Jets and differential operators in noncommutative geometry

Keegan Flood

Joint work with Mauro Mantegazza and Henrik Winther

UniDistance Suisse, Switzerland

11 July 2023

Setting and algebraic preliminaries

- To generalize the notion of jet and differential operator from classical differential geometry to the noncommutative setting all that is required is the following.
(1) A first order differential calculus
(2) An exterior algebra

Definition

A first order calculus $\left(\Omega_{d}^{1}, d\right)$ for a unital associative \mathbb{k}-algebra A is
(1) An A-bimodule Ω_{d}^{1},
(2) a map $d: A \rightarrow \Omega_{d}^{1}$ satisfying $d(a b)=a d b+(d a) b$,
(3) such that $A d A=\Omega_{d}^{1}$.

Definition

An exterior algebra Ω_{d}^{\bullet} over a \mathbb{k}-algebra A, is an associative graded algebra $\left(\Omega_{d}^{\bullet}=\bigoplus_{n \geq 0} \Omega_{d}^{n}, \wedge\right)$ equipped with a map d such that
(1) $\Omega_{d}^{0}=A$;
(2) d is a differential, that is a \mathbb{k}-linear map $d: \Omega_{d}^{\bullet} \rightarrow \Omega_{d}^{\bullet}$ such that $d\left(\Omega_{d}^{n}\right) \subseteq \Omega_{d}^{n+1}$ for all $n \geq 0$, which satisfies $d^{2}=0$ and

$$
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{n} \alpha \wedge d \beta, \quad \forall \alpha \in \Omega_{d}^{n}, \beta \in \Omega_{d}^{h}
$$

(3) A generates Ω_{d}^{\bullet} via the d and the \wedge.

Remark

Given an exterior algebra Ω_{d}^{\bullet}, the first grade and $d: \Omega_{d}^{0}=A \rightarrow \Omega_{d}^{1}$ form a first order calculus for A. Vice versa, given a first order differential calculus, Ω_{d}^{1}, a maximal exterior algebra, $\Omega_{d, \max }^{\bullet}$, is given by quotienting the tensor algebra by the minimal relations for $d^{2}=0$ to hold.

Quantum symmetric forms

Given an exterior algebra Ω_{d}^{\bullet} over A, we can define the tensor functors

$$
\Omega_{d}^{n}:{ }_{A} \operatorname{Mod} \longrightarrow{ }_{A} \operatorname{Mod} \quad E \longmapsto \Omega_{d}^{n} \otimes_{A} E .
$$

We define the functors

$$
S_{d}^{0}=\Omega_{d}^{0}=\mathrm{id}_{A} \operatorname{Mod}, \quad S_{d}^{1}=\Omega_{d}^{1}:=\Omega_{d}^{1} \otimes_{A}-
$$

For $n \geq 0$, the functor of quantum symmetric forms S_{d}^{n} is defined by induction as the kernel of the following composition

$$
\Omega_{d}^{1} \circ S_{d}^{n-1} \xrightarrow{\Omega_{d}^{1}\left(\iota_{\Lambda}^{n-1}\right)} \Omega_{d}^{1} \circ \Omega_{d}^{1} \circ S_{d}^{n-2} \xrightarrow{\wedge_{S_{d}^{n-2}}} \Omega_{d}^{2} \circ S_{d}^{n-2}
$$

and $\iota_{\wedge}^{n}: S_{d}^{n} \longrightarrow \Omega_{d}^{1} \circ S_{d}^{n-1}$ is the inclusion.

Spencer cohomology

For all $k, h \geq 0$, consider the functor $\Omega_{d}^{k} \circ S_{d}^{h}$, and define $\delta^{h, k}$ as the following composition

We thus obtain a complex in the category of endofunctors on ${ }_{A}$ Mod.
$0 \longrightarrow S_{d}^{n} \xrightarrow{\delta^{n, 0}} \Omega_{d}^{1} \circ S_{d}^{n-1} \xrightarrow{\delta^{n-1,1}} \Omega_{d}^{2} \circ S_{d}^{n-2} \xrightarrow{\delta^{n-2,2}} \Omega_{d}^{3} \circ S_{d}^{n-3} \xrightarrow{\delta^{n-3,3}} \cdots$

Definition (Spencer cohomology)

We call this the Spencer δ-complex, its cohomology the Spencer cohomology, and we denote the cohomology at $\Omega_{d}^{k} \circ S_{d}^{h}$ by $H^{h, k}$.

Universal calculus and 1-jets

Definition

The universal calculus Ω_{u}^{1} for A is given by the kernel of the multiplication map,

$$
\Omega_{u}^{1}=\operatorname{ker}(\cdot) \subset A \otimes A
$$

The corresponding universal differential is

$$
d_{u}: a \mapsto 1 \otimes a-a \otimes 1
$$

Proposition

We have

$$
0 \rightarrow \Omega_{u}^{1} \rightarrow A \otimes A \rightarrow A \rightarrow 0
$$

For the bimodule map $\pi_{u}^{1,0}: a \otimes b \mapsto a b$. Moreover, the universal prolongation $j_{u}^{1}: a \mapsto 1 \otimes a$ splits the sequence in Mod_{A}.

Universal property of the universal calculus

Recall the following result.

Proposition

For any first order calculus Ω_{d}^{1}, there is an epimorphism $p_{d}: \Omega_{u}^{1} \rightarrow \Omega_{d}^{1}$ which takes d_{u} to d, and we have

$$
0 \rightarrow N_{d} \rightarrow \Omega_{u}^{1} \rightarrow \Omega_{d}^{1} \rightarrow 0
$$

For a sub-bimodule $N_{d} \subset \Omega_{u}^{1}$.
We call N_{d} the space of first order differential relations. In the case of classical differential geometry, it contains things such as

$$
d_{u} f-\sum_{i} f_{x^{i}} d_{u} x^{i}
$$

For any left A-module E, we define
$N_{d}(E)=\operatorname{ker}\left(p_{d, E}\right)=\left\{\sum_{i} a_{i} \otimes e_{i} \mid \sum_{i} a_{i} e_{i}=0, \sum_{i} d a_{i} \otimes_{A} e_{i}=0\right\} \subset A \otimes E$

Definition

The 1-jet module for a left A-module E is

$$
J_{d}^{1} E:=J_{u}^{1} E / N_{d}(E)=A \otimes E / N_{d}(E) .
$$

The prolongation operator is $j_{d, E}^{1}: E \rightarrow J_{d}^{1} E$, given by $j_{d, E}^{1}(e)=[1 \otimes e]$. The projection map is $\pi_{d, E}^{1,0}:\left[\sum_{i} a_{i} \otimes e_{i}\right] \mapsto \sum_{i} a_{i} e_{i}$.

A plethora of jet functors

We construct the following three families of functors:

- The nonholonomic jet functors $J_{d}^{(n)}:{ }_{A} \operatorname{Mod} \rightarrow{ }_{A} \operatorname{Mod}$
- The semiholonomic jet functors $J_{d}^{[n]}:{ }_{A} \operatorname{Mod} \rightarrow{ }_{A} \operatorname{Mod}$
- The holonomic jet functors $J_{d}^{n}:{ }_{A} \operatorname{Mod} \rightarrow{ }_{A} \operatorname{Mod}$

In particular we have $J_{d}^{(0)}=J_{d}^{[0]}=J_{d}^{0}=\mathrm{id}_{A \text { Mod }}$, and $J_{d}^{(1)}=J_{d}^{[1]}=J_{d}^{1}$. These functors come equipped with natural transformations

$$
j_{d}^{(n)}: \operatorname{id}_{A} \operatorname{Mod} \longrightarrow J_{d}^{(n)} \quad j_{d}^{[n]}: \operatorname{id}_{A} \operatorname{Mod} \longrightarrow J_{d}^{[n]} \quad j_{d}^{n}: \operatorname{id}_{A} \operatorname{Mod} \longrightarrow J_{d}^{n}
$$

which are respectively called the nonholonomic, semiholonomic, and holonomic jet prolongation maps. We also have the natural transformations,
$\pi_{d}^{(n, n-1 ; m)}: J_{d}^{(n)} \longrightarrow J_{d}^{(n-1)}, \pi_{d}^{[n, n-1]}: J_{d}^{[n]} \longrightarrow J_{d}^{[n-1]}, \quad \pi_{d}^{n, n-1}: J_{d}^{n} \longrightarrow J_{d}^{n-1}$,
respectively called the nonholonomic, semiholonomic, and holonomic jet projections.

Holonomic 2-jets

We can describe $J_{d}^{2} E$ implicitly as the kernel of a left-linear (bilinear for $E=A$) map

$$
\widetilde{Ð}_{E}: J_{d}^{(2)} E \longrightarrow\left(\Omega_{d}^{1} \ltimes \Omega_{d}^{2}\right)(E)
$$

where $\left(\Omega_{d}^{1} \ltimes \Omega_{d}^{2}\right)(E) \cong\left(\Omega_{d}^{1} \ltimes \Omega_{d}^{2}\right) \otimes_{A} E$.
As a right A-module, $\Omega_{d}^{1} \ltimes \Omega_{d}^{2} \cong \Omega_{d}^{1} \oplus \Omega_{d}^{2}$, but as an A-bimodule, it comes equipped with a non-trivial left action

$$
f \star(\alpha+\omega)=f \alpha+d f \wedge \alpha+f \omega, \quad \forall f \in A, \alpha \in \Omega_{d}^{1}, \omega \in \Omega_{d}^{2}
$$

Explicitly, we have

$$
\begin{aligned}
& \widetilde{Ð}_{E}: J_{d}^{(2)} E \longrightarrow\left(\Omega_{d}^{1} \ltimes \Omega_{d}^{2}\right)(E) \\
& {[a \otimes b] \otimes_{A}[c \otimes e] \longmapsto\left(a d(b c) \otimes_{A} e, d a \wedge d(b c) \otimes_{A} e\right) .}
\end{aligned}
$$

Definition (Holonomic n-jet functor)

Let A be a \mathbb{k}-algebra endowed with an exterior algebra Ω_{d}^{\bullet}. We define J_{d}^{n} as the kernel of the natural transformation

$$
\widetilde{\mathrm{Đ}}_{J_{d}^{n-2}} \circ J_{d}^{1}\left(l_{d}^{n-1}\right): J_{d}^{1} \circ J_{d}^{n-1} \longrightarrow\left(\Omega_{d}^{1} \ltimes \Omega_{d}^{2}\right) \circ J_{d}^{n-2}
$$

where we denote the natural inclusion by $l_{d}^{n}: J_{d}^{n} \longrightarrow J_{d}^{1} \circ J_{d}^{n-1}$. We call J_{d}^{n} the (holonomic) n-jet functor.

Higher jet exact sequence

Theorem (Holonomic jet exact sequence)

Let A be a \mathbb{k}-algebra endowed with an exterior algebra Ω_{d}^{\bullet} such that $\Omega_{d}^{1}, \Omega_{d}^{2}$, and Ω_{d}^{3} are flat in Mod_{A}. For $n \geq 1$, if the Spencer cohomology $H^{m, 2}$ vanishes, for all $1 \leq m<n-2$, then the following sequence is exact,

$$
0 \longrightarrow S_{d}^{n} \xrightarrow{\iota_{d}^{n}} J_{d}^{n} \xrightarrow{\pi_{d}^{n, n-1}} J_{d}^{n-1} \longrightarrow H^{n-2,2}
$$

Therefore, if $H^{n-2,2}=0$ we obtain a short exact sequence

$$
0 \longrightarrow S_{d}^{n} \xrightarrow{\iota_{d}^{n}} J_{d}^{n} \xrightarrow{\pi_{d}^{n, n-1}} J_{d}^{n-1} \longrightarrow 0
$$

Definition

Let $E, F \in{ }_{A}$ Mod. $A \mathbb{k}$-linear map $\Delta: E \rightarrow F$ is called a linear differential operator of order at most n with respect to the exterior algebra Ω_{d}^{\bullet}, if it factors through the holonomic prolongation operator j_{d}^{n}, i.e. there exists an A-module map $\Delta \in{ }_{A} \operatorname{Hom}\left(J_{d}^{n} E, F\right)$ such that the following diagram commutes:

If n is minimal, we say that Δ is a linear differential operator of order n.

Examples of differential operators

- The differential d.
- Suppose Ω_{d}^{1} is free and finitely-generated as a left A-module, i.e. parallelizable. Given a basis $\theta_{1}, \ldots, \theta_{n}$, we can define the partial derivative operator $\partial_{i}: A \rightarrow A$, by $d a=\sum_{i} \partial_{i}(a) \theta_{i}$.
- A (left) connection with respect to the first order differential calculus Ω_{d}^{1} on a left A-module E is a k-linear map

$$
E \longrightarrow \Omega_{d}^{1} \otimes_{A} E
$$

satisfying the identity

$$
\nabla(f e)=d f \otimes_{A} e+f \nabla e
$$

- The operator $Đ_{E}: J_{d}^{1}(E) \rightarrow\left(\Omega_{d}^{1} \ltimes \Omega_{d}^{2}\right)(E)$, whose lift $\widetilde{Ð}_{E}$ defines second order jets.
- Vector fields: $\mathfrak{X}_{d}:=\operatorname{Diff}_{d}^{1}(A, A) \cap \operatorname{Ann}(\operatorname{ker}(d))$. Note that $\mathfrak{X}_{d} \simeq{ }_{A} \operatorname{Hom}\left(\Omega_{d}^{1}, A\right)$.

Proposition

Let $\Delta_{1}: E \rightarrow F$ and $\Delta_{2}: F \rightarrow G$ be differential operators of order at most n and m, respectively. Then the composition $\Delta_{2} \circ \Delta_{1}: E \rightarrow G$ is a differential operator of order at most $n+m$.

Proof.

$$
J_{d}^{m+n} E \xrightarrow{\substack{l_{d, E}^{m, n}}} J_{d}^{m}\left(J_{d}^{n} E\right)
$$

Corollary

There is a category Diff $d_{d}^{\text {in }}$ with the same objects as ${ }_{A} \operatorname{Mod}$ and with morphisms given by the finite order differential operators.

Representability

Definition

We say that the functor $\operatorname{Diff}_{d}^{n}(E,-)$ is representable if there is an object Q such that $\operatorname{Diff}_{d}^{n}(E,-) \simeq{ }_{A} \operatorname{Hom}(Q,-)$.

Question

When is $\operatorname{Diff}_{d}^{n}(E,-)$ represented by $J_{d}^{n} E$?

Higher order differential relations

There is a natural transformation

$$
\hat{p}_{d}^{n}: J_{u}^{1}=A \otimes-\rightarrow J_{d}^{n}
$$

Explicitly given by

$$
a \otimes e \rightarrow a j_{d}^{n}(e)
$$

We term its kernel the differential relations of order n, written $\operatorname{ker} \hat{p}_{d}^{n}(E)=N_{d}^{n}(E)$.

Proposition

Let the n-jet sequence be left exact. We have $\left.\hat{p}_{d}^{n}\right|_{N^{n-1}} \rightarrow S_{d}^{n}$. The following are equivalent:

- $\left.\hat{p}_{d}^{n}\right|_{N^{n-1}}(E) \rightarrow S_{d}^{n} E$ is surjective.
- $S_{d}^{n}(E) \subset A j_{d}^{n}(E)$.

When the latter condition is satisfied, we say symmetric forms of degree n are generated by differential relations.

Theorem

Suppose the n-jet sequence is left exact, and that $J_{d}^{n-1} E$ represents differential operators. Then $J_{d}^{n} E$ represents differential operators if and only if symmetric forms of degree n are generated by differential relations. In that case, we have

$$
S_{d}^{n} E=\left(N^{n-1} / N^{n}\right)(E)
$$

Skeletal jet functors

Let us introduce one more "jet functor".

Definition

The skeletal n-jet functor is defined as the image subfunctor

$$
\mathbb{J}_{d}^{n}=\operatorname{Im} \hat{p}_{d}^{n}
$$

Theorem

We have the following:

- $\mathbb{J}_{d}^{0}=J_{d}^{0}$ and $\mathbb{J}_{d}^{1}=J_{d}^{1}$.
- Let $\operatorname{Tor}\left(\Omega_{d}^{1}, E\right)=0$. Then $\mathbb{J}_{d}^{2}=J_{d}^{2}$ if and only if $\Omega_{d}^{2}=\Omega_{d, \text { max }}^{2}$, the maximal prolongation
- $\operatorname{Diff}_{d}^{n}(E,-)$ is representable if and only if $\mathbb{J}_{d}^{n}=J_{d}^{n}$, and then the representing object is J_{d}^{n}.

∞-jet functor

Consider the following diagram in the abelian category of endofunctors on ${ }_{A}$ Mod, constructed using the jet projections.

$$
\cdots J_{d}^{n} \xrightarrow{\pi_{d}^{n, n-1}} J_{d}^{n-1} \cdots \xrightarrow{\pi_{d}^{3,2}} J_{d}^{2} \xrightarrow{\pi_{d}^{2,1}} J_{d}^{1} \xrightarrow{\pi_{d}^{1,0}} \mathrm{id}_{A \mathrm{Mod}}
$$

We call the above diagram the (holonomic) jet tower, and its limit in the category of endofunctors on ${ }_{A} \operatorname{Mod}$ the (holonomic) ∞-jet functor, denoted

$$
J_{d}^{\infty}:=\lim _{n \in \mathbb{N}} J_{d}^{n}
$$

Jet comonad

Given an object E in ${ }_{A}$ Mod, denote an element of $J_{d}^{\infty} E$ by

$$
\mathbf{e}_{0}:=\left(\ldots, \hat{e}_{n}, \ldots, \hat{e}_{1}, \hat{e}_{0}\right)
$$

Similarly, we will denote a truncated element as follows.

$$
\mathbf{e}_{k}:=\left(\ldots, \hat{e}_{k+n}, \ldots, \hat{e}_{k+1}, \hat{e}_{k}\right)
$$

Proposition

J_{d}^{∞} is a comonad with comultiplication $\iota: J_{d}^{\infty} \longrightarrow J_{d}^{\infty} J_{d}^{\infty}$ and counit $\epsilon: J_{d}^{\infty} \longrightarrow \mathrm{id}_{A}$ Mod given, respectively, by

$$
\mathbf{e}_{0} \mapsto\left(\ldots, \mathbf{e}_{n}, \ldots, \mathbf{e}_{1}, \mathbf{e}_{0}\right) \quad \text { and } \quad \mathbf{e}_{0} \mapsto \hat{e}_{0}
$$

Proof.

Show that $\left(\ldots, \mathbf{e}_{n}, \ldots, \mathbf{e}_{1}, \mathbf{e}_{0}\right) \in J_{d}^{\infty} J_{d}^{\infty} E$, then check counitality and coassociativity.

Noncommutative differential equations

This gives us several ways to proceed in developing a noncommutative theory of (linear) differential equations:

- Via \mathcal{D}-modules and \mathcal{D}-algebras give notions of linear and (polynomial) nonlinear differential equations.
- Via a noncommutative analogue of the geometric theory of differential equations developed by Spencer, Quillen, Goldschmidt, etc., where one considers monomorphisms $\mathcal{E} \hookrightarrow J_{d}^{k} E$.
- Via the comandic analogue of Vinogradov's category of differential equations. The Eilenberg-Moore category for the jet comonad (cf. Marvan, Schreiber, Khavkine) where the objects are diffieties (i.e. infinitely prolonged differential equations) and the morphisms are Cartan distribution preserving maps.

