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Introduction
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Setting and algebraic preliminaries

@ To generalize the notion of jet and differential operator from classical

differential geometry to the noncommutative setting all that is required is
the following.

@ A first order differential calculus
@ An exterior algebra

A first order calculus (0, d) for a unital associative k-algebra A is
@ An A-bimodule 5,

Q@ amapd: A— Q) satisfying d(ab) = adb + (da)b,
@ such that AdA = Q.
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An exterior algebra Q% over a k-algebra A, is an associative graded algebra
Q3= @n>0 7, \) equipped with a map d such that

0 QO :AV.

Q d is a differential, that is a k-linear map d: Q8 — Qf such that
d(Qg) € QZ'H for all n > 0, which satisfies d> = 0 and

dlaAB) =daAB+(—1)"aAdB, Va € QF,8 € Qb

© A generates Q via the d and the A.

Remark

Given an exterior algebra QS, the first grade and d: Q3 = A — QX form a first
order calculus for A. Vice versa, given a first order differential calculus, Q}, a
maximal exterior algebra, 3 ... is given by quotienting the tensor algebra by
the minimal relations for d*> = 0 to hold.
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Quantum symmetric forms

Given an exterior algebra Q over A, we can define the tensor functors
Qg : aMod — aMod E+— Qi ®aFE.

We define the functors
Sa = Qq = id ymod, Sa == ®4 —.

For n > 0, the functor of quantum symmetric forms Sy is defined by induction

as the kernel of the following composition

Qln—1) B Ngn B
4 A QioQyoS; > —4 5050872

—2
1 -1
Qgo08y

and (%: ST — QLo S;“l is the inclusion.
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Spencer cohomology

For all k,h > 0, consider the functor Q% o S”, and define §™* as the following
composition

(—1)kpk1
k _ ah k) kol . ah—1 sy k41 qh—1
Qkogh — TN gkoqloght Sy gkl gh

sh.k

We thus obtain a complex in the category of endofunctors on 4 Mod.

n,0 n—1,1 n—2,2 n—3,3
0—— Sp 25 QoS 5 Q30872 5 QoS0 5

Definition (Spencer cohomology)

We call this the Spencer §-complex, its cohomology the Spencer cohomology,
and we denote the cohomology at QF o S by H"*.
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The noncommutative 1-jet functor

Universal calculus and 1-jets

The universal calculus QL for A is given by the kernel of the multiplication map,

Q. =ker() CA® A.
The corresponding universal differential is

dy:a—=1®a—-—a®1

Proposition

We have
050, 2 AQA—3A—0

For the bimodule map 71° : a ® b+~ ab. Moreover, the universal prolongation
jt:a— 1® a splits the sequence in Mod 4.
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The noncommutative 1-jet functor

Universal property of the universal calculus

Recall the following result.

Proposition

For any first order calculus Q}, there is an epimorphism pg : QL — QL which
takes d,, to d, and we have

0= Nyg— QL Q=0
For a sub-bimodule Ng C QL.

We call N4 the space of first order differential relations. In the case of classical
differential geometry, it contains things such as

duf — foiduxi.
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The noncommutative 1-jet functor

For any left A-module E, we define

N4(E) = ker(pa,e) = {Zaz®el|2a16170 Zdaz@)AelfO}CA@E

Definition

The 1-jet module for a left A-module E is

JiE := J.E/N4(E) = A® E/Ny(E).

The prolongation operator is jé’E: E — J3E, given by jé’E(e) =[1®e€]. The
projection map is 71’;:0E2 Do, a:Q@e] =), aies.
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Higher jet functors

A plethora of jet functors

We construct the following three families of functors:
@ The nonholonomic jet functors J;m: aMod — aMod
@ The semiholonomic jet functors J(El"]: aMod — aMod
@ The holonomic jet functors Jj : aAMod — 4Mod
In particular we have J;O) = Jl[io] = J9 =id ,Mod, and Jél) = Jl[il] = J}. These

functors come equipped with natural transformations

jl(in): idAMod — J(gn) j([jn]t idAMod — Jl[in] ];‘ idAMod — JE,
which are respectively called the nonholonomic, semiholonomic, and holonomic
jet prolongation maps. We also have the natural transformations,

7_{_L(in,n—l;m): Jén) _>J(§n—1)7 ﬂ_([in,n—l]: J([in] _>Jc[in—1]7 ﬂ_;,n—l: Jg _>J‘;L—17

respectively called the nonholonomic, semiholonomic, and holonomic jet

projections.
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Higher jet functors

Holonomic 2-jets

We can describe J3E implicitly as the kernel of a left-linear (bilinear for
E = A) map
Pe: JPE — (91 x O3)(E),
where (Q} x Q3)(E) = (2} x Q3) ®4 E.
As a right A-module, Q) x Q2 = QL @ Q2, but as an A-bimodule, it comes
equipped with a non-trivial left action

fr(a+w) =fa+df Na+ fw, Ve A aecQ), we Q.

Explicitly, we have

Pe: JPE Q4 x Q3)(E)

[a @bl ®a[c®e] —— (ad(bc) ®4 e,da Ad(bc) ®a e).
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Higher jet functors

Definition (Holonomic n-jet functor)

Let A be a k-algebra endowed with an exterior algebra Q3. We define Jj as
the kernel of the natural transformation

}5‘,;72 o JI(INTY): Jio Jr T — (QL x Q2) 0 ST T2,

where we denote the natural inclusion by 1% : J7 — J} o J;’l. We call J}
the (holonomic) n-jet functor.
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Higher jet functors

Higher jet exact sequence

Theorem (Holonomic jet exact sequence)

Let A be a k-algebra endowed with an exterior algebra Q% such that Q}, O2,
and Q3 are flat in Moda. Forn > 1, if the Spencer cohomology H™>
vanishes, for all 1 < m < n — 2, then the following sequence is exact,

n n,n—1

L ™
0 8§ = Ji +— J;7! —— H"?2

Therefore, if H" =22 = 0 we obtain a short exact sequence

n,n—1
U

0 Sty gn 4 Jpt 0.
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Definitions and properties

Definition

Let E,F € asMod. A k-linear map A: E — F' is called a linear differential
operator of order at most n with respect to the exterior algebra Q3, if it factors
through the holonomic prolongation operator j;, i.e. there exists an A-module
map A€ AHom(J3 E, F) such that the following diagram commutes:

JIE

i \Z

E—25F

If n is minimal, we say that A is a linear differential operator of order n.
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Definitions and properties

Examples of differential operators

@ The differential d.

@ Suppose Q) is free and finitely-generated as a left A-module, i.e.
parallelizable. Given a basis 61, ..., 0,, we can define the partial derivative
operator d;: A — A, by da =" 9;(a)0;.

o A (left) connection with respect to the first order differential calculus Q}
on a left A-module E is a k-linear map

E— Q;®4F,
satisfying the identity
V(fe) =df ®a e+ fVe.

e The operator D JL(E) — (2 x Q2)(E), whose lift Dy defines second
order jets.

o Vector fields: X4 := Diff}(A, A) N Ann(ker(d)). Note that
X4 ~ AHom(Q3, A).
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Definitions and properties

Let A1: E — F and Ay: F — G be differential operators of order at most n
and m, respectively. Then the composition As o Ay: E — G is a differential
operator of order at most n + m.

Proof.

m,mn

Jrtng LB Jr(JrE)

-
J
d,JZiLET

. JPE

JiE
Ay Ag
E—% Xp_ %2 G
O
Corollary

There is a category Diff™ with the same objects as AMod and with morphisms
given by the finite order differential operators.
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Jet functors as a representing object

Representability

We say that the functor Diftj (E, —) is representable if there is an object Q
such that Diff}(E, —) ~ sHom(Q, —).

When is Diff}j (E, —) represented by Jj E?
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Jet functors as a representing object

Higher order differential relations

There is a natural transformation
PiJe=A®—— J§

Explicitly given by

a®e— ajy(e)
We term its kernel the differential relations of order n, written
kerpg (E) = NJ(E).

Proposition

Let the n-jet sequence be left exact. We have pjj|nn—1 — Si. The following
are equivalent:

@ pi|nn—1(E) = SgE is surjective.

o S7(FE)C Aji(E).
When the latter condition is satisfied, we say symmetric forms of degree n are
generated by differential relations.

Jets and differential operators in noncommutative geometry



Representability

[e]e] le)
Jet functors as a representing object

Theorem

Suppose the n-jet sequence is left exact, and that J;_IE represents differential
operators. Then J} E represents differential operators if and only if symmetric
forms of degree n are generated by differential relations. In that case, we have

SiE = (N""'/N")(E)
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Jet functors as a representing object

Skeletal jet functors

Let us introduce one more “jet functor”.

The skeletal n-jet functor is defined as the image subfunctor

Jq = Impg

We have the following:
0 19 =JY and J} = J}.
o Let Tor(Qy, E) = 0. Then J3 = JJ if and only if Q5 = Q7 ..., the
maximal prolongation

o Diff}; (E, —) is representable if and only if J;; = Jj, and then the
representing object is J .
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oo-jet functor

Consider the following diagram in the abelian category of endofunctors on
aMod, constructed using the jet projections.

Wn,'n.—l 71_3,2 71_2,1 ﬂ_l,O
n d n—1 d 2 d 1 d .
ey —— g Ja Ja id 4 Mod-

We call the above diagram the (holonomic) jet tower, and its limit in the
category of endofunctors on 4Mod the (holonomic) oco-jet functor, denoted

J = 1lim JJ.
neN
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The oco-jet

Jet comonad

Given an object F in 4Mod, denote an element of J;°F by
€eg ‘= (...,én,...,él,éo)
Similarly, we will denote a truncated element as follows.

e — ( . .7ék+n7. . .,ék+1,ék)

Proposition

J3° is a comonad with comultiplication v: J3° — J3°J3° and counit
€: J3° — id ,Moa given, respectively, by

e~ (...,€n,...,e1,e) and ey &

Show that (..., en,...,e1,€9) € J3°JTE, then check counitality and
coassociativity. O
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The oco-jet

Noncommutative differential equations

This gives us several ways to proceed in developing a noncommutative theory
of (linear) differential equations:

@ Via D-modules and D-algebras give notions of linear and (polynomial)
nonlinear differential equations.

@ Via a noncommutative analogue of the geometric theory of differential
equations developed by Spencer, Quillen, Goldschmidt, etc., where one
considers monomorphisms £ < J5E.

@ Via the comandic analogue of Vinogradov's category of differential
equations. The Eilenberg-Moore category for the jet comonad (cf.
Marvan, Schreiber, Khavkine) where the objects are diffieties (i.e.
infinitely prolonged differential equations) and the morphisms are Cartan
distribution preserving maps.
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