL

$$
p\left(\boldsymbol{\alpha} \mid \mathbf{X}_{\text {caib }}\right)
$$

Estimate of the unknown
state of the instrument

Nuisance variable to marginalize out
2. MEASUREMENT

Inferring latent
variables

UNKNOWN DATA SOURCE

Geometry of ML: Experimental Calibration

Examples of different possible calibrations across the DATA space ...

1. CALIBRATION

(1,1)-tensor field of covariance

How do we use this information in Machine Learning?

Geometry of ML: Experimental Calibration

2. MEASUREMENT

.... with the "same" data measurements.
(1,1)-tensor field of covariance

Use the covariance to estimate the metric tensor of the measurement space

$$
\mathbf{g}(y)=\Sigma^{-1}(y)=\boldsymbol{J}_{y}^{T} \mathbf{J}_{y} \rightarrow \tilde{\mathbf{\sigma}}=\mathbb{I}_{D}
$$

Now, the ML Euclidean space ansatz is true!

Geometry of ML: Manifolds and Relevance

Re-organize the space as a fiber bundle

Example: Choosing the Relevance of Triangles

Types of Triangles

$$
\alpha+\beta+\gamma=\pi
$$

$$
\alpha=\frac{\pi}{2}, \beta=\frac{\pi}{2}, \text { or } \gamma=\frac{\pi}{2}
$$

$$
\alpha=\beta \neq \gamma, \beta=\gamma \neq \alpha \text { or } \gamma=\alpha \neq \beta \quad \alpha \neq \beta \neq \gamma
$$

$y=$ IMAGE \rightarrow " $f-1 "=$ Vertex Detector $\rightarrow x, \operatorname{dim}(\mathcal{M})=6 \rightarrow x_{r}, \operatorname{dim}\left(\mathcal{M}_{r}\right)=2 \rightarrow$

$$
\ell=L(y)
$$

Example: Shapes and Geometric Invariants

Transformations: From Model to Model Relevance Space

Diameter of the circumscribed circle:

$$
s=\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}
$$

$$
\begin{gathered}
\mathcal{X}_{r}=\pi(\mathcal{X}) \quad \begin{array}{c}
\text { Translation } \\
\text { invariance }
\end{array} \\
\mathbf{x}=\left(\begin{array}{l}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3}
\end{array}\right)=\left(\begin{array}{l}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
u_{3} \\
v_{3}
\end{array}\right) \quad \mathbf{s}=\left(\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c}
\end{array}\right)=\left(\begin{array}{l}
u_{2}-u_{1} \\
v_{2}-v_{1} \\
u_{3}-u_{2} \\
v_{3}-v_{2} \\
u_{1}-u_{3} \\
v_{1}-v_{3}
\end{array}\right)
\end{gathered}
$$

$$
s=\frac{a+b+c}{\sin \alpha+\sin \beta+\sin \gamma}
$$

Scale

 invariance
Rotation

 invariance$$
\left(\begin{array}{c}
\alpha \\
\beta \\
\gamma
\end{array}\right)=\left(\begin{array}{c}
\cos ^{-1}\left(-\hat{\mathbf{b}}^{T} \hat{\mathbf{c}}\right) \\
\cos ^{-1}\left(-\hat{\mathbf{c}}^{T} \hat{\mathbf{a}}\right) \\
\cos ^{-1}\left(-\hat{\mathbf{a}}^{T} \hat{\mathbf{b}}\right)
\end{array}\right)
$$

Rotation
invariance

$$
\begin{aligned}
& a=\sqrt{\mathbf{a}^{T} \mathbf{a}}=\sqrt{\left(u_{2}-u_{1}\right)^{2}+\left(v_{2}-v_{1}\right)^{2}} \\
& b=\sqrt{\mathbf{b}^{T} \mathbf{b}}=\sqrt{\left(u_{3}-u_{2}\right)^{2}+\left(v_{3}-v_{2}\right)^{2}} \\
& c=\sqrt{\mathbf{c}^{T} \mathbf{c}}=\sqrt{\left(u_{1}-u_{3}\right)^{2}+\left(v_{1}-v_{3}\right)^{2}}
\end{aligned} \quad \square \quad \mathbf{x}_{r}=\left(\begin{array}{c}
\xi \\
\eta \\
s
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{\sqrt{2}}(\beta-\alpha) \\
\frac{1}{\sqrt{6}}(2 \gamma-\alpha-\beta) \\
\frac{a+b+c}{\sin \alpha+\sin \beta+\sin \gamma}
\end{array}\right)
$$

$$
\begin{aligned}
\sin \gamma & =\sin (\pi-\alpha-\beta) \\
& =\sin \pi \cdot \cos (\alpha+\beta)-\cos \pi \cdot \sin (\alpha+\beta) \\
& =\sin (\alpha+\beta)
\end{aligned}
$$

Model compression: Triangle Example

Physics and Machine Learning

