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Setting and algebraic preliminaries

To generalize the notion of jet and differential operator from classical
differential geometry to the noncommutative setting all that is required is
the following.

1 A first order differential calculus
2 An exterior algebra

Definition

A first order calculus (Ω1
d, d) for a unital associative k-algebra A is

1 An A-bimodule Ω1
d,

2 a map d : A→ Ω1
d satisfying d(ab) = adb+ (da)b,

3 such that AdA = Ω1
d.
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Definition
An exterior algebra Ω•d over a k-algebra A, is an associative graded algebra
(Ω•d =

⊕
n≥0 Ωnd ,∧) equipped with a map d such that

1 Ω0
d = A;

2 d is a differential, that is a k-linear map d : Ω•d → Ω•d such that
d(Ωnd ) ⊆ Ωn+1

d for all n ≥ 0, which satisfies d2 = 0 and

d(α ∧ β) = dα ∧ β + (−1)nα ∧ dβ, ∀α ∈ Ωnd , β ∈ Ωhd .

3 A generates Ω•d via the d and the ∧.

Remark

Given an exterior algebra Ω•d, the first grade and d : Ω0
d = A→ Ω1

d form a first
order calculus for A. Vice versa, given a first order differential calculus, Ω1

d, a
maximal exterior algebra, Ω•d,max, is given by quotienting the tensor algebra by
the minimal relations for d2 = 0 to hold.
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Quantum symmetric forms

Given an exterior algebra Ω•d over A, we can define the tensor functors

Ωnd : AMod −→ AMod E 7−→ Ωnd ⊗A E.

We define the functors

S0
d = Ω0

d = idAMod, S1
d = Ω1

d := Ω1
d ⊗A −.

For n ≥ 0, the functor of quantum symmetric forms Snd is defined by induction
as the kernel of the following composition

Ω1
d ◦ Sn−1

d

Ω1
d
(ιn−1
∧ )

−−−−−−−−−−→ Ω1
d ◦ Ω1

d ◦ Sn−2
d

∧
S

n−2
d−−−−−−−−−→ Ω2

d ◦ Sn−2
d

and ιn∧ : Snd −→ Ω1
d ◦ Sn−1

d is the inclusion.
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Spencer cohomology

For all k, h ≥ 0, consider the functor Ωkd ◦ Shd , and define δh,k as the following
composition

Ωkd ◦ Shd Ωkd ◦ Ω1
d ◦ Sh−1

d Ωk+1
d ◦ Sh−1

d

Ωk
d

(ιn∧)

δh,k

(−1)k∧k,1
S

h−1
d

We thus obtain a complex in the category of endofunctors on AMod.

0 Snd Ω1
d ◦ Sn−1

d Ω2
d ◦ Sn−2

d Ω3
d ◦ Sn−3

d · · ·δn,0 δn−1,1 δn−2,2 δn−3,3

Definition (Spencer cohomology)
We call this the Spencer δ-complex, its cohomology the Spencer cohomology,
and we denote the cohomology at Ωkd ◦ Shd by Hh,k.
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The noncommutative 1-jet functor

Universal calculus and 1-jets

Definition

The universal calculus Ω1
u for A is given by the kernel of the multiplication map,

Ω1
u = ker(·) ⊂ A⊗A.

The corresponding universal differential is

du : a 7→ 1⊗ a− a⊗ 1

Proposition
We have

0→ Ω1
u → A⊗A→ A→ 0

For the bimodule map π1,0
u : a⊗ b 7→ ab. Moreover, the universal prolongation

j1
u : a 7→ 1⊗ a splits the sequence in ModA.
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The noncommutative 1-jet functor

Universal property of the universal calculus

Recall the following result.

Proposition

For any first order calculus Ω1
d, there is an epimorphism pd : Ω1

u → Ω1
d which

takes du to d, and we have

0→ Nd → Ω1
u → Ω1

d → 0

For a sub-bimodule Nd ⊂ Ω1
u.

We call Nd the space of first order differential relations. In the case of classical
differential geometry, it contains things such as

duf −
∑
i

fxidux
i.
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The noncommutative 1-jet functor

For any left A-module E, we define

Nd(E) = ker(pd,E) =
{∑

i

ai⊗ ei|
∑
i

aiei = 0,
∑
i

dai⊗A ei = 0
}
⊂ A⊗E

Definition
The 1-jet module for a left A-module E is

J1
dE := J1

uE/Nd(E) = A⊗ E/Nd(E).

The prolongation operator is j1
d,E : E → J1

dE, given by j1
d,E(e) = [1⊗ e]. The

projection map is π1,0
d,E : [

∑
i
ai ⊗ ei] 7→

∑
i
aiei.
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Higher jet functors

A plethora of jet functors

We construct the following three families of functors:
The nonholonomic jet functors J(n)

d : AMod→ AMod

The semiholonomic jet functors J [n]
d : AMod→ AMod

The holonomic jet functors Jnd : AMod→ AMod
In particular we have J(0)

d = J
[0]
d = J0

d = idAMod, and J(1)
d = J

[1]
d = J1

d . These
functors come equipped with natural transformations

j
(n)
d : idAMod −→ J

(n)
d j

[n]
d : idAMod −→ J

[n]
d jnd : idAMod −→ Jnd ,

which are respectively called the nonholonomic, semiholonomic, and holonomic
jet prolongation maps. We also have the natural transformations,

π
(n,n−1;m)
d : J(n)

d −→ J
(n−1)
d , π

[n,n−1]
d : J [n]

d −→ J
[n−1]
d , πn,n−1

d : Jnd −→ Jn−1
d ,

respectively called the nonholonomic, semiholonomic, and holonomic jet
projections.
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Higher jet functors

Holonomic 2-jets

We can describe J2
dE implicitly as the kernel of a left-linear (bilinear for

E = A) map
Ð̃E : J(2)

d E −→ (Ω1
d n Ω2

d)(E),

where (Ω1
d n Ω2

d)(E) ∼= (Ω1
d n Ω2

d)⊗A E.
As a right A-module, Ω1

d n Ω2
d
∼= Ω1

d ⊕ Ω2
d, but as an A-bimodule, it comes

equipped with a non-trivial left action

f ? (α+ ω) = fα+ df ∧ α+ fω, ∀f ∈ A, α ∈ Ω1
d, ω ∈ Ω2

d.

Explicitly, we have

Ð̃E : J(2)
d E (Ω1

d n Ω2
d)(E)

[a⊗ b]⊗A [c⊗ e] (ad(bc)⊗A e, da ∧ d(bc)⊗A e) .
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Higher jet functors

Definition (Holonomic n-jet functor)
Let A be a k-algebra endowed with an exterior algebra Ω•d. We define Jnd as
the kernel of the natural transformation

Ð̃
Jn−2

d
◦ J1

d (ln−1
d ) : J1

d ◦ Jn−1
d −→ (Ω1

d n Ω2
d) ◦ Jn−2

d ,

where we denote the natural inclusion by lnd : Jnd −→ J1
d ◦ Jn−1

d . We call Jnd
the (holonomic) n-jet functor.
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Higher jet functors

Higher jet exact sequence

Theorem (Holonomic jet exact sequence)

Let A be a k-algebra endowed with an exterior algebra Ω•d such that Ω1
d, Ω2

d,
and Ω3

d are flat in ModA. For n ≥ 1, if the Spencer cohomology Hm,2

vanishes, for all 1 ≤ m < n− 2, then the following sequence is exact,

0 Snd Jnd Jn−1
d Hn−2,2.

ιn
d

π
n,n−1
d

Therefore, if Hn−2,2 = 0 we obtain a short exact sequence

0 Snd Jnd Jn−1
d 0.

ιn
d

π
n,n−1
d
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Definitions and properties

Definition

Let E,F ∈ AMod. A k-linear map ∆: E → F is called a linear differential
operator of order at most n with respect to the exterior algebra Ω•d, if it factors
through the holonomic prolongation operator jnd , i.e. there exists an A-module
map ∆̃ ∈ AHom(Jnd E,F ) such that the following diagram commutes:

Jnd E

E F

∆̃

∆

jn
d

If n is minimal, we say that ∆ is a linear differential operator of order n.

Jets and differential operators in noncommutative geometry



Introduction Universal and first order jets Higher jet functors Differential operators Representability The∞-jet

Definitions and properties

Examples of differential operators

The differential d.
Suppose Ω1

d is free and finitely-generated as a left A-module, i.e.
parallelizable. Given a basis θ1, . . . , θn, we can define the partial derivative
operator ∂i : A→ A, by da =

∑
i
∂i(a)θi.

A (left) connection with respect to the first order differential calculus Ω1
d

on a left A-module E is a k-linear map

E −→ Ω1
d ⊗A E,

satisfying the identity

∇(fe) = df ⊗A e+ f∇e.

The operator ÐE : J1
d (E)→ (Ω1

d n Ω2
d)(E), whose lift Ð̃E defines second

order jets.
Vector fields: Xd := Diff1

d(A,A) ∩Ann(ker(d)). Note that
Xd ' AHom(Ω1

d, A).
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Definitions and properties

Proposition
Let ∆1 : E → F and ∆2 : F → G be differential operators of order at most n
and m, respectively. Then the composition ∆2 ◦∆1 : E → G is a differential
operator of order at most n+m.

Proof.

Jm+n
d E Jmd (Jnd E)

Jnd E Jmd F

E F G

l
m,n
d,E

Jm
d

(∆̃1)

∆̃1

jm
d,Jn

d
E

∆̃2jm+n
d,E

∆1

jn
d,E

∆2

jm
d,F

Corollary

There is a category Difffin
d with the same objects as AMod and with morphisms

given by the finite order differential operators.
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Jet functors as a representing object

Representability

Definition
We say that the functor Diffnd (E,−) is representable if there is an object Q
such that Diffnd (E,−) ' AHom(Q,−).

Question
When is Diffnd (E,−) represented by Jnd E?
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Jet functors as a representing object

Higher order differential relations

There is a natural transformation

p̂nd : J1
u = A⊗− → Jnd

Explicitly given by
a⊗ e→ ajnd (e)

We term its kernel the differential relations of order n, written
ker p̂nd (E) = Nn

d (E).

Proposition
Let the n-jet sequence be left exact. We have p̂nd |Nn−1 → Snd . The following
are equivalent:

p̂nd |Nn−1 (E)→ SndE is surjective.
Snd (E) ⊂ Ajnd (E).

When the latter condition is satisfied, we say symmetric forms of degree n are
generated by differential relations.
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Jet functors as a representing object

Theorem

Suppose the n-jet sequence is left exact, and that Jn−1
d E represents differential

operators. Then Jnd E represents differential operators if and only if symmetric
forms of degree n are generated by differential relations. In that case, we have

SndE = (Nn−1/Nn)(E)
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Jet functors as a representing object

Skeletal jet functors

Let us introduce one more “jet functor”.

Definition
The skeletal n-jet functor is defined as the image subfunctor

Jnd = Im p̂nd

Theorem
We have the following:

J0
d = J0

d and J1
d = J1

d .
Let Tor(Ω1

d, E) = 0. Then J2
d = J2

d if and only if Ω2
d = Ω2

d,max, the
maximal prolongation
Diffnd (E,−) is representable if and only if Jnd = Jnd , and then the
representing object is Jnd .
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The∞-jet

∞-jet functor

Consider the following diagram in the abelian category of endofunctors on
AMod, constructed using the jet projections.

· · · Jnd
π

n,n−1
d−−−−−→ Jn−1

d · · ·
π

3,2
d−−−→ J2

d

π
2,1
d−−−→ J1

d

π
1,0
d−−−→ idAMod.

We call the above diagram the (holonomic) jet tower, and its limit in the
category of endofunctors on AMod the (holonomic) ∞-jet functor, denoted

J∞d := lim
n∈N

Jnd .
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The∞-jet

Jet comonad

Given an object E in AMod, denote an element of J∞d E by

e0 := (. . . , ên, . . . , ê1, ê0)

Similarly, we will denote a truncated element as follows.

ek := (. . . , êk+n, . . . , êk+1, êk)

Proposition
J∞d is a comonad with comultiplication ι : J∞d −→ J∞d J

∞
d and counit

ε : J∞d −→ idAMod given, respectively, by

e0 7→ (. . . , en, . . . , e1, e0) and e0 7→ ê0

Proof.
Show that (. . . , en, . . . , e1, e0) ∈ J∞d J∞d E, then check counitality and
coassociativity.
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The∞-jet

Noncommutative differential equations

This gives us several ways to proceed in developing a noncommutative theory
of (linear) differential equations:

Via D-modules and D-algebras give notions of linear and (polynomial)
nonlinear differential equations.
Via a noncommutative analogue of the geometric theory of differential
equations developed by Spencer, Quillen, Goldschmidt, etc., where one
considers monomorphisms E ↪→ JkdE.
Via the comandic analogue of Vinogradov’s category of differential
equations. The Eilenberg-Moore category for the jet comonad (cf.
Marvan, Schreiber, Khavkine) where the objects are diffieties (i.e.
infinitely prolonged differential equations) and the morphisms are Cartan
distribution preserving maps.
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