0000	000	0000	000	0000	000

Jets and differential operators in noncommutative geometry

Keegan Flood

Joint work with Mauro Mantegazza and Henrik Winther

UniDistance Suisse, Switzerland

11 July 2023

Jets and differential operators in noncommutative geometry

Introduction •000	Higher jet functors 0000	Representability 0000	

Setting and algebraic preliminaries

- To generalize the notion of jet and differential operator from classical differential geometry to the noncommutative setting all that is required is the following.
 - A first order differential calculus
 - An exterior algebra

Definition

A first order calculus (Ω^1_d, d) for a unital associative \Bbbk -algebra A is

- An A-bimodule Ω_d^1 ,
- **2** a map $d: A \to \Omega^1_d$ satisfying d(ab) = adb + (da)b,

3 such that
$$AdA = \Omega_d^1$$
.

Introduction	Higher jet functors		
0000			

Definition

An exterior algebra Ω^a_d over a k-algebra A, is an associative graded algebra (Ω^a_d = ⊕_{n≥0} Ωⁿ_d, ∧) equipped with a map d such that
Ω^a_d = A;
d is a differential, that is a k-linear map d: Ω^a_d → Ω^a_d such that d(Ωⁿ_d) ⊆ Ωⁿ⁺¹_d for all n ≥ 0, which satisfies d² = 0 and d(α ∧ β) = dα ∧ β + (-1)ⁿα ∧ dβ, ∀α ∈ Ωⁿ_d, β ∈ Ω^h_d.
A generates Ω^a_d via the d and the ∧.

Remark

Given an exterior algebra Ω_d^{\bullet} , the first grade and $d: \Omega_d^0 = A \to \Omega_d^1$ form a first order calculus for A. Vice versa, given a first order differential calculus, Ω_d^1 , a maximal exterior algebra, $\Omega_{d,\max}^{\bullet}$, is given by quotienting the tensor algebra by the minimal relations for $d^2 = 0$ to hold.

Introduction 0000	Higher jet functors 0000	Representability 0000	

Quantum symmetric forms

Given an exterior algebra Ω^{\bullet}_d over A, we can define the tensor functors

$$\Omega_d^n \colon {}_A \mathrm{Mod} \longrightarrow {}_A \mathrm{Mod} \qquad \qquad E \longmapsto \Omega_d^n \otimes_A E.$$

We define the functors

$$S^0_d = \Omega^0_d = \mathrm{id}_{A \operatorname{Mod}}, \qquad \qquad S^1_d = \Omega^1_d \coloneqq \Omega^1_d \otimes_A -$$

For $n \ge 0$, the functor of quantum symmetric forms S_d^n is defined by induction as the kernel of the following composition

$$\begin{split} \Omega^1_d \circ S^{n-1}_d & \xrightarrow{\Omega^1_d(\iota^{n-1}_{\wedge})} \Omega^1_d \circ \Omega^1_d \circ S^{n-2}_d \xrightarrow{\wedge_{S^{n-2}_d}} \Omega^2_d \circ S^{n-2}_d \\ \text{and} \ \iota^n_{\wedge} \colon S^n_d & \longrightarrow \Omega^1_d \circ S^{n-1}_d \text{ is the inclusion.} \end{split}$$

Introduction	Higher jet functors 0000	Representability 0000	

Spencer cohomology

For all $k,h\geq 0,$ consider the functor $\Omega^k_d\circ S^h_d,$ and define $\delta^{h,k}$ as the following composition

$$\Omega_d^k \circ S_d^h \xrightarrow{\Omega_d^k(\iota_{\wedge}^n)} \Omega_d^k \circ \Omega_d^1 \circ S_d^{h-1} \xrightarrow{(-1)^k \wedge_{S_d^{h-1}}^{k,1}} \Omega_d^{k+1} \circ S_d^{h-1}$$

We thus obtain a complex in the category of endofunctors on $_AMod$.

$$0 \longrightarrow S_d^n \xrightarrow{\delta^{n,0}} \Omega_d^1 \circ S_d^{n-1} \xrightarrow{\delta^{n-1,1}} \Omega_d^2 \circ S_d^{n-2} \xrightarrow{\delta^{n-2,2}} \Omega_d^3 \circ S_d^{n-3} \xrightarrow{\delta^{n-3,3}} \cdots$$

Definition (Spencer cohomology)

We call this the Spencer δ -complex, its cohomology the Spencer cohomology, and we denote the cohomology at $\Omega_d^k \circ S_d^h$ by $H^{h,k}$.

	Universal and first order jets	Higher jet functors		
	000			
The noncommutative	e 1-jet functor			

Universal calculus and 1-jets

Definition

The universal calculus Ω_u^1 for A is given by the kernel of the multiplication map,

$$\Omega^1_u = \ker(\cdot) \subset A \otimes A.$$

The corresponding universal differential is

 $d_u : a \mapsto 1 \otimes a - a \otimes 1$

Proposition

We have

$$0 \to \Omega^1_u \to A \otimes A \to A \to 0$$

For the bimodule map $\pi_u^{1,0}: a \otimes b \mapsto ab$. Moreover, the universal prolongation $j_u^1: a \mapsto 1 \otimes a$ splits the sequence in Mod_A .

	Universal and first order jets	Higher jet functors		
	000			
The noncommutative	e 1-jet functor			

Universal property of the universal calculus

Recall the following result.

Proposition

For any first order calculus Ω_d^1 , there is an epimorphism $p_d: \Omega_u^1 \to \Omega_d^1$ which takes d_u to d, and we have

$$0 \to N_d \to \Omega^1_u \to \Omega^1_d \to 0$$

For a sub-bimodule $N_d \subset \Omega^1_u$.

We call N_d the space of first order differential relations. In the case of classical differential geometry, it contains things such as

$$d_u f - \sum_i f_{x^i} d_u x^i.$$

	Universal and first order jets	Higher jet functors		
	000			
The noncommutative	1-jet functor			

For any left A-module E, we define

$$N_d(E) = \ker(p_{d,E}) = \left\{ \sum_i a_i \otimes e_i | \sum_i a_i e_i = 0, \sum_i da_i \otimes_A e_i = 0 \right\} \subset A \otimes E$$

Definition

The 1-jet module for a left A-module E is

$$J_d^1 E := J_u^1 E / N_d(E) = A \otimes E / N_d(E).$$

The prolongation operator is $j_{d,E}^1: E \to J_d^1 E$, given by $j_{d,E}^1(e) = [1 \otimes e]$. The projection map is $\pi_{d,E}^{1,0}: [\sum_i a_i \otimes e_i] \mapsto \sum_i a_i e_i$.

Introduction 0000	Higher jet functors ●000	Representability 0000	
Higher jet functors			

A plethora of jet functors

We construct the following three families of functors:

- \bullet The nonholonomic jet functors $J^{(n)}_d\colon {}_A\mathrm{Mod}\to {}_A\mathrm{Mod}$
- The semiholonomic jet functors $J_d^{[n]} \colon {}_A\mathrm{Mod} \to {}_A\mathrm{Mod}$
- The holonomic jet functors $J_d^n \colon {}_A \mathrm{Mod} \to {}_A \mathrm{Mod}$

In particular we have $J_d^{(0)} = J_d^{[0]} = J_d^0 = \mathrm{id}_{A\mathrm{Mod}}$, and $J_d^{(1)} = J_d^{[1]} = J_d^1$. These functors come equipped with natural transformations

$$j_d^{(n)} \colon \mathrm{id}_{{}^A\mathrm{Mod}} \longrightarrow J_d^{(n)} \quad \ j_d^{[n]} \colon \mathrm{id}_{{}^A\mathrm{Mod}} \longrightarrow J_d^{[n]} \quad \ j_d^n \colon \mathrm{id}_{{}^A\mathrm{Mod}} \longrightarrow J_d^n,$$

which are respectively called the nonholonomic, semiholonomic, and holonomic jet prolongation maps. We also have the natural transformations,

$$\pi_d^{(n,n-1;m)} \colon J_d^{(n)} \longrightarrow J_d^{(n-1)}, \quad \pi_d^{[n,n-1]} \colon J_d^{[n]} \longrightarrow J_d^{[n-1]}, \quad \pi_d^{n,n-1} \colon J_d^n \longrightarrow J_d^{n-1},$$

respectively called the nonholonomic, semiholonomic, and holonomic jet projections.

Introduction 0000		Higher jet functors ○●○○	Representability 0000	
Higher jet functors				
Holonomi	c 2-jets			

We can describe $J^2_d E$ implicitly as the kernel of a left-linear (bilinear for $E=A)\ \mathrm{map}$

$$\widetilde{\mathbf{D}}_E \colon J_d^{(2)} E \longrightarrow (\Omega^1_d \ltimes \Omega^2_d)(E),$$

where $(\Omega_d^1 \ltimes \Omega_d^2)(E) \cong (\Omega_d^1 \ltimes \Omega_d^2) \otimes_A E$. As a right A-module, $\Omega_d^1 \ltimes \Omega_d^2 \cong \Omega_d^1 \oplus \Omega_d^2$, but as an A-bimodule, it comes equipped with a non-trivial left action

$$f \star (\alpha + \omega) = f\alpha + df \wedge \alpha + f\omega, \qquad \forall f \in A, \ \alpha \in \Omega^1_d, \ \omega \in \Omega^2_d.$$

Explicitly, we have

$$\widetilde{\mathbf{D}}_E \colon J_d^{(2)} E \longrightarrow (\Omega_d^1 \ltimes \Omega_d^2)(E)$$
$$[a \otimes b] \otimes_A [c \otimes e] \longmapsto (ad(bc) \otimes_A e, da \wedge d(bc) \otimes_A e).$$

	Higher jet functors		
	0000		
Higher jet functors			

Definition (Holonomic *n*-jet functor)

Let A be a k-algebra endowed with an exterior algebra Ω_d^{\bullet} . We define J_d^n as the kernel of the natural transformation

$$\widetilde{\mathrm{D}}_{J_d^{n-2}} \circ J_d^1(l_d^{n-1}) \colon J_d^1 \circ J_d^{n-1} \longrightarrow (\Omega_d^1 \ltimes \Omega_d^2) \circ J_d^{n-2},$$

where we denote the natural inclusion by $l_d^n : J_d^n \longrightarrow J_d^1 \circ J_d^{n-1}$. We call J_d^n the (holonomic) *n*-jet functor.

	Higher jet functors		
	0000		
Higher jet functors			

Higher jet exact sequence

Theorem (Holonomic jet exact sequence)

Let A be a k-algebra endowed with an exterior algebra Ω_d^{\bullet} such that Ω_d^1 , Ω_d^2 , and Ω_d^3 are flat in Mod_A . For $n \ge 1$, if the Spencer cohomology $H^{m,2}$ vanishes, for all $1 \le m < n-2$, then the following sequence is exact,

$$0 \longrightarrow S_d^n \xrightarrow{\iota_d^n} J_d^n \xrightarrow{\pi_d^{n,n-1}} J_d^{n-1} \longrightarrow H^{n-2,2}$$

Therefore, if $H^{n-2,2} = 0$ we obtain a short exact sequence

$$0 \longrightarrow S_d^n \stackrel{\iota_d^n}{\longleftrightarrow} J_d^n \stackrel{\pi_d^{n,n-1}}{\longrightarrow} J_d^{n-1} \longrightarrow 0.$$

Introduction 0000		Higher jet functors 0000	Differential operators ●○○	Representability 0000		
Definitions and properties						

Definition

Let $E, F \in {}_{A}Mod$. A k-linear map $\Delta : E \to F$ is called a linear differential operator of order at most n with respect to the exterior algebra Ω_{d}^{\bullet} , if it factors through the holonomic prolongation operator j_{d}^{n} , i.e. there exists an A-module map $\widetilde{\Delta} \in {}_{A}Hom(J_{d}^{n}E, F)$ such that the following diagram commutes:

If n is minimal, we say that Δ is a linear differential operator of order n.

		Higher jet functors	Differential operators				
			000				
Definitions and properties							

Examples of differential operators

- The differential d.
- Suppose Ω_d^1 is free and finitely-generated as a left *A*-module, i.e. parallelizable. Given a basis $\theta_1, \ldots, \theta_n$, we can define the partial derivative operator $\partial_i \colon A \to A$, by $da = \sum_i \partial_i(a)\theta_i$.
- A (left) connection with respect to the first order differential calculus Ω_d^1 on a left A-module E is a k-linear map

$$E \longrightarrow \Omega^1_d \otimes_A E,$$

satisfying the identity

$$\nabla(fe) = df \otimes_A e + f \nabla e.$$

- The operator $\mathfrak{D}_E \colon J^1_d(E) \to (\Omega^1_d \ltimes \Omega^2_d)(E)$, whose lift $\widetilde{\mathfrak{D}}_E$ defines second order jets.
- Vector fields: $\mathfrak{X}_d := \operatorname{Diff}_d^1(A, A) \cap \operatorname{Ann}(\ker(d))$. Note that $\mathfrak{X}_d \simeq {}_d\operatorname{Hom}(\Omega^1_d, A)$.

		Higher jet functors	Differential operators	
			000	
Definitions and prope	erties			

Proposition

Let $\Delta_1: E \to F$ and $\Delta_2: F \to G$ be differential operators of order at most nand m, respectively. Then the composition $\Delta_2 \circ \Delta_1: E \to G$ is a differential operator of order at most n + m.

Proof.

Corollary

There is a category $\operatorname{Diff}_d^{\operatorname{fin}}$ with the same objects as ${}_A\operatorname{Mod}$ and with morphisms given by the finite order differential operators.

			Representability	
			0000	
Jet functors as a rep	resenting object			

Representability

Definition

We say that the functor $\operatorname{Diff}_d^n(E, -)$ is representable if there is an object Q such that $\operatorname{Diff}_d^n(E, -) \simeq {}_A\operatorname{Hom}(Q, -)$.

Question

When is $\operatorname{Diff}_{d}^{n}(E, -)$ represented by $J_{d}^{n}E$?

Introduction 0000		Higher jet functors 0000	Representability ○●○○	
Jet functors as a rep	presenting object			

Higher order differential relations

There is a natural transformation

$$\hat{p}_d^n: J_u^1 = A \otimes - \to J_d^n$$

Explicitly given by

$$a \otimes e \to a j_d^n(e)$$

We term its kernel the differential relations of order n, written $\ker \hat{p}_d^n(E) = N_d^n(E)$.

1

Proposition

Let the *n*-jet sequence be left exact. We have $\hat{p}_d^n|_{N^{n-1}} \to S_d^n$. The following are equivalent:

- $\hat{p}_d^n|_{N^{n-1}}(E) \to S_d^n E$ is surjective.
- $S^n_d(E) \subset Aj^n_d(E).$

When the latter condition is satisfied, we say symmetric forms of degree n are generated by differential relations.

		Higher jet functors	Representability	
			0000	
Jet functors as a rep	resenting object			

Theorem

Suppose the *n*-jet sequence is left exact, and that $J_d^{n-1}E$ represents differential operators. Then $J_d^n E$ represents differential operators if and only if symmetric forms of degree *n* are generated by differential relations. In that case, we have

 $S_d^n E = (N^{n-1}/N^n)(E)$

		Higher jet functors		Representability			
				0000			
Jet functors as a representing object							

Skeletal jet functors

Let us introduce one more "jet functor".

Definition

The skeletal n-jet functor is defined as the image subfunctor

 $\mathbb{J}_d^n = \operatorname{Im} \hat{p}_d^n$

Theorem

We have the following:

- $\mathbb{J}_d^0 = J_d^0$ and $\mathbb{J}_d^1 = J_d^1$.
- Let $\operatorname{Tor}(\Omega^1_d, E) = 0$. Then $\mathbb{J}^2_d = J^2_d$ if and only if $\Omega^2_d = \Omega^2_{d,\max}$, the maximal prolongation
- $\operatorname{Diff}_d^n(E, -)$ is representable if and only if $\mathbb{J}_d^n = J_d^n$, and then the representing object is J_d^n .

Introduction 0000		Higher jet functors 0000	Representability 0000	The ∞-jet ●00
The ∞ -jet				
∞ -jet fu	Inctor			

Consider the following diagram in the abelian category of endofunctors on ${}_AMod$, constructed using the jet projections.

$$\cdots J_d^n \xrightarrow{\pi_d^{n,n-1}} J_d^{n-1} \cdots \xrightarrow{\pi_d^{3,2}} J_d^2 \xrightarrow{\pi_d^{2,1}} J_d^1 \xrightarrow{\pi_d^{1,0}} \mathrm{id}_{A\mathrm{Mod}}.$$

We call the above diagram the *(holonomic) jet tower*, and its limit in the category of endofunctors on $_AMod$ the (holonomic) ∞ -jet functor, denoted

$$J_d^{\infty} := \lim_{n \in \mathbb{N}} J_d^n.$$

	Higher jet functors		The ∞ -jet
			000
The ∞ -jet			

Jet comonad

Given an object E in ${}_A\mathrm{Mod}$, denote an element of $J_d^{\infty}E$ by

$$\mathbf{e}_0 := (\ldots, \hat{e}_n, \ldots, \hat{e}_1, \hat{e}_0)$$

Similarly, we will denote a truncated element as follows.

$$\mathbf{e}_k := (\dots, \hat{e}_{k+n}, \dots, \hat{e}_{k+1}, \hat{e}_k)$$

Proposition

 J_d^{∞} is a comonad with comultiplication $\iota: J_d^{\infty} \longrightarrow J_d^{\infty} J_d^{\infty}$ and counit $\epsilon: J_d^{\infty} \longrightarrow \mathrm{id}_{A \operatorname{Mod}}$ given, respectively, by

 $\mathbf{e}_0 \mapsto (\dots, \mathbf{e}_n, \dots, \mathbf{e}_1, \mathbf{e}_0)$ and $\mathbf{e}_0 \mapsto \hat{e}_0$

Proof.

Show that $(\ldots, \mathbf{e}_n, \ldots, \mathbf{e}_1, \mathbf{e}_0) \in J_d^{\infty} J_d^{\infty} E$, then check counitality and coassociativity.

	Higher jet functors		The ∞ -jet
			000
The ∞ -jet			

Noncommutative differential equations

This gives us several ways to proceed in developing a noncommutative theory of (linear) differential equations:

- Via \mathcal{D} -modules and \mathcal{D} -algebras give notions of linear and (polynomial) nonlinear differential equations.
- Via a noncommutative analogue of the geometric theory of differential equations developed by Spencer, Quillen, Goldschmidt, etc., where one considers monomorphisms $\mathcal{E} \hookrightarrow J_d^k E$.
- Via the comandic analogue of Vinogradov's category of differential equations. The Eilenberg-Moore category for the jet comonad (cf. Marvan, Schreiber, Khavkine) where the objects are diffieties (i.e. infinitely prolonged differential equations) and the morphisms are Cartan distribution preserving maps.