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Signal communication

Suppose Alice sends a signal to Bob that is codified by a function
of time f . Bob can measure the value f only within a certain time
interval; moreover, the frequency of f is filtered by the signal
device within a certain interval in the spectrum amplitude

Alice Bob

Say both intervals are equal to B = (−1, 1). As is well known, if a
function f and its Fourier transform f̂ are both supported in
bounded intervals, then f is the zero function. So one is faced with
the problem of simultaneously maximizing the portions of energy
and amplitude spectrum within the intervals

||f ||2B/||f ||2 , ||f̂ ||2B/||f̂ ||2 ,

the concentration problem.
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The concentration problem

The problem of best approximating, with support concentration, a
function and its Fourier transform is a classical problem; in
particular, it lies behind Heisenberg uncertainty relations in
Quantum Mechanics and is studied in Quantum Field Theory too
(Jaffe, etc.)

In the ‘60ies, this problem was studied in seminal works by Slepian,
Pollak and Landau. Denote by F : f 7→ f̂ the Fourier transform
and by FB the truncated Fourier transform

FB = EBFEB

(FB f )(p) =
χB(p)√

2π

∫
B
f (x)e−ixpdx

as an operator on L2.
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The functions that best maximize the concentration problem are
eigenfunctions of FB with higher eigenvalues.

Since ||F∗BFB || = ||FB ||2, one can equivalently consider the angle
operator

TB ≡ F∗BFB = EB ÊBEB

where ÊB = F∗EBF . This is a Hilbert-Schmidt integral

TB =

∫
B
kB(x − y)f (y)dy

k(x) =
1

(2π)1/2

sin x

x

and one has the eigenvalue problem

TB f = λf

This spectral analysis is not easily doable a priori.
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The lucky accident

However, by the lucky accident figured out in by Slepian et al. ,
this integral operator commutes with a linear differential operator,
the prolate operator

W =
d

dx
(1− x2)

d

dx
− x2 ,

that commutes with the angle operator, so these eigenfunctions
were computed.

W is a classical operator, it arises by separating the 3-dimensional
scalar wave equation in a prolate spheroidal coordinate system.
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Connes raised new interest in this operator. Connes and Moscovici
show an impressive relation of the prolate spectrum with the
asymptotic distribution of the zeros of the Riemann ζ-function.

We want to understand the role of the prolate operator on a
conceptual basis, in relation to the mentioned lucky accident: the
prolate operator as an entropy operator.

We shall generalize the prolate operator in higher dimensions,
guided by QFT

W = (1− r2)∇2 − 2r∂r − r2

on S(Rd) admits a natural extension W that commutes with the
truncated Fourier transform FB (In the one-dimensional case, W
itself is selfadjoint (Connes-Moscovici)). The expectation values of
W on L2(B) will indeed be entropy quantities.
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Tomita-Takesaki modular theory

M a von Neumann algebra on H, ϕ = (Ω, ·Ω) normal faithful
state on M. Embed M into H

M X 7→X∗−−−−−→
isometric

M

X→XΩ

y yX→XΩ

H S0:XΩ7→X∗Ω−−−−−−−−→
non isometric

H

S = S̄0 = J∆1/2, ∆ and J modular operator and conjugation

t ∈ R 7→ σϕt ∈ Aut(M)

σϕt (X ) = ∆itX∆−it

modular automorphisms intrinsic dynamics associated with ϕ!

JMJ =M′ on H

6 / 41



KMS equilibrium condition (Haag-Hugenoltz-Winnink)

Infinite volume. A a C ∗-algebra, τ a one-par. automorphism group
of A. A state ϕ of A is KMS at inverse temperature β > 0 if for
X ,Y ∈ A ∃ function FXY s.t.

(a) FXY (t) = ϕ
(
X τt(Y )

)
(b) FXY (t + iβ) = ϕ

(
τt(Y )X

)
FXY bounded analytic on Sβ = {0 < =z < β}, continuous on S̄β

ϕ
(
τt (Y )X

)∣∣β
ϕ

(
Xτt (Y )

)
KMS states generalise Gibbs states, equilibrium condition for

infinite systems
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The modular Hamiltonian

The generator of the modular operator unitary group ∆it
ϕ is called

the modular Hamiltonian log ∆ϕ

One may consider the the relative modular operator ∆ξ,η, and the
more general

modular Hamiltonian log ∆ξ,η

The study of the modular Hamiltonian is presently a hot topic in
Theoretical Physics
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Entropy of finite systems

X = {x1, . . . xn} a set of events. If xi occurs with probability pi , its
information is − log pi

Shannon entropy : S(P) = −
∑

pi log pi .

If Q = {q1, . . . qn} other probability distribution (state)

Relative entropy : S(P||Q) =
∑

pi (log pi − log qi )

mean value in the state P of the difference between the
information carried by the state P and the state Q.

Quantum entropy: ϕ = −Tr(ρϕ ·) state on a matrix algebra

von Neumann entropy : S(ϕ) = −Tr(ρϕ log ρϕ)

Umegaki’s relative entropy

S(ϕ||ψ) =: Tr
(
ρϕ(log ρϕ − log ρψ)

)
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Araki’s relative entropy

An infinite quantum system is described by a von Neumann
algebra M typically not of type I so Tr does not exist; however
Araki’s relative entropy between two faithful normal states ϕ and
ψ on M is defined in general by

S(ϕ|ψ) ≡ −(η, log ∆ξ,η η)

where ξ, η are cyclic vector representatives of ϕ,ψ and ∆ξ,η is the
relative modular operator associated with ξ, η.

S(ϕ|ψ) ≥ 0

positivity of the relative entropy
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Standard subspaces

H complex Hilbert space and H ⊂ H a closed, real linear subspace.
Symplectic complement:

H ′ = {ξ ∈ H : =(ξ, η) = 0 ∀η ∈ H}

H is cyclic if H + iH = H and separating if H ∩ iH = {0}.

A standard subspace H of H is a closed, real linear subspace of H
which is both cyclic and separating. H is standard iff H ′ is
standard.

H standard subspace → anti-linear operator S : D(S) ⊂ H → H,

S : ξ + iη → ξ − iη, ξ, η ∈ H

S2 = 1|D(S). S is closed and densely defined, indeed

S∗H = SH′
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Modular theory for standard subspaces

Set S = J∆1/2, polar decomposition of S = SH .

Then J is an anti-unitary involution, ∆ > 0 is non-singular called
the modular conjugation and the modular operator; they satisfy
J∆J = ∆−1 and

∆itH = H, JH = H ′

(one particle Tomita-Takesaki theorem).

cf. Rieffel, van Daele; Leyland, Roberts, Testard
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Entropy of a vector relative to a real linear subspace

Let H be a complex Hilbert space and H ⊂ H a standard subspace

The entropy of a vector k ∈ H with respect to H ⊂ H is defined
by

Sk = SH
k = =(k ,PHAH k) = (k ,P∗H log ∆H k)

(in a quadratic form sense), where PH is the cutting projection

PH : H + H ′ → H , h + h′ 7→ h

and AH = −i log ∆H , the semigroup generator d
ds ∆−isH |s=0 of the

modular unitary group.

We have P∗H = −iPH i and the formula

PH = (1−∆H)−1 + JH∆
1/2
H (1−∆H)−1 ;

(PH is the closure of the right-hand side).

13 / 41



Properties of the entropy of a vector

Some of the main properties of the entropy of a vector are:

SH
k ≥ 0 or SH

k = +∞, positivity

If K ⊂ H, then SK
k ≤ SH

k monotonicity

If kn → k , then SH
k ≤ lim infn S

H
kn

lower semicontinuity

If Hn ⊂ H is an increasing sequence with
⋃

n Hn = H, then
SHn
k → SH

k monotone continuity

If k ∈ D(log ∆H) then SH
k <∞ finiteness on smooth vectors
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Cutting Projection

In QFT, PH cuts the Cauchy data, so it is geometric.

The following diagram illustrates the interplay among the three
equivalent structures associated with standard subspaces and the
geometric way out to QFT:

modular data

subspace geometry QFT

complex structure

cutting projection

geometric
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Weyl algebra and Gaussian states

If H is a real linear space with a non-degenerate symplectic form β,
The Weyl C ∗-algebra C ∗(H) linearly generated by the (unitaries)
V (h), h ∈ H, that satisfy the commutation relations (CCR)

V (h + k) = e iβ(h,k)V (h)V (k) , h, k ∈ H ,

V (h)∗ = V (−h). A state ϕα on C ∗(H) is called Gaussian, if

ϕα
(
V (h)

)
= e−

1
2
α(h,h) ,

with α a real bilinear form α on H, compatible with β.

H standard linear subspace of H → von Neumann A(H) = C ∗(H)′′

algebra on Fock space eH, i.e. GNS of ω = ϕα with α = <(·, ·)
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Entropy of coherent sectors

Given Φ ∈ H consider the automorphism of the Weyl algebra A(H)

βΦ = AdV (Φ)∗|A(H) .

The vacuum relative entropy of the Gaussian state ω · βΦ on
A(H) is given by the entropy of the vector Φ w.r.t. H. Namely by

S(ω · βΦ||ω) = SΦ

Araki’s relative entropy Entropy of vector
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Entropy operators. I

The entropy operator EH is defined by

EH = iPH i log ∆H

(closure of the right-hand side). We have

Sk = (k , EHk) , k ∈ H .

real quadratic form sense.

The entropy operator EH is real linear, positive, and selfadjoint
w.r.t. to the real part of the scalar product.

In my view, an entropy operator E is a real linear operator on a
real or complex Hilbert space H, such E is positive, selfadjoint and
its expectation values (f , Ef ), f ∈ H, correspond to entropy
quantities (w.r.t. B).
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Entropy operators. II

It is convenient to consider more entropy operators by performing
natural operations.

Basic. If E is a real linear operator on a real Hilbert space H of the
above form, we say that E is an entropy operator.

Restriction and direct sum. If E = E+ ⊕ E− on a real Hilbert space
direct sum H = H+ ⊕ H−, then E is an entropy operator on H, iff
both E± are entropy operators.

Change of metric. Suppose that S ⊂ H is a core for the entropy E
on H and (·, ·)′ is a scalar product on S; denote by H ′ the
corresponding real Hilbert space completion. E ′ is an entropy
operator on H ′ if

(f , E ′f )′ = (f , Ef ) , f ∈ S .
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Entropy operators. III

Sum, difference. If E1, E2 are entropy operators and E = E1 ± E2 is
densely defined and positive, the Friedrichs extension E is an
entropy operator.

Born entropy. πEB , with EB the orthogonal projection onto L2(B),
is an entropy operator on L2(Rd).

In Quantum Mechanics, with the normalization ||f ||2 = 1, ||f ||2B is
the probability of the particle to be localized in B, accordingly to
Born’s interpretation.

In Communication Theory, ||f ||2B represents the part of energy of f
contained in B. We set

π(f ,EB f ) = π||f ||2B = π

∫
B
f 2dx = Born entropy of f in B ,

f ∈ L2(Rd) real.
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Abstract field/momentum entropy

We are given two real linear spaces S+ and S− with duality

f , g ∈ S+ × S− 7→ 〈f , g〉 ∈ R

and a real linear, invertible operator

µ : S+ → S−

µ is symmetric and positive, i.e.

〈f1, µf2〉 = 〈f2, µf1〉 , f1, f2 ∈ S+ ,

〈f , µf 〉 ≥ 0 , f ∈ S+ ,

with 〈f , µf 〉 = 0 only if f = 0.

So S± are real pre-Hilbert spaces with scalar products

(f1, f2)+ = 〈f1, µf2〉 , (g1, g2)− = 〈µ−1g2, g1〉 , f1, f2 ∈ S+, g1, g2 ∈ S−

and µ is a unitary operator. H± be the real Hilbert space
completion of S±
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Set H = H+ ⊕ H−. The bilinear form β on H

β(Φ,Ψ) = 〈g1, f2〉 − 〈f1, g2〉

Φ ≡ f1 ⊕ g1, Ψ ≡ f2 ⊕ g2, is symplectic and non-degenerate (will
be the imaginary part of the complex scalar product)

Now, the operator

ı =

[
0 µ−1

−µ 0

]
,

namely ı : f ⊕ g 7→ µ−1g ⊕−µf , is a unitary on H = H+ ⊕ H+.

As ı2 = −1, the unitary ı defines a complex structure on H that
becomes a complex Hilbert space
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Suppose now K± ⊂ H± are closed, real linear subspaces and
K ≡ K+ ⊕ K− standard, factorial.

The cutting projection

PK = K + K ′ → K

is diagonal

PK =

[
P+ 0
0 P−

]
,

with P± the projection P± : K± + K o
∓ → K±.

log ∆K is diagonal, so AK = −ı log ∆K is off-diagonal

AK = π

[
0 M
L 0

]
with M and L operators H± → H∓.

The entropy of Φ ≡ f ⊕ g ∈ H with respect to K is given by

SΦ = −π〈f ,P−Lf 〉+ π 〈g ,P+Mg〉
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The entropy operator is given by

EK = π

[
−µ−1P−L 0

0 µP+M

]
We then define:

− π〈f ,P−Lf 〉 field entropy of f ∈ S+ w .r .t. K+ ,

π〈g ,P+Mg〉 momentum entropy of g ∈ S− w .r .t. K− .

(quadratic form sense). Note that only the duality, not the Hilbert
space structure, enters directly into the definitions of the above
entropies.
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Wave transmission

Suppose that Alice encodes and sends information by an
undulatory signal, what information can Bob get by the wave
packet in a given region at later time?

A B

Bob has access only the portion of the wave that is in his lab at a
given time. We are interested in the local information or
information density of the wave packet.
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Wave packets

By a wave (or wave packet), we mean a real solution of the wave
equation

�Φ = 0 ,

with compactly supported, smooth Cauchy data Φ|x0=0, Φ′|x0=0.

Classical field theory describes Φ by the stress-energy tensor Tµν ,
which provides the energy-momentum density of Φ at any time.

But, how to define the information, or entropy, carried by Φ in a
given region at a given time?

We give a classical answer to such a classical question by Operator
Algebras and Quantum Field Theory

Joint work with Fabio Ciolli and Giuseppe Ruzzi
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Steps

• Symplectic form. Define a natural symplectic form on the real
linear space T of waves

• Complex Hilbert structure. Define a complex structure the real
linear space T and compatible complex scalar product on T giving
complex Hilbert space H

• Local subspaces. Waves with Cauchy data supported in a region
O will form a real linear subspace H(O) of H

• Local entropy. Define the entropy of a wave Φ in the region O

as S
H(O)
Φ , the entropy of the vector Φ w.r.t. H(O).

• Computation. Give the explicit formula for the local entropy of a
wave Φ in the region O
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Entropy of a wave

Waves are given by Cauchy data Φ↔ 〈f , g〉 ∈ S(Rd)× S(Rd).

The symplectic form is the time-independent form

β(Φ,Ψ) =
1

2

∫
x0=t

(Ψ∂0Φ− Φ∂0Ψ)dx ,

The complex structure is then

ı =

[
0 µ−1

−µ 0

]
, µ =

√
−∇2

Waves with Cauchy data supported in region O (causal envelop of
a space region B) form a real linear subspace H(O) ≡ H(B).

The information carried by the wave Φ in the region O is the
entropy SΦ of the vector Φ w.r.t. H(O)
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Double cone, conformal case

For a bounded region O (double cone, causal envelop of a space
ball B), in the conformal case the modular group is given by the
geometric transformation (Hislop, L. ‘81)

x10

t

local modular trajectories

(u, v) 7→
(
(Z(u, s),Z(v , s)

)

Z (z , s) = (1+z)+e−s(1−z)
(1+z)−e−s(1−z)

u = x0 + r , v = x0 − r , r = |x| ≡
√
x2

1 + · · ·+ x2
d
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Entropy density and modular Hamiltonian, massless case

What is the entropy density of a wave? We have to compute the
modular Hamiltonian of space ball B.

In terms of the wave Cauchy data, the local massless modular
Hamiltonian associated with the unit space ball B is given by

log ∆B = −2πı0

[
0 1

2 (1− r2)
1
2 (1− r2)∇2 − r∂r − D 0

]
D = (d − 1)/2 the scaling dimension of the free scalar field.

Namely

log ∆B = −2πı0

[
0 M

L− D 0

]
with

M = Multiplication operator by
1

2
(1− r2) ,

L = Legendre operator
1

2
(1− r2)∇2 − r∂r

30 / 41



In terms of the classical stress-energy tensor

〈T (0)
00 〉Φ =

1

2

(
(∂0Φ)2 + |∇xΦ|2

)
.

−(Φ, log ∆BΦ) = 2π

∫
x0=0

1− r2

2
〈T (0)

00 〉Φ(x)dx + πD

∫
x0=0

Φ2dx

The entropy of a wave Φ in the ball B is (massless case)

SB
Φ = 2π

∫
B

1− r2

2
〈T (0)

00 〉Φ(x)dx + πD

∫
B

Φ2dx

(Work with G. Morsella)

Massive case: numerical results by H. Bostelmann, D. Cadamuro,
C. Minz
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Higher-dimensional Legendre operator

The Legendre operator is the one-dimensional Sturm-Liouville
linear differential operator d

dx (1− x2) d
dx . We consider a natural

higher-dimensional generalization.

We denote by L the d-dimensional Legendre operator, on L2(Rd),
initialliy defined on S(Rd)

L = ∇(1− r2)∇ = (1− r2)∇2 − 2r∂r ;

The quadratic form associated with L is

(f , Lg) = −
∫
Rd

(1− r2)∇f̄ ·∇g dx , f , g ∈ S(Rd) ,

L is a Hermitian operator.
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Higher-dimensional prolate operator

Let W be the operator on L2(Rd) given by

W = ∇(1− r2)∇− r2 = L− r2

with D(W ) = S(Rd). W is a higher-dimensional generalisation of
the prolate operator.

W is a Hermitian, being a Hermitian perturbation of L on S(Rd);
moreover,

−W ≥ −L ≥ 0

on D(W ) ∩ L2(B)
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Note the equality
W = L + M − 1

with M multiplication by (1− r2). This makes a conenction with
the modular Hamiltonian

• W commutes with the Fourier transformation F :

Ŵ = W .

• Any linear combination of L and M commuting with F is
proportional to W

• W has a natural Hermitian extension that commutes with F and
EB , thus with ÊB and FB too
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Natural extension of W

• Connes: in one dimension, W is Hermitian on S(R) with defect
indices 4 - 4 and it has a selfadjoint extension that commutes with
F and EB , thus with ÊB and FB too

• in higher dimension d , W is Hermitian on S(Rd); and it has a
natural Hermitian extension that commutes with F and EB , thus
with ÊB and FB too. The domain of the extension is

D ≡ S(Rd) + χBS(Rd) + ̂χBS(Rd)

and is given by

W (f +χBg +χ̂B ∗h) = Wf +χBWg +χ̂B ∗Wh , f , g , h ∈ S(Rd) ;

The restriction WB of the extension to L2(B) is selfadjoint
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The angle operator EB ÊBEB is of trace class, indeed EB ÊB |L2(B) is

the positive Hilbert-Schmidt TB on L2(B) with kernel kB(x − y)

kB(z) =
1

(2π)d/2

∫
B
e−ix ·zdx χB(z)

The eigenvalues of TB are strictly positive, with finite multiplicity

λ1 > λ2 > · · ·λk > · · · > 0

The eigenfunctions are concentrated at level λk in appropriate
sense

−EBW is positive. Both W and L commute with EB , and we
consider their restrictions WB and LB to L2(B)
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Legendre and Parabolic entropies (concrete abstract/field
entropies)

The entropy operator E ′B on L2(Rd)⊕ L2(Rd) corresponding to EB
is given by

E ′B =

[
−πEBLD 0

0 πEBM

]
With f ∈ S(Rd) real, we set

π(f ,Mf )B = π

∫
B

(1− r2)f 2dx = parabolic entropy of f in B .

−π(f , Lf )B = π

∫
B

(1− r2)|∇f |2dx = Legendre entropy of f in B .
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Prolate entropy

The Parabolic/Legendre entropies are the field/momentum
entropies associated with a wave

Now, −LEB = −WEB + MEB − EB , so πWEB is an entropy
operator too; we thus define:

−π(f ,Wf )B = π

∫
B

(
(1−r2)|∇f |2+r2

)
dx = prolate entropy of f in B ,

f ∈ S(Rd) real.
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Conclusion

We summarize our discussion in the following.

−πWEB is an entropy operator on L2(Rd). The sum of the prolate
entropy and the parabolic entropy is equal to the sum of the
Legendre entropy and the Born entropy, all with respect to B

WEB commutes with the truncated Fourier transform FB .

Let V be a real linear combination of LEB ,MEB and EB

commuting with FB ; then V = aWEB + bEB for some a, b ∈ R. If
V is also positive, and the spectral lower bound of V |L2(B) is zero,
then V = aWEB , a ≥ 0
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The measure of concentration

One-dimensional case: As TB is strictly positive and
Hilbert-Schmidt, its eigenvalues can be ordered as
λ1 > λ2 > · · · > 0; they are simple.

the eigenvalues of −WB can be ordered as

α1 < α2 < · · · <∞

correspond to the λk ’s in inverse order. Then

(fk ,TB fk)B = λk , −(fk ,WB fk)B = αk ,

and παk is the prolate entropy of fk .

lower prolate entropy←→ higher concentration

where the concentration is both on space and in Fourier modes as
above. This is intuitive since information is the opposite of entropy.
In other words, in order to maximize simultaneously both
quantities ||f ||22,B/||f ||22 and ||f̂ ||22,B/||/f ||22 we have to minimize
the prolate entropy.
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The lucky accident is not an accident

As −W + M = −L + 1,

−π(f ,Wf )B + π(f ,Mf )B = −π(f , Lf )B + π(f , f )B ;

−π(f ,Wf )B is the sum of the Legendre entropy of f and π||f ||2B
(Born entropy), minus the parabolic entropy of f , i.e.

−π(f ,Wf )B+π

∫
B

(1−r2)f 2dx = π

∫
B

(1−r2)|∇f |2dx+π

∫
B
f 2dx .

We conclude that −π(f ,Wf )B is an entropy quantity, i.e. a
measure of information, the prolate entropy of f w.r.t. B. In other
words, −πEBW is an entropy operator.

The lucky accident, that W commutes with the truncated Fourier
transform, finds a conceptual clarification in this fact.
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