## Quantum Principal Bundles over non affine bases

#### Rita Fioresi, FaBiT, Unibo

July 10, 2023



#### Marie Curie Staff Exchange CaLIGOLA:

**Title**: Cartan geometry, Lie and representation theory, Integrable Systems, quantum Groups and quantum computing towards the understanding of the geometry of deep Learning and its Applications

**Abstract**: CaLIGOLA aims at advancing the research in Cartan Geometry, Lie Theory, Integrable Systems and Quantum Groups to provide insight into a variety of multidisciplinary fields oriented towards the applications with a special interest in machine learning and quantum computing.



4 3 5 4 3

#### Marie Curie Staff Exchange CaLIGOLA:

**Title**: Cartan geometry, Lie and representation theory, Integrable Systems, quantum Groups and quantum computing towards the understanding of the geometry of deep Learning and its Applications

**Abstract**: CaLIGOLA aims at advancing the research in Cartan Geometry, Lie Theory, Integrable Systems and Quantum Groups to provide insight into a variety of multidisciplinary fields oriented towards the applications with a special interest in machine learning and quantum computing.

Unibo website:

https://site.unibo.it/caligola/en

4 3 5 4 3

#### Hypotheses:

• *G* complex semisimple algebraic group.



#### Hypotheses:

- *G* complex semisimple algebraic group.
- P a closed algebraic subgroup of G (P parabolic).



#### Hypotheses:

- *G* complex semisimple algebraic group.
- P a closed algebraic subgroup of G (P parabolic).
- $\chi: P \longrightarrow \mathbb{C}^{\times}$  a character of P.



医下子 医

#### Hypotheses:

- *G* complex semisimple algebraic group.
- P a closed algebraic subgroup of G (P parabolic).
- $\chi: P \longrightarrow \mathbb{C}^{\times}$  a character of P.
- $\mathcal{L}$  is a line bundle on G/P associated with  $\chi$ , with global sections:



3 1 4 3

#### Hypotheses:

- *G* complex semisimple algebraic group.
- P a closed algebraic subgroup of G (P parabolic).
- $\chi: P \longrightarrow \mathbb{C}^{\times}$  a character of P.
- $\mathcal{L}$  is a line bundle on G/P associated with  $\chi$ , with global sections:

$$\mathcal{O}(G/P)_1 = \{f: G \longrightarrow \mathbb{C} \mid f(gh) = \chi^{-1}(h)f(g)\}$$



3 1 4 3

#### Hypotheses:

- *G* complex semisimple algebraic group.
- P a closed algebraic subgroup of G (P parabolic).
- $\chi: P \longrightarrow \mathbb{C}^{\times}$  a character of P.
- $\mathcal{L}$  is a line bundle on G/P associated with  $\chi$ , with global sections:

$$\mathcal{O}(G/P)_1 = \{f: G \longrightarrow \mathbb{C} \mid f(gh) = \chi^{-1}(h)f(g)\}$$

•  $\mathcal{L}$  (ample) gives a projective embedding of G/P.



#### Hypotheses:

- *G* complex semisimple algebraic group.
- P a closed algebraic subgroup of G (P parabolic).

• 
$$\chi: P \longrightarrow \mathbb{C}^{\times}$$
 a character of  $P$ .

•  $\mathcal{L}$  is a line bundle on G/P associated with  $\chi$ , with global sections:

$$\mathcal{O}(G/P)_1 = \{f: G \longrightarrow \mathbb{C} \mid f(gh) = \chi^{-1}(h)f(g)\}$$

•  $\mathcal{L}$  (ample) gives a projective embedding of G/P. The *coordinate (graded) algebra of the variety* G/P with respect to the projective embedding is



#### Hypotheses:

- *G* complex semisimple algebraic group.
- P a closed algebraic subgroup of G (P parabolic).

• 
$$\chi: P \longrightarrow \mathbb{C}^{\times}$$
 a character of  $P$ .

•  $\mathcal{L}$  is a line bundle on G/P associated with  $\chi$ , with global sections:

$$\mathcal{O}(G/P)_1 = \{f: G \longrightarrow \mathbb{C} \mid f(gh) = \chi^{-1}(h)f(g)\}$$

•  $\mathcal{L}$  (ample) gives a projective embedding of G/P. The *coordinate (graded) algebra of the variety* G/P with respect to the projective embedding is

$$\mathcal{O}(G/P)$$
 :=  $\sum \mathcal{O}(G/P)_n$ , where

$$\mathcal{O}(G/P)_n := \{f: G \longrightarrow \mathbb{C} \mid f(gh) = \chi^{-n}(h)f(g)\}$$



3 1 4



★ ∃ → ★ ∃

Here

$$G = \operatorname{SL}_2(\mathbb{C}), \qquad P = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}, \qquad \mathbb{P}^1(\mathbb{C}) = \operatorname{SL}_2(\mathbb{C})/P$$



• • = • • =

Here

$$G = \operatorname{SL}_2(\mathbb{C}), \qquad P = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}, \qquad \mathbb{P}^1(\mathbb{C}) = \operatorname{SL}_2(\mathbb{C})/P$$

We define the character of P:



Here

$$G = \operatorname{SL}_2(\mathbb{C}), \qquad P = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}, \qquad \mathbb{P}^1(\mathbb{C}) = \operatorname{SL}_2(\mathbb{C})/P$$

We define the character of P:

$$\chi: P \longrightarrow \mathbb{C}^{\times}, \qquad \chi \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{0} & \mathsf{d} \end{pmatrix} = \mathsf{a}^{-1}$$

The corresponding line bundle has sections:



Here

$$G = \operatorname{SL}_2(\mathbb{C}), \qquad P = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}, \qquad \mathbb{P}^1(\mathbb{C}) = \operatorname{SL}_2(\mathbb{C})/P$$

We define the character of P:

$$\chi: P \longrightarrow \mathbb{C}^{\times}, \qquad \chi \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{0} & \mathsf{d} \end{pmatrix} = \mathsf{a}^{-1}$$

The corresponding line bundle has sections:

$$\mathcal{O}(\mathbb{P}^1)_1 = \{ \hat{a}, \hat{c} : \operatorname{SL}_2(\mathbb{C}) \longrightarrow \mathbb{C} \}$$

$$\mathcal{O}(\mathbb{P}^1) = \mathbb{C}[\hat{a}, \hat{c}] \subset \mathbb{C}[\operatorname{SL}_2] = \mathbb{C}[\hat{a}, \hat{b}, \hat{c}, \hat{d}]/(\hat{a}\hat{d} - \hat{c}\hat{b} - 1)$$

In fact

Here

$$G = \operatorname{SL}_2(\mathbb{C}), \qquad P = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}, \qquad \mathbb{P}^1(\mathbb{C}) = \operatorname{SL}_2(\mathbb{C})/P$$

We define the character of P:

$$\chi: P \longrightarrow \mathbb{C}^{\times}, \qquad \chi \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{0} & \mathsf{d} \end{pmatrix} = \mathsf{a}^{-1}$$

The corresponding line bundle has sections:

$$\mathcal{O}(\mathbb{P}^1)_1 = \{ \hat{a}, \hat{c} : \operatorname{SL}_2(\mathbb{C}) \longrightarrow \mathbb{C} \}$$

$$\mathcal{O}(\mathbb{P}^1) = \mathbb{C}[\hat{a},\hat{c}] \subset \mathbb{C}[\operatorname{SL}_2] = \mathbb{C}[\hat{a},\hat{b},\hat{c},\hat{d}]/(\hat{a}\hat{d}-\hat{c}\hat{b}-1)$$

In fact

$$\hat{a} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix} = aa' = \chi \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix} \hat{a} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$



• = • • =

Here

$$G = \mathrm{SL}_4(\mathbb{C}), \qquad P = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}, \qquad G(2,4) = \mathrm{SL}_4(\mathbb{C})/P$$



Here

$$G = \mathrm{SL}_4(\mathbb{C}), \qquad P = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}, \qquad G(2,4) = \mathrm{SL}_4(\mathbb{C})/P$$

We define the character of P:



Here

$$G = \mathrm{SL}_4(\mathbb{C}), \qquad P = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}, \qquad G(2,4) = \mathrm{SL}_4(\mathbb{C})/P$$

We define the character of P:

$$\chi: P \longrightarrow \mathbb{C}^{\times}, \qquad \chi \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = det(a)^{-1}$$

The corresponding line bundle has sections:



Here

$$G = \mathrm{SL}_4(\mathbb{C}), \qquad P = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}, \qquad G(2,4) = \mathrm{SL}_4(\mathbb{C})/P$$

We define the character of P:

$$\chi: P \longrightarrow \mathbb{C}^{\times}, \qquad \chi \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = det(a)^{-1}$$

The corresponding line bundle has sections:

$$\mathcal{O}(G(2,4))_1 = \{ d_{ij} : \mathrm{SL}_4(\mathbb{C}) \longrightarrow \mathbb{C} \mid d_{ij} = a_{i1}a_{j2} - a_{j1}a_{i2} \},\$$

$$\mathcal{O}(G/P) = \mathbb{C}[d_{ij}] \subset \mathbb{C}[G]$$

Here

$$G = \mathrm{SL}_4(\mathbb{C}), \qquad P = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}, \qquad G(2,4) = \mathrm{SL}_4(\mathbb{C})/P$$

We define the character of P:

$$\chi: P \longrightarrow \mathbb{C}^{\times}, \qquad \chi \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{0} & \mathsf{d} \end{pmatrix} = \mathsf{det}(\mathsf{a})^{-1}$$

The corresponding line bundle has sections:

$$\mathcal{O}(G(2,4))_1 = \{ d_{ij} : \mathrm{SL}_4(\mathbb{C}) \longrightarrow \mathbb{C} \mid d_{ij} = a_{i1}a_{j2} - a_{j1}a_{i2} \},\$$

$$\mathcal{O}(G/P) = \mathbb{C}[d_{ij}] \subset \mathbb{C}[G]$$

Since  $\chi \in \mathbb{C}[P]$ , the property  $f(gh) = \chi(h)^{-1}f(g)$  in terms of Hopf algebras reads:



Here

$$G = \mathrm{SL}_4(\mathbb{C}), \qquad P = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}, \qquad G(2,4) = \mathrm{SL}_4(\mathbb{C})/P$$

We define the character of P:

$$\chi: P \longrightarrow \mathbb{C}^{\times}, \qquad \chi \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{0} & \mathsf{d} \end{pmatrix} = \mathsf{det}(\mathsf{a})^{-1}$$

The corresponding line bundle has sections:

$$\mathcal{O}(G(2,4))_1 = \{ d_{ij} : \mathrm{SL}_4(\mathbb{C}) \longrightarrow \mathbb{C} \mid d_{ij} = a_{i1}a_{j2} - a_{j1}a_{i2} \},\$$

$$\mathcal{O}(G/P) = \mathbb{C}[d_{ij}] \subset \mathbb{C}[G]$$

Since  $\chi \in \mathbb{C}[P]$ , the property  $f(gh) = \chi(h)^{-1}f(g)$  in terms of Hopf algebras reads:

$$(1 \otimes \pi)\Delta(f) = \chi^{-1} \otimes f$$
, for  $\pi : \mathbb{C}[G] \longrightarrow \mathbb{C}[P]$ 



**Proposition**. If G/H is embedded in  $\mathbb{P}^m$  via a line bundle, then there exists  $t \in \mathbb{C}[G]$  such that  $\pi(t) = \chi^{-1}$  and with the property:



**Proposition**. If G/H is embedded in  $\mathbb{P}^m$  via a line bundle, then there exists  $t \in \mathbb{C}[G]$  such that  $\pi(t) = \chi^{-1}$  and with the property:

 $(1\otimes\pi)\Delta(t)=t\otimes\pi(t)$ 

This t determines uniquely the line bundle, hence the projective embedding.



**Proposition**. If G/H is embedded in  $\mathbb{P}^m$  via a line bundle, then there exists  $t \in \mathbb{C}[G]$  such that  $\pi(t) = \chi^{-1}$  and with the property:

 $(1\otimes\pi)\Delta(t)=t\otimes\pi(t)$ 

This t determines uniquely the line bundle, hence the projective embedding.

$$\mathcal{O}(G/P)_n = \{f \in \mathcal{O}(G) \,|\, (1 \otimes \pi) \Delta(f) = f \otimes \pi(t^n)\}$$



**Proposition**. If G/H is embedded in  $\mathbb{P}^m$  via a line bundle, then there exists  $t \in \mathbb{C}[G]$  such that  $\pi(t) = \chi^{-1}$  and with the property:

 $(1\otimes\pi)\Delta(t)=t\otimes\pi(t)$ 

This t determines uniquely the line bundle, hence the projective embedding.

$$\mathcal{O}(G/P)_n = \{f \in \mathcal{O}(G) \mid (1 \otimes \pi) \Delta(f) = f \otimes \pi(t^n)\}$$

Example.



**Proposition**. If G/H is embedded in  $\mathbb{P}^m$  via a line bundle, then there exists  $t \in \mathbb{C}[G]$  such that  $\pi(t) = \chi^{-1}$  and with the property:

 $(1\otimes\pi)\Delta(t)=t\otimes\pi(t)$ 

This t determines uniquely the line bundle, hence the projective embedding.

$$\mathcal{O}(G/P)_n = \{ f \in \mathcal{O}(G) \,|\, (1 \otimes \pi) \Delta(f) = f \otimes \pi(t^n) \}$$

**Example.** For G/P = G(2, 4) and the Plucker embedding,  $t = a_{11}a_{22} - a_{21}a_{12}$ .



**Proposition**. If G/H is embedded in  $\mathbb{P}^m$  via a line bundle, then there exists  $t \in \mathbb{C}[G]$  such that  $\pi(t) = \chi^{-1}$  and with the property:

 $(1\otimes\pi)\Delta(t)=t\otimes\pi(t)$ 

This t determines uniquely the line bundle, hence the projective embedding.

$$\mathcal{O}(G/P)_n = \{f \in \mathcal{O}(G) \,|\, (1 \otimes \pi) \Delta(f) = f \otimes \pi(t^n)\}$$

**Example.** For G/P = G(2, 4) and the Plucker embedding,  $t = a_{11}a_{22} - a_{21}a_{12}$ .

$$\mathcal{O}(G/P) = \mathbb{C}[d_{ij}] \subset \mathbb{C}[G]$$



**Proposition**. If G/H is embedded in  $\mathbb{P}^m$  via a line bundle, then there exists  $t \in \mathbb{C}[G]$  such that  $\pi(t) = \chi^{-1}$  and with the property:

 $(1\otimes\pi)\Delta(t)=t\otimes\pi(t)$ 

This t determines uniquely the line bundle, hence the projective embedding.

$$\mathcal{O}(G/P)_n = \{f \in \mathcal{O}(G) \,|\, (1 \otimes \pi) \Delta(f) = f \otimes \pi(t^n)\}$$

**Example.** For G/P = G(2, 4) and the Plucker embedding,  $t = a_{11}a_{22} - a_{21}a_{12}$ .

$$\mathcal{O}(G/P) = \mathbb{C}[d_{ij}] \subset \mathbb{C}[G]$$

*t* is the object we will quantize to obtain a quantum homogeneous projective space.



Let  $\mathbb{C}_q := \mathbb{C}[q, q^{-1}]$ , where q is an indeterminate.



Let  $\mathbb{C}_q := \mathbb{C}[q, q^{-1}]$ , where q is an indeterminate.  $\mathbb{C}_q[G]$  is a *quantum group* if:



∃ ▶ ∢

Let  $\mathbb{C}_q := \mathbb{C}[q, q^{-1}]$ , where q is an indeterminate.  $\mathbb{C}_q[G]$  is a *quantum group* if:



∃ ▶ ∢
Let  $\mathbb{C}_q := \mathbb{C}[q, q^{-1}]$ , where q is an indeterminate.  $\mathbb{C}_q[G]$  is a *quantum group* if:

•  $\mathbb{C}_q[G]$  is a Hopf algebra over  $\mathbb{C}_q$ 



3 🕨 🖌 3

Let  $\mathbb{C}_q := \mathbb{C}[q, q^{-1}]$ , where q is an indeterminate.  $\mathbb{C}_q[G]$  is a *quantum group* if:

- $\mathbb{C}_q[G]$  is a Hopf algebra over  $\mathbb{C}_q$
- **2**  $\mathbb{C}_q[G]$  is torsion-free, as a  $\mathbb{C}_q$ -module;



Let  $\mathbb{C}_q := \mathbb{C}[q, q^{-1}]$ , where q is an indeterminate.  $\mathbb{C}_q[G]$  is a *quantum group* if:

- $\mathbb{C}_q[G]$  is a Hopf algebra over  $\mathbb{C}_q$
- **2**  $\mathbb{C}_q[G]$  is torsion-free, as a  $\mathbb{C}_q$ -module;



Let  $\mathbb{C}_q := \mathbb{C}[q, q^{-1}]$ , where q is an indeterminate.  $\mathbb{C}_q[G]$  is a *quantum group* if:

- $\mathbb{C}_q[G]$  is a Hopf algebra over  $\mathbb{C}_q$
- 2  $\mathbb{C}_q[G]$  is torsion-free, as a  $\mathbb{C}_q$ -module;
- The  $\mathbb{C}_q$  algebra  $\mathcal{O}_q(X)$  is a *quantization* of  $\mathcal{O}(X)$  if
  - it is torsion-free



4 3 5 4 3

Let  $\mathbb{C}_q := \mathbb{C}[q, q^{-1}]$ , where q is an indeterminate.  $\mathbb{C}_q[G]$  is a *quantum group* if:

• 
$$\mathbb{C}_q[G]$$
 is a Hopf algebra over  $\mathbb{C}_q$ 

2 
$$\mathbb{C}_q[G]$$
 is torsion-free, as a  $\mathbb{C}_q$ –module;

The  $\mathbb{C}_q$  algebra  $\mathcal{O}_q(X)$  is a *quantization* of  $\mathcal{O}(X)$  if

• it is torsion-free

• 
$$\mathcal{O}_q(X)/(q-1)\mathcal{O}_q(X) \cong \mathcal{O}(X)$$
.

If X is a projective variety, then we associate to it the  $\mathbb{Z}$ -graded algebra  $\mathcal{O}(X)$  obtained through its embedding into  $\mathbb{P}^m$ .



Let  $\mathbb{C}_q := \mathbb{C}[q, q^{-1}]$ , where q is an indeterminate.  $\mathbb{C}_q[G]$  is a *quantum group* if:

• 
$$\mathbb{C}_q[G]$$
 is a Hopf algebra over  $\mathbb{C}_q$ 

**2**  $\mathbb{C}_q[G]$  is torsion-free, as a  $\mathbb{C}_q$ -module;

The  $\mathbb{C}_q$  algebra  $\mathcal{O}_q(X)$  is a *quantization* of  $\mathcal{O}(X)$  if

• it is torsion-free

• 
$$\mathcal{O}_q(X)/(q-1)\mathcal{O}_q(X) \cong \mathcal{O}(X)$$
.

If X is a projective variety, then we associate to it the  $\mathbb{Z}$ -graded algebra  $\mathcal{O}(X)$  obtained through its embedding into  $\mathbb{P}^m$ . If X is an homogenous space for G, then  $\mathcal{O}(X)$  admits a natural coaction of  $\mathbb{C}[G]$ .



Let  $\mathbb{C}_q := \mathbb{C}[q, q^{-1}]$ , where q is an indeterminate.  $\mathbb{C}_q[G]$  is a *quantum group* if:

• 
$$\mathbb{C}_q[G]$$
 is a Hopf algebra over  $\mathbb{C}_q$ 

2 
$$\mathbb{C}_q[G]$$
 is torsion-free, as a  $\mathbb{C}_q$ –module;

The  $\mathbb{C}_q$  algebra  $\mathcal{O}_q(X)$  is a *quantization* of  $\mathcal{O}(X)$  if

• it is torsion-free

• 
$$\mathcal{O}_q(X)/(q-1)\mathcal{O}_q(X)\cong \mathcal{O}(X)$$
.

If X is a projective variety, then we associate to it the  $\mathbb{Z}$ -graded algebra  $\mathcal{O}(X)$  obtained through its embedding into  $\mathbb{P}^m$ . If X is an homogenous space for G, then  $\mathcal{O}(X)$  admits a natural coaction of  $\mathbb{C}[G]$ .

We say that  $\mathcal{O}_q(X)$  is a **quantum homogeneous variety**, if  $\mathcal{O}_q(X)$  admits a coaction of the quantum group  $\mathbb{C}_q[G]$ , reducing to the coaction of  $\mathbb{C}[G]$  on  $\mathcal{O}(X)$  when q = 1.

#### Quantum Line Bundles



Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases





$$d \mod (q-1)\mathbb{C}_q[G] = t \qquad \big( \in \mathbb{C}[G] \big)$$



• 
$$\Delta(d) \in (d \otimes d + \mathbb{C}_q[G] \otimes I_q(P))$$
  
•  $d \mod (q-1)\mathbb{C}_q[G] = t \quad (\in \mathbb{C}[G])$   
where  $\pi : \mathbb{C}_q[G] \longrightarrow \mathbb{C}_q[P] := \mathbb{C}_q[G]/I_q(P).$ 



• 
$$\Delta(d) \in (d \otimes d + \mathbb{C}_q[G] \otimes I_q(P))$$

where  $\pi : \mathbb{C}_q[G] \longrightarrow \mathbb{C}_q[P] := \mathbb{C}_q[G]/I_q(P)$ .

A quantum section is a quantization of a line bundle on G/P, hence of a projective embedding of G/P.



• 
$$\Delta(d) \in (d \otimes d + \mathbb{C}_q[G] \otimes I_q(P))$$
  
•  $d \mod (q-1)\mathbb{C}_q[G] = t \quad (\in \mathbb{C}[G]$   
where  $\pi : \mathbb{C}_q[G] \longrightarrow \mathbb{C}_q[P] := \mathbb{C}_q[G]/I_q(P).$ 

A quantum section is a quantization of a line bundle on G/P, hence of a projective embedding of G/P.

Define:

$$\mathcal{O}_q(G/P) := \sum \mathcal{O}_q(G/P)_n$$
, where  
 $\mathcal{O}_q(G/P)_n := \{f \in \mathbb{C}_q[G] | (id \otimes \pi)\Delta(f) = f \otimes \pi(d^n)\}.$ 





Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases

Theorem (Ciccoli, F., Gavarini)



Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases

**Theorem (Ciccoli, F., Gavarini)** Let d be a quantum section on G/P. Then



**Theorem (Ciccoli, F., Gavarini)** Let d be a quantum section on G/P. Then

1

 $\mathcal{O}_q(G/P)_r \cdot \mathcal{O}_q(G/P)_s \subseteq \mathcal{O}_q(G/P)_{r+s} \subset \mathbb{C}_q[G]$ 

Hence,  $\mathcal{O}_q(G/P)$  is a graded subalgebra.



**Theorem (Ciccoli, F., Gavarini)** Let d be a quantum section on G/P. Then

1

 $\mathcal{O}_q(G/P)_r \cdot \mathcal{O}_q(G/P)_s \subseteq \mathcal{O}_q(G/P)_{r+s} \subset \mathbb{C}_q[G]$ 

Hence,  $\mathcal{O}_q(G/P)$  is a graded subalgebra. and we have:

$$\mathcal{O}_q(G/P) = \bigoplus_{n \in \mathbb{N}} \mathcal{O}_q(G/P)_n \subset \mathbb{C}_q[G].$$



**Theorem (Ciccoli, F., Gavarini)** Let d be a quantum section on G/P. Then

$$\mathcal{O}_q(G/P)_r \cdot \mathcal{O}_q(G/P)_s \subseteq \mathcal{O}_q(G/P)_{r+s} \subset \mathbb{C}_q[G]$$
  
Hence,  $\mathcal{O}_q(G/P)$  is a graded subalgebra. and we have:

$$\mathcal{O}_q(G/P) = \bigoplus_{n \in \mathbb{N}} \mathcal{O}_q(G/P)_n \subset \mathbb{C}_q[G].$$

$$\mathfrak{O}_q(G/P) \text{ is a graded } \mathbb{C}_q[G] \text{-comodule} \Delta|_{\mathcal{O}_q(G/P)} : \mathcal{O}_q(G/P) \longrightarrow \mathbb{C}_q[G] \otimes \mathcal{O}_q(G/P)$$



**Theorem (Ciccoli, F., Gavarini)** Let d be a quantum section on G/P. Then

$$\mathcal{O}_q(G/P)_r \cdot \mathcal{O}_q(G/P)_s \subseteq \mathcal{O}_q(G/P)_{r+s} \subset \mathbb{C}_q[G]$$
  
Hence,  $\mathcal{O}_q(G/P)$  is a graded subalgebra. and we have:  
 $\mathcal{O}_q(G/P) = \bigoplus_{n \in \mathbb{N}} \mathcal{O}_q(G/P)_n \subset \mathbb{C}_q[G].$ 

$$\mathcal{O}_q(G/P) \text{ is a graded } \mathbb{C}_q[G] \text{-comodule} \Delta|_{\mathcal{O}_q(G/P)} : \mathcal{O}_q(G/P) \longrightarrow \mathbb{C}_q[G] \otimes \mathcal{O}_q(G/P)$$

We have

$$\mathcal{O}_q(G/P) \bigcap (q-1) \mathbb{C}_q[G] = (q-1) \mathcal{O}_q(G/P)$$



Theorem (Ciccoli, F., Gavarini) Let d be a quantum section on G/P. Then

$$\mathcal{O}_q(G/P)_r \cdot \mathcal{O}_q(G/P)_s \subseteq \mathcal{O}_q(G/P)_{r+s} \subset \mathbb{C}_q[G]$$
  
Hence,  $\mathcal{O}_q(G/P)$  is a graded subalgebra. and we have:  
 $\mathcal{O}_q(G/P) = \bigoplus_{n \in \mathbb{N}} \mathcal{O}_q(G/P)_n \subset \mathbb{C}_q[G].$ 

$$\mathcal{O}_q(G/P) \text{ is a graded } \mathbb{C}_q[G] \text{-comodule} \Delta|_{\mathcal{O}_q(G/P)} : \mathcal{O}_q(G/P) \longrightarrow \mathbb{C}_q[G] \otimes \mathcal{O}_q(G/P)$$

We have

$$\mathcal{O}_q(G/P) \bigcap (q-1) \mathbb{C}_q[G] = (q-1) \mathcal{O}_q(G/P)$$

 $\mathcal{O}_{a}(G/P)$  is a projective homogeneous quantum variety



Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases

Define the quantum matrices

$$\mathbb{C}_q[M_n] = \mathbb{C}_q \langle a_{ij} \rangle / I_M \tag{1}$$

where  $I_M$  is the ideal of the Manin relations:



Define the quantum matrices

$$\mathbb{C}_q[M_n] = \mathbb{C}_q \langle a_{ij} \rangle / I_M \tag{1}$$

where  $I_M$  is the ideal of the Manin relations:

$$a_{ij}a_{kj} = q^{-1}a_{kj}a_{ij}$$
  $i < k$   $a_{ij}a_{kl} = a_{kl}a_{ij}$   $i < k, j > l$  or  $i > k, j$   
 $a_{ij}a_{il} = q^{-1}a_{il}a_{ij}$   $j < l$   $a_{ij}a_{kl} - a_{kl}a_{ij} = (q^{-1} - q)a_{ik}a_{jl}$   $i < k, j < l$ 

The quantum matrix algebra  $\mathcal{O}_q(M_n)$  is a bialgebra, with:

$$\Delta(\mathsf{a}_{ij}) = \sum_k \mathsf{a}_{ik} \otimes \mathsf{a}_{kj}, \qquad \epsilon(\mathsf{a}_{ij}) = \delta_{ij}.$$

Define quantum special linear group to be the algebra



Define the quantum matrices

$$\mathbb{C}_q[M_n] = \mathbb{C}_q \langle a_{ij} \rangle / I_M \tag{1}$$

where  $I_M$  is the ideal of the Manin relations:

$$a_{ij}a_{kj} = q^{-1}a_{kj}a_{ij}$$
  $i < k$   $a_{ij}a_{kl} = a_{kl}a_{ij}$   $i < k, j > l$  or  $i > k, j$   
 $a_{ij}a_{il} = q^{-1}a_{il}a_{ij}$   $j < l$   $a_{ij}a_{kl} - a_{kl}a_{ij} = (q^{-1} - q)a_{ik}a_{jl}$   $i < k, j < l$ 

The quantum matrix algebra  $\mathcal{O}_q(M_n)$  is a bialgebra, with:

$$\Delta(\mathsf{a}_{ij}) = \sum_k \mathsf{a}_{ik} \otimes \mathsf{a}_{kj}, \qquad \epsilon(\mathsf{a}_{ij}) = \delta_{ij}.$$

Define quantum special linear group to be the algebra

$$\mathbb{C}_q[\mathrm{SL}_n] = \mathbb{C}_q[M]/(\det_q - 1)$$





Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases

#### Key Observations.

•  $d_{12} \in \mathbb{C}_q[SL_4]$  is a quantum section, in fact:



#### Key Observations.

•  $d_{12} \in \mathbb{C}_q[SL_4]$  is a quantum section, in fact:

$$(\mathit{id}\otimes\pi)\Delta(d_{12})=(\mathit{id}\otimes\pi)(\sum_{1\leq i< j\leq 4}d_{12}^{ij}\otimes d_{ij}^{12})=d_{12}\otimes d_{12}$$

where  $d_{\rm rowindices}^{\rm colindeces}$ .



#### Key Observations.

•  $d_{12} \in \mathbb{C}_q[SL_4]$  is a quantum section, in fact:

$$(\mathit{id}\otimes\pi)\Delta(d_{12})=(\mathit{id}\otimes\pi)(\sum_{1\leq i< j\leq 4}d_{12}^{ij}\otimes d_{ij}^{12})=d_{12}\otimes d_{12}$$

where  $d_{\text{rowindices}}^{\text{colindeces}}$ . •  $d_{ij}$  generate  $\mathcal{O}_q(\text{Gr})!$ 



#### Key Observations.

•  $d_{12} \in \mathbb{C}_q[SL_4]$  is a quantum section, in fact:

$$(\mathit{id}\otimes\pi)\Delta(d_{12})=(\mathit{id}\otimes\pi)(\sum_{1\leq i< j\leq 4}d_{12}^{ij}\otimes d_{ij}^{12})=d_{12}\otimes d_{12}$$

where  $d_{\text{rowindices}}^{\text{colindeces}}$ . •  $d_{ij}$  generate  $\mathcal{O}_q(\text{Gr})!$ **Proposition**.



#### Key Observations.

•  $d_{12} \in \mathbb{C}_q[SL_4]$  is a quantum section, in fact:

$$(id \otimes \pi) \Delta(d_{12}) = (id \otimes \pi) (\sum_{1 \leq i < j \leq 4} d_{12}^{ij} \otimes d_{ij}^{12}) = d_{12} \otimes d_{12}$$

where  $d_{\rm rowindices}^{\rm colindeces}$ .

•  $d_{ij}$  generate  $\mathcal{O}_q(\mathrm{Gr})!$ 

Proposition.

$$\mathcal{O}_q(\mathrm{Gr}) = \frac{\mathbb{C}[d_{12}, d_{13}, d_{14}, d_{23}, d_{24}, d_{34}]}{(d_{12}d_{34} - q^{-1}d_{13}d_{24} + q^{-2}d_{14}d_{23}, I_{\mathrm{comm}})}$$

is a quantization of the homogeneous ring of the grassmannian with respect to the Plucker embedding.



#### Key Observations.

•  $d_{12} \in \mathbb{C}_q[SL_4]$  is a quantum section, in fact:

$$(\mathit{id}\otimes\pi)\Delta(d_{12})=(\mathit{id}\otimes\pi)(\sum_{1\leq i< j\leq 4}d^{ij}_{12}\otimes d^{12}_{ij})=d_{12}\otimes d_{12}$$

where  $d_{\text{rowindices}}^{\text{colindeces}}$ . •  $d_{ii}$  generate  $\mathcal{O}_a(\text{Gr})!$ 

Proposition.

$$\mathcal{O}_q(\mathrm{Gr}) = \frac{\mathbb{C}[d_{12}, d_{13}, d_{14}, d_{23}, d_{24}, d_{34}]}{(d_{12}d_{34} - q^{-1}d_{13}d_{24} + q^{-2}d_{14}d_{23}, l_{\mathrm{comm}})}$$

is a quantization of the homogeneous ring of the grassmannian with respect to the Plucker embedding. It carries a natural coaction of the quantum special linear group.

$$\Delta(d_{ij}) = \sum_{1 \leq i < j \leq 4} d_{12}^{ij} \otimes d_{ij}^{12})$$

The generalization to *n* dimensions is immediate!



#### Projective embeddings of Quantum flags



Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases

## Projective embeddings of Quantum flags

Facts



Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases

#### Facts

•  $a_{11}d_{12}d_{123}\ldots$  is a quantum section.


- $a_{11}d_{12}d_{123}\ldots$  is a quantum section.
- $d_I$  the determinants of the quantum minors generate  $\mathcal{O}_q(\mathrm{Fl})$



- $a_{11}d_{12}d_{123}\ldots$  is a quantum section.
- $d_l$  the determinants of the quantum minors generate  $\mathcal{O}_q(\mathrm{Fl})$
- Commutation, Incidence and Plucker relations.



- $a_{11}d_{12}d_{123}...$  is a quantum section.
- $d_l$  the determinants of the quantum minors generate  $\mathcal{O}_q(\mathrm{Fl})$
- Commutation, Incidence and Plucker relations.

#### Proposition.



- $a_{11}d_{12}d_{123}\ldots$  is a quantum section.
- $d_l$  the determinants of the quantum minors generate  $\mathcal{O}_q(\mathrm{Fl})$
- Commutation, Incidence and Plucker relations.

Proposition.

$$\mathcal{O}_{m{q}}(\mathrm{Fl}) = rac{\mathbb{C}[m{d}_i, m{d}_{ij}, m{d}_{ijk}, \dots]}{(m{l}_{\mathrm{incidence}}, m{l}_{\mathrm{Plucker}}, m{l}_{\mathrm{comm}})}$$

is a quantization of the homogeneous ring of the flag with respect to the chosen projective embedding.



- $a_{11}d_{12}d_{123}...$  is a quantum section.
- $d_l$  the determinants of the quantum minors generate  $\mathcal{O}_q(\mathrm{Fl})$
- Commutation, Incidence and Plucker relations.

### Proposition.

$$\mathcal{O}_{\boldsymbol{q}}(\mathrm{Fl}) = rac{\mathbb{C}[d_i, d_{ij}, d_{ijk}, \dots]}{(I_{\mathrm{incidence}}, I_{\mathrm{Plucker}}, I_{\mathrm{comm}})}$$

is a quantization of the homogeneous ring of the flag with respect to the chosen projective embedding. It carries a natural coaction of the quantum special linear group.



3

**Classical Definition**.



< 注 > < 注

#### Classical Definition.

 $(E, M, \wp, P)$  is a *P*-principal bundle if



#### Classical Definition.

 $(E, M, \wp, P)$  is a *P*-principal bundle if

•  $\wp: E \longrightarrow M$  is surjective.



#### Classical Definition.

 $(E, M, \wp, P)$  is a *P*-principal bundle if

- $\wp: E \longrightarrow M$  is surjective.
- **2** P acts freely from the right on E.



医下子 医

#### Classical Definition.

 $(E, M, \wp, P)$  is a *P*-principal bundle if

- $\wp: E \longrightarrow M$  is surjective.
- **2** P acts freely from the right on E.
- **③** *P* acts transitively on the fiber  $\wp^{-1}(m)$ ,  $m \in M$ .



### Classical Definition.

 $(E, M, \wp, P)$  is a *P*-principal bundle if

- $\wp: E \longrightarrow M$  is surjective.
- **2** P acts freely from the right on E.
- **③** *P* acts transitively on the fiber  $\wp^{-1}(m)$ ,  $m \in M$ .
- E is locally trivial over M.



### Classical Definition.

 $(E, M, \wp, P)$  is a *P*-principal bundle if

- $\wp: E \longrightarrow M$  is surjective.
- **2** P acts freely from the right on E.
- **③** *P* acts transitively on the fiber  $\wp^{-1}(m)$ ,  $m \in M$ .
- E is locally trivial over M.



### Classical Definition.

 $(E, M, \wp, P)$  is a *P*-principal bundle if

- $\wp: E \longrightarrow M$  is surjective.
- **2** P acts freely from the right on E.
- **③** *P* acts transitively on the fiber  $\wp^{-1}(m)$ ,  $m \in M$ .
- E is locally trivial over M.

### Sheaf Theoretic Definition (Pflaum).

 $E \longrightarrow M$  is a *P*-principal bundle if and only if



### Classical Definition.

 $(E, M, \wp, P)$  is a *P*-principal bundle if

- $\wp: E \longrightarrow M$  is surjective.
- **2** P acts freely from the right on E.
- **③** *P* acts transitively on the fiber  $\wp^{-1}(m)$ ,  $m \in M$ .
- E is locally trivial over M.

- $E \longrightarrow M$  is a *P*-principal bundle if and only if
  - $\mathcal{F}$  is a sheaf of  $H = \mathbb{C}[P]$  comodule algebras;

### Classical Definition.

 $(E, M, \wp, P)$  is a *P*-principal bundle if

- $\wp: E \longrightarrow M$  is surjective.
- **2** P acts freely from the right on E.
- P acts transitively on the fiber  $\wp^{-1}(m)$ ,  $m \in M$ .
- E is locally trivial over M.

- $E \longrightarrow M$  is a *P*-principal bundle if and only if
  - $\mathcal{F}$  is a sheaf of  $H = \mathbb{C}[P]$  comodule algebras;
  - There exists an open covering  $\{U_i\}$  of M such that:



### Classical Definition.

 $(E, M, \wp, P)$  is a *P*-principal bundle if

- $\wp: E \longrightarrow M$  is surjective.
- **2** P acts freely from the right on E.
- P acts transitively on the fiber  $\wp^{-1}(m)$ ,  $m \in M$ .
- E is locally trivial over M.

- $E \longrightarrow M$  is a *P*-principal bundle if and only if
  - $\mathcal{F}$  is a sheaf of  $H = \mathbb{C}[P]$  comodule algebras;
  - There exists an open covering {U<sub>i</sub>} of M such that:

     *𝔅*(U<sub>i</sub>)<sup>coinvH</sup> ≃ 𝔅<sub>M</sub>(U<sub>i</sub>)

### Classical Definition.

 $(E, M, \wp, P)$  is a *P*-principal bundle if

- $\wp: E \longrightarrow M$  is surjective.
- **2** P acts freely from the right on E.
- P acts transitively on the fiber  $\wp^{-1}(m)$ ,  $m \in M$ .
- E is locally trivial over M.

### Sheaf Theoretic Definition (Pflaum).

- $E \longrightarrow M$  is a *P*-principal bundle if and only if
  - $\mathcal{F}$  is a sheaf of  $H = \mathbb{C}[P]$  comodule algebras;
  - There exists an open covering  $\{U_i\}$  of M such that:

 $\mathcal{F}(U_i) \simeq \mathcal{F}(U_i)^{\operatorname{coinv} H} \otimes H, \text{ as left } \mathcal{F}(U_i)^{\operatorname{coinv} H} \text{-modules and}$ right *H*-comodules for all *i*,

### Classical Definition.

 $(E, M, \wp, P)$  is a *P*-principal bundle if

- $\wp: E \longrightarrow M$  is surjective.
- **2** P acts freely from the right on E.
- P acts transitively on the fiber  $\wp^{-1}(m)$ ,  $m \in M$ .
- E is locally trivial over M.

### Sheaf Theoretic Definition (Pflaum).

- $E \longrightarrow M$  is a *P*-principal bundle if and only if
  - $\mathcal{F}$  is a sheaf of  $H = \mathbb{C}[P]$  comodule algebras;
  - There exists an open covering  $\{U_i\}$  of M such that:

 $\mathcal{F}(U_i) \simeq \mathcal{F}(U_i)^{\operatorname{coinv} H} \otimes H, \text{ as left } \mathcal{F}(U_i)^{\operatorname{coinv} H} \text{-modules and}$ right *H*-comodules for all *i*,

$$\mathcal{F}(U_i)^{\operatorname{coinv} H} := \{ f \in \mathcal{F}(U_i) \, | \, \delta_H(f) = f \otimes 1 \}$$
  
$$\delta_H : \mathcal{F}(U_i) \to \mathcal{F}(U_i) \otimes H \text{ the } H \text{-coaction.}$$

### Quantum Principal bundles





]]) → ( ( ]]

• M: classical topological space



- M: classical topological space
- $\mathcal{O}_M$ : sheaf over M of non commutative algebras.



- M: classical topological space
- $\mathcal{O}_M$ : sheaf over M of non commutative algebras.

**Definition**. The sheaf  $\mathcal{F}$  on M is a *H*-quantum principal bundle over the quantum ringed space  $(M, \mathcal{O}_M)$  if:



- M: classical topological space
- $\mathcal{O}_M$ : sheaf over M of non commutative algebras.

**Definition**. The sheaf  $\mathcal{F}$  on M is a H-quantum principal bundle over the quantum ringed space  $(M, \mathcal{O}_M)$  if:

•  $\mathcal{F}$  is a sheaf of H comodule algebras (PCA);

- M: classical topological space
- $\mathcal{O}_M$ : sheaf over M of non commutative algebras.

**Definition**. The sheaf  $\mathcal{F}$  on M is a H-quantum principal bundle over the quantum ringed space  $(M, \mathcal{O}_M)$  if:

- $\mathcal{F}$  is a sheaf of H comodule algebras (PCA);
- There exists an open covering  $\{U_i\}$  of M such that:



- M: classical topological space
- $\mathcal{O}_M$ : sheaf over M of non commutative algebras.

**Definition**. The sheaf  $\mathcal{F}$  on M is a H-quantum principal bundle over the quantum ringed space  $(M, \mathcal{O}_M)$  if:

- $\mathcal{F}$  is a sheaf of H comodule algebras (PCA);
- There exists an open covering  $\{U_i\}$  of M such that:

- M: classical topological space
- $\mathcal{O}_M$ : sheaf over M of non commutative algebras.

**Definition**. The sheaf  $\mathcal{F}$  on M is a H-quantum principal bundle over the quantum ringed space  $(M, \mathcal{O}_M)$  if:

- $\mathcal{F}$  is a sheaf of H comodule algebras (PCA);
- There exists an open covering  $\{U_i\}$  of M such that:

2  $\mathcal{F}$  is locally cleft, i.e.  $\mathcal{F}(U_i) \cong \mathcal{F}(U_i)^{\operatorname{coinv} H} \otimes H$ .



- M: classical topological space
- $\mathcal{O}_M$ : sheaf over M of non commutative algebras.

**Definition**. The sheaf  $\mathcal{F}$  on M is a H-quantum principal bundle over the quantum ringed space  $(M, \mathcal{O}_M)$  if:

- $\mathcal{F}$  is a sheaf of H comodule algebras (PCA);
- There exists an open covering  $\{U_i\}$  of M such that:

2  $\mathcal{F}$  is locally cleft, i.e.  $\mathcal{F}(U_i) \cong \mathcal{F}(U_i)^{\operatorname{coinv} H} \otimes H$ .





$$\wp: E = \operatorname{SL}_2(\mathbb{C}) \longrightarrow M = \operatorname{SL}_2(\mathbb{C})/P \simeq \mathbb{P}^1(\mathbb{C})$$

On the coordinate algebras:



$$\wp: E = \operatorname{SL}_2(\mathbb{C}) \longrightarrow M = \operatorname{SL}_2(\mathbb{C})/P \simeq \mathbb{P}^1(\mathbb{C})$$

On the coordinate algebras:

$$\pi : \mathbb{C}[\operatorname{SL}_2] = \mathbb{C}[a, b, c, d] / (ad - bc - 1) \longrightarrow \mathbb{C}[\operatorname{SL}_2] / (c) = \mathbb{C}[t, p, t]$$
$$V_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a \neq 0 \right\}, V_2 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | c \neq 0 \right\} \text{ open cover of }$$
$$\operatorname{SL}_2(\mathbb{C}).$$



Э

$$\wp: E = \operatorname{SL}_2(\mathbb{C}) \longrightarrow M = \operatorname{SL}_2(\mathbb{C})/P \simeq \mathbb{P}^1(\mathbb{C})$$

On the coordinate algebras:

$$\pi : \mathbb{C}[\operatorname{SL}_2] = \mathbb{C}[a, b, c, d] / (ad - bc - 1) \longrightarrow \mathbb{C}[\operatorname{SL}_2] / (c) = \mathbb{C}[t, p, t]$$
$$V_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} a \neq 0 \right\}, V_2 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} c \neq 0 \right\} \text{ open cover of}$$
$$\operatorname{SL}_2(\mathbb{C}).$$
Let  $U_i = \wp(V_i)$ . Define the sheaf  $\mathcal{F}$  of  $\mathcal{O}(P)$ -comodule algebras



$$\wp: E = \operatorname{SL}_2(\mathbb{C}) \longrightarrow M = \operatorname{SL}_2(\mathbb{C})/P \simeq \mathbb{P}^1(\mathbb{C})$$

On the coordinate algebras:

$$\pi : \mathbb{C}[\operatorname{SL}_2] = \mathbb{C}[a, b, c, d] / (ad - bc - 1) \longrightarrow \mathbb{C}[\operatorname{SL}_2] / (c) = \mathbb{C}[t, p, t]$$

$$V_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} a \neq 0 \right\}, V_2 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} c \neq 0 \right\} \text{ open cover of}$$

$$\operatorname{SL}_2(\mathbb{C}).$$
Let  $U_i = \wp(V_i)$ . Define the sheaf  $\mathcal{F}$  of  $\mathcal{O}(P)$ -comodule algebras
$$\mathcal{F}(U_1) := \mathbb{C}[\operatorname{SL}_2][a^{-1}], \qquad \mathcal{F}(U_2) := \mathbb{C}[\operatorname{SL}_2][c^{-1}]$$

$$\mathcal{F}(U_{12}) := \mathbb{C}[\operatorname{SL}_2][[a^{-1}, c^{-1}]] \qquad \mathcal{F}(\mathbb{P}^1(\mathbb{C})) = \mathbb{C}.$$

∃ ► < ∃ ►</p>

$$\wp: E = \operatorname{SL}_2(\mathbb{C}) \longrightarrow M = \operatorname{SL}_2(\mathbb{C})/P \simeq \mathbb{P}^1(\mathbb{C})$$

On the coordinate algebras:

$$\pi : \mathbb{C}[\operatorname{SL}_2] = \mathbb{C}[a, b, c, d] / (ad - bc - 1) \longrightarrow \mathbb{C}[\operatorname{SL}_2] / (c) = \mathbb{C}[t, p, t]$$

$$V_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} a \neq 0 \right\}, V_2 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} c \neq 0 \right\} \text{ open cover of}$$

$$\operatorname{SL}_2(\mathbb{C}).$$
Let  $U_i = \wp(V_i)$ . Define the sheaf  $\mathcal{F}$  of  $\mathcal{O}(P)$ -comodule algebras
$$\mathcal{F}(U_1) := \mathbb{C}[\operatorname{SL}_2][a^{-1}], \qquad \mathcal{F}(U_2) := \mathbb{C}[\operatorname{SL}_2][c^{-1}]$$

$$\mathcal{F}(U_{12}) := \mathbb{C}[\operatorname{SL}_2][[a^{-1}, c^{-1}]] \qquad \mathcal{F}(\mathbb{P}^1(\mathbb{C})) = \mathbb{C}.$$

 $\mathcal{F}$  is a (quantum) principal bundle on  $\mathbb{P}^1(\mathbb{C})$ .

$$\wp: E = \operatorname{SL}_2(\mathbb{C}) \longrightarrow M = \operatorname{SL}_2(\mathbb{C})/P \simeq \mathbb{P}^1(\mathbb{C})$$

On the coordinate algebras:

$$\pi : \mathbb{C}[\operatorname{SL}_2] = \mathbb{C}[a, b, c, d] / (ad - bc - 1) \longrightarrow \mathbb{C}[\operatorname{SL}_2] / (c) = \mathbb{C}[t, p, t]$$

$$V_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} a \neq 0 \right\}, V_2 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} c \neq 0 \right\} \text{ open cover of}$$

$$\operatorname{SL}_2(\mathbb{C}).$$
Let  $U_i = \wp(V_i)$ . Define the sheaf  $\mathcal{F}$  of  $\mathcal{O}(P)$ -comodule algebras
$$\mathcal{F}(U_1) := \mathbb{C}[\operatorname{SL}_2][a^{-1}], \qquad \mathcal{F}(U_2) := \mathbb{C}[\operatorname{SL}_2][c^{-1}]$$

$$\mathcal{F}(U_{12}) := \mathbb{C}[\operatorname{SL}_2][[a^{-1}, c^{-1}]] \qquad \mathcal{F}(\mathbb{P}^1(\mathbb{C})) = \mathbb{C}.$$

 $\mathcal{F}$  is a (quantum) principal bundle on  $\mathbb{P}^1(\mathbb{C})$ .


Define the quantum special linear group:



Define the quantum special linear group:

$$\mathbb{C}_q[\operatorname{SL}_2] = \mathbb{C}_q\langle a, b, c, d \rangle / I_M + (ad - q^{-1}bc - 1)$$
.

 $I_M$  is the ideal of the Manin relations



Define the quantum special linear group:

$$\mathbb{C}_q[\operatorname{SL}_2] = \mathbb{C}_q\langle a, b, c, d \rangle / I_M + (ad - q^{-1}bc - 1) \; .$$

 $I_M$  is the ideal of the Manin relations

$$\mathsf{a}\mathsf{b}=\mathsf{q}^{-1}\mathsf{b}\mathsf{a}, \quad \mathsf{a}\mathsf{c}=\mathsf{q}^{-1}\mathsf{c}\mathsf{a}, \quad \mathsf{b}\mathsf{d}=\mathsf{q}^{-1}\mathsf{d}\mathsf{b}, \quad \mathsf{c}\mathsf{d}=\mathsf{q}^{-1}\mathsf{d}\mathsf{c},$$

$$bc = cb$$
  $ad - da = (q^{-1} - q)bc$ 

 $U_i$  cover of  $M = SL_2(\mathbb{C})/P$  as above. Define the quantum ringed space:



Define the quantum special linear group:

$$\mathbb{C}_q[\operatorname{SL}_2] = \mathbb{C}_q\langle a, b, c, d \rangle / I_M + (ad - q^{-1}bc - 1) \; .$$

 $I_M$  is the ideal of the Manin relations

$$\mathsf{a}\mathsf{b}=\mathsf{q}^{-1}\mathsf{b}\mathsf{a}, \quad \mathsf{a}\mathsf{c}=\mathsf{q}^{-1}\mathsf{c}\mathsf{a}, \quad \mathsf{b}\mathsf{d}=\mathsf{q}^{-1}\mathsf{d}\mathsf{b}, \quad \mathsf{c}\mathsf{d}=\mathsf{q}^{-1}\mathsf{d}\mathsf{c},$$

$$bc = cb$$
  $ad - da = (q^{-1} - q)bc$ 

 $U_i$  cover of  $M = SL_2(\mathbb{C})/P$  as above. Define the quantum ringed space:

$$\mathcal{O}_{q,\mathbb{P}^{1}(\mathbb{C})}(U_{1}) = \mathbb{C}_{q}[a^{-1}c] \simeq \mathbb{C}_{q}[u], \quad \mathcal{O}_{q,\mathbb{P}^{1}(\mathbb{C})}(U_{2}) = \mathbb{C}_{q}[c^{-1}a] \simeq \mathbb{C}_{q}[v]$$

## Example of a Quantum Principal bundle



On the quantum ringed space  $(\mathbb{P}^1(\mathbb{C}), \mathcal{O}_{q, \mathbb{P}^1(\mathbb{C})})$  define the quantum principal bundle  $\mathcal{F}$ , with respect to the covering  $U_1, U_2$ :



On the quantum ringed space  $(\mathbb{P}^1(\mathbb{C}), \mathcal{O}_{q, \mathbb{P}^1(\mathbb{C})})$  define the quantum principal bundle  $\mathcal{F}$ , with respect to the covering  $U_1, U_2$ :

$$\mathcal{F}(U_1) := \mathbb{C}_q[\mathrm{SL}_2][a^{-1}] \qquad \mathcal{F}(U_1) := \mathbb{C}_q[\mathrm{SL}_2][a^{-1}]$$

$$\mathcal{F}(U_{12}) := \mathbb{C}_q[\mathrm{SL}_2][a^{-1}, c^{-1}]$$



On the quantum ringed space  $(\mathbb{P}^1(\mathbb{C}), \mathcal{O}_{q, \mathbb{P}^1(\mathbb{C})})$  define the quantum principal bundle  $\mathcal{F}$ , with respect to the covering  $U_1, U_2$ :

$$\mathcal{F}(U_1) := \mathbb{C}_q[\mathrm{SL}_2][a^{-1}] \qquad \mathcal{F}(U_1) := \mathbb{C}_q[\mathrm{SL}_2][a^{-1}]$$

$$\mathcal{F}(U_{12}) := \mathbb{C}_q[\mathrm{SL}_2][a^{-1}, c^{-1}]$$

This is a sheaf of  $\mathcal{O}_q(P)$ -comodule algebras on  $\mathbb{P}^1(\mathbb{C})$ .





Theorem (Aschieri-F.-Latini).



▶ ∢ ⊒

**Theorem (Aschieri-F.-Latini)**. Let *d* be a quantum section and denote with  $d_i$  a suitably chosen family of  $d^{(2)}$  as in  $\Delta(d) = \sum d^{(1)} \otimes d^{(2)}$  Assume  $\mathcal{O}_q(V_i) := \mathcal{O}_q(G)S_i^{-1}$ ,  $S_i = \{d_i^k\}$  is Ore.



**Theorem (Aschieri-F.-Latini)**. Let *d* be a quantum section and denote with *d<sub>i</sub>* a suitably chosen family of  $d^{(2)}$  as in  $\Delta(d) = \sum d^{(1)} \otimes d^{(2)}$  Assume  $\mathcal{O}_q(V_i) := \mathcal{O}_q(G)S_i^{-1}$ ,  $S_i = \{d_i^k\}$  is Ore. Then:



**Theorem (Aschieri-F.-Latini)**. Let *d* be a quantum section and denote with *d<sub>i</sub>* a suitably chosen family of  $d^{(2)}$  as in  $\Delta(d) = \sum d^{(1)} \otimes d^{(2)}$  Assume  $\mathcal{O}_q(V_i) := \mathcal{O}_q(G)S_i^{-1}$ ,  $S_i = \{d_i^k\}$  is Ore. Then:

• 
$$(M, \mathcal{O}_M)$$
 is a quantum ringed space.  
 $\mathcal{O}_M(U_i) := \langle d_k d_i^{-1} \rangle \subset \mathcal{O}_q(G) S_i^{-1}.$ 



**Theorem (Aschieri-F.-Latini)**. Let *d* be a quantum section and denote with  $d_i$  a suitably chosen family of  $d^{(2)}$  as in  $\Delta(d) = \sum d^{(1)} \otimes d^{(2)}$  Assume  $\mathcal{O}_q(V_i) := \mathcal{O}_q(G)S_i^{-1}$ ,  $S_i = \{d_i^k\}$  is Ore. Then:

- $(M, \mathcal{O}_M)$  is a quantum ringed space.  $\mathcal{O}_M(U_i) := \langle d_k d_i^{-1} \rangle \subset \mathcal{O}_q(G) S_i^{-1}.$
- The assignment: U<sub>I</sub> → F(U<sub>I</sub>) := O<sub>q</sub>(V<sub>I</sub>) defines a sheaf of O<sub>q</sub>(P)-comodule algebras on the quantum ringed space M



**Theorem (Aschieri-F.-Latini)**. Let *d* be a quantum section and denote with  $d_i$  a suitably chosen family of  $d^{(2)}$  as in  $\Delta(d) = \sum d^{(1)} \otimes d^{(2)}$  Assume  $\mathcal{O}_q(V_i) := \mathcal{O}_q(G)S_i^{-1}$ ,  $S_i = \{d_i^k\}$  is Ore. Then:

• 
$$(M, \mathcal{O}_M)$$
 is a quantum ringed space.  
 $\mathcal{O}_M(U_i) := \langle d_k d_i^{-1} \rangle \subset \mathcal{O}_q(G) S_i^{-1}.$ 

 The assignment: U<sub>I</sub> → F(U<sub>I</sub>) := O<sub>q</sub>(V<sub>I</sub>) defines a sheaf of O<sub>q</sub>(P)-comodule algebras on the quantum ringed space M

If furtherly  $j_1 : \mathcal{O}_q(P) \longrightarrow \mathcal{F}(U_1)$  is a cleaving map and we have a family  $\phi_{1i} : \mathcal{F}(U_1) \longrightarrow \mathcal{F}(U_i)$  of  $\mathcal{O}_q(P)$  comodule isomorphisms compatible with restrictions, then  $\mathcal{F}$  is a quantum principal bundle.

# Quantum Special Linear group

Define the quantum matrices

$$\mathbb{C}_q[M_n] = \mathbb{C}_q \langle a_{ij} \rangle / I_M \tag{2}$$

where  $I_M$  is the ideal of the Manin relations:



# Quantum Special Linear group

Define the quantum matrices

$$\mathbb{C}_q[M_n] = \mathbb{C}_q \langle a_{ij} \rangle / I_M \tag{2}$$

where  $I_M$  is the ideal of the Manin relations:

$$a_{ij}a_{kj} = q^{-1}a_{kj}a_{ij}$$
  $i < k$   $a_{ij}a_{kl} = a_{kl}a_{ij}$   $i < k, j > l$  or  $i > k, j$   
 $a_{ij}a_{il} = q^{-1}a_{il}a_{ij}$   $j < l$   $a_{ij}a_{kl} - a_{kl}a_{ij} = (q^{-1} - q)a_{ik}a_{jl}$   $i < k, j < l$ 

The quantum matrix algebra  $\mathcal{O}_q(M_n)$  is a bialgebra, with:

$$\Delta(\mathsf{a}_{ij}) = \sum_k \mathsf{a}_{ik} \otimes \mathsf{a}_{kj}, \qquad \epsilon(\mathsf{a}_{ij}) = \delta_{ij}.$$

Define quantum special linear group to be the algebra



# Quantum Special Linear group

Define the quantum matrices

$$\mathbb{C}_q[M_n] = \mathbb{C}_q \langle a_{ij} \rangle / I_M \tag{2}$$

where  $I_M$  is the ideal of the Manin relations:

$$a_{ij}a_{kj} = q^{-1}a_{kj}a_{ij}$$
  $i < k$   $a_{ij}a_{kl} = a_{kl}a_{ij}$   $i < k, j > l$  or  $i > k, j$   
 $a_{ij}a_{il} = q^{-1}a_{il}a_{ij}$   $j < l$   $a_{ij}a_{kl} - a_{kl}a_{ij} = (q^{-1} - q)a_{ik}a_{jl}$   $i < k, j < l$ 

The quantum matrix algebra  $\mathcal{O}_q(M_n)$  is a bialgebra, with:

$$\Delta(\mathsf{a}_{ij}) = \sum_k \mathsf{a}_{ik} \otimes \mathsf{a}_{kj}, \qquad \epsilon(\mathsf{a}_{ij}) = \delta_{ij}.$$

Define quantum special linear group to be the algebra

$$\mathbb{C}_q[\mathrm{SL}_n] = \mathbb{C}_q[M]/(\det_q - 1)$$





Let  $P \subset \mathrm{SL}_n(\mathbb{C})$ :



▶ ∢ ≣

Let 
$$P \subset SL_n(\mathbb{C})$$
:  

$$P = \left\{ \begin{pmatrix} t_{11} & p_{12} & \dots & p_{1n} \\ 0 & s_{22} & \dots & s_{2n} \\ \vdots & & \vdots \\ 0 & s_{n2} & \dots & s_{nn} \end{pmatrix} \right\} \subset G = \left\{ A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \det(A) = 1 \right\}$$

In this case  $G/P \simeq \mathbb{P}^{n-1}$  and



Let 
$$P \subset \operatorname{SL}_n(\mathbb{C})$$
:  

$$P = \left\{ \begin{pmatrix} t_{11} & p_{12} & \dots & p_{1n} \\ 0 & s_{22} & \dots & s_{2n} \\ \vdots & & \vdots \\ 0 & s_{n2} & \dots & s_{nn} \end{pmatrix} \right\} \subset G = \left\{ A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \det(A) = 1 \right\}$$

In this case  $G/P\simeq \mathbb{P}^{n-1}$  and

$$\mathcal{O}_q(\mathbb{P}^{n-1}) = \mathbb{C}[x_0, \ldots, x_{n-1}]/(x_i x_j - q^{-1} x_i x_j, i < j)$$



Let 
$$P \subset \operatorname{SL}_n(\mathbb{C})$$
:  

$$P = \left\{ \begin{pmatrix} t_{11} & p_{12} & \dots & p_{1n} \\ 0 & s_{22} & \dots & s_{2n} \\ \vdots & & \vdots \\ 0 & s_{n2} & \dots & s_{nn} \end{pmatrix} \right\} \subset G = \left\{ A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \det(A) = 1 \right\}$$

In this case  $G/P\simeq \mathbb{P}^{n-1}$  and

$$\mathcal{O}_q(\mathbb{P}^{n-1}) = \mathbb{C}[x_0, \ldots, x_{n-1}]/(x_i x_j - q^{-1} x_i x_j, i < j)$$





∃ → ∢

 $\mathcal{O}_q(G)$ : quantum special linear group and



 $\mathcal{O}_q(G)$ : quantum special linear group and

$$\mathcal{O}_q(P) := \mathcal{O}_q(G)/I_q(P)$$

 $I_q(P)$  is the ideal generated by  $a_{i,1}$  in  $\mathcal{O}_q(G)$ .



 $\mathcal{O}_q(G)$ : quantum special linear group and

$$\mathcal{O}_q(P) := \mathcal{O}_q(G)/I_q(P)$$

 $I_q(P)$  is the ideal generated by  $a_{i,1}$  in  $\mathcal{O}_q(G)$ .

We use coordinates  $t_{11}$ ,  $p_{1j}$ ,  $s_{kl}$  for the images of the generators  $a_{ij}$ under  $\pi : \mathcal{O}_q(G) \longrightarrow \mathcal{O}_q(P)$ .  $d = a_{11} \in \mathcal{O}_q(G)$  is a quantum section,  $d_i = a_{i,1}$ , in fact:



 $\mathcal{O}_q(G)$ : quantum special linear group and

$$\mathcal{O}_q(P) := \mathcal{O}_q(G)/I_q(P)$$

 $I_q(P)$  is the ideal generated by  $a_{i,1}$  in  $\mathcal{O}_q(G)$ .

We use coordinates  $t_{11}$ ,  $p_{1j}$ ,  $s_{kl}$  for the images of the generators  $a_{ij}$ under  $\pi : \mathcal{O}_q(G) \longrightarrow \mathcal{O}_q(P)$ .  $d = a_{11} \in \mathcal{O}_q(G)$  is a quantum section,  $d_i = a_{i,1}$ , in fact:

$$\Delta_{\pi}(a_{11}) = a_{11} \otimes t_{11}, \qquad t_{11} = \pi(a_{11}) \qquad \Delta(a_{11}) = \sum a_{1j} \otimes a_{j1}$$

 $\mathcal{O}_q(G)$ : quantum special linear group and

$$\mathcal{O}_q(P) := \mathcal{O}_q(G)/I_q(P)$$

 $I_q(P)$  is the ideal generated by  $a_{i,1}$  in  $\mathcal{O}_q(G)$ .

We use coordinates  $t_{11}$ ,  $p_{1j}$ ,  $s_{kl}$  for the images of the generators  $a_{ij}$ under  $\pi : \mathcal{O}_q(G) \longrightarrow \mathcal{O}_q(P)$ .  $d = a_{11} \in \mathcal{O}_q(G)$  is a quantum section,  $d_i = a_{i,1}$ , in fact:

$$\Delta_{\pi}(a_{11}) = a_{11} \otimes t_{11}, \qquad t_{11} = \pi(a_{11}) \qquad \Delta(a_{11}) = \sum a_{1j} \otimes a_{j1}$$



∃ → ∢

Consider the classical open covers of the topological spaces G and  $\mathbb{P}^{n-1}$  respectively:



Consider the classical open covers of the topological spaces G and  $\mathbb{P}^{n-1}$  respectively:

$$G = \bigcup_{i} V_{i}, \qquad V_{i} = \{g \in G \mid a_{i1}^{0}(g) \neq 0\}$$
  
$$\mathbb{P}^{n-1} = \bigcup_{i} U_{i}, \qquad U_{i} = \{z \in \mathbb{P}^{n-1} \mid x_{i-1}^{0}(z) \neq 0\}$$
(3)



Consider the classical open covers of the topological spaces G and  $\mathbb{P}^{n-1}$  respectively:

$$G = \bigcup_{i} V_{i}, \qquad V_{i} = \{g \in G \mid a_{i1}^{0}(g) \neq 0\}$$
  
$$\mathbb{P}^{n-1} = \bigcup_{i} U_{i}, \qquad U_{i} = \{z \in \mathbb{P}^{n-1} \mid x_{i-1}^{0}(z) \neq 0\}$$
(3)

The multiplicative sets:

$$S_i = \{a_{i,1}^k\}_{\{k \in \mathbb{N}\}} \subset \mathcal{O}_q(G)$$

satisfies the Ore condition.



Consider the classical open covers of the topological spaces G and  $\mathbb{P}^{n-1}$  respectively:

$$G = \bigcup_{i} V_{i}, \qquad V_{i} = \{g \in G \mid a_{i1}^{0}(g) \neq 0\}$$
  
$$\mathbb{P}^{n-1} = \bigcup_{i} U_{i}, \qquad U_{i} = \{z \in \mathbb{P}^{n-1} \mid x_{i-1}^{0}(z) \neq 0\}$$
(3)

The multiplicative sets:

$$S_i = \{a_{i,1}^k\}_{\{k \in \mathbb{N}\}} \subset \mathcal{O}_q(G)$$

satisfies the Ore condition.

Theorem (Aschieri-F.-Latini). The assignment:



Consider the classical open covers of the topological spaces G and  $\mathbb{P}^{n-1}$  respectively:

$$G = \bigcup_{i} V_{i}, \qquad V_{i} = \{g \in G \mid a_{i1}^{0}(g) \neq 0\}$$
  
$$\mathbb{P}^{n-1} = \bigcup_{i} U_{i}, \qquad U_{i} = \{z \in \mathbb{P}^{n-1} \mid x_{i-1}^{0}(z) \neq 0\}$$
(3)

The multiplicative sets:

$$S_i = \{a_{i,1}^k\}_{\{k\in\mathbb{N}\}} \subset \mathcal{O}_q(G)$$

satisfies the Ore condition.

**Theorem** (Aschieri-F.-Latini). The assignment:

$$U_I \mapsto \mathcal{F}(U_I) := \mathcal{O}_q(G)S_{i_1}^{-1} \dots S_{i_s}^{-1}, \qquad I = \{i_1, \dots, i_s\}$$

defines a quantum principal bundle on the quantum ringed space  $(\operatorname{SL}_n(\mathbb{C})/P, \mathcal{F}^{\operatorname{coinv}\mathcal{O}_q(P)}).$
- H: Hopf algebra
- A: H (right) comodule,  $\delta_H : A \longrightarrow A \otimes H$

**Definition**. An *H*-covariant first order differential calculus (f.o.d.c.) on *A* is an *A*-bimodule  $\Omega$ , together with a  $\mathbb{C}$ -linear map  $d: A \longrightarrow \Omega$  such that:

- (Leibniz Rule) d(fg) = d(f)g + fdg
- $\Omega = AdA$
- (*H*-covariance)

$$\Delta^{H}: \Omega \longrightarrow \Omega \otimes H, \qquad \textit{fdg} \longrightarrow \textit{f}_{0}\textit{dg}_{0} \otimes \textit{f}_{1}\textit{g}_{1}$$

is a well defined coaction.



Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases

We have:



Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases

We have:

•  $(M, \mathcal{O}_M)$  quantum space,  $M = \cup U_i$  open cover



∃ → ∢

We have:

- $(M, \mathcal{O}_M)$  quantum space,  $M = \cup U_i$  open cover
- $\mathcal{F}$ : sheaf of *H*-comodule algebras (QPB)



3 1 4

We have:

- $(M, \mathcal{O}_M)$  quantum space,  $M = \cup U_i$  open cover
- $\mathcal{F}$ : sheaf of *H*-comodule algebras (QPB)

• 
$$\mathcal{F}(U_i)^{\operatorname{coinv}(H)} = \mathcal{O}_M(U_i)$$



3 1 4

We have:

- $(M, \mathcal{O}_M)$  quantum space,  $M = \cup U_i$  open cover
- $\mathcal{F}$ : sheaf of *H*-comodule algebras (QPB)

• 
$$\mathcal{F}(U_i)^{\operatorname{coinv}(H)} = \mathcal{O}_M(U_i)$$

• 
$$\mathcal{F}(U_i) \cong \mathcal{F}(U_i)^{\operatorname{coinv}(H)} \otimes H$$



3 1 4

We have:

- $(M, \mathcal{O}_M)$  quantum space,  $M = \cup U_i$  open cover
- $\mathcal{F}$ : sheaf of *H*-comodule algebras (QPB)

• 
$$\mathcal{F}(U_i)^{\operatorname{coinv}(H)} = \mathcal{O}_M(U_i)$$

• 
$$\mathcal{F}(U_i) \cong \mathcal{F}(U_i)^{\operatorname{coinv}(H)} \otimes H$$

#### Definition. A H-covariant



We have:

- $(M, \mathcal{O}_M)$  quantum space,  $M = \cup U_i$  open cover
- $\mathcal{F}$ : sheaf of *H*-comodule algebras (QPB)

• 
$$\mathcal{F}(U_i)^{\operatorname{coinv}(H)} = \mathcal{O}_M(U_i)$$

• 
$$\mathcal{F}(U_i) \cong \mathcal{F}(U_i)^{\operatorname{coinv}(H)} \otimes H$$

**Definition**. A *H*-covariant first order differential calculus (f.o.d.c.) on  $\mathcal{F}$  is a sheaf  $\Omega$  of *H*-covariant algebras with an *H* comodule natural transformation:



We have:

- $(M, \mathcal{O}_M)$  quantum space,  $M = \cup U_i$  open cover
- $\mathcal{F}$ : sheaf of *H*-comodule algebras (QPB)

• 
$$\mathcal{F}(U_i)^{\operatorname{coinv}(H)} = \mathcal{O}_M(U_i)$$

• 
$$\mathcal{F}(U_i) \cong \mathcal{F}(U_i)^{\operatorname{coinv}(H)} \otimes H$$

**Definition**. A *H*-covariant first order differential calculus (f.o.d.c.) on  $\mathcal{F}$  is a sheaf  $\Omega$  of *H*-covariant algebras with an *H* comodule natural transformation:

$$d: \mathcal{F} \longrightarrow \Omega$$

satisfying *locally*:



We have:

- $(M, \mathcal{O}_M)$  quantum space,  $M = \cup U_i$  open cover
- $\mathcal{F}$ : sheaf of *H*-comodule algebras (QPB)

• 
$$\mathcal{F}(U_i)^{\operatorname{coinv}(H)} = \mathcal{O}_M(U_i)$$

• 
$$\mathcal{F}(U_i) \cong \mathcal{F}(U_i)^{\operatorname{coinv}(H)} \otimes H$$

**Definition**. A *H*-covariant first order differential calculus (f.o.d.c.) on  $\mathcal{F}$  is a sheaf  $\Omega$  of *H*-covariant algebras with an *H* comodule natural transformation:

$$d:\mathcal{F}\longrightarrow \Omega$$

satisfying *locally*:

• (Leibniz Rule) d(fg) = d(f)g + fdg



We have:

- $(M, \mathcal{O}_M)$  quantum space,  $M = \cup U_i$  open cover
- $\mathcal{F}$ : sheaf of *H*-comodule algebras (QPB)

• 
$$\mathcal{F}(U_i)^{\operatorname{coinv}(H)} = \mathcal{O}_M(U_i)$$

• 
$$\mathcal{F}(U_i) \cong \mathcal{F}(U_i)^{\operatorname{coinv}(H)} \otimes H$$

**Definition**. A *H*-covariant first order differential calculus (f.o.d.c.) on  $\mathcal{F}$  is a sheaf  $\Omega$  of *H*-covariant algebras with an *H* comodule natural transformation:

$$d:\mathcal{F}\longrightarrow \Omega$$

satisfying *locally*:

- (Leibniz Rule) d(fg) = d(f)g + fdg
- $\Omega(U_i) = \mathcal{F}(U_i) d\mathcal{F}(U_i)$



We have:

- $(M, \mathcal{O}_M)$  quantum space,  $M = \cup U_i$  open cover
- $\mathcal{F}$ : sheaf of *H*-comodule algebras (QPB)

• 
$$\mathcal{F}(U_i)^{\operatorname{coinv}(H)} = \mathcal{O}_M(U_i)$$

• 
$$\mathcal{F}(U_i) \cong \mathcal{F}(U_i)^{\operatorname{coinv}(H)} \otimes H$$

**Definition**. A *H*-covariant first order differential calculus (f.o.d.c.) on  $\mathcal{F}$  is a sheaf  $\Omega$  of *H*-covariant algebras with an *H* comodule natural transformation:

$$d: \mathcal{F} \longrightarrow \Omega$$

satisfying *locally*:

- (Leibniz Rule) d(fg) = d(f)g + fdg
- $\Omega(U_i) = \mathcal{F}(U_i) d\mathcal{F}(U_i)$
- (*H*-covariance)

$$\Delta_i^H:\Omega(U_i)\longrightarrow \Omega(U_i)\otimes H,$$

 $fdg \longrightarrow f_0 dg_0 \otimes f_1 g_1$ 



Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases

We have:



Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases

We have:

•  $\Omega:$  f.o.d.c. on  ${\mathcal F}$  QPB



We have:

- $\Omega$ : f.o.d.c. on  ${\mathcal F}$  QPB
- $\mathcal{O}_q(G)$  quantum group,  $\mathcal{U}_q(\mathfrak{g})$  QUEA,



We have:

- $\Omega$ : f.o.d.c. on  ${\mathcal F}$  QPB
- $\mathcal{O}_q(G)$  quantum group,  $\mathcal{U}_q(\mathfrak{g})$  QUEA,
- $\langle,\rangle:\mathcal{O}_q(\mathcal{G})\otimes\mathcal{U}_q(\mathfrak{g})\longrightarrow\mathbb{C}$  pairing



We have:

- $\Omega$ : f.o.d.c. on  ${\mathcal F}$  QPB
- $\mathcal{O}_q(G)$  quantum group,  $\mathcal{U}_q(\mathfrak{g})$  QUEA,
- $\langle,\rangle:\mathcal{O}_q(\mathcal{G})\otimes\mathcal{U}_q(\mathfrak{g})\longrightarrow\mathbb{C}$  pairing
- $G \longrightarrow G/P$ ,  $\mathfrak{p} = Lie(P)$



We have:

- $\Omega$ : f.o.d.c. on  ${\mathcal F}$  QPB
- $\mathcal{O}_q(G)$  quantum group,  $\mathcal{U}_q(\mathfrak{g})$  QUEA,
- $\langle,\rangle:\mathcal{O}_q(\mathcal{G})\otimes\mathcal{U}_q(\mathfrak{g})\longrightarrow\mathbb{C}$  pairing
- $G \longrightarrow G/P$ ,  $\mathfrak{p} = Lie(P)$
- $\mathcal{U}_q(\mathfrak{p})$  QUEA



3.1.4

We have:

- $\Omega$ : f.o.d.c. on  ${\mathcal F}$  QPB
- $\mathcal{O}_q(G)$  quantum group,  $\mathcal{U}_q(\mathfrak{g})$  QUEA,
- $\langle,\rangle:\mathcal{O}_q(\mathcal{G})\otimes\mathcal{U}_q(\mathfrak{g})\longrightarrow\mathbb{C}$  pairing
- $G \longrightarrow G/P$ ,  $\mathfrak{p} = Lie(P)$
- $\mathcal{U}_q(\mathfrak{p})$  QUEA

#### **Coinvariant Forms:**



We have:

- $\Omega$ : f.o.d.c. on  ${\mathcal F}$  QPB
- $\mathcal{O}_q(G)$  quantum group,  $\mathcal{U}_q(\mathfrak{g})$  QUEA,
- $\langle,\rangle:\mathcal{O}_q(\mathcal{G})\otimes\mathcal{U}_q(\mathfrak{g})\longrightarrow\mathbb{C}$  pairing
- $G \longrightarrow G/P$ ,  $\mathfrak{p} = Lie(P)$
- $\mathcal{U}_q(\mathfrak{p})$  QUEA

#### **Coinvariant Forms:**

$$\Omega^{\operatorname{coinv}(H)}(U) = \{ \rho \in \Omega(U) | \Delta^H(\rho) = \rho \otimes 1 \}$$



We have:

- $\Omega$ : f.o.d.c. on  ${\mathcal F}$  QPB
- $\mathcal{O}_q(G)$  quantum group,  $\mathcal{U}_q(\mathfrak{g})$  QUEA,
- $\langle,\rangle:\mathcal{O}_q(\mathcal{G})\otimes\mathcal{U}_q(\mathfrak{g})\longrightarrow\mathbb{C}$  pairing
- $G \longrightarrow G/P$ ,  $\mathfrak{p} = Lie(P)$
- $\mathcal{U}_q(\mathfrak{p})$  QUEA

#### **Coinvariant Forms:**

$$\Omega^{\operatorname{coinv}(H)}(U) = \{ \rho \in \Omega(U) | \Delta^H(\rho) = \rho \otimes 1 \}$$

 $\mathcal{O}_q(G)$  quantum group,  $\mathcal{U}_q(G)$  QUEA



We have:

- $\Omega$ : f.o.d.c. on  ${\mathcal F}$  QPB
- $\mathcal{O}_q(G)$  quantum group,  $\mathcal{U}_q(\mathfrak{g})$  QUEA,
- $\langle,\rangle:\mathcal{O}_q(\mathcal{G})\otimes\mathcal{U}_q(\mathfrak{g})\longrightarrow\mathbb{C}$  pairing
- $G \longrightarrow G/P$ ,  $\mathfrak{p} = Lie(P)$
- $\mathcal{U}_q(\mathfrak{p})$  QUEA

#### **Coinvariant Forms:**

$$\Omega^{\operatorname{coinv}(H)}(U) = \{ \rho \in \Omega(U) | \Delta^H(\rho) = \rho \otimes 1 \}$$

 $\mathcal{O}_q(G)$  quantum group,  $\mathcal{U}_q(G)$  QUEA Horizontal Forms:



We have:

- $\Omega:$  f.o.d.c. on  ${\mathcal F}$  QPB
- $\mathcal{O}_q(G)$  quantum group,  $\mathcal{U}_q(\mathfrak{g})$  QUEA,
- $\langle,\rangle:\mathcal{O}_q(\mathcal{G})\otimes\mathcal{U}_q(\mathfrak{g})\longrightarrow\mathbb{C}$  pairing
- $G \longrightarrow G/P$ ,  $\mathfrak{p} = Lie(P)$
- $\mathcal{U}_q(\mathfrak{p})$  QUEA

#### **Coinvariant Forms:**

$$\Omega^{\operatorname{coinv}(H)}(U) = \{ \rho \in \Omega(U) | \Delta^{H}(\rho) = \rho \otimes 1 \}$$

 $\mathcal{O}_q(G)$  quantum group,  $\mathcal{U}_q(G)$  QUEA Horizontal Forms:

$$\Omega^{\operatorname{Hor}}(U) = \{ 
ho \in \Omega(U) | \langle X, 
ho 
angle = 0 \}$$





Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases

• The H bicovariant f.o.d.c. on  $\mathcal{O}_q(G)$  induces an H covariant differential calculus on  $\mathcal{O}_q(G)$  as QPB on  $\mathcal{O}_q(G/P)$ .



3 1 4 3

- The H bicovariant f.o.d.c. on O<sub>q</sub>(G) induces an H covariant differential calculus on O<sub>q</sub>(G) as QPB on O<sub>q</sub>(G/P).
- The f.o.d.c. of the QPB O<sub>q</sub>(G) induces a f.o.d.c on O<sub>q</sub>(G/P):



医下子 医

- The H bicovariant f.o.d.c. on  $\mathcal{O}_q(G)$  induces an H covariant differential calculus on  $\mathcal{O}_q(G)$  as QPB on  $\mathcal{O}_q(G/P)$ .
- The f.o.d.c. of the QPB O<sub>q</sub>(G) induces a f.o.d.c on O<sub>q</sub>(G/P):

$$\Omega_{G/P}(U_i) = \Omega_{G/P}^{\operatorname{coinv}(H)}(U_i) \, d \, \Omega_{G/P}^{\operatorname{coinv}(H)}(U_i)$$



∃ → < ∃</p>

- The H bicovariant f.o.d.c. on O<sub>q</sub>(G) induces an H covariant differential calculus on O<sub>q</sub>(G) as QPB on O<sub>q</sub>(G/P).
- The f.o.d.c. of the QPB O<sub>q</sub>(G) induces a f.o.d.c on O<sub>q</sub>(G/P):

$$\Omega_{G/P}(U_i) = \Omega_{G/P}^{\operatorname{coinv}(H)}(U_i) \, d \, \Omega_{G/P}^{\operatorname{coinv}(H)}(U_i)$$



∃ → < ∃</p>

- The H bicovariant f.o.d.c. on O<sub>q</sub>(G) induces an H covariant differential calculus on O<sub>q</sub>(G) as QPB on O<sub>q</sub>(G/P).
- The f.o.d.c. of the QPB O<sub>q</sub>(G) induces a f.o.d.c on O<sub>q</sub>(G/P):

$$\Omega_{G/P}(U_i) = \Omega_{G/P}^{\operatorname{coinv}(H)}(U_i) \, d \, \Omega_{G/P}^{\operatorname{coinv}(H)}(U_i)$$



∃ → < ∃</p>

# Bibliography



Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases

P. Aschieri, R. Fioresi, E. Latini, *The quantum principal bundles over projective bases*, Comm. Math. Phys. 382 (2021) 1691-1724.



- P. Aschieri, R. Fioresi, E. Latini, *The quantum principal bundles over projective bases*, Comm. Math. Phys. 382 (2021) 1691-1724.
- P. Aschieri, R. Fioresi, E. Latini, T. Weber, Differential Calculi on Quantum Principal Bundles over Projective Bases, https://arxiv.org/abs/2110.03481, 2023.



4 3 5 4 3

- P. Aschieri, R. Fioresi, E. Latini, *The quantum principal bundles over projective bases*, Comm. Math. Phys. 382 (2021) 1691-1724.
- P. Aschieri, R. Fioresi, E. Latini, T. Weber, *Differential Calculi on Quantum Principal Bundles over Projective Bases*, https://arxiv.org/abs/2110.03481, 2023.
- N. Ciccoli, R. Fioresi, F. Gavarini, *Quantization of Projective Homogeneous Spaces and Duality Principle*, Journal of Noncommutative Geometry, 449–496, 2, 2008.



4 3 5 4 3

- P. Aschieri, R. Fioresi, E. Latini, *The quantum principal bundles over projective bases*, Comm. Math. Phys. 382 (2021) 1691-1724.
- P. Aschieri, R. Fioresi, E. Latini, T. Weber, *Differential Calculi on Quantum Principal Bundles over Projective Bases*, https://arxiv.org/abs/2110.03481, 2023.
- N. Ciccoli, R. Fioresi, F. Gavarini, *Quantization of Projective Homogeneous Spaces and Duality Principle*, Journal of Noncommutative Geometry, 449–496, 2, 2008.
- Y. I. Manin, Topics in Non commutative geometry, Princeton University Press, 1991.



4 3 6 4 3