The Piezoaxionic Effect

Amalia Madden - Perimeter Institute for Theoretical Physics Based on work w/ Asimina Arvanitaki (PI) and Ken Van Tilburg (NYU)

Outline

Motivation

The QCD axion

The Piezoaxionic Effect

P and T violation in nuclei, atoms and crystals

Proposed experimental setup and sensitivity

The Ferroaxionic Effect

Axion-mediated forces

Strong CP Problem • Experimentally, $d_n \lesssim 10^{-26} \cdot e \cdot \text{cm} \Longrightarrow |\bar{\theta}| < 10^{-10}$

•
$$\mathscr{L}_{SM} \supset \frac{\theta_0}{32\pi^2} \operatorname{tr} G\tilde{G}$$

- Physical angle $\bar{\theta} = \theta_0 + \arg \det[M_a]$
- Neutron EDM of size $d_n \sim \bar{\theta} \cdot 10^{-16} \cdot e \cdot cm$

•
$$\mathscr{L} \supset \frac{a}{32\pi^2 f_a} \operatorname{tr} G\tilde{G} \operatorname{dynamically}$$

y solves strong CP problem

Photon vs Gluon Couplings

https://cajohare.github.io/AxionLimits/

 10^{-7} 10^{-8} 10^{-9} 10^{-10} -10^{-11} 10⁻¹² 10^{-10} 10^{-14} -15-10⁻ -10^{-16} $= 10^{-17}$ ₹10⁻¹⁸ ₹ 10⁻¹⁹ 10⁻²⁰ **⊑** 10^{−21} $= 10^{-22}$

• Locally,
$$a(t) \approx a_0 \cos \frac{m_a c^2}{\hbar} t$$

• Amplitude
$$a_0 \propto \frac{\sqrt{\rho_{DM}}}{m_a}$$

 Small frequency spread (coherence) $\delta \omega_a \approx \frac{r}{\hbar} \omega_a \approx 10^{-6} \omega_a$

Wavy Dark Matter

Bosonic DM has wave-like properties when $n_{DM} > \frac{1}{\lambda_{DM}^3}$. In our galaxy: $m_{DM} < 1 eV$.

Dark matter production

• $\ddot{a} + 3H(T)\dot{a} + m^2a = 0$ (H = Hubble parameter)

• m < 3H: frozen

• m > 3H: oscillates around minimum

 $\frac{\rho_a}{---} = 0.25 < \theta_{initial}^2 > \left(\right.$ f_a 5×10^{12} GeV / ρ_{total} and scales as a^{-3}

$m_a \sim 6 \times 10^{-11}$

$$eV\left(\frac{10^{17}GeV}{f_a}\right)$$

The Piezoaxionic Effect

Axion DM background

$$\mathscr{L} \supset \frac{a}{f_a}$$

Piezoelectric Crystals

- Crystal structure breaks parity symmetry $(x, y, z) \neq (-x, -y, -z)$
- Deformation causes electric dipole moment across unit cell (and vice versa).

Oxygen Atom

Constitutive Equations for Piezoelectricity

 $- h \cdot \text{Strain} + \frac{1}{\epsilon}$ Electric Displacement **Electric Field** ϵ

Permittivity

parity even parity odd time-reversal odd **Electric** $- \xi \theta_a(t) \cdot$ **Displacement**

Piezoaxionic

Nuclear Spin Direction

 $- \zeta \theta_a(t) \cdot$

Nuclear Spin Direction

Electroaxionic

present in piezoelectric materials.

present in all dielectrics.

The piezoaxionic tensor ξ is ODD under parity, and can only be

The electroaxionic tensor ζ is EVEN under parity, and can be

We will focus on ξ in this talk!

How big is the piezoaxionic effect?

QCD axion dark matter induces an oscillating nuclear electric dipole moment (EDM):

$$d_n \sim 10^{-16} \frac{\sqrt{\rho_{DM}}}{m_a f_a} \cos \mu$$

EDM generates an oscillating stress on unit cell:

 $m_a t \cdot \mathbf{e} \cdot \mathbf{cm}$

Schiff Suppression

If we treat an atom as a system of **static**, **point-like** particles, nuclear EDM is perfectly shielded by electron cloud [Schiff 1963].

Resolution: Schiff's theorem violated by <u>finite</u> size effects:

$$V_e = 4\pi e \,\mathscr{S} \cdot \nabla(\delta_e(\mathbf{r}))$$

$$\mathscr{S} \sim e \frac{\bar{\theta}_a}{m_N} R_0^2 \propto A^{2/3} \qquad \text{non-deform}$$

$$\mathscr{S} \sim e Z \frac{\bar{\theta}_a}{m_N} R_0^2 \propto Z A^{2/3} \qquad \text{pear shaped}$$

ned nuclei

d nuclei

opposite parity orbitals ϵ_s and ϵ_p :

 $|\psi\rangle_{\rho} =$

The piezoaxionic tensor can be estimated as: \bullet $\xi \sim \partial_{Strain} \frac{\langle H_{Schiff} \rangle}{V_{cell}} \simeq \frac{Z^2}{a_0^4} \frac{dS}{d\theta_a} \times \frac{N_s}{V_{cell}} \frac{\partial(\epsilon_s \epsilon_p^*)}{\partial_{Strain}} \sim \frac{O(1)}{\text{Bigger in strong}}$

In a piezoelectric crystal, the ground state electron wave function is a mixture of

$$\epsilon_s |s\rangle + \epsilon_p |p\rangle$$

Bigger in strongly piezoelectric materials

elastic stiffness tensor

Axion theta angle \propto

 \hat{I} = nuclear spin direction

Resonant Mass Detectors

In the 1960's: Weber Bar, $S \sim 10^{-17}$

AURIGA, NAUTILUS, MiniGrail, $S \sim 10^{-25}$

0.1 - 1kHz

Goryachev et al. 2014 $S \sim 10^{-22}$

MHz - GHz

Experimental Setup

- 1. Find a piezoelectric material with low mechanical noise and big Schiff moments
- 2. Cool to ~ mK
- 3. Align nuclear spins using a magnetic field
- 4. Measure tiny oscillating voltage using a SQUID

Materials

Piezoelectric make up a large class of materials - 20 out of 32 symmetry groups!

- High density of nuclei with large Schiff momand low radioactivity
- Good acoustic properties (high Q-factor)
- Strong piezoelectric properties
- Structural similarity to well-known resonator crystals.

	Class	Candidates	Similar Crystals
ents		$Na \mathbf{Dy} H_2 S_2 O_9$	SiO_2 (quartz)
	32		$Ga_5La_3SiO_{14}$ (langasite)
		$\mathbf{Bi}\mathrm{PO}_4$	$GaPO_4$ (gallium orthophosphate)
	$3\mathrm{m}$	\mathbf{UOF}_4	tourmaline
		UCa	$LINDO_3$ (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	4mm	$\mathbf{Dy}\mathrm{Si}_{3}\mathrm{Ir}\ \mathbf{Dy}\mathrm{Ag}\mathrm{Se}_{2}$	$Li_2B_4O_7$ (lithium tetraborate)
	$\bar{4}2m$	$\mathbf{Dy} \operatorname{AgTe}_2 \\ \mathbf{Dy}_2 \operatorname{Be}_2 \operatorname{GeO}_7$	NH ₆ PO ₄ (ADP) KH ₂ PO ₄ (KDP)
-	$\mathrm{mm2}$	$\mathbf{U}\mathrm{CO}_5$	$Ba_2NaNb_5O_{15}$ (barium sodium nioba

Candidate materials collected from the database at https://materialsproject.org/

Scanning

- Grow a series of crystals of different thicknesses
- Vary electrical resonance frequency using capacitor and inductor

Fluctuating nuclear spins Small effect

Fluctuating magnetic impurities in material ≲ppm

Vibrational noise Systematic, demonstrated at AURIGA

Noise[•]

Thermal noise limited, main sources: crystal mechanical noise and SQUID noise

Magnetization noise \rightarrow fictitious EMF

Idealized Forecast

*parameter space above QCD axion line tuned in mass and vacuum alignment

BBN: K. Blum, R. T. D'Agnolo, M. Lisanti, B. R. Safdi (2014)

Sun: A. Hook, J. Huang (2018)

WDs: R Balkin, J Serra, K Springmann, S Stelzl, A Weiler (2022)

Superradiance: A. Arvanitaki, S. Dubovsky (2011)

GWs: J. Zhang, Z. Lyu, J. Huang, M. C. Johnson, L. Sagunski, M. Sakellariadou, H. Yang (2021).

Axion-Electron Coupling

 $H_{aee} \simeq -\frac{G_{aee}}{2}\sigma_e \cdot \left(\nabla a + \dot{a} \frac{\mathbf{p}_e}{\mathbf{k}} \right)$ **P EVEN** P ODD T ODD **T EVEN**

G_{aee} [GeV⁻¹]

- Precise Schiff moment calculations for stable, octupole deformed nuclei
- Density functional theory (DFT) calculations for ξ and ζ
- Experimental investigation of suitable materials

Future Directions

1880: Curie brothers discover "direct" piezoelectric effect Stress -> Charge

1881: Gabriel Lippman predicts "converse" effect from thermodynamics Charge->Stress

Curie brothers experimentally verify

Ferroaxionic effect

 $\mathscr{L} \supset \frac{a}{f} G \tilde{G}$

(As seen yesterday in Andy Geraci's talk!)

 $\mathscr{L} \supset G_{aNN} \nabla a \cdot \sigma_N$

 $\left(\Box + m^2\right)a = \underline{g_s}n_N$ $\underbrace{g_s}_{s} \simeq \frac{4\pi e}{Af_a} \frac{\partial \mathcal{S}}{\partial \theta_a} \mathcal{M}_e \cdot \mathbf{I}$

parity odd time-reversal odd

\mathcal{M}_{ρ} , the electronic matrix element, inherits its direction from the electric polarization vector of the ferroelectric

Spin-polarized Source mass

 σ_1

Summary

- QCD axion DM can excite vibrational modes in piezoelectric crystals via its model-independent coupling to gluons.
- Ferroelectric crystals can source QCD axion mediated forces, that could be detected using an NMR sample.

Complimentary to cavity experiments

 10^{-12}

 10^{-6}

 10^{-5}

 10^{-4}

axion mass m_a [eV]

10⁻³

 10^{-6}

 10^{9}

QCD axior,

= 4096 × 8

 $0.01 \times 1 \times 1 \,\text{mm}^3$

 $\eta_{SQ} = 20$

10⁻²

 10^{-1}