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Signal communication

Suppose Alice sends a signal to Bob that is codified by a function
of time f. Bob can measure the value f only within a certain time
interval, moreover, the frequency of f is filtered by the signal
device within a certain interval in the spectrum amplitude

Say both intervals are equal to B = (—1,1). As is well known, if a
function f and its Fourier transform f are both supported in
bounded intervals, then f is the zero function. So one is faced with
the problem of simultaneously maximizing the portions of energy
and amplitude spectrum within the intervals

IFIB/NFIR, 1B/,

the concentration problem.
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The concentration problem

The problem of best approximating, with support concentration, a
function and its Fourier transform is a classical problem; in
particular, it lies behind Heisenberg uncertainty relations in
Quantum Mechanics and is studied in Quantum Field Theory too
(Jaffe, etc.)

In the ‘60ies, this problem was studied in seminal works by Slepian,
Pollak and Landau. Denote by F : f — f the Fourier transform
and by Fp the truncated Fourier transform

Fp = EgFEp

(Far)(p) = 52 [ f(x)e 0o

as an operator on [2.
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The functions that best maximize the concentration problem are
eigenfunctions of Fg with higher eigenvalues.

Since || F5F&|| = || F&||?, one can equivalently consider the angle
operator
TB = ./T"E./T"B = EBEBEB

where Eg = F*EgF. This is a Hilbert-Schmidt integral
Tg = / ks(x — y)f(y)dy
B

1 sinx
(2 )1/2 X

and one has the eigenvalue problem

k(x) =

Tgf = Mf

This spectral analysis is not easily doable a priori.
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The lucky accident

However, by the lucky accident figured out in by Slepian et al. ,
this integral operator commutes with a linear differential operator,

the prolate operator
d d 5

— (1) _
VV_dX(1 X)dx o

that commutes with the angle operator, so these eigenfunctions

were computed.
W is a classical operator, it arises by separating the 3-dimensional
scalar wave equation in a prolate spheroidal coordinate system.
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Connes raised new interest in this operator. Connes and Moscovici
show an impressive relation of the prolate spectrum with the
asymptotic distribution of the zeros of the Riemann (-function.

We want to understand the role of the prolate operator on a
conceptual basis, in relation to the mentioned lucky accident: the
prolate operator as an entropy operator.

We shall generalize the prolate operator in higher dimensions,
guided by QFT

W= (1-r?)V2—-2rd, — r?

on S(RY) admits a natural extension W that commutes with the
truncated Fourier transform Fg (In the one-dimensional case, W
itself is selfadjoint (Connes-Moscovici)). The expectation values of
W on L?(B) will indeed be entropy quantities.
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Tomita-Takesaki modular theory

M a von Neumann algebra on H, ¢ = (£,-Q) normal faithful
state on M. Embed M into H

X X*
M — M
Isometric
XﬁXQl lX%XQ
So: XQ—X*Q
H 2T N

non isometric
S =Sy = JAY2, A and J modular operator and conjugation
t e R of € Aut(M)
of (X) = A"XAT"
modular automorphisms intrinsic dynamics associated with ¢!

IMI=M" onH
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KMS equilibrium condition (Haag-Hugenoltz-Winnink)

Infinite volume. 2 a C*-algebra, 7 a one-par. automorphism group
of . A state ¢ of 2 is KMS at inverse temperature 5 > 0 if for
X,Y €2 d function Fxy s.t.

(a) Fxv(t) = ¢(X7(Y))
(b) ny(t + IB) = gO(Tt(Y)X)
Fxy bounded analytic on Sg = {0 < 3z < 3}, continuous on Sg

@ (Te(Y)X)
B

¢ (xm(v)

KMS states generalise Gibbs states, equilibrium condition for
infinite systems
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The modular Hamiltonian

The generator of the modular operator unitary group Ag is called
the modular Hamiltonian log A,

One may consider the the relative modular operator A¢ ,,, and the
more general

modular Hamiltonian log A¢ ;,

The study of the modular Hamiltonian is presently a hot topic in
Theoretical Physics
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Entropy of finite systems

X ={xi1,...xn} a set of events. If x; occurs with probability p;, its
information is — log p;

Shannon entropy : S(P Zp, log p; -
If Q={qu1,...qn} other probability distribution (state)

Relative entropy : S(P|Q) = ZP, (log pi — log q;)

mean value in the state P of the difference between the
information carried by the state P and the state Q.

Quantum entropy: ¢ = —Tr(p, -) state on a matrix algebra
von Neumann entropy : S(p) = —Tr(p, log p,)

Umegaki's relative entropy

S(ly) =: Tr(p,(log p, — log py))
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Araki's relative entropy

An infinite quantum system is described by a von Neumann
algebra M typically not of type I so Tr does not exist; however
Araki’s relative entropy between two faithful normal states ¢ and
1 on M is defined in general by

S(elY) = —(n,log D¢y m)

where &, 7 are cyclic vector representatives of ¢, and A, is the
relative modular operator associated with &, 7.

S(ely) >0

positivity of the relative entropy
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Standard subspaces

‘H complex Hilbert space and H C H a closed, real linear subspace.
Symplectic complement:

H' ={¢ € H:3(¢n) =0Vne H}

H is cyclic if H+ iH = H and separating if H N iH = {0}.

A standard subspace H of H is a closed, real linear subspace of ‘H
which is both cyclic and separating. H is standard iff H' is
standard.

H standard subspace — anti-linear operator S : D(S) C H — H,

S:¢+in—E&—in, E,neH
S? = 1l p(s)- S is closed and densely defined, indeed

Siy = Swr
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Modular theory for standard subspaces

Set S = JAY/2, polar decomposition of S = Sy,.
Then J is an anti-unitary involution, A > 0 is non-singular called
the modular conjugation and the modular operator; they satisfy
JAJ=A"1and

ATH=H, JH=H
(one particle Tomita-Takesaki theorem).

cf. Rieffel, van Daele; Leyland, Roberts, Testard
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Entropy of a vector relative to a real linear subspace

Let H be a complex Hilbert space and H C ‘H a standard subspace

The entropy of a vector k € H with respect to H C H is defined
by
Sk = SH = S(k, PyAp k) = (k, P} log Ay k)

(in a quadratic form sense), where Py is the cutting projection
Py:H+H —H, h+h—h

and Ay = —ilog Ay, the semigroup generator %A;,is|szo of the
modular unitary group.
We have P}, = —iPyi and the formula

Py =(1— D)+ Iy (1 - Ap) L
(Py is the closure of the right-hand side).
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Properties of the entropy of a vector

Some of the main properties of the entropy of a vector are:

° S,f’ >0 or SH = +00, positivity

o If K C H, then 5,5 < 5,7 monotonicity
o If k, — k, then Sﬁ < liminf, S,f: lower semicontinuity
o If H, C H is an increasing sequence with Un H, = H, then

5[’" — Sf monotone continuity

If k € D(log Ap) then S} < oo finiteness on smooth vectors
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Cutting Projection

In QFT, Py cuts the Cauchy data, so it is geometric.
The following diagram illustrates the interplay among the three

equivalent structures associated with standard subspaces and the
geometric way out to QFT:

modular data

cutting projection
+ |QFT

’ subspace geometry | -----------—---

geometric

complex structure ‘
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Weyl algebra and Gaussian states

If H is a real linear space with a non-degenerate symplectic form g,
The Weyl C*-algebra C*(H) linearly generated by the (unitaries)
V(h), h € H, that satisfy the commutation relations (CCR)

V(h+ k) = ePhRDv(mnV(k), hkeH,
V(h)* = V(—h). A state v, on C*(H) is called Gaussian, if
pa(V(h) = e 2o,

with « a real bilinear form o« on H, compatible with 3.

H standard linear subspace of H — von Neumann A(H) = C*(H)"
algebra on Fock space e, i.e. GNS of w = ¢, with a = R(-,-)
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Entropy of coherent sectors

Given ® € H consider the automorphism of the Weyl algebra A(H)

Bo = AdV(®)*| () -

The vacuum relative entropy of the Gaussian state w - B¢ on
A(H) is given by the entropy of the vector ® w.r.t. H. Namely by

5((,0 . 5¢Hw) = Scp

T

Araki's relative entropy Entropy of vector
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Entropy operators. |

The entropy operator £y is defined by
Ey = iPyilog Ay
(closure of the right-hand side). We have
Se=(k,Enk), keH.

real quadratic form sense.

The entropy operator £y is real linear, positive, and selfadjoint
w.r.t. to the real part of the scalar product.

In my view, an entropy operator £ is a real linear operator on a
real or complex Hilbert space H, such £ is positive, selfadjoint and
its expectation values (f,Ef), f € H, correspond to entropy
quantities (w.r.t. B).
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Entropy operators. |l

It is convenient to consider more entropy operators by performing
natural operations.

Basic. If £ is a real linear operator on a real Hilbert space H of the
above form, we say that £ is an entropy operator.

Restriction and direct sum. If £ =&, & £_ on a real Hilbert space
direct sum H = Hy @ H_, then £ is an entropy operator on H, iff
both £1 are entropy operators.

Change of metric. Suppose that S C H is a core for the entropy &
on H and (+,-) is a scalar product on S; denote by H’ the
corresponding real Hilbert space completion. £’ is an entropy
operator on H' if

(F,E'F) = (f.Ef), feS.
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Entropy operators. Il

Sum, difference. If £1, &> are entropy operators and € = &1 £ & is
densely defined and positive, the Friedrichs extension £ is an
entropy operator.

Born entropy. mEg, with Eg the orthogonal projection onto L?(B),
is an entropy operator on L?(R9).

In Quantum Mechanics, with the normalization ||f||*> = 1, ||f||3 is
the probability of the particle to be localized in B, accordingly to
Born's interpretation.

In Communication Theory, ||f||% represents the part of energy of f
contained in B. We set

n(f, Egf) = n||f||3 :7r/Bf2dx: Born entropy of f in B,

f € L2(RY) real.
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Abstract field/momentum entropy

We are given two real linear spaces Sy and S— with duality
f.e eSS xS_—(f,g)eR
and a real linear, invertible operator
w:Sy = S-
[ Is symmetric and positive, i.e.
(h,uh) = (f,pf), h,HES:,
(f,uf) 20, fed,
with (f,uf) =0 only if f = 0.
So &4 are real pre-Hilbert spaces with scalar products
(A, R)y = (A, puh), (81,8)- = (W &, 81), A, HLESL 81,8 €S-

and u is a unitary operator. Hy be the real Hilbert space

completion of St
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Set H = Hy & H_. The bilinear form 3 on H

B(P,V) = (g1, h) — (f1,82)

d=FfHDg, V="Fo g, is symplectic and non-degenerate (will
be the imaginary part of the complex scalar product)

-1
=[S ]

namely 2: f ® g — pu g ® —uf, is a unitary on H = H. @ H,.

Now, the operator

As 12> = —1, the unitary 2 defines a complex structure on # that
becomes a complex Hilbert space
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Suppose now Ky C H.y are closed, real linear subspaces and
K = K, @ K_ standard, factorial.

The cutting projection

PK:K+KI—>K

[Py 0O
PK_|:0 P_:|’

with Py the projection Py : Ky + Kg — Ki.

is diagonal

log Ak is diagonal, so Ax = —1log Ak is off-diagonal
0 M
Ak =7 [L 0]

with M and L operators Hy — H-.
The entropy of ® = f ¢ g € H with respect to K is given by

S = —m(f, P_Lf) + 7 (g, PLMg)
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The entropy operator is given by

—puP_L 0

€k =m 0 [Py M

We then define:

— 7(f, P_Lf) field entropy of f € Sy w.r.t. K;,
(g, PLMg) momentum entropy of g € S_w.r.t. K_.

(quadratic form sense). Note that only the duality, not the Hilbert
space structure, enters directly into the definitions of the above
entropies.
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Wave transmission

Suppose that Alice encodes and sends information by an
undulatory signal, what information can Bob get by the wave
packet in a given region at later time?

Bob has access only the portion of the wave that is in his lab at a
given time. We are interested in the local information or
information density of the wave packet.
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By a wave (or wave packet), we mean a real solution of the wave
equation
e =0,

with compactly supported, smooth Cauchy data ®|,0_g, ®'|,0—g-

Classical field theory describes ® by the stress-energy tensor 7,
which provides the energy-momentum density of ¢ at any time.

But, how to define the information, or entropy, carried by ® in a
given region at a given time?

We give a classical answer to such a classical question by Operator
Algebras and Quantum Field Theory

Joint work with Fabio Ciolli and Giuseppe Ruzzi
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e Symplectic form. Define a natural symplectic form on the real
linear space 7 of waves

e Complex Hilbert structure. Define a complex structure the real
linear space 7 and compatible complex scalar product on 7T giving
complex Hilbert space H

e Local subspaces. Waves with Cauchy data supported in a region
O will form a real linear subspace H(O) of H

e Local entropy. Define the entropy of a wave ® in the region O
as Sg(o), the entropy of the vector ® w.r.t. H(O).

e Computation. Give the explicit formula for the local entropy of a
wave © in the region O
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Entropy of a wave

Waves are given by Cauchy data ® <> (f,g) € S(RY) x S(RY).

The symplectic form is the time-independent form

B(b, W) = ;/ (Wpd — BAW)dx |
x0=t

The complex structure is then

-1
[ 5] e

—p

Waves with Cauchy data supported in region O (causal envelop of
a space region B) form a real linear subspace H(O) = H(B).

The information carried by the wave ® in the region O is the
entropy Se¢ of the vector ® w.r.t. H(O)
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Double cone, conformal case

For a bounded region O (double cone, causal envelop of a space
ball B), in the conformal case the modular group is given by the
geometric transformation (Hislop, L. ‘81)

t

local modular trajectories

0 X1
(u,v) — ((Z(u,s), Z(v,s))
_ (42)+e*(1-2)
2(z,5) = (L=
u=xp+r, v=xg—r, r=I[x= X12+~-+x§
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Entropy density and modular Hamiltonian, massless case

What is the entropy density of a wave? We have to compute the
modular Hamiltonian of space ball B.

In terms of the wave Cauchy data, the local massless modular
Hamiltonian associated with the unit space ball B is given by

0 L2
|OgAB = —271'20 |:é(1 o r2)V2 _ rar - D 2( 0 ):|

D = (d — 1)/2 the scaling dimension of the free scalar field.

Namely
0 M
log Ag = —2my [L— D 0]

with
o 1.,
M = Multiplication operator by 5(1 —r9),
1

L = Legendre operator 5(1 —r)V2 - ro,
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In terms of the classical stress-energy tensor

<T(§8)>¢ _1 ((8049)2 + |Vx¢|2) )

N |

2
—(¢,|ogAB¢):27r/ ! 2’ (Tég)>¢(x)dx+7rD/ ®2dx
x0=0

x0=0

The entropy of a wave ® in the ball B is (massless case)

2
sgzzw/ ! 2’ (To(g)>¢(x)dx+7rD/ ®2dx
B B

(Work with G. Morsella)

Massive case: numerical results by H. Bostelmann, D. Cadamuro,
C. Minz
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Higher-dimensional Legendre operator

The Legendre operator is the one-dimensional Sturm-Liouville
linear differential operator (1 — x2)-£. We consider a natural
higher-dimensional generalization.

We denote by L the d-dimensional Legendre operator, on L?(R9),
initialliy defined on S(RY)

L=V(1-r)V=(1-r)V?-2r0,;
The quadratic form associated with L is
(f,Lg) = / (1-r?)VFf-Vgdx, f,gecS(RY),
Rd

L is a Hermitian operator.
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Higher-dimensional prolate operator

Let W be the operator on L?(R9) given by
W=vV1-r)V-r=L-r?

with D(W) = S(R9). W is a higher-dimensional generalisation of
the prolate operator.

W is a Hermitian, being a Hermitian perturbation of L on S(R9);

moreover,
-W>-L2>0

on D(W) N L?(B)
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Note the equality
W=L+M-1

with M multiplication by (1 — r?). This makes a conenction with
the modular Hamiltonian

o W commutes with the Fourier transformation F:
W=Ww.

e Any linear combination of L and M commuting with F is
proportional to W

e W has a natural Hermitian extension that commutes with F and
Eg, thus with Eg and Fpg too
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Natural extension of W

e Connes: in one dimension, W is Hermitian on S(R) with defect
indices 4 - 4 and it has a selfadjoint extension that commutes with
F and Eg, thus with Eg and Fg too

e in higher dimension d, W is Hermitian on S(R9); and it has a
natural Hermitian extension that commutes with F and Eg, thus
with Eg and Fg too. The domain of the extension is

D = S(RY) + xgS(R?) + xpS(RY)
and is given by
W(f+xpg+Re*h) = Wf+xsWeg+Rs*Wh, f,g heSRY);

The restriction Wpg of the extension to L?(B) is selfadjoint
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The angle operator EBEBEB is of trace class, indeed EBEB\LQ(B) is
the positive Hilbert-Schmidt T on L?(B) with kernel kg(x — y)

1 —ix-z
ke(z) = (27r)d/2/59 dx xg(z)

The eigenvalues of Tg are strictly positive, with finite multiplicity
)\1>)\2>--'Ak>-">0

The eigenfunctions are concentrated at level g in appropriate
sense

—EgW is positive. Both W and L commute with Eg, and we
consider their restrictions Wg and Lg to L%(B)
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Legendre and Parabolic entropies (concrete abstract/field

entropies)

The entropy operator £ on L?(R?) @ L2(RY) corresponding to &g
is given by

e —mEglp 0
B~ 0 TEgM

With f € S(RY) real, we set

n(f, Mf)g = 7r/B(1 — r?)f2dx = parabolic entropy of f in B.

—7(f,Lf)g = 77/5(1 — r?)|Vf|?dx = Legendre entropy of f in B.
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Prolate entropy

The Parabolic/Legendre entropies are the field/momentum
entropies associated with a wave

Now, —LEg = —WEg + MEg — Eg, so tWEg is an entropy
operator too; we thus define:

—m(f, Wf)g = 77/8 ((1—r?)|Vf|?+r?)dx = prolate entropy of f in B,

f € S(RY) real.
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Conclusion

We summarize our discussion in the following.

—7mWEg is an entropy operator on L?(R9). The sum of the prolate
entropy and the parabolic entropy is equal to the sum of the
Legendre entropy and the Born entropy, all with respect to B

WEg commutes with the truncated Fourier transform Fpg.

Let V be a real linear combination of LEg, MEg and Eg
commuting with Fg; then V = aWEg + bEg for some a,b € R. If
V is also positive, and the spectral lower bound of V],_z(B) is zero,
then V= aWEg, a> 0
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The measure of concentration

One-dimensional case: As Tg is strictly positive and
Hilbert-Schmidt, its eigenvalues can be ordered as
A1 > Ay > --- > 0; they are simple.

the eigenvalues of —Wpg can be ordered as

o < ap <o <0
correspond to the A's in inverse order. Then
(f, Tef)s = Ak, —(fk, Wefi)g =
and may is the prolate entropy of 7.
lower prolate entropy <— higher concentration

where the concentration is both on space and in Fourier modes as
above. This is intuitive since information is the opposite of entropy.
In other words, in order to maximize simultaneously both
quantities ||f|[3 g/||f||3 and HfH% g/||/fl|3 we have to minimize
the prolate entrbpy. 7
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The lucky accident is not an accident

As —W + M= —-L+1,
—7T(f, Wf)B—|-7T(f, Mf)B = —ﬂ(f,Lf)B—l-ﬂ(f,f)B;

—n(f, Wf)g is the sum of the Legendre entropy of f and =||f|%
(Born entropy), minus the parabolic entropy of f, i.e.

—(f, Wf)3+7r/(1—r2)f2dx:w/(l—r2)|Vf2dx+7r/ fdx.
B B

B

We conclude that —7(f, Wf)g is an entropy quantity, i.e. a
measure of information, the prolate entropy of f w.r.t. B. In other
words, —mEgW is an entropy operator.

The lucky accident, that W commutes with the truncated Fourier
transform, finds a conceptual clarification in this fact.
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