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1 Practicalities

Schedule

• We have 4 classes

• Mostly blackboard lectures

• Tutorial sessions, exercises

Evolving note and exercise problems in http://users.jyu.fi/˜tulappi/ggi23

2 Literature
A large part of these lectures are based on courses lectured at the University of Jyväskylä: “High energy scat-
tering in QCD” lectured in the spring of 2011 , http://users.jyu.fi/˜tulappi/fysh560kl11/
(original handwritten notes for the blackboard lectures are partly in Finnish.) and later a part of the course
“QCD” lectured in the spring of 2014, http://users.jyu.fi/˜tulappi/fysh555kl14/ (slides
and handwritten lecture notes in English), and lectures on “Early stages of Heavy-Ion Collisions” at the 2018
ECT* Doctoral Training Program https://indico.ectstar.eu/event/14/

Literature
Mostly these lectures are based on the following books:

[1] Y. V. Kovchegov and E. Levin, “Quantum chromodynamics at high energy,” Camb.
Monogr. Part. Phys. Nucl. Phys. Cosmol. 33 (2012).

[2] V. Barone and E. Predazzi, “High-Energy Particle Diffraction,” Springer 2002

Potentially relevant are recent review articles:

[3] F. Gelis, “Initial state and thermalization in the Color Glass Condensate framework,” Int. J. Mod. Phys.
E 24 (2015) no.10, 1530008, [arXiv:1508.07974 [hep-ph]]

[4] J. L. Albacete and C. Marquet, “Gluon saturation and initial conditions for relativistic heavy ion
collisions,” Prog. Part. Nucl. Phys. 76 (2014) 1 [arXiv:1401.4866 [hep-ph]]

[5] S. Schlichting and D. Teaney, “The First fm/c of Heavy-Ion Collisions,” Ann. Rev. Nucl. Part. Sci.
69 (2019), 447-476, [arXiv:1908.02113 [nucl-th]].

[6] J. Berges, M. P. Heller, A. Mazeliauskas and R. Venugopalan, “QCD thermalization: Ab initio ap-
proaches and interdisciplinary connections,” Rev. Mod. Phys. 93 (2021) no.3, 035003 [arXiv:2005.12299
[hep-th]].

and other slightly less new reviews and others:

[7] E. Iancu and R. Venugopalan, “The Color glass condensate and high-energy scattering in QCD,” In
*Hwa, R.C. (ed.) et al.: Quark gluon plasma* 249-3363 [hep-ph/0303204]

[8] F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, “The Color Glass Condensate,” Ann. Rev.
Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333 [hep-ph]]

[9] T. Lappi, “Small x physics and RHIC data,” Int. J. Mod. Phys. E 20 (2011) no.1, 1 [arXiv:1003.1852
[hep-ph]]

[10] H. Weigert, “Evolution at small x(bj): The Color glass condensate,” Prog. Part. Nucl. Phys. 55 (2005)
461 [hep-ph/0501087]
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[11] J. Jalilian-Marian and Y. V. Kovchegov, “Saturation physics and deuteron-Gold collisions at RHIC,”
Prog. Part. Nucl. Phys. 56 (2006) 104 [hep-ph/0505052]

[12] F. Gelis, T. Lappi and R. Venugopalan, “High energy scattering in Quantum Chromodynamics,” Int.
J. Mod. Phys. E 16 (2007) 2595 [arXiv:0708.0047 [hep-ph]]

[13] S. J. Brodsky, H. C. Pauli and S. S. Pinsky, “Quantum Chromodynamics and Other Field Theories on
the Light Cone,” Phys. Rept. 301 (1998) 299 [arXiv:hep-ph/9705477].

[14] C. Marquet, “Chromodynamique quantique à haute énergie, théorie et phénoménologie appliqué aux
collisions de hadrons,” PhD thesis, in French (!) http://tel.archives-ouvertes.fr/
tel-00096416/fr/

[15] H. Hänninen, “Deep inelastic scattering in the dipole picture at next-to-leading order,” PhD thesis,
[arXiv:2112.08818 [hep-ph]].

3 Plan for classes

Plan for classes

1. Eikonal scattering

2. “Hybrid formalism” of particle production in proton-nucleus collisions

3. Spacetime structure of the CGC field

4. The glasma: a collision of two color field configurations

4 Preliminary stuff

4.1 Partons

P
p

J.D. Bjorken: At high energy hadrons
consist of pointlike constituents: “partons”.

• Longit. momentum fraction x : p = xP

• Transverse scale pT or Q

k

k ′

Measured in Deep Inelastic Scattering

Q2 = −(k − k ′)2 = −q2

x =
Q2

2P · (k − k ′)

Bj scaling:
Q2-dependence is just like for a point-like
particle.

Here the “scale” Q can roughly be thought of as the inverse transverse size of the parton. In textbook
calculations in the parton model, the partons are treated as collinear, i.e. they only have longitudinal but
not transverse momentum, kT = 0. The resolution scale Q is determined by the physical scattering process
that one studies, for example for DIS it is given by the virtuality of the process. In fact it is better to really
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think of the parton, when measured in such a process as having kT ∼ Q. The feature that the parton really
has kT ∼ Q, but nevertheless one can calculate as if it was collinear, as long as the parton distribution that
the parton comes from depends on Q, is the magic of collinear factorization! In this course, we will go
beyond collinear factorization: when discussing the CGC and the physics of gluon saturation it is essential
to actually think and calculate of small-x gluons as having an intrinsic transverse momentum.

• Textbooks: partons collinear

• Now: partons have kT

When Bjorken introduced the term “parton,” quarks and gluons were not yet known. Instead, Bjorken
used the new word to describe some, so far unknown, elementary, pointlike constituents of the proton. Only
later it became understood that partons are quarks and gluons. Today, one might consider the term “parton”
to be a synonym of “quark and gluon”. But usually the term “parton” is used in a slightly more limited sense,
meaning roughly “quarks and gluons as constituents of a proton or nucleus, especially one accelerated to near
the speed of light.” If one is discussing e.g. the weak interaction, supersymmetry or the quark model for
hadrons (i.e. with “constituent quarks”), one does not usually use the term “parton.”

We shall be interested in these lectures at particles traveling practically at the speed of light, at very high
energy. In this case it is convenient to think of the scattering problem in a coordinate system well adapted to
things traveling at the speed of light in the z- or 3-direction. For this purpose, we introduce the kinematical
variable of rapidity and light cone coordinates

4.2 Rapidity
Successive boosts in one direction with velocity v become easy if we define the rapidity ξ corresponding to
the boost as v = tanh ξ. Now for successive boosts ξ = ξ1 + ξ2. (exercise)

Rapidity
Momentum space rapidity y ; v z = tanh y

E =
√

m2 + p2T cosh y= mT cosh y pT = (p1, p2) (1)

p3 =
√
m2 + p2T sinh y= mT sinh y p2T = p2T (2)

When boosting with a boost ξ this behaves additively. (exercise)

The pseudorapidity η is defined by taking m = 0 in Eq. (2):

p3 = pT sinh η (3)

+ Pseudorapidity just depends on the scattering angle (different components of the 3-momentum), so it
easy to measure =⇒ it is the preferred quantity for experimentalists.

• Pseudorapidity is the same as rapidity y for massless particles.

- However, pseudorapidity does not Lorentz-transform easily for massive particles, it depends on the
rest frame in a nontrivial way.

4.3 Light cone variables

Light cone variables
For any 4-vector vµ:

v± =
1√
2

(
v0 ± v3

)
(4)
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Scalar product

x · y = x0y0 − x3y3 − x⊥ · y⊥ = x+y− + x−y+ − x⊥ · y⊥ (5)
v2 = (v0)2 − (v3)2 − v⊥

2 = 2v+v− − v⊥
2 (6)

Thus metric is

gµν =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 = gµν (7)

Raising and lowering indices is not just a sign:

v+ = v− v− = v+ (8)

High energy particle traveling in + direction

p+ ≈
√
2E ≫ p− =

m2 + p⊥2

2p+
(9)

Lorentz-invariant phase space

d4p

(2π)4
(2π)δ(p2 −m2) =

dp+ dp− d2p⊥
(2π)3

δ(2p+p− − p⊥
2 −m2) =

d2p⊥
(2π)3

dp+

2p+
=

d2p⊥
2(2π)3

dy (10)

Rapidity and light cone variables

k+ =
1√
2

√
m2 + k2

T e
y (11)

k− =
1√
2

√
m2 + k2

T e
−y (12)

Light cone quantization Using light cone coordinates is just a change of variables and does not
affect the physics in any way. However, the coordinate system is particularly useful in the context of light
cone quantization [13, 1]. In ordinary (“instant form”) quantization one quantizes the theory by imposing
equal time (t = t′) commutation relations between Heisenberg time-dependent operators, and studies the
evolution of the system in time t generated by a Hamiltonian H , which is the 0-component of a Lorentz 4-
vector. In light-cone (or light front) quantization one treats instead the coordinate x+ as the time coordinate
(light cone time), and imposes canonical commutation relations at equal x+. The evolution of the Heisenberg
picture operators is then generated by the light cone Hamiltonian P̂−, which is the −-component of a Lorentz
4-vector.

5 Eikonal scattering

5.1 Eikonal approximation
Scattering at high energy becomes much simpler with the eikonal approximation. Many textbooks, (e.g.
Barone & Predazzi (Sec 2.3) start by describing the eikonal approximation for nonrelativistic scattering
off a classical potential). A more formal field theoretic derivation for gauge theory (e.g. [12]) follows the
important work of Bjorken et al [16] by starting from the operator definition of the scattering amplitude and
looking at its properties when the incoming state is boosted to a very high energy. We will here follow an
approach that is between these in the sense that we look just at solutions of wave equation, but inspect a
situation that is

• relativistic and
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• involves a vector potential (for the Abelian theory at first)

Klein-Gordon eq. in external vector potential:[
(i∂µ + eAµ(x))(i∂

µ + eAµ(x))−m2
]
ϕ(x) = 0 (13)

We are now interested in the scattering problem where the boundary condition is that of a high energy
particle approaching the target (represented by the gauge potential Aµ). Thus the boundary condition for
the equation is a plane wave e−ik·x at x+ → −∞. The assumption that we are interested in high energy
means that k+ is much larger than any other momentum scale in the problem, in particular any gradients of
the potential Aµ. It is natural to make this assumption about the momentum scales explicit and to separate
out the rapidly oscillating behavior of the wave function from the smoother scales by using an ansatz where
it is explicitly factorized. We can also assume that we are in Lorentz gauge ∂µAµ = 0.

ϕ(x) → e−ik·x , x+ → −∞ (14)

Ansatz
ϕ(x) = e−ik·xφ(x) (15)

k+ ≫ ∂µφ(x)

φ(x)
(16)

∂µA
µ = 0 (17)

Inserting the ansatz (15) into the original equation (13) leads to

e−ik·x
[ =0︷ ︸︸ ︷
k2 −m2 +2ekµAµ + 2ikµ∂µ + 2ieAµ∂µ + e2AµA

µ
]
φ(x) = 0 (18)

Now comes the crux of the eikonal approximation. We are assuming that k+ is a large variable, thus
at leading order we only need to keep the terms proportional to k+ in equation (18). These only appear in
the terms that are underlined in the equation. Thus, and recalling that now the initial condition is φ(x) →
1, x+ → −∞, and factoring out the 2ikµ we end up with[

∂+ − ieA−(x)
]
φ(x) = 0 =⇒ φ(x) = exp

{
ie

∫ x+

−∞
dy+A−(y+, x−, x⊥)

}
(19)

Note that at this point only the A− component of the target gauge potential matters, due to the large k+

momentum of the probe. In the far future after the target, x+ → ∞, the outgoing wave is written in terms of
the incoming one in terms of the

Eikonal phase

χ(x⊥) = e

∫ ∞

−∞
dy+A−(y+, x−, x⊥) (20)

ϕ(x)|x+→∞ ≈ e−ik·x
[
1−

(
1− e iχ(x⊥)

)]
(21)

At this point we will just state that the part of the expression corresponding to the outgoing wave is
just the scattering amplitude. We need to Fourier-transform it to momentum space to measure scattering
differentially in tranverse momentum. We get an elastic cross section for the eikonal scattering of charged
scalar particles off a classical gauge field as:

dσel.

d2q⊥
=

∣∣∣∣−i

2π

∫
d2x⊥e

−iq⊥·x⊥
(
1− e iχ(x⊥)

)∣∣∣∣2 (22)

We will do a more careful calculation of the cross section later, when we have introduced a bit more
notation in Light Cone Perturbation theory. But for now, we can also try to just directly calculate the cross
section starting from the outgoing wavefunction (21) in terms of the definition of the cross section. In the
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outgoing wavefunction (21) we clearly see which wave is the incoming wave and which one the scattered
one:

ϕ(x)|x+→∞ = ϕin + ϕscat (23)

with

ϕin = e−ik·x (24)

ϕscat = e−ik·x
(
1− eiχ(x⊥)

)
(25)

This derivation follows the way a cross section is calculated from a scattering amplitude in nonrelativistic
quantum mechanics. A cross section is defined as

dσ =
d( number of particle in phase space)/time

flux in
(26)

Now the square of our wavefunction in coordinate space is related to the probability density of particles. Let
us calculate the flux:

flux =
number

time × area
=

number
volume

length
time

= |ϕin|2 ×
k

E(k)
= |e−ik·x|2 × k

E(k)
=

k

E(k)
(27)

where the length (= volume/area) is some distance in the direction of the incoming particles which, divided
by the unit of time that it takes the particles to travel this distance, gives us the velocity. The velocity of a
relativistic particle is its momentum divided by energy. Now, for the outgoing particles, we do not want to
measure the density as a function of transverse coordinate, but rather transverse momentum. Thus we need
to Fourier-transform the wavefunction to transverse momentum, to get the number of outgoing particles.
Define the mixed space wavefunction as

ϕ(q⊥, z, t) =
∫

d2x⊥e
iq⊥·x⊥ϕ(x⊥, z, t) (28)

Now the square of this quantity gives the number of particles per unit length and unit transverse momentum,
with a (2π)2 that always goes with the Fourier transform1

|ϕ(q⊥, z, t)|2 = (2π)2
dN

d2q⊥ dz
(29)

Again we need to change this from a number of particles per unit length to a number of particles per unit
time. This involves the velocity of the particle. Here, we need to again evoke the fact that we are working in
the high energy limit, where the scattering angle is very small. Thus, even if the particle does acquire some
transverse momentum q⊥ in the scattering, we consider that the longitudinal momentum k is still much
larger, k ≫ |q⊥|, and the velocity (in the z-direction) is given by k/E(k). Then we get the elastic cross
section as

dσel.

d2q⊥
=

dN
d2q⊥ dz × k

E(k)

flux
=

1

(2π)2
|ϕscat(q⊥, z, t)|2 =

1

(2π)2

∣∣∣∣∫ d2x⊥e
iq⊥·x⊥eik·x

(
1− eiχ(x⊥)

)∣∣∣∣2
=

∣∣∣∣−i2π
∫

d2x⊥e
iq⊥·x⊥

(
1− eiχ(x⊥)

)∣∣∣∣2 , (30)

using the fact that k⊥ = 0 and thus eik·x just cancels in the absolute value. The final −i of course inside
the integral just gives one in the absolute value. We scale it out so that we recover the conventional complex
phase of the scattering amplitude.

1You can check this by checking that the total number of particles is

N =

∫
d2x⊥ dz|ϕ(x⊥, z, t)|2 =

∫
d2q⊥
(2π)2

dz|ϕ(q⊥, z, t)|2.
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5.1.1 Summary

This was a sketchy derivation. Some points of interest:

• We haven’t specified anything about x−: we will come back to this later

• The outgoing wave does not appear to expand spherically as was the case for the optical problem (see
e.g. Barone & Predazzi [2]). This is mainly an artefact of the coordinate system; and a result of the
eikonal approximation that assumes small angle scattering.

• If we do expand to leading order in the eikonal phase χ, we see that Γ is imaginary, i.e. the scattering
amplitude real. But when expanded to second order, the scattering amplitude develops an imaginary
phase. The eikonal approximation builds in a relation between the real and complex parts of the
scattering amplitude, i.e. between elastic and inelastic (absorptive) scattering, that is consistent with
unitarity of the scattering S-matrix.

5.2 Eikonal scattering off target of glue
So far we have only been discussing Abelian theory. Let us now move to QCD in the high energy limit.
We will, however still stay within the eikonal picture of scattering. In particular, we will assume that QCD
scattering is dominated by scattering off the gluon field of the target. This is in fact not just an assumption,
but a consequence of the spin of the gluons: the coupling strength of a high energy particle to the gluon field
is proportional to the momentum of the particle. The coupling to the fermion field of the target, on the other
hand, is proportional to the square root of the high energy, because the fermion field has spin half.

We also know from experiment, and can show in perturbative QCD (BFKL evolution), that the number
of gluons in the proton or nucleus grows at higher energy (i.e. smaller x). We may therefore assume
that there are many of these gluons, in fact so many that eventually at some point the gluon field becomes
nonperturbatively strong.

Color Glass Condensate (CGC)
Target has many gluons: Aµ ≫ 1/g =⇒ described as classical gluon field

A

To see how a colored particle interacts with such a target color field, we can follow the same procedure as
previously, by solving the Dirac equation of a colored fermion in this field. Since the argument is essentially
the same as previously in the abelian theory, we will skip the details here. The only difference with respect
to eq. (19) is that now the field is a matrix in color space, and does not commute with the field at a different
coordinate x+. Thus, when multiplying or exponentiating matrices, one naturally ends up with a path ordered
exponential.

Quark in color field, Dirac:
(i /∂ − g /A)ψ(x) = 0 (31)

Ansatz ψ(x) = V (x)e−ip·xu(p) + eikonal approx.

∂+V (x+, x−, x⊥) = −igA−(x+, x−, x⊥)V (x+, x−, x⊥) (32)

Wilson line = path-ordered exponential

V (x+, x−, x⊥) = P exp

{
−ig

∫ x+

dy+A−(y+, x−, x⊥)

}
(33)

P
[
A(y+)A(x+)

]
≡ θ(y+ − x+)A(y+)A(x+) + θ(x+ − y+)A(x+)A(y+) (34)
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These path ordered exponentials are the same quantities that one uses to formulate lattice field theory
(the link matrices). The difference is that now, we are following a light-like path, whereas in lattice field
theory the links are in the spatial or imaginary time (also ∼ spatial) direction. In our case we are interested
in the propagation of a very energetic particle moving at the speed of light in stead of a static equilibrium
system.

Recap

• Eikonal approx: k+ ≫ anything else

• Nonperturbative, resum (Aµ)
n

• Only A− matters at k+ → ∞

• We used an eikonal approximation: assume that longitudinal momentum is larger than other momenta
involved

• Our result is not perturbative, i.e. it sums a series of different powers of the external field Aµ

• Only one component of the vector field A− matters. This is related to the high energy approximation:
the current of charged particles with a large momentum k+ has a J+-component that is larger than
all others, and this component of the current only couples to the A−-component of the gauge field.
Incidentally, this feature is independent of the spin of the probe, and is thus the same also if we replace
our incoming charged scalar particles by fermions or charged vector bosons. On the other hand, this
feature does very much depend on the fact that we are scattering off a spin-1 field (a vector field), it
is this feature that causes the strength of the interaction to be proportional to the momentum of the
incoming particle. The graviton field would couple to the momentum squared, whereas a scalar field
does not couple to the momentum. The same feature can easily be seen by calculating some tree level
Feynman diagrams for such scattering [exercise]. In terms of Feynman diagrams one can state the
eikonal approximation in terms of the “eikonal vertex”. The fact that only A− matters indicates that
there is a gauge dependence in our result. It should be possible to do a gauge transformation that
changes A−, but leaves the cross section invariant. Thus there are gauges where obtaining the correct
result requires taking into account other components of the gauge field, which in some gauge might
be large enough to compensate the lack of an explicit enhancement by the large component k+.

Digression: Probe and target light cone gauges
If we wanted to count the photons or gluons of the target in a rigorous well-defined quantum mechanical way, we

would want to go to the light-cone gauge of the leftmoving target, A− = 0. Then our interaction would look very
different from what we have now. Thus, even the perturbative limit (power series expansion in Aµ) of our result is
a perturbation series in the interaction with a Coulomb field of the target, not really with a specific number of actual
radiation quanta (photons) in it.

5.3 Eikonal vertex
The same eikonal approximation for the kinematics that we have here discussed in terms of scattering off a
classical field, can of course also be used in a perturbative Feynman diagram calculation. The corresponding
approximation in Feynman diagrams is known as the eikonal vertex.

We are interested in the interactions of spin-1 gauge bosons (gluons, also photons) with different kinds
of matter. Very generically, a spin-1 particle is represented by a vector field Aµ, which couples in the
Lagrangian to some 4-current carrying the appropriate charge: JµAµ. For an elementary vertex particle →
particle + gauge boson in perturbation theory, the vector Aµ becomes the polarization vector of the gauge
boson, i.e. the Lorentz-index in the gauge boson propagator. This polarization index then couples to some
4-vector, and the question is: which one?

We have basically two options. The 4-vector that the gauge boson couples to can be made up from 4-
vectors of particle momenta, and from spins. Without any general proof, I claim that at in the high energy
limit (when the momentum of the matter particle is much larger than that of the gauge boson), the spin does
not matter. Thus, apart from the color factor, the interaction of a gauge boson with a high energy particle is
always the same.
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At high energy: spin does not matter
p

q,µ

p − q

≈ 2igpµ×[color]

While I have not here given any general proof, the eikonal structure is not just a conjecture. Let us derive
it explicitly for some known types of particles: scalars, fermions and gauge bosons.

• Interaction with a scalar field. The standard vertex (with momenta as above) is

ig(pµ + (p− q)µ) ≈ 2igpµ, p≫ q (35)

• Interaction with a fermion: the vertex is

igūλ′(p− q)γµuλ(p) (36)

Here λ′,λ are the quark spins, and we are not writing out the color factor). How does one treat
this? One can always use the explicit forms, but a more straightforward option is to use the “Gordon
identity”

igūλ′(p− q)γµuλ(p) = igūλ′(p− q) [(p+ (p− q))µ + iσµν(p− (p− q))ν ]uλ(p). (37)

Now we see that explicitly the spin-dependent part (σµν = i
2 [γ

µ, γν ] is the generator of Lorentz-
tranformations, including rotations, and thus related to the spin) is proportional to the small momentum
q. Neglecting terms proportional to q and using the spinor normalization

ūλ′(p)uλ(p) = δλ′λ (38)

we arrive at the eikonal vertex. At this point the reader might wonder why we say that the vertex has
the spinors ū and u which, in the usual Feynman rules, are only attached to external lines. To see why
also internal quark lines entering a vertex can be thought of as contributing a similar factor, one can
write the quark propagator as

i

/p−m+ iε
= i

/p+m

p2 −m2 + iε
= i
∑
σ

uσ(p)ūσ(p)

p2 −m2 + iε
. (39)

The first u is then associated with the vertex at the beginning of the propagator (following the fermion
line), and the ū with the one at the end. Usually in Feynman diagram calculations one uses the relation∑

σ

uσ(p)ūσ(p) = /p+m (40)

to get rid of the u’s in calculating the square of the amplitude. But we can also use it in the other
direction, to change all the /p’s from the propagators into u’s (or v’s). This leads to more explicit
expressions for all the fermion-gauge boson vertices in terms of the helicities of the particles.

• Gluon: we start from the elementary vertex (note that now p is incoming, p − q and q outgoing
momenta)

p,α, a

q,µ, b

p− q,β, c

gfabc
[
gαµ(p+ q)β + gµβ(−q + (p− q))α + gβα(−(p− q)− p)µ

]
(41)

We first neglect the small momentum components q ≪ p, and this becomes

gfabc
[
gαµpβ + gµβpα − 2gβαpµ

]
(42)

Now we must, in a way that is similar to the insertion of the spinors needed for the fermionic vertex,
discuss the polarization states of the gluons. If the incoming (p) and outgoing (p − q) hard gluons
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are external, on-shell particles, the vertex must be contracted with their polarization vectors εα(p) and
ε∗β(p− q) ≈ ε∗β(p). These polarization vectors are transverse, i.e. kµεµ(k) = 0. Thus, in this case at
least, the terms ∼ pα and ∼ pβ do not contribute. Also if these gluons are internal lines, we can do the
calculation assuming that they are transverse (i.e. taking the propagators in Landau gauge); we know
that the result for a scattering amplitude is gauge invariant. Finally, relating the structure constant to
the generator of the adjoint representation of SU(3) (T c)ba = ifabc we can write the vertex as

2igpµgβα(T c)ba (43)

(signs ∼ . . . ). The way to read this is that the eikonal 3-gluon vertex has the universal eikonal coupling
of a color charged particle to gluons, 2igpµ. This is multiplied by a color factor (T c)ba (ordering of
the color indices starting from the end of the diagram) corresponding to the adjoint representation
color charge. There is also a polarization delta function gβα which ensures that the polarization of the
fast particle does not change, just like the spin of a quark does not change in the eikonal interaction.

Notes:

• This eikonal vertex should only be used in covariant gauge, where the polarization vector of the gauge
particle εµ(q) has in principle all 4 components, but only the one projected out by the large momentum
pµ matters. Later in this course we will also work in light cone gauge, where one chooses the gauge
in such a way that εµ(q)pµ = 0, i.e. so that the component of the polarization vector that couples to
the eikonal vertex vanishes by a gauge choice. In this case the interaction cannot be taken to be given
by the same eikonal vertex, and one needs to take into account the other components.

• The eikonal interaction conserves the spin/helicity/polarization of the “matter” particle.

• Note that the two approximations: neglecting the momentum of the gauge particle from the point
of view of the matter particle p+ ≈ p+ − q+ and the interaction not depending on the spin of the
matter particle together mean that we are neglecting the quantum nature of the radiation. The eikonal
approximation or eikonal vertex corresponds to the classical interaction with charged matter with a
gauge field: acceleration or deceleration of the matter due to the Lorentz force, and potential classical
radiation due to this acceleration or deceleration. Thus physics in the leading high energy limit can,
of one does it carefully, be represented by classical (color) charges interacting with classical gauge
fields.

6 Hybrid formalism for pA collisions

6.1 Forward rapidity in proton-nucleus collisions
Now we have developed the concept of measuring the gluon field in a dense target by measuring the scat-
tering amplitude of a simple elementary colored probe going through this target. What would be a possible
scattering experiments for doing this? It will turn out in the end that, in many ways, the cleanest such a
process is deep inelastic scattering. However, it is easier for us to start with another process that looks even
simpler at first, which is single inclusive hadron production in proton-nucleus collisions at forward rapidity.
For the purposes of our discussion here this is indeed the simplest process. When doing actual phenomenol-
ogy or higher order calculations it has complications that DIS does not have (collinear divergences, parton
distributions, fragmentation functions, real-virtual cancellations, . . . ), but we will not encounter them in this
first, introductory discussion.

Experimental data that we might want to address could be something like the nuclear modification ratio
RpA. Some experimental measurements for this quantity from ALICE [17] and LHCb [18, 19] are shown in
in Fig.1.

The nuclear modification ratio RpA is the ratio of a cross section for something in proton-nucleus col-
lisions, divided by the mass number A times the corresponding cross section in proton-proton collisions.
We expect saturation effects to be more important in nuclei than in protons and more important at small
x than at large x. Thus a suitable place to look for them is in a collision system where a large x parton,
preferably a quark, collides with small-x degrees of freedom. This, very generically, happens at forward
rapidity (i.e. in the proton-going direction) in a proton-nucleus collision. To see this let us take a quick look
at the kinematics. We consider a proton moving in the positive z direction, with a large momentum p+ and
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Figure 1: Nuclear modification ratio RpA from ALICE [17] at midrapidity y ≈ 0 and LHCb [18, 19] at
forward rapidities.

very small p− = m2
p/(2p

+). It collides with a heavy ion in the negative z direction, with a large P− and a
small P+ = m2

A/(2P
−). Usually with nuclear collisions one calculates energies per nucleon, and thus the

center of mass collision energy per nucleon is s = (P + p)2/A ≈ 2p · (P/A) = 2p+P−/A. For simplicity
let us assume that we are in the proton-nucleon center of mass frame. This means that the longitudinal mo-
mentum of the proton (p+) is the same as the longitudinal momentum per nucleon in the nucleus (P−/A).
At the LHC, this is not exactly the frame where the detectors sit, but close enough for the purposes of this
discussion; for a more careful calculation for LHC data one needs to take this small difference into account
better.

We now produce and measure a particle with transverse momentum k⊥ at rapidity y, with y large. Four-
momentum must be conserved. Since the proton has very little p−, all the k− of the produced particle must
come from the nucleus. Similarly all the k+ of the produced particle must come from the proton. If the
produced particle is massless, we calculate its plus and minus momenta as follows.

p+, p− ≈ 0

P−,P+ ≈ 0

k⊥, y

C.M.S =⇒ p+ =
P−

A
=

√
s

2
(44)

k+ =
1√
2
kT e

y =
kT e

y

√
2p+

p+ =

xp≲1︷ ︸︸ ︷
kT e

y

√
s

p+ (45)

k− =
1√
2
kT e

−y =
kT e

−y

√
2(P−/A)

P−

A
=

kT e
−y

√
s︸ ︷︷ ︸

xA≪1

P−

A
(46)

The fractions xp and xA are the fractions of the proton and nucleus longitudinal momenta carried by
the produced particle. We see that when one is looking in the proton-going direction, where y is large, the
process requires a large xp and a small xA. To a first approximation, the degrees of freedom at large xp in
the proton are valence quarks, and the ones at small xA in the nucleus gluons. Thus, the process of particle
production at forward rapidity in proton-nucleus collisions provides us a simple example of a dilute probe
interacting with the color field of a dense nucleus. We shall next proceed to calculating the cross section for
such a process.
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6.2 Quark-nucleus scattering
To quantify the scattering of dilute probes on a dense gluon field target in a systematical way, we need to
specify more precisely the theoretical framework that we use. In this context, the best way to do this is
to use Light Cone Perturbation theory. A classic review is provided by the review of Brodsky, Pauli and
Pinsky [13]. This review is not, however, very convenient for the kind of calculations we do here: the
notations are different, and the discussion does not systematially use the concept of the Light Cone Wave
Function (LCWF). A more useful reference for our calculation is the Kovchehov-Levin book [1], and the
papers on DIS in the dipole picture [20, 21, 22, 23, 24, 25, 26]. We will, as in these papers, use a covariant
normalization for the states (unlike the review [13]) and the Kogut-Soper metric for light cone variables
introduced in Sec.4 (unlike the book [1]). A classic paper where the treatment of scattering off a classical
background field is introduced is [16], which provides the more formal field theoretical justification for what
we are doing here.

In our conventions, quark momentum eigenstates are normalized as〈
q(p⊥, p

+,λp, ip)
∣∣q(q⊥, q

+,λq, iq
〉
= 2p+(2π)3δ(p+ − q+)δ(2) (p⊥ − q⊥) δip,iqδλp,λq , (47)

where λp,q is the light front helicity (spin, for the purposes of our discussion here), and ip,q the color, in
the fundamental representation. For brevity of notation we will not write out the helicity explicitly for now.
Because the eikonal interaction with the target preseves helicity, we will not write it out explicitly from now
on.

Our incoming state for the quark is a single quark in a specific momentum state. The eikonal interaction,
as we recall, preserves the transverse coordinate of the particle. We therefore need to Fourier transform to
coordinate space. The Fourier-transforms and coordinate space states are defined as∣∣q(p⊥, p

+, i)
〉

=

∫
d2x⊥e

ip⊥·x⊥
∣∣q(x⊥, p

+, i)
〉

(48)

∣∣q(x⊥, p
+, i)

〉
=

∫
d2p⊥
(2π)2

e−ip⊥·x⊥
∣∣q(p⊥, p

+, i)
〉

(49)〈
q(x⊥, p

+, ip)
∣∣q(y⊥, q

+, iq)
〉

= 2p+(2π)3δ(p+ − q+)δ(2) (x⊥ − y⊥) δip,iq (50)

The state |in⟩ = |q(p⊥, p+, i)⟩ is the state of the incoming particle just before the shockwave of the target
color field, i.e. at light cone time x+ → 0−. As we have discussed, the effect of the color field shock wave
is to color rotate the particle. This means that the state vector (bra) of the scattered particle in coordinate
space is rotated by the Wilson line. We denote this rotation as the effect of the “scattering operator” Ŝ.

Digression: Interaction picture
To be more specific, we are, as is common in scattering theory, using the Interaction or Dirac picture of time

evolution. This means that we split the Hamiltonian of our system into two parts. The free part, corresponding to the
kinetic energy k− of the partons in the probe, causes a time evolution of the operators of the theory. The interaction part
of the Hamiltonian, on the other hand, generates a time dependence in the state vector of the system. In this case, the
interaction part consists of the interaction with the background field. Later, we will also include the interactions between
different Fock states of the probe, most importantly gluon emission, in the interaction part of the Hamiltonian.

|in⟩ =
∣∣q(p⊥, p+, i)〉 = ∫ d2x⊥e

ip⊥·x⊥ ∣∣q(x⊥, p+, i)〉 x+ < 0 (51)

Ŝ
∣∣q(x⊥, q+, i)〉 =∑

j

[V (x⊥)]j i
∣∣q(x⊥, q+, j)〉 x+ > 0 (52)

p

A

pµ, i qµ, j

Now we know what is the quantum state of the outgoing particle. To calculate the scattering amplitude,
we need to project out the final state that we are measuring from the outgoing particle state. Now, because our
background field does not (in the eikonal approximation) depend on x−, it does not carry any longitudinal
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momentum p+. Thus the scattering amplitude will be proportional to a delta function δ(p+ + q+). As
is customary in all field theory calculations, this delta function is factorized out. This is done because to
calculate the cross section we will need to square the amplitude. The square of the delta function becomes,
in the calculation relating the square of the matrix element to the cross section, a single delta function the
cross section level times a dimensional factor that is needed to match the correct interpretation of the cross
section as a number of scatterings per unit time. It is also customary to factor out a factor 2q+(2π) and
an imaginary unit together with the delta function. This is just a convention (in field theory one writes
S = 1 + iT ), but helps to keep the terminology straight, since one often ends up discussing the meaning of
the “real” and “imaginary” parts of the scattering amplitude separately. We also need to subtract the original
incoming state, i.e. subtract identity from the interaction operator Ŝ: when there is no background field and
Ŝ = 1̂, the scattering amplitude should be zero.

This leads us to define the invariant scattering amplitude M in the following way from the matrix element
between the incoming and outgoing states. Given the explicit expression (52) it is straightforward to calculate
the amplitude for our particular case of quark-color field scattering.

2q+(2π)δ(p+ − q+)i

invariant amplitude︷ ︸︸ ︷
M(i ,p⊥ → j ,q⊥) ≡

〈
q(q⊥, q

+, j)
∣∣ (Ŝ − 1)

∣∣q(p⊥, p+, i)〉 (53)

〈
q(q⊥, q

+, j)
∣∣ (Ŝ − 1)

∣∣q(p⊥, p+, i)〉
=

∫
d2x⊥ d2y⊥e

ip⊥·x⊥−iq⊥·y⊥ 〈q(y⊥, q+, j)∣∣ (Ŝ − 1)
∣∣q(x⊥, p+, i)〉

=

∫
d2x⊥ d2y⊥e

ip⊥·x⊥−iq⊥·y⊥ ([V (x⊥)]j i − δi j) 2p
+(2π)δ(p+ − q+)δ(2)(x⊥ − y⊥) (54)

M(i ,p⊥ → j ,q⊥) =
∫

d2x⊥e
i(p⊥−q⊥)·x⊥ ([V (x⊥)]j i − δi j) (55)

Note that we now, again, have the interpretation of the Wilson line V as the eikonal scattering amplitude
of a dilute probe off the target color field.

Now, the square of the invariant amplitude, multiplied by the invariant phase space element and a momen-
tum conserving delta function, is just the cross section. There are some factors of (2π) that, conventionally,
go along with the momenta. In the case of light cone coordinates, there are additional factors of 2p+ that
always go together with integrals or delta functions in p+ to turn them into Lorentz-invariant phase space
integrals (see Eq. (10)). To make a properly normalized cross section, we have to average over incoming col-
ors i and sum over outgoing ones j. At this point let us also take the transverse momentum of the incoming
quark to be zero, since we are interested in collinear high-x quarks coming from a high energy proton.

(Set p⊥ = 0)

dσ =
1

Nc

∑
i ,j

2p+(2π)δ(p+ − q+) |M(i ,p⊥ → j ,q⊥)|2
d2q⊥
(2π)2

dq+

4πq+
(56)

1

Nc

∑
i ,j

|M(i ,p⊥ → j ,q⊥)|2 =
∫

d2x⊥ d2y⊥e
−iq⊥·(x⊥−y⊥)

× 1

Nc

[
trV (x⊥)V

†(y⊥)

∼δ(2)(q⊥)︷ ︸︸ ︷
− trV (x⊥)− trV †(y⊥) + 1

]
(57)

In simplifying the Wilson lines it is useful to note that [V (x⊥)]∗ji = [V †(x⊥)]ij . Note that out of the
four terms resulting from the square of the amplitude, the last three will give a delta function in the produced
quark transverse momentum, after integration over x⊥ or y⊥. While they need to be there to preserve
unitarity, we shall promptly disregard these terms as not physically interesting, since in the experimental
situation we will be measuring quarks that actually scatter off the transverse plane

The crucial, general formulae here are Eq. (53) defining the invariant amplitude in terms of the incoming
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and outgoing states, and Eq. (56) which tells us how to calculate the cross section from this amplitude.
These equations are valid for any process, the other equations just for the particular case of quark-nucleus
scattering. These general formulae look quite similar to the corresponding ones in covariant field theory
(“instant form,” i.e. equal-t quantization), apart from the fact that only longitudinal momentum is conserved
and some factors 2p+ are needed to make things Lorentz-covariant. Contrary to conventional Feynman
perturbation theory, transverse momentum, and consequently k−, are now not conserved for the “particles”
that we are quantizing, because these particles are scattering off an external classical field that can also
contribute momentum. To my knowledge, these general expressions were first written down in the very
important paper of Bjorken, Kogut and Soper [16].

Let us now perform a final step and see how one goes from quark-nucleus scattering to proton-nucleus
scattering. The quarks come from a collinear distribution in the proton q(x,Q2), and we must integrate over
the momentum fraction x. The energy of the incoming quark is p+ = xP+, and we can insert an identity in
terms of an integral over p+ with a delta function. We change the variable for the longitudinal momentum
from q+ to the rapidity by dy = dq+/q+. This leads us to

dσp+A→q+A

d2q⊥ dy
=

∫
dxq(x ,Q2)

∫
dp+δ(p+ − xP+) q+

∼δ(q+−p+)︷ ︸︸ ︷
dσq+A→q+A

d2q⊥ dq+

=

∫
dxq(x ,Q2)

q+δ(q+−xP+)=xδ(x−q+/P+)︷ ︸︸ ︷∫
dp+δ(p+ − xP+)q+δ(p+ − q+)

× 1

(2π)2

∫
d2x⊥ d2y⊥e

−iq⊥·(x⊥−y⊥) 1

Nc
trV (x⊥)V

†(y⊥) (58)

Hybrid formula for quark production

dσ
d2q⊥ dy

=
1

(2π)2
xq(x ,µ2)

∫
d2x⊥ d2y⊥e

−iq⊥·(x⊥−y⊥)

dipole operator︷ ︸︸ ︷
1

Nc
trV (x⊥)V

†(y⊥) (59)

Now we have obtained a key result! This is our first example of how to measure the gluon field of a dense
target. Of course, there are caveats. Firstly, one does of course not measure quarks in a collider experiment.
There are typically two things one could do to actually connect (59) to experiment.

1. Measure jets. Experimentally, a jet is a collimated (close in angle) set of high-ish momentum particles.
These are then “clustered” together into jets, and one is interested in the total momentum of the
jet. One should think of a jet a direct product of a high momentum parton being produced in the
primary collision. Jets are where perturbation theory and experiment meet, jets cross sections are
well defined (infrared and collinear safe) observables. In a theory calculation a jet is a leading order
a one-parton state, and at higher orders in perturbation theory also a 2-, 3- etc particle state. Thus
a jet is in some sense the closest one can get experimentally to single quark production, but with
the understanding that the relation between a jet and the quarks and gluons that create it must be
systematically improved order by order in perturbation theory. The inconvenient thing about jets for
our purpose is that experimentally identifying a jet as being separate from the background of the other
particles produced in a hadronic collision, the jet must have a sufficiently high transverse momentum.
This means that it will be typically at higher x and, more importantly, removed from the saturation
region of pT ∼ Qs.

2. The other option is to measure individual hadrons. In this case one needs a way to calculate the
transformation of the produced quark to hadrons. Typically this is done by using “fragmentation
functions,” which are extracted from data (in particular e+e− →hadrons) and satisfy their own version
of the DGLAP evolution equation.

In addition to relating the quark to a measurable observable, one of course also needs to know where
to get the dipole amplitude. One option for this is to use a model: later in these lectures we will discuss
the McLerran-Venugopalan (MV) model [27, 28, 29] for the classical color fields, and calculate the dipole
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amplitude from this model. We can also derive renormalization group equations that allow one to predict,
from a weak coupling QCD calculation, the dependence of the dipole amplitude on the collision energy.
These go by the name of the Balitsky-Kovchegov (BK) [30, 31, 32] or JIMWLK [33, 34, 35, 36, 37, 38, 39,
40] equations. One an also, together with a model, parametrization of the BK/JIMWLK equations, extract
the dipole cross amplitude from Deep Inelastic Scattering data.

To address the nuclear modification ratio RpA we need to have a dipole operator separately for protons
and for nuclei. We then calculate the cross sections using our hybrid formula, and take the ratio. This is the
way the “CGC” curves in the LHCb plot have been obtained.

We will do an explicit calculation of the dipole operator in a specific model, the MV model, later. But
even without such a calculation, it is possible to discuss the physics of gluon saturation in terms of the dipole
operator.

Gluon saturation

• x⊥ = y⊥ =⇒ 1
Nc

〈
trV (x⊥)V †(y⊥)

〉
= 1

• |x⊥ − y⊥| → ∞ =⇒ 1
Nc

〈
trV (x⊥)V †(y⊥)

〉
→ 0

=⇒ ∃ length scale |x⊥ − y⊥| ∼ 1/Qs s.t. 1
Nc

〈
trV (x⊥)V †(y⊥)

〉
∼ 1

2 Qs = Saturation scale

Perturbation theory in a theory with point-like particles (partons in the target) would always give you a
power-law dependence. But a power law dependence on |x⊥ − y⊥| cannot be true at all values: it is not
possible to satisfy the group theory constraints on possible values of the trace of an SU(Nc) matrix with a
pure power law. Here the expectation values ⟨⟩ refer to some, quantum or classical, average over the states
of the target.

6.3 Going to higher orders
Without doing an actual calculation here, let us discuss what happend when we go to higher order in pertur-
bation theory. Recall that we all already working to all orders in the classical field. Our probe, the quark, on
the other hand is a quantum mechanical particle that we understand in perturbation theory. Starting from the
single quark state, the next order in perturbation theory is when this quark emits a gluon. The emission can
then happen either before or after the target. In the former case the quark-gluon system must pass thrugh
the target color field. In stead of a single fundamental representation Wilson line this process will result in
the product of an adjoint representation Wilson line for the gluon and a fundamental one for the quark. The
adjoint representation Wilson line can be related to the fundamental one by

(Vadj)
ab

= 2 tr taV tbV †. (60)

If one uses this relation to express everyting in terms of the fundamental representation, one ends up with
three Wilson lines in the scattering amplitude. Squaring the amplitude, this means that we have operators
made up of up to six Wilson lines in the cross section. We can express the result in terms of a q + A →
q+ g+X cross section, first derived in this formalism in Ref. [41]. Schematically, the expression looks like
this:

Emit a gluon

p

A

p+ y⊥ → k⊥, k+ = (1− z)p+

x⊥ → q⊥, q+ = zp+
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dσqA→qgX

d3qd3k
∝
∫
x⊥,x̄⊥,y⊥,ȳ⊥

e−iq⊥·(x⊥−x̄⊥) e−ik⊥·(y⊥−ȳ⊥) F(x̄⊥ − ȳ⊥, x⊥ − y⊥)〈
Q̂(y⊥, ȳ⊥, x̄⊥, x⊥) D̂(x⊥, x̄⊥)− D̂(y⊥, x⊥)D̂(x⊥, z̄⊥)− D̂(z⊥, x̄⊥)D̂(x̄⊥, ȳ⊥)

+
CF

Nc
D̂(z⊥, z̄⊥) +

1

Nc
2

(
D̂(y⊥, z̄⊥) + D̂(z⊥, ȳ⊥)− D̂(y⊥, ȳ⊥)

)〉
target

(61)

(z⊥ = zx⊥ + (1− z)y⊥, z̄⊥ = z x̄⊥ + (1− z)ȳ⊥.)

D̂(x⊥ − y⊥) ≡
1

Nc
trV (x⊥)V

†(y⊥) Q̂(x⊥, y⊥,u⊥, v⊥) ≡
1

Nc
trV (x⊥)V

†(y⊥)V (u⊥)V
†(v⊥) (62)

Some things can be pointed out about these equations. The function F(x̄⊥ − ȳ⊥,x⊥ − y⊥) includes
the dynamics of the vertex of gluon emission from the quark. We could calculate it from LCPT even in
these lectures, if we had a bit more time. The transverse coordinates y⊥ and x⊥ are the coordinates of the
quark and the gluon in the amplitude (remember that in the eikonal approach the coordinates stay fixed when
propagating through the background field). Correspondingly, ȳ⊥ and x̄⊥ are the coordinates of the quark
and the gluon in the conjugate amplitude. The difference between the coordinates in the amplitude and the
conjucate, e.g. x⊥ − x̄⊥ is Fourier-conjugate to the momentum f the produced particle. There are diagrams
where the gluon is emitted either before or after the classical gluon field. This sum of two diagrams in the
amplitude is then squared, yielding even more terms. The gluon emission vertex includes a fundamental
representation generator ta. When expressing the adjoint Wilson lines in terms of funamental ones, one
gets more fundamental representation generators. One then sums over all colors of final state particles, and
averages over colors of the incoming quark. These color summations turn into traces of Wilson lines. One
then finally gets rid of the generators ta by the Fierz identity:

(ta)ij(t
a)kℓ =

1

2

(
δiℓδjk − 1

Nc
δijδkℓ

)
, (63)

which still increases the number of terms.
This is a wonderful result, that leads to further kinds of physics in two different ways.

• One can use it to study correlations between produced hadrons or jets. Particularly interesting are
correlations in the azimuthal angle, between particles that have relatively low momenta, not too much
larger than the saturation scale. Here, the esential thing for the physics is that the produced particles
receive, in addition to the back-to-back momentum that they have in recoiling against each other,
intrinsic momentum from the classical field. In this case the larger saturation scale of the nucleus
leads to a larger momentum being transfered from the target, which leads to a washing out of the back-
to-back azimuthal correlation dictated by momentum conservation if there is no moemntum transfer
from the target. Observing such an effect in two-particle correlations would be a direct probe of the
natura of the saturation scale as a transverse momentum scale, and thus very valuable. There are hints
of such a nuclear effect in the dihadron correlations observed at RHIC, but there is not yet a unanimity
of the interpretation of these observations.

• One can also take the qg cross section result and integrate over the momentum of one of the parti-
cles. This procedure gives a part of the NLO correction to single particle production. Note that an
integration over a momentum sets the coordinates of the corresponding particle in the amplitude and
the conjugate amplitude to be equal. This significantly simplifies the Wilson line operator expres-
sion. A particularly important class of NLO corrections are the ones that are enhanced by some large
logarithm. In this case, there are two relevant ones:

– Collinear divergences: there can be an infrared divergence in the integral over the tranverse
momentum of either of the two partons. This divergence can be regularized, and then absorbed
into the DGLAP-evolution of the quark distribution in the leading order cross section. To my
knowledge, this was first demonstrated in [42]. The fact that there is a collinear divergence at
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NLO that can be absorbed into DGLAP evolution of the parton distribution function in the LO
cross section expression is the real “proof” of the hybrid factorization formula, at least at this
order.

– Rapidity divergences (or soft divergences). There is also a divergence in the limit of z → 0. This
divergence has to be absorbed into the BK/JIMWLK evolution of the Wilson lines of the target.
That this happens was demonstrated in [43, 44] (see also [45, 46]).

Taking into account not only the logaritmically enhanced contributions but the full expression is
needed for the full NLO calculation of single inclusive particle production in the hybrid formalism.

7 Gluon saturation & CGC

7.1 Spacetime structure in 2 gauges
Let us now reflect the z-axis and consider a nucleus (in stead of the probe) moving in the +-direction, just
to confuse the reader. . . This means that the color field of the nucleus has a large A+ component.

Until now we have been describing the high energy nucleus as a classical field with one Lorentz-
component (which was A− and is now A+), which we then developed into a path-ordered exponential or
Wilson line, which is the eikonal scattering amplitude for a high energy probe passing through the nucleus.
What does this picture imply in terms of the partonic content of the nucleus, i.e. the gluon distribution?
For this we need some kind of a microscopical picture of where the classical field comes from. We know
that it should represent small-x gluonic degrees of freedom. We also remember from our discussion of the
eikonal vertex that a gluon carrying only a small longitudinal momentum fraction (a soft gluon) is essentially
classical radiation, that only cares about color charge. This leads to the basic idea of the CGC: a classical
field approximation for small x gluons, radiated by classical color charges representing the large-x degrees
of freedom.

The basic idea of the CGC is that we separate the microscopic degrees of freedom inside a high energy
nucleus into two things:

CGC separation of scales:

• small x : classical field

• large x : color charge

For a first simplistic picture one can think of the color charge as valence quarks, which then radiate
gluons, represented by the classical field. A classical field radiated by a classical current follows the classical
equation of motion. For Yang-Mills theory this is given by

[Dµ,F
µν ] = Jν (64)

Note that here we are using a matrix notation, with

Jµ = Jµ
a t

a Fµν = F a
µνt

a Dµ = ∂µ + igAµ (65)

so that the commutator of the generators

[ta, tb] = ifabctc (66)

provides just a short way of writing

∂µF
µν
a − gfabcAb

µF
µν
c = Jµ

a (67)

Equation (64) involves some yet unspecified color current Jµ. The commutator in (64) refers to the fact that
the gauge potential Aµ, field strength Fµν and color current Jµ are matrices in color space. Incidentally,
note that since the field strength is a commutator of covariant derivatives, Fµν = −i/g[Dµ,Dν ], one can
show using the Jacobi identity that the color current must be covariantly conserved,

[Dν , J
ν ] = 0 (68)

in stead of the usual abelian charge conservation ∂µJµ = 0. This means that the conservation of color charge
actually requires Jµ to rotate in color space.
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For a nucleus moving in the +z-direction, the classical current should be proportional to the momenta of
the large-x degrees of freedom. We therefore expect that the most important (or, only nonzero) component
of the current should be a J+-component.

t

z

x+

J+

Now we have to somehow implement the statement that the charge is supposed to correspond to large x
and the fields to small x in a spacetime picture. The consequence of this is that we can treat the color current
J+ as a very thin sheet in x−. Sometimes one quotes a somewhat naive justification for this approximation
in terms of a Lorenz-contraction of the nucleus from its rest frame thickness 2RA to ∆z ∼ 2RAmA/

√
s by

the boost from the rest frame energy mA to the large energy
√
s. However, the more proper argument for

this assumption is the combination of the uncertainty principle with the assumption about a scale separation.
The current represents large x degrees of freedom, which for a fast nucleus have a large p+ momentum. The
classical field, on the other hand, corresponds to degrees of freedom with smaller p+. As a consequence of
this the charges are better localized x− than the field, so the field (which is what we are interested in) sees
the charges as localized in x−.

Charges are thin sheet in x−

1. Naive explanation: Lorentz-contraction

2. Real explanation: Heisenberg ∆x− ∼ 1/p+, charges have large p+

A similar argument must be made for the dependence of the current on the light cone time coordinate
x+. A simplistic argument states that for a fast-moving nucleus time is Lorentz-dilated so that all the internal
dynamics happens very slowly in x+. A more detailed statement of the same effect is that any probe of the
small x (small p+) degrees of freedom will have a larger p− ∼ pT

2/p+ than the light cone energies p− of
the color charges. Since the color charges have a small p−, they evolve more slowly in x+ than the fields, or
an external probe of the system operating at the timescale of the small-x fields. Therefore from the point of
view of the field, or of this external probe, the charges appear as slowly dependent of x+. The extreme limit
of this argument is that we can consider the charge density to be independent of the light cone time x+, i.e.
static.

Digression: Glass
A system that is dime dependent, but whose time dependence is unnaturally slow compared to the timescales that

one is probing it with, is known as a glass in statistical physics. An actual glass is a “glass” in the statistical physics
sense, because glasses are non-crystalline like liquids, but nevertheless do not flow. In a loose (and not technically
correct) sense one can describe a glass as a liquid that flows so slowly that on the timescales of interest it behaves like a
solid.

Taking these energy- and momentum scale arguments to the extreme now arrive at the desired form for
the color current as a δ-function in x−, independent of x+, which leaves us with a purely 2-dimensional
transverse color charge density. The notation δ(x−) should be thought of as a somewhet formal limit, we
will still need to maintain the concept of path ordering (now in x− because we switched the direction of
motion of the nucleus): so we should still think of the nucleus as slightly elongated in x−, but very thin
compared to any other x−-scale in the scattering problem.

Current static, independent of x+ =⇒ glass

1. Time is dilated for the nucleus

2. Charges: small p−: slow dependence on x+
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t

z

x−
x+

J+,A+

We can now easily find a solution to the equation of motion (64), in which there is only is only one
component in the gauge field, A+, with

J+(x−, x⊥) ≈ δ(x−)ρ(x⊥) (69)

A+(x−, x⊥) ≈ −δ(x−) 1

∇2
⊥
ρ(x⊥) (70)

F+i = ∂iA
+ (71)

This looks very nice, the big +-component of the field corresponds to a color current in the +-direction.
This is precisely what we would expect in the physical situation of a color charged object (which the nucleus
is, if you only look at it locally within a region of size ≪ 1/ΛQCD in the transverse plane) moving in the
+z-direction, and generating a field A+ that a leftmoving high energy probe would like to couple to. It is
easy to see that the current is covariantly conserved, because it is independent of x+, and simultaneously
A− = 0.

Note that the only nonzero component of the field strength tensor Fµν is F+i, which corresponds to
F 0i and F zi, i.e. chromoelectric and - magnetic fields perpendicular to the z-axis. This is the same as the
Weizsäcker-Williams field of an electric charge boosted to the speed of light, which can be thought of as an
“equivalent photon” cloud accompanying the photon.

The physical picture of “gluons as partons” requires two things

• Infinite momentum frame: we have to boost to a frame where the nucleus is moving fast, so that the
partons are collinear (at least approximately) to the nucleus.

• Light cone gauge: in order to have a partonic interpretation we also have to gauge transform to light
cone gauge A+ = 0.

The choice of the light cone gauge is often just stated without any particular justification or deep reason. We
can give two reasons for why we need to work in light cone gauge.

1. In order to talk about gluons as partons we need to quantize the gluon field. In high energy scattering
one is probing the hadron or nucleus at an instant in light cone time, with an approximately light-
like probe. This means that we want to light cone quantize the gluon field. Canonical quantization
proceeds by imposing canonical commutation relations between fields ϕ(x) and their canonical con-
jugate variables. The canonical conjugate of a generalized coordinate is the derivative of the action
with respect to the time derivative of the variable, so in light cone quantization

π =
δ

δ(∂+ϕ)

∫
d4xL. (72)

But since the QCD Lagrangian is built from the antisymmetric field tensor Fµν , the light cone time
x+ derivative of the component A− is not present in the Lagrangian. In stead, A− = . . . will be a
constraint. We want to solve this constraint equation explicitly so that we can completely eliminate
A− from the theory and only work with physical degrees of freedom. This can be achieved using the
ν = + component of the gauge field equation of motion

[Dµ,F
µν ] = Jν , (73)

where Jν is the color current from the matter fields. Writing the ν = + component out we get

[D−,F
−+] + [Di,F

i+] = J+. (74)
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Now by choosing the gaugeA+ = 0 we see that F−+ = −∂−A− is a simple function ofA− and does
not even depend on its time derivative. Likewise the covariant derivative D− is just a normal (spatial,
so does not interfere with the dynamics) derivative, and altogether we have

(∂−)
2A− = [Di,F

i+]− J+, (75)

from which we can solve, at any light cone time x+ the constrained field A− in terms of the physical
degrees of freedom: Ai and the matter particle fields. Thus the light cone gauge A+ = 0 conveniently
enables a complete reduction of the 4 components of the gauge field to 2 dynamical degrees of free-
dom. This is similar to the way the Coulomb gauge ∇ ·A = 0 enables one to solve A0 as an explicit
constraint in terms of the matter fields in the canonical quantization of QED.

2. In order to talk about partons, we need to be able to look at their longitudinal momentum p+, which is
some fraction of the longitudinal momentum of the proton or nucleus, p+ = xP+. Because p+ is the
conjugate variable to x−, a parton distribution will be defined as a Fourier-transform from x− to p+

of a two-point function of fields. Schematically: the parton distribution for partons ϕ, characterized
by some field operator ϕ̂ in a hadron h with momentum P+ will be

fϕ(x)
?∼
∫

dx−eixP
+x−

⟨h| ϕ̂†(x−)ϕ̂(0) |h⟩ (76)

For the parton ϕ =gluon, the relevant operator would be ϕ̂ ∼ F i+, where i = 1, 2 is connected to the
polarization of the gluon. Now if the particle ϕ carries color, such a two-point function is not gauge
invariant, because the gauge transformations of the field operators ϕ̂†(x−)ϕ̂(0) at different values of
x− do not cancel. Thus the proper, physical, measurable definition must include a Wilson line between
the coordinates of the operators:

fϕ(x) ∼
∫

dx−eixP
+x−

⟨h| ϕ̂†(x−)

[
P exp

{
ig

∫ x−

0

dy−A+(y−)

}]
ϕ̂(0) |h⟩ . (77)

A consequence of this is that in an arbitrary gauge, the parton distribution for a parton ϕ does not have
a clear interpretation as measuring just partons ϕ, but depends in a complicated way also on the gluon
fields. But if, and only if, we choose the gauge A+ = 0, the parton distribution of parton ϕ is just a
two-point function of the field operator ϕ̂, and thus has (at least roughly) a physical interpretation as
measuring the distribution of partons ϕ in the hadron.

So, let us now transform our field to the light cone gauge A+ = 0. In addition to satisfying the re-
quirement of a formal partonic interpretation in terms of a light cone quantization of the degrees of freedom
in the nucleus, this gauge transformation will be required to calculate what happens in the collision of our
nucleus with another one. We will come back to this in Sec. 8. But already at this stage it is useful to note
that the other colliding nucleus will have a color current J−, and if our color field has a A+-component it
will cause the color current of the other nucleus to precess in color space. But if we transform our field to
A+ = 0-gauge, the current of the other nucleus can stay unaffected by it, leaving only the fields to interact.
This is easier to deal with, in fact a major reason for using the classical field approximation in the first place
is that classical fields are easier to deal with.

So let us now make this gauge transformation toA+ = 0. We will keep our static approximation, nothing
depends on x+, but maintain a general x−-dependence remembering that the support of our color current in
x− is very narrow. Note that since there is no dependence on x+, the gauge transform will not generate an
A−-component. This should not be seen as a gauge choice, but as a result of the high energy kinematics.

Gauge transform:

A+ ⇒ V †(x⊥, x
−)A+V (x⊥, x

−)− i

g
V †(x⊥, x

−)∂−V (x⊥, x
−) = 0 (78)

A− ⇒ − i

g
V †(x⊥, x

−)∂+V (x⊥, x
−) = 0, still (79)

Ai ⇒ i

g
V †(x⊥, x

−)∂iV (x⊥, x
−) transverse pure gauge (80)

(78) solved by

V (x⊥, x
−) = P exp

[
−ig

∫ x−

−∞
dy−A+

]
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=⇒ Wilson line!
Now since for A+(y−) is very localized around y− = 0, the Wilson line V jumps very rapidly from

unity (independently of the transverse coordinate) to a nontrivial x⊥-dependent value around y− = 0. Thus
its derivative, which gives Ai, has a ∼ θ(x−)-function like discontinuity around x− = 0. Now our small-x
gluons look like we would expect them to look like based on the Heisenberg uncertainty principle: they are
small p+ gluons and thus should be delocalized in x−. This was not the case in the covariant gauge.

Ai ∼ θ(x−)

t

z

x−
x+

A+

The current also is gauge transformed as

Jµ → V †JµV . (81)

This, however, does not change the region of support in x−: the charges are still localized as ∼ δ(x−) as
we want. Usually practical calculations are in fact (implicitly) done in terms of the covariant gauge charge
density ρ that determines the Wilson lines, even if for the gauge fields one uses light cone gauge.

7.2 McLerran-Venugopalan model
In order to be able to actually calculate things we will now need a concrete model for what the charge
density ρ in Eqs. (69), (70) could look like. Such a model is provided by the Mclerran-Venugopalan (MV)
model [28, 27, 29]. The MV model is not the same thing as the CGC, but it is a model that makes within the
CGC classical field picture.

Let us briefly review the physics argument behind this model. The situation one is thinking about is
that of small enough x so that the CGC spacetime picture discussed above is valid; but not necessarily
asymptotically small. Instead, we are working in the limit where the nuclear mass number A is very large.
This implies that at a fixed coordinate in the transverse plane there is an parametrically large number ∼ A1/3

of valence quark-like colored degrees of freedom. Since these color charges come from separate nucleons,
they should be uncorrelated with each other in the longitudinal direction. Also in the transverse plane, at two
different coordinates, the total color charge comes from a sum of at only partially overlapping color charges
in the different nucleons, and is therefore different. Thus one can also assume the color charges at different
transverse coordinates to be uncorrelated. Finally, since the color charge at one coordinate is a sum of many
uncorrelated color charges, the central limit theorem states that its distribution should be Gaussian.

MV model: charge density ρ(x⊥) is

• stochastic, Gaussian random

• local in x− and x⊥

〈
ρa(x⊥, x

−)ρb(y⊥, y
−)
〉
= g2δabµ2(x−)δ(x− − y−)δ(2)(x⊥ − y⊥) (82)

The importance of this model is that it is based on a very general physical argument, but is nevertheless
is very explicit, enabling one to calculate a large variety of things in various approximations. It is also simple
in terms of parameters. So far µ2(x−) is just some unknown function, but should be thought of as being
rather narrowly peaked in x−: µ2(x−) ∼ δ(x−). It will turn out that the physics in the high energy limit
does not care about the functional form, but everything will just depend on the integral of µ2(x−) over x−,
which is essentially the saturation scale

Q2
s ∼ g4

∫ ∞

−∞
dx−µ2(x−). (83)

Digression: Powers of g
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There are different conventions for where to put powers of g. Here, µ2 is a number density. From this we construct
ρ as a charge density, thus ρ ∼ gµ. Then, from the gluon field A+ ∼ ρ/∇2

⊥ ∼ gµ, one calculates the Wilson line which
involves gA+ ∼ g2µ. Thus in fact physics only depends on the combination g2µ in the end.

For further developments it is important to note that one is making two independent approximations that
need to be considered separately.

• We assumed that the charge density correlator is proportional to δ(2)(x⊥ − y⊥). This, as we will
see, leads to a very specific dependence of the unintegrated gluon distribution φWW(k⊥) on kT at
high momentum. The resulting distribution is roughly consistent with a DGLAP-like behavior of the
gluon distribution, but not for example with the solution of the BK equation at very small-x. This
assumption is therefore usually thought of as appropriate for moderately small x and large A, but not
parametrically small x.

• The other assumptions; namely that the charges at different x− are uncorrelated, and that the distri-
bution is Gaussian (which implies a specific relation between the higher 4-, 6- etc. correlators and
the 2-point function (82)) are much more general. These assumptions can be used to to calculate re-
lations between different Wilson line correlators, and in the cases where this has been checked (see
e.g. [47]) this assumption has been found to be consistent with JIMWLK evolution. What this implies
in practice is that one can use the assumption of locality in x− and Gaussian correlators to calculate
multiparticle correlations, and combine this with a transverse coordinate structure that is not given
by δ(2)(x⊥ − y⊥), but taken e.g. from the solution of the BK equation. This procedure or approx-
imation is often used in the literature (see e.g. [48, 49, 50, 51, 52]). Depending on the authors it is
referred to in the literature as the “nonlinear Gaussian” [47], “nonlocal Gaussian” [50] or “Gaussian
truncation” [10] approach.

7.3 Dipole cross section
In order to get a more physical picture of what the MV model means, let us now use it to calculate two kinds
of unintegrated gluon distributions, the dipole distribution or dipole amplitude (appearing in the hybrid
formalism in Sec. 6), and the so-called Weizsäcker-Williams (WW) distribution.

Dipole

S(r = |x⊥ − y⊥|) ≡
1

Nc

〈
trV (x⊥)V

†(y⊥)
〉

V (x⊥, x
−) = P exp

[
−ig

∫ x−

−∞
dy−A+

]
(84)

〈
A+
a (x⊥, x

−)A+
b (y⊥, y

−)
〉
= g2δabµ2(x−)δ(x− − y−)L(x⊥ − y⊥) (85)

Here we have introduced a notation L(x⊥ − y⊥) for the two-point function of the covariant gauge field
A+, which is related to the color charge density by Eq. (70). Since our MV model color charge density has a
two-point function ∼ δ(x− − y−), also the two point function of the fields will be proportional to the same
delta function. The transverse coordinate dependence is more complicated because of the 2-dimensional
Laplacian, therefore we just denote it by L and come back to it later.

In order to make sense of the path ordered exponential, it is not in practice very convenient to use the path-
ordered product definition (33). In stead, we will discretize the integral over x− into many infinitesimally
thin pieces of width ∆− → 0. Now a path ordered exponential of an integral turns into a path ordered
exponential of a sum, which is nicely interpreted as a path ordered product of exponentials of individual
terms in the sum.

Discretize

x− = n∆− =⇒
〈
A+
ma(x⊥)A

+
nb(y⊥)

〉
= g2δabµ2

n

δ(x−−y−)︷ ︸︸ ︷
1

∆− δmn L(x⊥ − y⊥) (86)

V (x⊥) = lim
N→∞

e−ig∆−A+
N (x⊥) · · · e−ig∆−A+

n (x⊥) · · · e−ig∆−A+
−N (x⊥) (87)
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Plugging the infinite produce representation of the Wilson lines into the dipole operator (84) we obtain

S(r) = lim
N→∞

1

Nc
tr

〈
e−ig∆−A+

N (x⊥) · · · e−ig∆−A+
n (x⊥) · · · e−ig∆−A+

−N (x⊥)

× eig∆
−A+

−N (y⊥) · · · eig∆
−A+

n (y⊥) · · · eig∆
−A+

N (y⊥).

〉
(88)

Notice that if the path ordering in the Wilson line is from right to left, in the hermitian conjugate the corre-
sponding ordering is from left to right. Thus in the trace (88) the elements at the lower limit in x− are next
to each other.

Now according to the MV model assumption the color fields at different steps in x− are indpendent
of each other. This means that the expectation value of the product is the product of expectation values,
and we can start calculating the expectation values one rapidity step at the time, starting with the innermost
n = −N . Now we also use the fact that ∆− is small and expand

〈
e−ig∆−A+

n (x⊥)eig∆
−A+

n (y⊥)
〉
≈
〈
1− ig∆−A+

n (x⊥) + ig∆−A+
n (y⊥) + g2(∆−)2A+

n (x⊥)A
+
n (y⊥)

− 1

2
g2(∆−)2

((
A+

n (x⊥)
)2

+
(
A+

n (y⊥)
)2)〉

+O(∆−)3/2) (89)

Here the power counting combines the explicit ∆− in the exponent with

A+ ∼ 1√
∆− , (90)

which is to be understood as following in a r.m.s. sense from the discretized two-point function (86).
The expectation value of a single A+ vanishes and we use (86) for the two point function:

〈
e−ig∆−A+

n (x⊥)e ig∆
−A+

n (y⊥)
〉

≈ 1 + g4(∆−)2
µ2
n

∆−

[
L(x⊥ − y⊥)−

1

2
L(x⊥ − x⊥)−

1

2
L(y⊥ − y⊥)

]=CFINc×Nc︷︸︸︷
tata

≈ exp

g4∆−CFµ
2
n

[
L(x⊥ − y⊥)−

1

2
L(x⊥ − x⊥)−

1

2
L(y⊥ − y⊥)

]
︸ ︷︷ ︸

−Γ (x⊥−y⊥)

 INc×Nc (91)

Here we have defined a new notation Γ for the field-field correlator L minus its value at the origin. As
we will see, the value of L at zero has a power law (=bad) IR divergence. This subtraction removes this
leading divergence.

Now that this expectation value is just a number times the identity matrix, it commutes with all the other
infinitesimal Wilson line factors in the infinite product (88). We can therefore pull it out and repeat the same
procedure for the next factor (next n). Doing this one by one we finally get just a product of terms like (91),
each of them proportional to the identity matrix. The overall trace now just gives a factor Nc that cancels
with the normalization. We can now return from the discrete to the continuous notation as

S(r) = exp

{
−g4CF

∫ ∞

−∞
dx−µ2(x−)Γ (x⊥ − y⊥)

}
(92)

This is now practically our final result. Note that, as advertized, the Wilson line correlator only depends
on the integral of µ2(x−) over x−; at this stage the functional form (which we never specified) of the
dependence on x− does not matter any more.

The only thing we have used so far from the MV model is the more general of the two approximations
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involved: the independence of different x− color charges and the Gaussian expectation value 2. We have not
yet actually used the assumption that the correlator (82) is proportional to δ(2)(x⊥ − y⊥) at all. Therefore
the result (92) can be used independently of the MV model assumption. In particular, we can take a solution
of the BK equation for S(r), and consider (92) as the definition of the correlator Γ(x⊥ − y⊥) ≡ −L(x⊥ −
y⊥) + L(0). But in order to see what the more restrictive local charge correlation assumption gives us, let
us now calculate Γ(x⊥ − y⊥) in the actual model, recalling that physically we expect this to be a good
approximation in the limit of smallish x and very large A. In order to get the A+ correlator from the
MV model assumption for the correlator of ρ’s we need to solve the Poisson equation (70). This is done
by Fourier-transforming; we also need to introduce an additional IR cutoff to deal with the very divergent
integrals in intermediate stages of our calculation. For now we will suppress the argument x− for brevity,
the following steps happen locally in x−.

The covariant gauge field A+ is related to the color charge by the Poisson equation (70). This equation
is best solved by Fourier-transforming:

At each x−

A+(kT ) =
1

k2⊥
ρ(k⊥) (93)

To work in momentum space we also need the Fourier-transform of the color charge 2-point function
(82)

〈
ρa(k⊥)ρ

b(p⊥)
〉
= g2δabµ2

∫
d2x⊥ d2y⊥e

ik⊥·x⊥+ip⊥·y⊥δ(2)(x⊥ − y⊥)

= g2δabµ2(2π)2δ(2)(k⊥ + p⊥) (94)

Combining the relation between A+ and ρ, and the two-point function of ρ’s, we get

Γ (x⊥ − y⊥) =
∫

d2k⊥
(2π)2

d2p⊥
(2π)2

(2π)2
δ(2)(k⊥ + p⊥)

pT 2kT
2

[
1− e−ik⊥·x⊥−ip⊥·y⊥]

=
1

2π

∫
dk

1− J0(kr)

k3
≈ 1

8π
r2 ln

≫1︷︸︸︷
1

rΛ
(95)

This integral is still IR divergent at k = 0, but only logarithmically so. The leading power law divergence
cancels 3 in the combination Γ(x⊥ − y⊥) ≡ −L(x⊥ − y⊥) + L(0). This is true generally: expectation
values of nonsinglet operators are very very sick because they depend on L(x⊥ − y⊥) alone. They diverge
(or vanish) as an exponential function of a power of the IR cutoff; they do not describe meaningful physical
quantities. Expectation values of singlet operators, such as the dipole that we are calculating here, depend
always on the combination Γ(x⊥−y⊥) which, in the MV model, is only logarithmically divergent. One can
always argue away the logarithm for coordinate space quantities like S(r), but it does affect the analytical
properties and therefore the momentum space behavior, so it is better to keep it for now. Note that since
Λ in Eq. (95) is an IR cutoff in the k-integral, we should assume that it is always small compared to any
coordinate value that we are interested in: rΛ ≪ 1. The full Γ(r) is, however finite, because of the power of
r multiplying the logarithm.

Different ways of regulating the IR divergence lead to different values for the remaining finite term. The
leading log, however, is universal. Our result is for the dipole cross section is now:

SMV (r) ≡
1

Nc

〈
trV (x⊥)V

†(y⊥)
〉
= exp

{
−g4CF

8π

[∫ ∞

−∞
dx−µ2(x−)

]
r2 ln

1

rΛ

}
(96)

Q2
s ∼ g4CF

4π

[∫ ∞

−∞
dx−µ2(x−)

]
(97)

2In fact we did not even use the Gaussian property, because we expanded in powers of ∆− and only used the two-point function.
At least for a Gaussian correlator some anomalously large expectation values of higher orders in the series in powers of ∆− do not
matter, but for this it is enough that the higher point correlators are not too large, they don’t need to be exactly Gaussian. In fact it is
probably better to think of the Gaussianity as arising via the central limit theorem; a color charge that is built up of layers in x− that
are independent of each other will behave as a Gaussian.

3It is curious that a small-momentum, i.e. IR, divergence manifests itself in the short-distance behavior of the two-point function.
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This provides a concrete link between the MV model variable µ2 (as already promised, this only enters
as the integral over x−) and the dipole cross section, e.g. the quar-nucleus scattering or DIS cross sections.
We can now make a fit to DIS data, use that to extract a value for µ2, and apply this to calculating heavy ion
collisions: this is indeed what is done in the very successful IPglasma model for the initial stage of a heavy
ion collision [53].

The dipole cross section interpolates between 1 at r = 0 and 0 at r → ∞ as it should, satisfying the
expectations for a SU(3) matrix correlator. We can identify the saturation scale Qs from the characteristic
scale in this r-dependence. Here we calculated the dipole amplitude in the fundamental representation, which
is why our result has the Casimir operator CF, overall the saturation scale should have Casimir scaling, i.e.
be proportional to the relevant Casimir. The glasma fields in the initial stage of a heavy ion collision are
gluons, there the relevant scale is the adjoint Casimir CA = Nc which, in the MV model, is larger than the
saturation scale measured e.g. in DIS. In addition to the color factor, the value of Qs depends on the precise
convention chosen to determine it from the dipole correlator (there are many ways to extract something
so vaguely defined as “the” characteristic scale from a function). In the MV model specifically, it also
depends on the details of how one regularized the IR divergence in the momentum integral, this adds another
uncertainty factor into the interpretation of MV model calculations [54].

In momentum space, the Fourier-transform of the dipole expectation value, multiplied by kT 2, is known
as the dipole gluon distribution

φdip.(kT ) ∼ kT
2

∫
d2r⊥e

ir⊥·k⊥S(r) (98)

Thanks to the logarithm of r in the MV model expression, it behaves [Exercise!] like 1/kT 2 at large kT .
At small kT , the dipole distribution behaves as ∼ kT

2 (this is easy to see, since the integral of S(r) over r⊥
is finite, therefore S(kT = 0) is a constant and φdip.(kT ) ∼ kT

2S(k)).

7.4 Weizsäcker-Williams distribution
To characterize the number distribution of gluons in the nucleus one needs, as discussed above, to look at
a 2-point function of the gluon field in the light cone gauge. Note that now (contrary to the dipole picture
of DIS or the hybrid formulation of proton-nucleus scattering) we trying to analyze gluons, quanta, in the
target nucleus, not the probe. It would be difficult to light cone quantize both at the same time because we
cannot simultaneously fix the gauge to be both A+ = 0 and A− = 0.

This gluon number density corresponds to what is know as the Weizsäcker-Williams gluon distribution.
The full calculation in the MV model was first done in [55], following a procedure very similar to the above.
Repeating this would take up too much time in this lecture, so we will just quote the result below. But before
that it is useful to look at the dilute limit of the calculation. This can be derived by assuming that ρ ∼ g2µ
is small, in which case one can expand the Wilson lines to lowest order. Since in the MV model everything
is expressed in terms of A+ ∼ ρ/∇2

⊥, the dilute limit of small g2µ is at the same time the limit of large
transverse momenta.

High k⊥ — small µ:
dN

d2k⊥ dy
= φWW(k⊥) ∼

〈
Ai
a(k⊥)A

i
a(−k⊥)

〉
(99)

Ai
a(k⊥) =

k i

kT
2 ρ

a(k⊥) =⇒
〈
Ai
a(k⊥)A

i
a(−k⊥)

〉
=

1

g2

πR2
A︷ ︸︸ ︷

(2π)2δ(2)(k⊥ = 0)(Nc
2 − 1)

∼Q2
s︷︸︸︷

g4µ2

k2⊥
(100)

Here we used the momentum space correlator (94) and the fact that in the dilute limit the light cone
gauge transverse gauge field in (80) reduces to just a derivative of covariant gauge A+ field. This gluon
distibution reduced in a very natural way to the DGLAP-evolved integrated gluon distribution, for which the
definition in terms of the quantized light cone gauge gluonic field operators leads to

xG(x,Q2) =

∫ Q2

d2k⊥
dN

d2k⊥ dy
∼ πR2

A(Nc
2 − 1)

Q2
s

g2
lnQ2, (101)

i.e. a function that grows logarithmically with Q2. This growth can be identified with the growth in the
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number of gluons in DGLAP evolution when increasing the resolution scale Q2.
The result from [55] (see e.g. [56] for a mathematically clearer but more formal derivation) for the

Weizsäcker-Williams gluon distribution is

WW distribution
Ai =

i

g
V (x⊥)∂iV (x⊥) (102)

=⇒〈
Ai
a(x⊥)A

i
b(y⊥)

〉
= δab

Nc

g2

∇2
⊥Γ (x⊥ − y⊥)
Γ (x⊥ − y⊥)

(
exp

{
−g4Nc

∫ ∞

−∞
dx−µ2(x−)Γ (x⊥ − y⊥)

}
− 1

)
(103)

=⇒

φWW (kT ) ∼

(
1
αs

ln kT , kT ≪ Q2
s

1
αs

Q2
s

kT 2 , kT ≫ Q2
s .

(104)

∼ 1/kT
2, linear

∼ 1
αs

ln kT
2, saturation

kT
Here we have again identified the saturation scale asQs ∼ g2µ. Some points to note about the expression

(104):

• The factor in the exponent is an adjoint representation Casimir CA, compared to the fundamental
Casimir CF = (Nc

2 − 1)/(2Nc) in the fundamental representation dipole (96). This is what one
would expect for gluons as opposed to a fundamental representation probe.

• Both the dipole gluon distribution (98) and the WW distribution (104) have (when properly normal-
ized) the same large kT limit. However, they look quite different at small kT . Both exhibit saturation:
the behavior changes at kT ≲ Qs; the dipole distribution changes to ∼ kT

2 and the WW distribution to
∼ ln kT . You can deduce the latter property by noting that due to the 1 inside the bracket in (102), the
integral over r of the coordinate space distribution diverges logarithmically; this would be the kT = 0
value of the momentum space distribution.

• In a strict operatorial sense the dipole and WW distributions are independent quantities, some cross
sections depend on one, some on the other. Without evoking a model such as MV one has to mea-
sure both of them separately experimentally. The MV model (or in general the nonlinear Gaussian
assumption) provides an additional physical model that allows one to relate them to each other. For a
discussion explaining how these two distributions result in the small x limit from transverse momen-
tum distributons (TMD’s) that have explicitly gauge invariant operatorial definitions, see [52].

• The WW distribution is, when one writes it in terms of the saturation scale Qs in stead of the model
parameter µ, proportional to 1/g2 or 1/αs. The WW distribution is the best we can do if we try to
make a bona fide effort to count gluons. In the CGC field the result is that, at weak coupling αs → 0,
there is a nonperturbatively large number of them. This is the justification for the word condensate in
the CGC.
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8 Glasma

8.1 Heavy ion collision: initial condition
Now let us finally move to the collision of two high energy nuclei. We follow here a calculation that was
originally done in Ref. [57]. We will represent both nuclei in a symmetrical way, by their own classical
color currents and radiated fields, with nucleus (1) moving in the positive z-direction and nucleus (2) in the
negative one.

Jµ = δµ+ρ(1)(x⊥)δ(x
−)︸ ︷︷ ︸

Ai∼θ(x−)

+ δµ−ρ(2)(x⊥)δ(x
+)︸ ︷︷ ︸

Ai∼θ(x+)

(105)

For each of these currents separately, we already know the solution of the field in the light cone gauge
of each of the currents A± = 0, and these solutions have the nice property that also the other longitudinal
component vanishes: A∓ = 0. I.e. the light cone field of nucleus (1) also “accidentally” satisfies the ligh
cone gauge condition of the other one. Thus in some region of spacetime, which is causally connected to
only one of the nuclei (we chose the boundary conditions for the Yang-Mills equation to be causal, so that
one gets a color field only in the region after the passage of the nucleus).

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst. τ =
√
2x+x−

η = 1
2 ln

x+

x−

Let us recall the expressions for these “transverse pure gauge” fields without the θ-functions, which we
will deal with separately.

Ai
(1,2) =

i

g
V(1,2)(x⊥)∂iV

†
(1,2)(x⊥) (106)

V(1,2)(x⊥) = Pe
ig

∫
dx− ρ(x⊥ ,x−)

∇2
⊥ (107)

Digression: Conventions for ±ig
In my conventions the covariant derivative is

Dµ = ∂µ + igAµ (108)

the field strength tensor
Fµν = ∂µAν − ∂νAµ + ig[Aµ,Aν ]. (109)

A gauge transformation is

Aµ → V AµV
† − i

g
V ∂µV

† (110)

and a pure gauge

− i

g
V ∂µV

†. (111)

All the signs of the ig’s in these expressions are correlated with each other, and it becomes hard to keep one’s conventions
consistent. For the transverse pure gauge in Eq. (106) one has to note that Ai = −Ai, and thus the sign is

Ai = −Ai =
i

g
V ∂iV

†. (112)

Equations (106) and (107) provide valid solutions to the equations of motion in the regions (1) and (2)
in the figure above, which are causally connected to only one of the two nuclei. Let us now derive an initial
condition for the field inside the future light cone, which is causally connected to both. Inside the region (3)
there is no current (since the color currents are proportional to delta functions)
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Region (3):

• Inside: [Dµ,F
µν ] = 0; no source

• Need initial conditions at τ = 0

•
√
s → ∞: should be boost invariant: Aµ(τ , x⊥)

Gauge choice:

• Avoid color precession: A− = 0 at x− = 0 where J+ lives, + vice versa

• Boost invariant: τ , η-components

=⇒ Fock-Schwinger Aτ = (x+A− + x−A−) /τ = 0

The Fock-Schwinger or temporal gauge condition has the very nice property that on the x+-axis, i.e.
x− = 0, it reduces to x+A− = 0, i.e. A− = 0. Thus the current that lives on this light cone is not only
covariantly conserved [Dµ, J

µ] = ∂+ + ig[A−, J+] = 0, but in fact does not color precess and is constant
∂+J

+ = 0. This significantly simplifies our following calculation. The other advantage of the Aτ = 0-
condition is that in order to solve the equations of motion numerically in a Hamiltonian formalism, which
is the standard thing to do, one needs to choose a temporal gauge condition. There are a few calculations
of gluon production inside the forward light cone in another gauge, the covariant gauge, but this is done
only in the dilute limit, not including any final state interactions [58, 59]. I am not aware of a numerical
implementation of the full equations in another gauge.

Now, as discussed above, we need an initial condition for the field inside the future light cone. For the
case of one nucleus we could have two components equal to zero, one as a gauge choice and the other one
as a result of our current being independent of the light cone time x+. In the case of two nuclei there is
a dependence on both x− and x+ in the problem, and we cannot have this “accidental” vanishing of one
component of the gauge field any more. So we can only make one component of the gauge field vanish with
a gauge choice, but our solution inside the future light cone will have nonzero values for the other three.
With Aτ = 0, this third component is the longitudinal field orthogonal to it, namely Aη or Aη = −Aη/τ

2.
In the following we will use the latter, because Aη is finite at τ = 0, and consequently Aη(τ = 0) = 0.

Since the currents exist only on the light cones, the field can have discontinuities across the light cone.
We can write an ansatz for the solution in terms of θ functions. Inserting this into the equations of motion
will yield δ-functions arising from derivatives of the θ-functions. We can determine the initial conditions for
the field at τ = 0+ by requiring that the coefficients of these δ-functions vanish. This is enough to determine
the initial condition, we do not need the terms that do not have a δ(x±).

Ansatz: Ai =

known︷ ︸︸ ︷
A
(1)
i (x⊥)θ(−x+)θ(x−) + A

(2)
i (x⊥)θ(x

+)θ(−x−)+A
(3)
i (x⊥, τ)θ(x

+)θ(x−)(113)
A± = ±θ(x+)θ(x−)x±Aη(x⊥, τ) (114)

[Dµ,F
µν ] = Jν match δ(x±) (115)

▼
δ(x−)δ(x+) in:

J i = ∂−∂+A
i + · · · = δ(x−)δ(x+)(−A

(1)
i (x⊥)− A

(2)
i (x⊥) + A

(3)
i (x⊥)) = 0 (116)

To get a contribution like δ(x−)δ(x+) we need two derivatives ∂−∂+ acting on the theta functions
θ(±x−)θ(±x+). When acting on the transverse component A−i such derivatives appear in the J i = 0
equation. In principle we have derivatives like ∂−∂+ acting on θ(±x−)θ(±x+) in A± in the equations with
J±. However, in this case the contribution is killed by the additional x± in the relation between A± and Aη ,
which gives terms like δ(x−)δ(x+)x± = 0. We now have our first equation.

Next, we have to start looking at terms like δ(x±)θ(x∓), where one derivative is acting on a theta
function and other derivatives on something else. There are such terms in the J i = 0 equation too, but it
turns out they do not give us new constraints on the fields in region (3). In stead, we have to look at the
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equations for J±. Since + and − are symmetric, we can look at either J+ or J−; let us look at the first one.
Now J+ ∼ δ(x−), so we want to be looking for terms ∼ δ(x−) in the equation for J+. There are several:
δ(x−)θ(±x+) in J+ equation

∂−F
−+ =

[
∂−∂+(

A+︷ ︸︸ ︷
x+θ(x+)θ(x−))− ∂−∂−(

A−︷ ︸︸ ︷
−x−θ(x+)θ(x−))

]
Aη(x⊥, τ) (117)

= 2δ(x−)θ(x+)Aη(x⊥, τ) + . . . (118)

∂i (

F i+︷ ︸︸ ︷
∂−Ai ) = δ(x−)θ(x+)∂i (

A
(1)
i︷ ︸︸ ︷

−A
(2)
i (x⊥) + A

(3)
i (x⊥)) = J+|x+>0 (119)

ig [Ai ,

F i+︷ ︸︸ ︷
∂−Ai ] = ig [

A
(2)
i +θ(x−)A

(1)
i︷ ︸︸ ︷

θ(−x−)A(2)
i + θ(x−)A(3)

i ,

A
(1)
i (x⊥)︷ ︸︸ ︷

−A
(2)
i (x⊥) + A

(3)
i (x⊥)]δ(x

−)θ(x+) (120)

= ig [A
(2)
i ,A

(1)
i (x⊥)]δ(x

−)θ(x+) (121)

In relating F i+ to Ai note both the antisymmetry of Fµν and the Lorentz signature Ai = −Ai.
Requiring that all the equations are satisfied leads us to the initial conditions for the glasma fields first

derived in Ref. [57]:

A
(3)
i |τ=0 = A

(1)
i + A

(2)
i (122)

Aη|τ=0 =
ig

2

[
A
(1)
i ,A

(2)
i

]
(123)

8.2 Properties of glasma fields
Now we have the gauge potentials at τ = 0. From these we can calculate the field strength tensor, i.e. the
chromomagnetic and chromoelectric fields. It is quite easy ton convince yourself that these are both in the
z-directon. These leads to the following often seen picture:
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• τ = 0 longitudinal E z ∼
[
A
(1)
i ,A

(2)
i

]
and Bz ∼ εi j

[
A
(1)
i ,A

(2)
j

]
• ⊥ correlation length 1/Qs.

One way to think of the longitudinal initial electric and magnetic fields is to note that in the absence of
color charges the fields satisfy the nonabelian Gauss law and Bianchi identities, stating that the covariant
divergences of the chromoelectric and -magnetic fields vanish. It is interesting to separate the commutator
terms from the linear ones. Then one can interpret the nonlinear terms as kind of effective electric and
magnetic field densities generated by the interaction of the electric and magnetic fields of one nucleus with
the pure gauge potential of the other one.

• Gauss
[Di ,E

i ] = 0 =⇒ ∂iE
i = ig [Ai ,E i ] (124)
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• Bianchi
[Di ,B

i ] = 0 =⇒ ∂iB
i = ig [Ai ,B i ] (125)

Loosely quating L. McLerran, the pure gauge field of one nucleus is a “Color Glass Fairy” that sprinkles
magic dust on the Weizsäcker-Williams gluons (transverse fields that only live on the light cone, following
the color charges) of the other nucleus. This magic fairy dust generates color charges (and chromomagnetic
monopoles) on the gluons of the second nucleus, which serve as the end points of color flux tubes.

Digression: Glasma strings and Lund strings
One might think that this picture is similar to the Lund string model. In some ways it is, but in some important ways

it is not. The first seemingly very different feature is that there is also a magnetic field, parametrically (and in fact, if one
averages over a rotationally invariant target, exactly) equally large. The second, perhaps more consequential, difference
is the length scale. The gluon fields depend on the transverse coordinate with a typical length scale 1/Qs, which we are
assuming to be a weak coupling momentum scale. This is in contrast to Lund strings, whose width and string tension
are understood as confinement scale quantities. This means that for Lund strings, the energy is stored in the potential
energy of the string. The beam particles are constantly stretching the string and transferring energy to the central rapidity
region. This energy is then eventually released in a nonperturbative mechanism of string breaking via the Schwinger
mechanism. For the glasma, on the other hand, the field modes can be interpreted as gluons with typical transverse
momenta kT ∼ Qs. They can scatter, turn into a quark-gluon plasma, and then eventully hadronize by some mechanism
which a weak coupling calculation cannot capture. The energy is not stored in potential energy, but in the kinetic energy
(momentum) of these gluonic modes. After the collision, the beams (the currents) are gone and are no longer transfering
energy to the midrapidity region. This means that the energy at an early stage in the collision (say τ ∼ 1fm) is larger in
the glasma picture: all the energy is already there, while in the Lund string picture the midrapidity region is still gaining
energy by pulling back on the receding beams (and other hard particles) that are stretching the strings.

Inside the future light cone the field equations have to be solved numerically. This can be done with
relatively standard real time lattice gauge field methods.
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In this plot the transverse field notation means

E2
T = E2

x + E2
y (126)

B2
T = B2

x +B2
y (127)

It is interesting to see what this means in terms of the energy momentum tensor. For pure gauge Yang-Mills
theory the diagonal components are given by

ε = =
1

2

[
E2

x + E2
y + E2

z +B2
x +B2

y +B2
z

]
(128)

px = =
1

2

[
−E2

x + E2
y + E2

z −B2
x +B2

y +B2
z

]
(129)

py = =
1

2

[
E2

x − E2
y + E2

z +B2
x −B2

y +B2
z

]
(130)

pz = =
1

2

[
E2

x + E2
y − E2

z +B2
x +B2

y −B2
z

]
(131)

At the initial condition one starts with negative longitudinal pressure pz = −px = −pz = −ε. This is

31



similar to the longitudinal chromoelectric field in a QCD string, which has a string tension, i.e. negative
longitudinal pressure. here is a plot from [60]:
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After a time τ ∼ 1/Qs the negative pressure approaches zero, and the transverse pressure becomes half
of the energy density. This is the starting point for the isotropization of the system, which requires going
beyond the classical approximation.

8.3 Gluon spectrum
In order to interpret these fields in terms of a number density of gluons (which is possible only after a time
τ ≳ 1/Qs), one needs to decompose the solution in Fourier k⊥-modes. Knowing that this is a one scale
problem, with the only dimensionful scale, one knows already beforehand that the gluon number distribution
has to have the parametric form

dNg

dy d2x⊥ d2p⊥
=

1

αs
f

(
pT
Qs

)
(132)

In the dilute limit one can recover a perturbative kT -factorization result for the gluon density. One first
has to transform the fields to transverse Coulomb gauge ∂iAi = 0; this is done using an additional gauge
freedom in the Fock-Schwinger gauge to perform τ -independent gauge transformations. Assuming that the
fields are small, one neglects the nonlinear terms in the equations of motion for τ > 0. The linearized
equations are then wave equations in an expanding geometry, separately for each transverse momentum
mode.

(
τ 2∂2τ + τ∂τ + τ 2k2⊥

)
Ai (τ , k⊥) = 0 (133)(

τ 2∂2τ − τ∂τ + τ 2k2⊥
)
Aη(τ , k⊥) = 0. (134)

=⇒ Ai (τ , k⊥) = Ai (τ = 0, k⊥)J0(|k⊥|τ) Aη(τ , k⊥) = − 1

τ |k⊥|
Aη(τ = 0, k⊥)J1(|k⊥|τ).

(135)

• These modes are (boost invariant) plane waves. Thus they can be interpreted as particles, gluons.

• In this approximation (interactions only at τ = 0, free propagation after that), there is no contradiction
between a classical field and particle description of the fields. The negative longitudinal pressure at
τ = 0 is due to the boost invariance of the situation. This imposes a specific restriction on the two
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Figure 2: Full CYM calculation and different kT -factorized approximations (with a cutoff on the momentum
from one or the other nucleus). Left: dilute-dense case with very small g2µ for one nucleus. Right: dense-
dense case with similar g2µ for both nuclei. These plots are from [62].

possible linear polarization states for gluons with only transverse momentum. The polarization state
with a electric field in the z-direction and a magnetic field in a transverse direction starts in a phase
where there is only an electric field, whereas the other polarization state with a magnetic field in the
z-direction and an elecric field in a transverse direction has to start in a phase where there is only
a magnetic field. The different modes present in these two polarization states oscillate in time with
slightly different frequencies, and later get out of sync. Thus after a time τ ∼ 1/Qs the phases of
these oscillations are more randomly distributed, and the energy momentum tensor is just dictated by
the boost invariance, i.e. absence of longitudinal momentum, i.e. zero longitudinal pressure.

• The initial fields related to Wilson lines, and via that to the dipole amplitude measured in DIS.

In this dilute limit, when we have turned off all the interactions between the gluons after τ = 0 and
expanded the color fields of both nuclei to the lowest nontrivial order in their color charge densities, the
number distribution is given by a kT -factorization formula

dN
dy d2k⊥

=
αs

S⊥

2

CF

1

kT
2

∫
d2q⊥φ

dip(q⊥)φ
dip(|k⊥ − q⊥|), (136)

with S⊥ the transverse area of the nuclei, and φdip(q⊥) the dipole distribution obtained from the Fourier-
transform of the dipole operator (see Eq. (98), exact coefficients convention-dependent, [TBD: need to fix]).
This calculation can also be repeated by assuming that one of the two colliding objects is dilute (a theorist’s
“pA” collision) [61].

However, no such analytic calculation exists for a dense-dense system , an “AA” collision. Also in the
“AA” case, one can numerically verify that the kT -factorization formula works for high kT gluons. However,
beacuse of the explicit 1/kT 2 in front, it cannot be integrated to give a finite total gluon multiplicity. The
full result of the numerical calculation, on the other hand, can. Sometimes this is fixed by an ad hoc cutoff

dN
d2p⊥ dy

=
1

αs

1

p⊥2

∫
k⊥

[
θ(pT − kT )

]
ϕy(k⊥)ϕy(p⊥ − k⊥) (137)

Figure 2 shows a comparison of the kT -factorized formula (136) to the result of the full CYM calculation,
and also to the version with the cutoffs (137). The calculation for the dilute-dense case is done in the MV
model with two very different values for g2µ in the two colliding nuclei: in this case the result for ad hoc
cutoff depends very much on whether one cuts off the spectrum at kT < pT or |p⊥ − k⊥| < pT . The plot
on the right in the same figure shows the same comparison in the case of a dense-dense collision, where the
kT -factorization formula does not work for kT ≲ Qs.

Figure 3 shows a comparison with experimental data from pA collisions; the theory predictions here
are calculated with the kT -factorization formula (136), combined with fragmentation functions to turn the
produced gluons into hadrons.
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Figure 3: Comparison of CGC calculations to ALICE data on midrapidity nuclear modifications to single
particle production. The plot is from ALICE [17], the “rcBK” and “IPsat” CGC calculations from [63]
and the “rcBK-MC”-calculation from [64]; the difference between these is mostly in how one goes from
a unintegrated gluon distribution in a proton to that in a nucleus, less in the formalism of how the particle
spectrum is computed.
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