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Homogeneous Projective Varieties

Hypotheses:

G complex semisimple algebraic group.

P a closed algebraic subgroup of G (P parabolic).

χ : P −→ C× a character of P.

L is a line bundle on G/P associated with χ, with global
sections:

O(G/P)1 = {f : G −→ C | f (gh) = χ−1(h)f (g)}

L (ample) gives a projective embedding of G/P.

The coordinate (graded) algebra of the variety G/P with respect
to the projective embedding is

O(G/P) :=
∑
O(G/P)n, where

O(G/P)n := {f : G −→ C | f (gh) = χ−n(h)f (g)}.

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Homogeneous Projective Varieties

Hypotheses:

G complex semisimple algebraic group.

P a closed algebraic subgroup of G (P parabolic).

χ : P −→ C× a character of P.

L is a line bundle on G/P associated with χ, with global
sections:

O(G/P)1 = {f : G −→ C | f (gh) = χ−1(h)f (g)}

L (ample) gives a projective embedding of G/P.

The coordinate (graded) algebra of the variety G/P with respect
to the projective embedding is

O(G/P) :=
∑
O(G/P)n, where

O(G/P)n := {f : G −→ C | f (gh) = χ−n(h)f (g)}.

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Homogeneous Projective Varieties

Hypotheses:

G complex semisimple algebraic group.

P a closed algebraic subgroup of G (P parabolic).

χ : P −→ C× a character of P.

L is a line bundle on G/P associated with χ, with global
sections:

O(G/P)1 = {f : G −→ C | f (gh) = χ−1(h)f (g)}

L (ample) gives a projective embedding of G/P.

The coordinate (graded) algebra of the variety G/P with respect
to the projective embedding is

O(G/P) :=
∑
O(G/P)n, where

O(G/P)n := {f : G −→ C | f (gh) = χ−n(h)f (g)}.

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Homogeneous Projective Varieties

Hypotheses:

G complex semisimple algebraic group.

P a closed algebraic subgroup of G (P parabolic).

χ : P −→ C× a character of P.

L is a line bundle on G/P associated with χ, with global
sections:

O(G/P)1 = {f : G −→ C | f (gh) = χ−1(h)f (g)}

L (ample) gives a projective embedding of G/P.

The coordinate (graded) algebra of the variety G/P with respect
to the projective embedding is

O(G/P) :=
∑
O(G/P)n, where

O(G/P)n := {f : G −→ C | f (gh) = χ−n(h)f (g)}.

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Homogeneous Projective Varieties

Hypotheses:

G complex semisimple algebraic group.

P a closed algebraic subgroup of G (P parabolic).

χ : P −→ C× a character of P.

L is a line bundle on G/P associated with χ, with global
sections:

O(G/P)1 = {f : G −→ C | f (gh) = χ−1(h)f (g)}

L (ample) gives a projective embedding of G/P.

The coordinate (graded) algebra of the variety G/P with respect
to the projective embedding is

O(G/P) :=
∑
O(G/P)n, where

O(G/P)n := {f : G −→ C | f (gh) = χ−n(h)f (g)}.

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Homogeneous Projective Varieties

Hypotheses:

G complex semisimple algebraic group.

P a closed algebraic subgroup of G (P parabolic).

χ : P −→ C× a character of P.

L is a line bundle on G/P associated with χ, with global
sections:

O(G/P)1 = {f : G −→ C | f (gh) = χ−1(h)f (g)}

L (ample) gives a projective embedding of G/P.

The coordinate (graded) algebra of the variety G/P with respect
to the projective embedding is

O(G/P) :=
∑
O(G/P)n, where

O(G/P)n := {f : G −→ C | f (gh) = χ−n(h)f (g)}.

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Homogeneous Projective Varieties

Hypotheses:

G complex semisimple algebraic group.

P a closed algebraic subgroup of G (P parabolic).

χ : P −→ C× a character of P.

L is a line bundle on G/P associated with χ, with global
sections:

O(G/P)1 = {f : G −→ C | f (gh) = χ−1(h)f (g)}

L (ample) gives a projective embedding of G/P.

The coordinate (graded) algebra of the variety G/P with respect
to the projective embedding is

O(G/P) :=
∑
O(G/P)n, where

O(G/P)n := {f : G −→ C | f (gh) = χ−n(h)f (g)}.

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Homogeneous Projective Varieties

Hypotheses:

G complex semisimple algebraic group.

P a closed algebraic subgroup of G (P parabolic).

χ : P −→ C× a character of P.

L is a line bundle on G/P associated with χ, with global
sections:

O(G/P)1 = {f : G −→ C | f (gh) = χ−1(h)f (g)}

L (ample) gives a projective embedding of G/P.

The coordinate (graded) algebra of the variety G/P with respect
to the projective embedding is

O(G/P) :=
∑
O(G/P)n, where

O(G/P)n := {f : G −→ C | f (gh) = χ−n(h)f (g)}.

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Example: The Projective space P1(C) = SL2(C)/P

Here

G = SL2(C), P =

{(
a b
0 d

)}
, P1(C) = SL2(C)/P

We define the character of P:

χ : P −→ C×, χ

(
a b
0 d

)
= a−1

The corresponding line bundle has sections:

O(P1)1 = {â, ĉ : SL2(C) −→ C}

O(P1) = C[â, ĉ] ⊂ C[SL2] = C[â, b̂, ĉ , d̂ ]/(âd̂ − ĉ b̂ − 1)

In fact

â

(
a b
c d

)(
a′ b′

0 d ′

)
= aa′ = χ

(
a′ b′

0 d ′

)
â

(
a b
c d

)
.
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Example: The Grassmannian G (2, 4)

Here

G = SL4(C), P =

{(
a b
0 d

)}
, G (2, 4) = SL4(C)/P

We define the character of P:

χ : P −→ C×, χ

(
a b
0 d

)
= det(a)−1

The corresponding line bundle has sections:

O(G (2, 4))1 = {dij : SL4(C) −→ C | dij = ai1aj2 − aj1ai2},

O(G/P) = C[dij ] ⊂ C[G ]

Since χ ∈ C[P], the property f (gh) = χ(h)−1f (g) in terms of
Hopf algebras reads:

(1⊗ π)∆(f ) = χ−1 ⊗ f , for π : C[G ] −→ C[P]
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Line Bundles and projective embeddings of G/P

Proposition. If G/H is embedded in Pm via a line bundle, then
there exists t ∈ C[G ] such that π(t) = χ−1 and with the property:

(1⊗ π)∆(t) = t ⊗ π(t)

This t determines uniquely the line bundle, hence the projective
embedding.

O(G/P)n = {f ∈ O(G ) | (1⊗ π)∆(f ) = f ⊗ π(tn)}

Example. For G/P = G (2, 4) and the Plucker embedding,
t = a11a22 − a21a12.

O(G/P) = C[dij ] ⊂ C[G ]

t is the object we will quantize to obtain a quantum homogeneous
projective space.
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Quantum Homogeneous varieties

Let Cq := C
[
q, q−1

]
, where q is an indeterminate.

Cq[G ] is a quantum group if:

1 Cq[G ] is a Hopf algebra over Cq

2 Cq[G ] is torsion-free, as a Cq–module;

The Cq algebra Oq(X ) is a quantization of O(X ) if

it is torsion-free

Oq(X )/(q − 1)Oq(X ) ∼= O(X ) .

If X is a projective variety, then we associate to it the Z-graded
algebra O(X ) obtained through its embedding into Pm.
If X is an homogenous space for G , then O(X ) admits a natural
coaction of C[G ].

We say that Oq(X ) is a quantum homogeneous variety, if
Oq(X ) admits a coaction of the quantum group Cq[G ], reducing
to the coaction of C[G ] on O(X ) when q = 1.
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Quantum Line Bundles

We define quantum section of the line bundle L on G
/
P given by

t , any d ∈ Cq[G ] such that

1 ∆(d) ∈
(
d ⊗ d + Cq[G ]⊗ Iq(P)

)
2 d mod (q−1)Cq[G ] = t

(
∈ C[G ]

)
where π : Cq[G ] −→ Cq[P] := Cq[G ]/Iq(P).

A quantum section is a quantization of a line bundle on G/P,
hence of a projective embedding of G/P.

Define:

Oq(G/P) :=
∑
Oq(G/P)n, where

Oq(G/P)n := {f ∈ Cq[G ] | (id⊗ π)∆(f ) = f ⊗ π
(
dn
)
}.
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Quantum Section and Projective homogeneous spaces

Theorem (Ciccoli, F., Gavarini)
Let d be a quantum section on G

/
P . Then

1

Oq(G/P)r · Oq(G/P)s ⊆ Oq(G/P)r+s ⊂ Cq[G ]

Hence, Oq(G/P) is a graded subalgebra. and we have:

Oq(G/P) =
⊕

n∈N
Oq(G/P)n ⊂ Cq[G ].

2 Oq(G/P) is a graded Cq[G ]–comodule

∆|Oq(G/P) : Oq(G/P) −→ Cq[G ]⊗Oq(G/P)

3 We have

Oq(G/P)
⋂

(q−1)Cq[G ] = (q−1)Oq(G/P)

Oq(G/P) is a projective homogeneous quantum variety

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Section and Projective homogeneous spaces

Theorem (Ciccoli, F., Gavarini)

Let d be a quantum section on G
/
P . Then

1

Oq(G/P)r · Oq(G/P)s ⊆ Oq(G/P)r+s ⊂ Cq[G ]

Hence, Oq(G/P) is a graded subalgebra. and we have:

Oq(G/P) =
⊕

n∈N
Oq(G/P)n ⊂ Cq[G ].

2 Oq(G/P) is a graded Cq[G ]–comodule

∆|Oq(G/P) : Oq(G/P) −→ Cq[G ]⊗Oq(G/P)

3 We have

Oq(G/P)
⋂

(q−1)Cq[G ] = (q−1)Oq(G/P)

Oq(G/P) is a projective homogeneous quantum variety

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Section and Projective homogeneous spaces

Theorem (Ciccoli, F., Gavarini)
Let d be a quantum section on G

/
P . Then

1

Oq(G/P)r · Oq(G/P)s ⊆ Oq(G/P)r+s ⊂ Cq[G ]

Hence, Oq(G/P) is a graded subalgebra. and we have:

Oq(G/P) =
⊕

n∈N
Oq(G/P)n ⊂ Cq[G ].

2 Oq(G/P) is a graded Cq[G ]–comodule

∆|Oq(G/P) : Oq(G/P) −→ Cq[G ]⊗Oq(G/P)

3 We have

Oq(G/P)
⋂

(q−1)Cq[G ] = (q−1)Oq(G/P)

Oq(G/P) is a projective homogeneous quantum variety

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Section and Projective homogeneous spaces

Theorem (Ciccoli, F., Gavarini)
Let d be a quantum section on G

/
P . Then

1

Oq(G/P)r · Oq(G/P)s ⊆ Oq(G/P)r+s ⊂ Cq[G ]

Hence, Oq(G/P) is a graded subalgebra.

and we have:

Oq(G/P) =
⊕

n∈N
Oq(G/P)n ⊂ Cq[G ].

2 Oq(G/P) is a graded Cq[G ]–comodule

∆|Oq(G/P) : Oq(G/P) −→ Cq[G ]⊗Oq(G/P)

3 We have

Oq(G/P)
⋂

(q−1)Cq[G ] = (q−1)Oq(G/P)

Oq(G/P) is a projective homogeneous quantum variety

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Section and Projective homogeneous spaces

Theorem (Ciccoli, F., Gavarini)
Let d be a quantum section on G

/
P . Then

1

Oq(G/P)r · Oq(G/P)s ⊆ Oq(G/P)r+s ⊂ Cq[G ]

Hence, Oq(G/P) is a graded subalgebra. and we have:

Oq(G/P) =
⊕

n∈N
Oq(G/P)n ⊂ Cq[G ].

2 Oq(G/P) is a graded Cq[G ]–comodule

∆|Oq(G/P) : Oq(G/P) −→ Cq[G ]⊗Oq(G/P)

3 We have

Oq(G/P)
⋂

(q−1)Cq[G ] = (q−1)Oq(G/P)

Oq(G/P) is a projective homogeneous quantum variety

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Section and Projective homogeneous spaces

Theorem (Ciccoli, F., Gavarini)
Let d be a quantum section on G

/
P . Then

1

Oq(G/P)r · Oq(G/P)s ⊆ Oq(G/P)r+s ⊂ Cq[G ]

Hence, Oq(G/P) is a graded subalgebra. and we have:

Oq(G/P) =
⊕

n∈N
Oq(G/P)n ⊂ Cq[G ].

2 Oq(G/P) is a graded Cq[G ]–comodule

∆|Oq(G/P) : Oq(G/P) −→ Cq[G ]⊗Oq(G/P)

3 We have

Oq(G/P)
⋂

(q−1)Cq[G ] = (q−1)Oq(G/P)

Oq(G/P) is a projective homogeneous quantum variety

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Section and Projective homogeneous spaces

Theorem (Ciccoli, F., Gavarini)
Let d be a quantum section on G

/
P . Then

1

Oq(G/P)r · Oq(G/P)s ⊆ Oq(G/P)r+s ⊂ Cq[G ]

Hence, Oq(G/P) is a graded subalgebra. and we have:

Oq(G/P) =
⊕

n∈N
Oq(G/P)n ⊂ Cq[G ].

2 Oq(G/P) is a graded Cq[G ]–comodule

∆|Oq(G/P) : Oq(G/P) −→ Cq[G ]⊗Oq(G/P)

3 We have

Oq(G/P)
⋂

(q−1)Cq[G ] = (q−1)Oq(G/P)

Oq(G/P) is a projective homogeneous quantum variety

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Section and Projective homogeneous spaces

Theorem (Ciccoli, F., Gavarini)
Let d be a quantum section on G

/
P . Then

1

Oq(G/P)r · Oq(G/P)s ⊆ Oq(G/P)r+s ⊂ Cq[G ]

Hence, Oq(G/P) is a graded subalgebra. and we have:

Oq(G/P) =
⊕

n∈N
Oq(G/P)n ⊂ Cq[G ].

2 Oq(G/P) is a graded Cq[G ]–comodule

∆|Oq(G/P) : Oq(G/P) −→ Cq[G ]⊗Oq(G/P)

3 We have

Oq(G/P)
⋂

(q−1)Cq[G ] = (q−1)Oq(G/P)

Oq(G/P) is a projective homogeneous quantum variety

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Example: Quantum section for Plücker embedding

Define the quantum matrices

Cq[Mn] = Cq〈aij〉/IM (1)

where IM is the ideal of the Manin relations:

aijakj = q−1akjaij i < k aijakl = aklaij i < k, j > l or i > k , j < l

aijail = q−1ailaij j < l aijakl − aklaij = (q−1 − q)aikajl i < k , j < l

The quantum matrix algebra Oq(Mn) is a bialgebra, with:

∆(aij) =
∑
k

aik ⊗ akj , ε(aij) = δij .

Define quantum special linear group to be the algebra

Cq[SLn] = Cq[M]/(detq − 1)
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The Plucker embedding of the Quantum Grassmannian

Key Observations.

d12 ∈ Cq[SL4] is a quantum section, in fact:

(id ⊗ π)∆(d12) = (id ⊗ π)(
∑

1≤i<j≤4

d ij
12 ⊗ d12

ij ) = d12 ⊗ d12

where dcolindeces
rowindices.

dij generate Oq(Gr)!

Proposition.

Oq(Gr) =
C[d12, d13, d14, d23, d24, d34]

(d12d34 − q−1d13d24 + q−2d14d23, Icomm)

is a quantization of the homogeneous ring of the grassmannian
with respect to the Plucker embedding. It carries a natural
coaction of the quantum special linear group.

∆(dij) =
∑

1≤i<j≤4

d ij
12 ⊗ d12

ij )

The generalization to n dimensions is immediate!
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Projective embeddings of Quantum flags

Facts

a11d12d123 . . . is a quantum section.

dI the determinants of the quantum minors generate Oq(Fl)

Commutation, Incidence and Plucker relations.

Proposition.

Oq(Fl) =
C[di , dij , dijk , . . . ]

(Iincidence, IPlucker, Icomm)

is a quantization of the homogeneous ring of the flag with respect
to the chosen projective embedding. It carries a natural coaction of
the quantum special linear group.
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Principal bundles

Classical Definition.
(E ,M, ℘,P) is a P-principal bundle if

1 ℘ : E −→ M is surjective.

2 P acts freely from the right on E .

3 P acts transitively on the fiber ℘−1(m), m ∈ M.

4 E is locally trivial over M.

Sheaf Theoretic Definition (Pflaum).
E −→ M is a P-principal bundle if and only if

F is a sheaf of H = C[P] comodule algebras;

There exists an open covering {Ui} of M such that:
1 F(Ui )

coinvH ' OM(Ui )
2 F(Ui ) ' F(Ui )

coinvH ⊗ H, as left F(Ui )
coinvH -modules and

right H-comodules for all i ,

F(Ui )
coinvH := {f ∈ F(Ui ) | δH(f ) = f ⊗ 1}

δH : F(Ui )→ F(Ui )⊗ H the H-coaction.
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Quantum Principal bundles

Definition. (M,OM) is a quantum ringed space if

M: classical topological space

OM : sheaf over M of non commutative algebras.

Definition. The sheaf F on M is a H-quantum principal bundle
over the quantum ringed space (M,OM) if:

F is a sheaf of H comodule algebras (PCA);

There exists an open covering {Ui} of M such that:
1 F(Ui )

coinvH = OM(Ui ),
2 F is locally cleft, i.e. F(Ui ) ∼= F(Ui )

coinvH ⊗ H.
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Example of a classical principal bundle

℘ : E = SL2(C) −→ M = SL2(C)/P ' P1(C)

On the coordinate algebras:

π : C[SL2] = C[a, b, c , d ]/(ad − bc − 1) −→ C[SL2]/(c) = C[t, p, t−1]

V1 =

{(
a b
c d

)
a 6= 0

}
, V2 =

{(
a b
c d

)
c 6= 0

}
open cover of

SL2(C).
Let Ui = ℘(Vi ). Define the sheaf F of O(P)-comodule algebras

F(U1) := C[SL2][a−1], F(U2) := C[SL2][c−1]

F(U12) := C[SL2][[a−1, c−1] F(P1(C)) = C.

F is a (quantum) principal bundle on P1(C).
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Example of a Quantum Ringed space

Define the quantum special linear group:

Cq[SL2] = Cq〈a, b, c, d〉/IM + (ad − q−1bc − 1) .

IM is the ideal of the Manin relations

ab = q−1ba, ac = q−1ca, bd = q−1db, cd = q−1dc ,

bc = cb ad − da = (q−1 − q)bc

Ui cover of M = SL2(C)/P as above. Define the quantum ringed
space:

Oq,P1(C)(U1) = Cq[a−1c] ' Cq[u], Oq,P1(C)(U2) = Cq[c−1a] ' Cq[v ]
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Example of a Quantum Principal bundle

On the quantum ringed space (P1(C),Oq ,P1(C)) define the
quantum principal bundle F , with respect to the covering U1, U2:

F(U1) := Cq[SL2][a−1] F(U1) := Cq[SL2][a−1]

F(U12) := Cq[SL2][a−1, c−1]

This is a sheaf of Oq(P)-comodule algebras on P1(C).
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The General theory

Theorem (Aschieri-F.-Latini). Let d be a quantum section and
denote with di a suitably chosen family of d (2) as in
∆(d) =

∑
d (1) ⊗ d (2) Assume Oq(Vi ) := Oq(G )S−1

i , Si = {dk
i } is

Ore.Then:

1 (M,OM) is a quantum ringed space.
OM(Ui ) := 〈dkd−1

i 〉 ⊂ Oq(G )S−1
i .

2 The assignment: UI 7→ F(UI ) := Oq(VI ) defines a sheaf of
Oq(P)-comodule algebras on the quantum ringed space M

3 F(Ui )
coinv = OM(Ui )

If furtherly j1 : Oq(P) −→ F(U1) is a cleaving map and we have a
family φ1i : F(U1) −→ F(Ui ) of Oq(P) comodule isomorphisms
compatible with restrictions, then F is a quantum principal bundle.
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Quantum Special Linear group

Define the quantum matrices

Cq[Mn] = Cq〈aij〉/IM (2)

where IM is the ideal of the Manin relations:

aijakj = q−1akjaij i < k aijakl = aklaij i < k, j > l or i > k , j < l

aijail = q−1ailaij j < l aijakl − aklaij = (q−1 − q)aikajl i < k , j < l

The quantum matrix algebra Oq(Mn) is a bialgebra, with:

∆(aij) =
∑
k

aik ⊗ akj , ε(aij) = δij .

Define quantum special linear group to be the algebra

Cq[SLn] = Cq[M]/(detq − 1)
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The quantum Projective space

Let P ⊂ SLn(C):

P =



t11 p12 . . . p1n

0 s22 . . . s2n

...
...

0 sn2 . . . snn


 ⊂ G =

A =


a11 . . . a1n

a21 . . . a2n

...
...

an1 . . . ann

 det(A) = 1


In this case G/P ' Pn−1 and

Oq(Pn−1) = C[x0, . . . , xn−1]/(xixj − q−1xixj , i < j)
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In this case G/P ' Pn−1 and
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The quantum Projective space as QPB/1

We want to reinterpret this construction as quantum principal
bundle.
Oq(G ): quantum special linear group and

Oq(P) := Oq(G )/Iq(P)

Iq(P) is the ideal generated by ai ,1 in Oq(G ).

We use coordinates t11, p1j , skl for the images of the generators aij
under π : Oq(G ) −→ Oq(P).
d = a11 ∈ Oq(G ) is a quantum section, di = ai ,1, in fact:

∆π(a11) = a11 ⊗ t11, t11 = π(a11) ∆(a11) =
∑

a1j ⊗ aj1
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The quantum Projective space as QPB/2

Consider the classical open covers of the topological spaces G and
Pn−1 respectively:

G = ∪iVi , Vi = {g ∈ G | a0
i1(g) 6= 0}

Pn−1 = ∪iUi , Ui = {z ∈ Pn−1 | x0
i−1(z) 6= 0}

(3)

The multiplicative sets:

Si = {aki ,1}{k∈N} ⊂ Oq(G )

satisfies the Ore condition.

Theorem (Aschieri-F.-Latini). The assignment:

UI 7→ F(UI ) := Oq(G )S−1
i1
. . . S−1

is
, I = {i1, . . . , is}

defines a quantum principal bundle on the quantum ringed space
(SLn(C)/P,FcoinvOq(P)).
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Quantum Differential Calculus on H-comodules

H: Hopf algebra
A: H (right) comodule, δH : A −→ A⊗ H

Definition. An H-covariant first order differential calculus
(f.o.d.c.) on A is an A-bimodule Ω, together with a C-linear map
d : A −→ Ω such that:

(Leibniz Rule) d(fg) = d(f )g + fdg

Ω = AdA

(H-covariance)

∆H : Ω −→ Ω⊗ H, fdg −→ f0dg0 ⊗ f1g1

is a well defined coaction.
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Quantum Differential Calculus on QPB

We have:

(M,OM) quantum space, M = ∪Ui open cover

F : sheaf of H-comodule algebras (QPB)

F(Ui )
coinv(H) = OM(Ui )

F(Ui ) ∼= F(Ui )
coinv(H) ⊗ H

Definition. A H-covariant first order differential calculus (f.o.d.c.)
on F is a sheaf Ω of H-covariant algebras with an H comodule
natural transformation:

d : F −→ Ω

satisfying locally:

(Leibniz Rule) d(fg) = d(f )g + fdg

Ω(Ui ) = F(Ui )dF(Ui )

(H-covariance)

∆H
i : Ω(Ui ) −→ Ω(Ui )⊗ H, fdg −→ f0dg0 ⊗ f1g1

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Differential Calculus on QPB

We have:

(M,OM) quantum space, M = ∪Ui open cover

F : sheaf of H-comodule algebras (QPB)

F(Ui )
coinv(H) = OM(Ui )

F(Ui ) ∼= F(Ui )
coinv(H) ⊗ H

Definition. A H-covariant first order differential calculus (f.o.d.c.)
on F is a sheaf Ω of H-covariant algebras with an H comodule
natural transformation:

d : F −→ Ω

satisfying locally:

(Leibniz Rule) d(fg) = d(f )g + fdg

Ω(Ui ) = F(Ui )dF(Ui )

(H-covariance)

∆H
i : Ω(Ui ) −→ Ω(Ui )⊗ H, fdg −→ f0dg0 ⊗ f1g1

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Differential Calculus on QPB

We have:

(M,OM) quantum space, M = ∪Ui open cover

F : sheaf of H-comodule algebras (QPB)

F(Ui )
coinv(H) = OM(Ui )

F(Ui ) ∼= F(Ui )
coinv(H) ⊗ H

Definition. A H-covariant first order differential calculus (f.o.d.c.)
on F is a sheaf Ω of H-covariant algebras with an H comodule
natural transformation:

d : F −→ Ω

satisfying locally:

(Leibniz Rule) d(fg) = d(f )g + fdg

Ω(Ui ) = F(Ui )dF(Ui )

(H-covariance)

∆H
i : Ω(Ui ) −→ Ω(Ui )⊗ H, fdg −→ f0dg0 ⊗ f1g1

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Differential Calculus on QPB

We have:

(M,OM) quantum space, M = ∪Ui open cover

F : sheaf of H-comodule algebras (QPB)

F(Ui )
coinv(H) = OM(Ui )

F(Ui ) ∼= F(Ui )
coinv(H) ⊗ H

Definition. A H-covariant first order differential calculus (f.o.d.c.)
on F is a sheaf Ω of H-covariant algebras with an H comodule
natural transformation:

d : F −→ Ω

satisfying locally:

(Leibniz Rule) d(fg) = d(f )g + fdg

Ω(Ui ) = F(Ui )dF(Ui )

(H-covariance)

∆H
i : Ω(Ui ) −→ Ω(Ui )⊗ H, fdg −→ f0dg0 ⊗ f1g1

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Differential Calculus on QPB

We have:

(M,OM) quantum space, M = ∪Ui open cover

F : sheaf of H-comodule algebras (QPB)

F(Ui )
coinv(H) = OM(Ui )

F(Ui ) ∼= F(Ui )
coinv(H) ⊗ H

Definition. A H-covariant first order differential calculus (f.o.d.c.)
on F is a sheaf Ω of H-covariant algebras with an H comodule
natural transformation:

d : F −→ Ω

satisfying locally:

(Leibniz Rule) d(fg) = d(f )g + fdg

Ω(Ui ) = F(Ui )dF(Ui )

(H-covariance)

∆H
i : Ω(Ui ) −→ Ω(Ui )⊗ H, fdg −→ f0dg0 ⊗ f1g1

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Differential Calculus on QPB

We have:

(M,OM) quantum space, M = ∪Ui open cover

F : sheaf of H-comodule algebras (QPB)

F(Ui )
coinv(H) = OM(Ui )

F(Ui ) ∼= F(Ui )
coinv(H) ⊗ H

Definition. A H-covariant first order differential calculus (f.o.d.c.)
on F is a sheaf Ω of H-covariant algebras with an H comodule
natural transformation:

d : F −→ Ω

satisfying locally:

(Leibniz Rule) d(fg) = d(f )g + fdg

Ω(Ui ) = F(Ui )dF(Ui )

(H-covariance)

∆H
i : Ω(Ui ) −→ Ω(Ui )⊗ H, fdg −→ f0dg0 ⊗ f1g1

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Differential Calculus on QPB

We have:

(M,OM) quantum space, M = ∪Ui open cover

F : sheaf of H-comodule algebras (QPB)

F(Ui )
coinv(H) = OM(Ui )

F(Ui ) ∼= F(Ui )
coinv(H) ⊗ H

Definition. A H-covariant

first order differential calculus (f.o.d.c.)
on F is a sheaf Ω of H-covariant algebras with an H comodule
natural transformation:

d : F −→ Ω

satisfying locally:

(Leibniz Rule) d(fg) = d(f )g + fdg

Ω(Ui ) = F(Ui )dF(Ui )

(H-covariance)

∆H
i : Ω(Ui ) −→ Ω(Ui )⊗ H, fdg −→ f0dg0 ⊗ f1g1

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Differential Calculus on QPB

We have:

(M,OM) quantum space, M = ∪Ui open cover

F : sheaf of H-comodule algebras (QPB)

F(Ui )
coinv(H) = OM(Ui )

F(Ui ) ∼= F(Ui )
coinv(H) ⊗ H

Definition. A H-covariant first order differential calculus (f.o.d.c.)
on F is a sheaf Ω of H-covariant algebras with an H comodule
natural transformation:

d : F −→ Ω

satisfying locally:

(Leibniz Rule) d(fg) = d(f )g + fdg

Ω(Ui ) = F(Ui )dF(Ui )

(H-covariance)

∆H
i : Ω(Ui ) −→ Ω(Ui )⊗ H, fdg −→ f0dg0 ⊗ f1g1

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Differential Calculus on QPB

We have:

(M,OM) quantum space, M = ∪Ui open cover

F : sheaf of H-comodule algebras (QPB)

F(Ui )
coinv(H) = OM(Ui )

F(Ui ) ∼= F(Ui )
coinv(H) ⊗ H

Definition. A H-covariant first order differential calculus (f.o.d.c.)
on F is a sheaf Ω of H-covariant algebras with an H comodule
natural transformation:

d : F −→ Ω

satisfying locally:

(Leibniz Rule) d(fg) = d(f )g + fdg

Ω(Ui ) = F(Ui )dF(Ui )

(H-covariance)

∆H
i : Ω(Ui ) −→ Ω(Ui )⊗ H, fdg −→ f0dg0 ⊗ f1g1

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Differential Calculus on QPB

We have:

(M,OM) quantum space, M = ∪Ui open cover

F : sheaf of H-comodule algebras (QPB)

F(Ui )
coinv(H) = OM(Ui )

F(Ui ) ∼= F(Ui )
coinv(H) ⊗ H

Definition. A H-covariant first order differential calculus (f.o.d.c.)
on F is a sheaf Ω of H-covariant algebras with an H comodule
natural transformation:

d : F −→ Ω

satisfying locally:

(Leibniz Rule) d(fg) = d(f )g + fdg

Ω(Ui ) = F(Ui )dF(Ui )

(H-covariance)

∆H
i : Ω(Ui ) −→ Ω(Ui )⊗ H, fdg −→ f0dg0 ⊗ f1g1

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Differential Calculus on QPB

We have:

(M,OM) quantum space, M = ∪Ui open cover

F : sheaf of H-comodule algebras (QPB)

F(Ui )
coinv(H) = OM(Ui )

F(Ui ) ∼= F(Ui )
coinv(H) ⊗ H

Definition. A H-covariant first order differential calculus (f.o.d.c.)
on F is a sheaf Ω of H-covariant algebras with an H comodule
natural transformation:

d : F −→ Ω

satisfying locally:

(Leibniz Rule) d(fg) = d(f )g + fdg

Ω(Ui ) = F(Ui )dF(Ui )

(H-covariance)

∆H
i : Ω(Ui ) −→ Ω(Ui )⊗ H, fdg −→ f0dg0 ⊗ f1g1

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Quantum Differential Calculus on QPB

We have:

(M,OM) quantum space, M = ∪Ui open cover

F : sheaf of H-comodule algebras (QPB)

F(Ui )
coinv(H) = OM(Ui )

F(Ui ) ∼= F(Ui )
coinv(H) ⊗ H

Definition. A H-covariant first order differential calculus (f.o.d.c.)
on F is a sheaf Ω of H-covariant algebras with an H comodule
natural transformation:

d : F −→ Ω

satisfying locally:

(Leibniz Rule) d(fg) = d(f )g + fdg

Ω(Ui ) = F(Ui )dF(Ui )

(H-covariance)

∆H
i : Ω(Ui ) −→ Ω(Ui )⊗ H, fdg −→ f0dg0 ⊗ f1g1

Rita Fioresi, FaBiT, Unibo Quantum Principal Bundles over non affine bases



Coinvariant Forms and Horizontal Forms

We have:

Ω: f.o.d.c. on F QPB

Oq(G ) quantum group, Uq(g) QUEA,

〈, 〉 : Oq(G )⊗ Uq(g) −→ C pairing

G −→ G/P, p = Lie(P)

Uq(p) QUEA

Coinvariant Forms:

Ωcoinv(H)(U) = {ρ ∈ Ω(U)|∆H(ρ) = ρ⊗ 1}

Oq(G ) quantum group, Uq(G ) QUEA

Horizontal Forms:

ΩHor(U) = {ρ ∈ Ω(U)|〈X , ρ〉 = 0}
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Oq(G ) quantum group, Uq(G ) QUEA

Horizontal Forms:

ΩHor(U) = {ρ ∈ Ω(U)|〈X , ρ〉 = 0}
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Compatible f.o.d.c. G −→ G/P

Theorem (Aschieri-F.-Latini-Weber 2021).

1 The H bicovariant f.o.d.c. on Oq(G ) induces an H covariant
differential calculus on Oq(G ) as QPB on Oq(G/P).

2 The f.o.d.c. of the QPB Oq(G ) induces a f.o.d.c on
Oq(G/P):

ΩG/P(Ui ) = Ω
coinv(H)
G/P (Ui ) d Ω

coinv(H)
G/P (Ui )

3 ΩG/P(Ui ) ∼= Ωcoinv(H)(Ui ) ∩ ΩHor(Ui )
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