# Hopf algebroids, Atiyah sequences and noncommutative gauge theories 

Giovanni Landi

Trieste

Emergent Geometries from Strings and Quantum Fields
Galileo Galilei Institute - Arcetri
18 July 2023
recent papers
Paolo Aschieri, GL, Chiara Pagani, Xiao Han, GL, Yang Liu, Xiao Han, GL,

## Background

A (commutative) Hopf Algebroid is somehow the dual of a groupoid ( like Hopf algebras vs groups )

Extension of scalars
( similarly to the passage from Hilbert space to Hilbert module ):
the ground field $k$ ( the complex numbers $\mathbb{C}$ ) gets replaced by a (noncommutative) algebra $B$
so a Hopf algebra over a noncommutative base algebra

Not all structures survive:
(dual) source and target maps, (partial) coproduct, a counit
but in general there is no antipode or there are more than one
(dual) bisections make sense ( a version of gauge transformations )

## Abstract

Try to work out a gauge algebroid for a noncommutative principal bundle
Try to get a suitable class of (infinitesimal ) gauge transformations
some natural structures
braiding Lie algebras to get bigger classes
a sequenze of braided Lie algebras; its splitting as a connection

Weil algebra
Chern-Weil homomorphism and braided Lie algebra cohomology
upgrade it to Hopf algebra cyclic cohomology

The classical gauge groupoid
$\pi: P \rightarrow M$ a $G$-principal bundle over $M$
The diagonal action of $G$ on $P \times P(u, v) g:=(u g, v g)$;
[ $u, v$ ] is the orbit of ( $u, v$ ) and $\Omega=P \times_{G} P$ the collection of orbits
$\Omega$ is a groupoid over $M$, - the gauge or Ehresmann groupoid of the bundle
Source and target projections"

$$
s([u, v]):=\pi(v), \quad t([u, v]):=\pi(u) .
$$

the object inclusion $M \rightarrow P \times{ }_{G} P$ :

$$
m \mapsto \mathrm{id}_{m}:=[u, u], \quad u \in \pi^{-1}(m)
$$

Partial multiplication $\left[u, v^{\prime}\right] \cdot[v, w]$, defined when $\pi\left(v^{\prime}\right)=\pi(v)$ :

$$
[u, v] \cdot\left[v^{\prime}, w\right]=[u, w g], \quad v=v^{\prime} g
$$

with inverse $[u, v]^{-1}=[v, u]$.

A bisection: a map $\sigma: M \rightarrow \Omega$, which is right-inverse to the source projection, $s \circ \sigma=\mathrm{id}_{M}$, and such that $t \circ \sigma: M \rightarrow M$ is a diffeo of $M$

The collection of bisections, $\mathcal{B}(\Omega)$, form a group

$$
\sigma_{1} * \sigma_{2}(m):=\sigma_{1}\left(\left(t \circ \sigma_{2}\right)(m)\right) \sigma_{2}(m), \quad \text { for } \quad m \in M
$$

The identity is the object inclusion $m \mapsto \mathrm{id}_{m}$, with inverse

$$
\sigma^{-1}(m)=\left(\sigma\left((t \circ \sigma)^{-1}(m)\right)\right)^{-1}
$$

$(t \circ \sigma)^{-1}$ as a diffeomorphism of $M$; the second inversion is the one in $\Omega$.
The subset $\mathcal{B}_{P / G}(\Omega)$ of vertical bisections, the ones that are right-inverse to the target projection as well, $t \circ \sigma=\mathrm{id}_{M}$, form a subgroup of $\mathcal{B}(\Omega)$.

There is a group isomorphism between $\mathcal{B}(\Omega)$ and the group of principal ( $G$ equivariant) bundle automorphisms of the principal bundle,

$$
\operatorname{Aut}_{G}(P):=\{\varphi: P \rightarrow P ; \varphi(p g)=\varphi(p) g\}
$$

while $\mathcal{B}_{P / G}(\Omega)$ is isomorphic to the subgroup of gauge transformations, principal bundle automorphisms which are vertical,

$$
\operatorname{Aut}_{P / G}(P):=\{\varphi: P \rightarrow P ; \varphi(p g)=\varphi(p) g, \pi(\varphi(p))=\pi(p)\}
$$

The classical sequences
Atiyah 1957
$\pi: P \rightarrow M$ a $G$-principal bundle over $M$
at level of groups

$$
1 \rightarrow \operatorname{Aut}_{P / G}(P) \rightarrow \operatorname{Aut}_{G}(P) \rightarrow \operatorname{Diff}(M) \rightarrow 1
$$

at level of derivations

$$
0 \rightarrow \mathfrak{g} \rightarrow \mathcal{X}(P)_{G} \rightarrow \mathcal{X}(M) \rightarrow 0
$$

$\mathfrak{g}=\mathcal{X}(P)_{G}^{v e r}:$ vertical and invariant; infinitesimal gauge transformation
a splitting of this sequence is a way to give a connection ( horizontal lift or a vertical projection )
an obstruction: $H^{1}\left(M, \mathfrak{g} \otimes \Omega^{1}(M)\right)$

Noncommutative principal bundles

- $H$ a Hopf algebra
- $A$ a right $H$-comodule algebra with coaction $\delta^{A}: A \rightarrow A \otimes H ; \quad \delta(a)=a_{(0)} \otimes a_{(1)}$
$\Rightarrow \quad$ the subalgebra of coinvariant elements

$$
B:=A^{c o H}=\left\{b \in A \mid \delta^{A}(b)=b \otimes 1_{H}\right\}
$$

The extension $B \subseteq A$ is $H$-Hopf-Galois if the canonical Galois map

$$
\chi: A \otimes_{B} A \longrightarrow A \otimes H, \quad a^{\prime} \otimes_{B} a \mapsto a^{\prime} a_{(0)} \otimes a_{(1)}
$$

is an isomorphism
$\chi$ is left $A$-linear, its inverse is determined by the restriction $\tau:=\chi_{\left.\right|_{1_{A} \otimes H}}^{-1}$

$$
\tau=\chi_{{1_{A} \otimes H}^{-1}}^{-1} H \rightarrow A \otimes_{B} A, \quad h \mapsto \tau(h)=h^{<1>} \otimes_{B} h^{<2\rangle} .
$$

the translation map; thus by definition:

$$
h^{\langle 1\rangle} h^{\langle 2\rangle}{ }_{(0)} \otimes h_{(1)}^{\langle 2\rangle}=1_{A} \otimes h
$$

Everything algebraic
$G$ be a semisimple affine algebraic group
$\pi: P \rightarrow P / G$ be a principal $G$-bundle with $P$ and $P / G$ affine varieties
$H=\mathcal{O}(G)$ the dual coordinate Hopf algebra
$A=\mathcal{O}(P), B=\mathcal{O}(P / G)$ the dual coordinate algebras
$B \subseteq A$ be the subalgebra of functions constant on the fibers.
Then $B=A^{c o H}$ and $\mathcal{O}\left(P \times_{P / G} P\right) \simeq A \otimes_{B} A$
Bijectivity of $P \times G \rightarrow P \times_{P / G} P,(p, g) \mapsto(p, p g)$, characterizing principal bundles, corresponds to the bijectivity of the canonical map $\chi: A \otimes_{B} A \rightarrow A \otimes H$ thus $B=A^{\text {coH }} \subseteq A$ is a Hopf-Galois extension

An important notion is that of the classical translation map
$t: P \times_{P / G} P \rightarrow G, \quad(p, q) \mapsto t(p, q)$ where $q=p t(p, q)$
the dual to $\tau$ before

## Gauge transformations

## Classical

The group $\mathcal{G}_{P}$ of gauge transformations of a principal $G$-bundle $\pi: P \rightarrow P / G$ is the group ( for point-wise product ) of $G$-equivariant maps

$$
\mathcal{G}_{P}:=\left\{\sigma: P \rightarrow G ; \sigma(p g)=g^{-1} \sigma(p) g\right\}
$$

Equivalently, is the subgroup ( for map composition ) of principal bundle automorphisms which are vertical (project to the identity on the base space):

$$
\operatorname{Aut}_{P / G}(P):=\{\varphi: P \rightarrow P ; \varphi(p g)=\varphi(p) g, \pi(\varphi(p))=\pi(p)\}
$$

These definitions can be dualised for algebras rather than spaces.
For $A=\mathcal{O}(P), B=\mathcal{O}(P / G), H=\mathcal{O}(G)$, the gauge group $\mathcal{G}_{P}$ of $G$-equivariant maps corresponds to $H$-equivariant maps that are also algebra maps

$$
\mathcal{G}_{A}:=\left\{\mathrm{f}: H \rightarrow A ; \delta^{A} \circ \mathrm{f}=(\mathrm{f} \otimes \mathrm{id}) \circ \mathrm{Ad}, \mathrm{f} \text { algebra map }\right\} .
$$

The group structure is the convolution product.

Similarly, the vertical automorphisms description leads to $H$-equivariant maps

$$
\operatorname{Aut}_{B} A=\left\{\mathrm{F}: A \rightarrow A ; \delta^{A} \circ \mathrm{~F}=(\mathrm{F} \otimes \mathrm{id}) \circ \delta^{A},\left.\mathrm{~F}\right|_{B}=\mathrm{id}: B \rightarrow B, \mathrm{~F} \text { algebra map }\right\} .
$$

The noncommutative case
Let $B=A^{c o H} \subseteq A$ be a faithfully flat Hopf-Galois extension
The collection $\operatorname{Aut}_{H}(A)$ of unital algebra maps of $A$ into itself, which are $H$-equivariant,

$$
\delta^{A} \circ \mathrm{~F}=(\mathrm{F} \otimes \mathrm{id}) \circ \delta^{A} \quad F(a)_{(0)} \otimes F(a)_{(1)}=F\left(a_{(0)}\right) \otimes a_{(1)}
$$

and restrict to the identity on the subalgebra $B$, is a group by map composition with inverse operation

$$
F^{-1}(a)=a_{(0)} F\left(a_{(1)}^{\langle 1\rangle}\right) a_{(1)}^{\langle 2\rangle}
$$

H.P. Schneider: vertical $H$-equivariant algebra maps are invertible

## Bialgebroids

$B$ an algebra
$B$-ring : a triple $(A, \mu, \eta) \quad$ M. Takeuchi, G. Böhm ....
$A$ a $B$-bimodule with $B$-bimodule maps $\mu: A \otimes_{B} A \rightarrow A$ and $\eta: B \rightarrow A$ associativity and unit conditions:

$$
\mu \circ\left(\mu \otimes_{B} \mathrm{id}_{A}\right)=\mu \circ\left(\mathrm{id}_{A} \otimes_{B} \mu\right), \quad \mu \circ\left(\eta \otimes_{B} \mathrm{id}_{A}\right)=\mathrm{id}_{A}=\mu \circ\left(\mathrm{id}_{A} \otimes_{B} \eta\right)
$$

Dually, $B$-coring : a triple $(C, \Delta, \varepsilon)$
$C$ is a $B$-bimodule with $B$-bimodule maps $\triangle: C \rightarrow C \otimes_{B} C$ and $\varepsilon: C \rightarrow B$ coassociativity and counit conditions:
$\left(\Delta \otimes_{B} \mathrm{id}_{C}\right) \circ \Delta=\left(\mathrm{id}_{C} \otimes_{B} \Delta\right) \circ \Delta, \quad\left(\varepsilon \otimes_{B} \mathrm{id}_{C}\right) \circ \Delta=\mathrm{id}_{C}=\left(\mathrm{id}_{C} \otimes_{B} \varepsilon\right) \circ \Delta$

A left $B$-bialgebroid $\mathcal{C}$ :
a ( $B \otimes B^{o p}$ )-ring and a $B$-coring structure on $\mathcal{C}$ with compatibility conditions There are source and target maps (with commuting ranges)

$$
s:=\eta\left(\cdot \otimes_{B} 1_{B}\right): B \rightarrow \mathcal{C} \quad \text { and } \quad t:=\eta\left(1_{B} \otimes_{B} \cdot\right): B^{o p} \rightarrow \mathcal{C}
$$

The compatibility conditions for a left $B$-bialgebroid $\mathcal{C}$
(i) The bimodule structures in the $B$-coring ( $\mathcal{C}, \Delta, \varepsilon$ ) and those of the $B \otimes B^{o p_{-}}$ ring ( $\mathcal{C}, s, t$ ) are related as

$$
b \triangleright a \triangleleft \tilde{b}:=s(b) t(\tilde{b}) a \quad \text { for } b, \tilde{b} \in B, a \in \mathcal{C} \text {. }
$$

(ii) The coproduct $\Delta$ corestricts to an algebra map from $\mathcal{C}$ to

$$
\mathcal{C} \times_{B} \mathcal{C}:=\left\{\sum_{j} a_{j} \otimes_{B} \tilde{a}_{j} \mid \sum_{j} a_{j} t(b) \otimes_{B} \tilde{a}_{j}=\sum_{j} a_{j} \otimes_{B} \tilde{a}_{j} s(b), \quad \forall b \in B\right\},
$$

(iii) The counit $\varepsilon: \mathcal{C} \rightarrow B$ satisfies the properties,
(1) $\varepsilon\left(1_{\mathcal{C}}\right)=1_{B}$,
(2) $\varepsilon(s(b) a)=b \varepsilon(a)$,
(3) $\varepsilon(a s(\varepsilon(\tilde{a})))=\varepsilon(a \tilde{a})=\varepsilon(a t(\varepsilon(\tilde{a})))$, for all $b \in B$ and $a, \tilde{a} \in \mathcal{C}$.
A Hopf algebroid with invertible antipode G. Böhm

For a left bialgebroid ( $\mathcal{C}, \Delta, \varepsilon, s, t$ ) over the algebra $B$, an invertible antipode $S: \mathcal{C} \rightarrow \mathcal{C}$ in an algebra anti-homomorphism with inverse $S^{-1}: \mathcal{C} \rightarrow \mathcal{C}$ s.t.

$$
S \circ t=s
$$

and compatibility conditions with the coproduct:

$$
\begin{gathered}
\left(S h_{(1)}\right)_{\left(1^{\prime}\right)} h_{(2)} \otimes_{B} S\left(h_{(1)}\right)_{\left(2^{\prime}\right)}=1_{\mathcal{C}} \otimes_{B} S h \\
\left(S^{-1} h_{(2)}\right)_{\left(1^{\prime}\right)} \otimes_{B}\left(S^{-1} h_{(2)}\right)_{\left(2^{\prime}\right)} h_{(1)}=S^{-1} h \otimes_{B} 1_{\mathcal{C}}
\end{gathered}
$$

These then imply $S\left(h_{(1)}\right) h_{(2)}=t \circ \varepsilon \circ S h$.

The above similar to a Hopf algebra with an algebra $B$ as the ground field.
source of difficulties/interest : there is no unique antipode in general
A weaker condition
P. Schauenburg

A bialgebroid $\mathcal{C}$ is a Hopf algebroid if the map

$$
\lambda: \mathcal{C} \otimes_{B^{o p}} \mathcal{C} \rightarrow \mathcal{C} \otimes_{B} \mathcal{C}, \quad \lambda\left(p \otimes_{B^{o p}} q\right)=p_{(1)} \otimes_{B} p_{(2)} q
$$

is invertible

$$
\otimes_{B^{o p}} \quad p t(b) \otimes_{B^{o p}} q=p \otimes_{B^{o p}} t(b) q \quad \otimes_{B} \quad t(b) p \otimes_{B} q=p \otimes_{B} s(b) q
$$

For $B=k$, this reduces to the map

$$
\lambda: \mathcal{C} \otimes \mathcal{C} \rightarrow \mathcal{C} \otimes \mathcal{C}, \quad p \otimes q \mapsto p_{(1)} \otimes p_{(2)} q
$$

which for a usual Hopf algebra with an antipode has inverse

$$
p \otimes q \mapsto p_{(1)} \otimes S\left(p_{(2)}\right) q
$$

Also here, if there is an invertible antipode $S$ as before Böhm one constructs an inverse for the map $\lambda$; for $X, Y \in \mathcal{C}$,

$$
\lambda^{-1}\left(X \otimes_{B} Y\right)=S^{-1}\left(S(X)_{(2)}\right) \otimes_{B^{o p}} S(X)_{(1)} Y
$$

No claim that $S$ here is unique

The noncommutative gauge bialgebroid aka Ehresmann-Schauenburg
$B=A^{c o H} \subseteq A$ be a Hopf-Galois extension
right coaction : $\delta(a)=a_{(0)} \otimes a_{(1)}$
translation map : $\tau(h)=h^{\langle 1\rangle} \otimes_{B} h^{\langle 2\rangle}$

The $B$-bimodule $\mathcal{C}(A, H)$ of coinvariant elements for the diagonal coaction,

$$
(A \otimes A)^{c o H}=\left\{a \otimes \tilde{a} \in A \otimes A ; a_{(0)} \otimes \tilde{a}_{(0)} \otimes a_{(1)} \tilde{a}_{(1)}=a \otimes \tilde{a} \otimes 1_{H}\right\}
$$

is a $B$-coring with coproduct and counit:

$$
\begin{gathered}
\Delta(a \otimes \tilde{a})=a_{(0)} \otimes \tau\left(a_{(1)}\right) \otimes \tilde{a}=a_{(0)} \otimes a_{(1)}^{\langle 1\rangle} \otimes_{B} a_{(1)}^{\langle 2\rangle} \otimes \tilde{a}, \\
\varepsilon(a \otimes \tilde{a})=a \tilde{a} .
\end{gathered}
$$

One see $\mathcal{C}(A, H)$ is a subalgebra of $A \otimes A^{o p}$ and it is indeed a (left) $B$-bialgebroid
Product $\quad(x \otimes \tilde{x}) \bullet_{C(A, H)}(y \otimes \tilde{y})=x y \otimes \tilde{y} \tilde{x}$
Target and source maps $\quad t(b)=1_{A} \otimes b$ and $s(b)=b \otimes 1_{A}$

## Han, L. ; Han Majid - 2022

The Ehresmann-Schauenburg bialgebroid $\mathcal{C}(A, H)$ of a Hopf-Galois extension is a Hopf algebroid :

If the Hopf algebra $H$ is coquasitriangular with $R$ matrix (a convolution invertible map) $\mathcal{R}: H \otimes H \rightarrow k$ ( + conditions),
there is an antipode: the inverse of the braiding induced by $\mathcal{R}$ :

$$
\Psi(a \otimes \tilde{a})=a_{(0)} \otimes \tilde{a}_{(0)} \otimes \mathcal{R}\left(a_{(1)} \otimes \tilde{a}_{(1)}\right)
$$

this is an invertible $H$-comodule map with inverse

$$
\Psi^{-1}(a \otimes \tilde{a})=a_{(0)} \otimes \tilde{a}_{(0)} \otimes \mathcal{R}^{-1}\left(a_{(1)} \otimes \tilde{a}_{(1)}\right)
$$

both map restrict to the invariant subspace $\mathcal{C}(A, H)$.
Then $S=\Psi^{-1}$ obeys all properties of an antipode for $\mathcal{C}(A, H)$.

The bialgebroid $\mathcal{C}(A, H)$ of a Hopf-Galois extension as a quantization (of the dualization) of the classical gauge groupoid principal bundle

Its bisections correspond to gauge transformations
$\mathcal{C}(A, H)$ the gauge bialgebroid of a Hopf-Galois extension $B=A^{c o H} \subseteq A$
A bisection is a $B$-bilinear unital left character on the $B$-ring $(\mathcal{C}(A, H), s)$.

The collection $\mathcal{B}(\mathcal{C}(A, H)$ ) of bisections of the bialgebroid $\mathcal{C}(A, H)$ is a group with convolution product :

$$
\sigma_{1} * \sigma_{2}(x \otimes \tilde{x}):=\sigma_{1}\left((x \otimes \tilde{x})_{(1)}\right) \sigma_{2}\left((x \otimes \tilde{x})_{(2)}\right)=\sigma_{1}\left(x_{(0)} \otimes x_{(1)}^{\langle 1>}\right) \sigma_{2}\left(x_{(1)}^{<2>} \otimes \tilde{x}\right)
$$

using the $B$-coring coproduct $\Delta(x \otimes \tilde{x})=(x \otimes \tilde{x})_{(1)} \otimes_{B}(x \otimes \tilde{x})_{(2)}$

A group isomorphism

$$
\alpha: \operatorname{Aut}_{H}(A) \rightarrow \mathcal{B}(\mathcal{C}(A, H))
$$

between gauge transformations and bisections:

$$
\begin{gathered}
\mathcal{B}(\mathcal{C}(A, H)) \ni \sigma \quad \mapsto \quad F_{\sigma}(a):=\sigma\left(a_{(0)} \otimes a_{(1)}^{<1>}\right) a_{(1))^{\langle 2>},} \quad F_{\sigma} \in \operatorname{Aut}_{H}(A) \\
F \in \operatorname{Aut}_{H}(A) \ni F \quad \mapsto \quad \sigma_{F}(a \otimes \tilde{a}):=F(a) \tilde{a}, \quad \sigma_{F} \in \mathcal{B}(\mathcal{C}(A, H))
\end{gathered}
$$

Bisection can be given for any bialgebroid
For the general case one would need additional requirements so to get a proper composition law for bisections

Explicit examples
the monopole bundles over the quantum $\mathrm{S}_{q}^{2}$
a not faithfully flat example from SL(2)
the $\operatorname{SU}(2)$ - bundle $S_{\theta}^{7} \rightarrow S_{\theta}^{4}$
the $S O_{\theta}(2 n)$ bundle $S O_{\theta}(2 n+1) \rightarrow S_{\theta}^{2 n}$
some example from $q$-geometry
change from automorphisms to derivations ( infinitesimal gauge transformations )

Lie algebras of suitable 'bisections'
braided versions of them

Atiyah sequences of braided Lie algebras of derivations

## Braiding then

$K$ a Hopf algebra
$K$-equivariant $H$-Hopf-Galois extension $B \subseteq A^{H}$ :
$A$ carries a left action $\triangleright: K \otimes A \rightarrow A$ of $K$, compatible with the $H$-coaction:

$$
(k \triangleright a)_{(0)} \otimes(k \triangleright a)_{(1)}=k \triangleright\left(a_{(0)} \otimes a_{(1)}\right) .
$$

Recall: $K$ is quasitriangular if there exists an invertible element $\mathrm{R} \in K \otimes K$ with respect to which the coproduct $\Delta$ of $K$ is quasi-cocommutative

$$
\Delta^{c o p}(k)=\mathrm{R} \Delta(k) \overline{\mathrm{R}} \quad \Delta^{c o p}:=\tau \circ \Delta
$$

and $\overline{\mathrm{R}} \in K \otimes K$ the inverse of $\mathrm{R}, \mathrm{R} \overline{\mathrm{R}}=\overline{\mathrm{R}} \mathrm{R}=1 \otimes 1$.
$R$ is required to satisfy ( these allow for a good representation theory ),

$$
(\Delta \otimes i d) R=R_{13} R_{23} \quad \text { and } \quad(i d \otimes \Delta) R=R_{13} R_{12}
$$

The Hopf algebra $K$ is triangular when $\overline{\mathrm{R}}=\mathrm{R}_{21}=\tau(\mathrm{R}), \quad \tau$ the flip.

We further assume the Hopf algebra $K$ to be triangular.
This allows for the study of braided Lie algebras.
A braided Lie algebra associated with a triangular Hopf algebra ( $K, \mathrm{R}$ ), is a $K$-module $\mathfrak{g}$ with a bilinear map

$$
[,]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}
$$

that satisfies the following conditions.
(i) $K$-equivariance: for $\Delta(k)=k_{(1)} \otimes k_{(2)}$ the coproduct of $K$,

$$
k \triangleright[u, v]=\left[k_{(1)} \triangleright u, k_{(2)} \triangleright v\right]
$$

(ii) braided antisymmetry:

$$
[u, v]=-\left[\mathrm{R}_{\alpha} \triangleright v, \mathrm{R}^{\alpha} \triangleright u\right],
$$

(iii) braided Jacobi identity:

$$
[u,[v, w]]=[[u, v], w]+\left[\mathrm{R}_{\alpha} \triangleright v,\left[\mathrm{R}^{\alpha} \triangleright u, w\right]\right]
$$

Infinitesimal gauge transformations
$B=A^{c o H} \subseteq A$ a $K$-equivariant Hopf-Galois extension, for ( $K, \mathrm{R}$ ) triangular.
Inside the braided Lie algebra $\operatorname{Der}(A)$ consider the subspace of braided derivations that are $H$-equivariant

$$
\begin{aligned}
& \operatorname{Der}_{\mathcal{M}^{H}}^{\mathrm{R}}(A)=\left\{u \in \operatorname{Hom}(A, A) \mid \delta(u(a))=u\left(a_{(0)}\right) \otimes a_{(1)},\right. \\
& \left.u\left(a a^{\prime}\right)=u(a) a^{\prime}+\left(\mathrm{R}_{\alpha} \triangleright a\right)\left(\mathrm{R}^{\alpha} \triangleright u\right)\left(a^{\prime}\right), \text { for all } a, a^{\prime} \in A\right\}
\end{aligned}
$$

and then those derivations that are vertical,

$$
\operatorname{aut}_{B}^{\mathrm{R}}(A):=\left\{u \in \operatorname{Der}_{\mathcal{M}^{H}}^{\mathrm{R}}(A) \mid u(b)=0, \text { for all } b \in B\right\}
$$

Elements of $\operatorname{aut}_{B}^{\mathrm{R}}(A)$ are regarded as infinitesimal gauge transformations of the $K$-equivariant Hopf-Galois extension $B=A^{c o H} \subseteq A$.

Atiyah sequences and their splittings
A $K$-equivariant Hopf-Galois extension $B=A^{c o H} \subseteq A$
The braided Lie algebra of vertical equivariant derivations

$$
\operatorname{aut}_{B}^{\mathrm{R}}(A):=\left\{u \in \operatorname{Der}_{\mathcal{M}^{H}}^{\mathrm{R}}(A) \mid u(b)=0, b \in B\right\}
$$

is a braided Lie subalgebra of equivariant derivations

$$
\operatorname{Der}_{\mathcal{M}^{H}}^{\mathrm{R}}(A)=\{u \in \operatorname{Der}(A) \mid \delta \circ u=(u \otimes \mathrm{id}) \circ \delta\} .
$$

Each derivation in $\operatorname{Der}_{\mathcal{M}^{H}}^{R}(A)$, being $H$-equivariant, restricts to a derivation on the subalgebra of coinvariant elements $B=A^{c o H}$
A sequence of braided Lie algebras aut ${ }_{B}^{\mathrm{R}}(A) \rightarrow \operatorname{Der}_{\mathcal{M}^{H}}^{\mathrm{R}}(A) \rightarrow \operatorname{Der}^{\mathrm{R}}(B)$
When exact,

$$
0 \rightarrow \operatorname{aut}_{B}^{\mathrm{R}}(A) \rightarrow \operatorname{Der}_{\mathcal{M}^{H}}^{\mathrm{R}}(A) \rightarrow \operatorname{Der}^{\mathrm{R}}(B) \rightarrow 0
$$

is a version of the Atiyah sequence of a (commutative) principal fibre bundle.

An $H$-equivariant splitting of the sequence is a connection on the bundle

The general construction
$(K, \mathrm{R})$ a triangular Hopf algebra; an exact sequence of $K$-braided Lie algebras

$$
0 \rightarrow \mathfrak{g} \xrightarrow{\imath} P \xrightarrow{\pi} T \rightarrow 0
$$

For $B$ an algebra; take $(B, T)$ a braided Lie-Rinehart pair:
$T$ is a $B$-module with a braided Lie algebra morphism $T \rightarrow \operatorname{Der}^{R}(B)$;
$B$ is a $T$-module and $T$ acts as braided derivations of $B$,

$$
X\left(b b^{\prime}\right)=X(b) b^{\prime}+\left(\mathrm{R}_{\alpha} \triangleright b\right)\left(\mathrm{R}^{\alpha} \triangleright X\right)\left(b^{\prime}\right), \quad b, b^{\prime} \in B, \quad X \in T
$$

and

$$
\left[X, b X^{\prime}\right]_{\mathrm{R}}=X(b) X^{\prime}+\left(\mathrm{R}_{\alpha} \triangleright b\right)\left[\left(\mathrm{R}^{\alpha} \triangleright X\right), X^{\prime}\right]_{\mathrm{R}}, \quad b \in B, \quad X, X^{\prime} \in T
$$

A connection on the sequence is a splitting: a $B$-module map,

$$
\rho: T \rightarrow P, \quad \pi \circ \rho=\mathrm{id}_{T}
$$

the 'vertical projection', is the $B$-module map $\omega_{\rho}: P \rightarrow \mathfrak{g}$,

$$
\omega_{\rho}(Y)=Y-\rho\left(Y^{\pi}\right), \quad Y \in P
$$

The extend to which $\rho$ or $\omega_{\rho}$ fail to be braided Lie algebra morphisms is measured by the (basic) curvature

$$
\Omega\left(X, X^{\prime}\right):=\rho\left(\left[X, X^{\prime}\right]_{\mathrm{R}}\right)-\left[\rho(X), \rho\left(X^{\prime}\right)\right]_{\mathrm{R}}, \quad X, X^{\prime} \in T .
$$

$\Omega$ is a $\mathfrak{g}$-valued braided two-form on $T$.
The curvature can also be given as a basic $\mathfrak{g}$-valued braided two-form on $P$ (spatial curvature):

$$
\begin{gathered}
\Omega_{\omega_{\rho}}\left(Y, Y^{\prime}\right):=\Omega\left(Y^{\pi}, Y^{\prime \pi}\right), \quad Y, Y^{\prime} \in P . \\
\Omega_{\omega_{\rho}}\left(Y, Y^{\prime}\right)=\left[Y, \omega_{\rho}\left(Y^{\prime}\right)\right]_{\mathrm{R}}+\left[\omega_{\rho}(Y), Y^{\prime}\right]_{\mathrm{R}}-\omega_{\rho}\left(\left[Y, Y^{\prime}\right]_{\mathrm{R}}\right)-\left[\omega_{\rho}(Y), \omega_{\rho}\left(Y^{\prime}\right)\right]_{\mathrm{R}} .
\end{gathered}
$$

This expression can be read as a structure equation:

$$
d \omega_{\rho}=\Omega_{\omega_{\rho}}+\left[\omega_{\rho}, \omega_{\rho}\right]_{\mathrm{R}}
$$

Here

$$
d \zeta\left(Y, Y^{\prime}\right):=\left[Y, \zeta\left(Y^{\prime}\right)\right]_{\mathrm{R}}+\left[\zeta(Y), Y^{\prime}\right]_{\mathrm{R}}-\zeta\left(\left[Y, Y^{\prime}\right]_{\mathrm{R}}\right), \quad Y, Y^{\prime} \in P
$$

(generalised to higher forms)

There is a Bianchi identity:

$$
d \Omega_{\omega_{\rho}}+\left[\Omega_{\omega_{\rho}}, \omega_{\rho}\right]_{\mathrm{R}}=0
$$

when the connection is equivariant: $k \triangleright \omega_{\rho}=\varepsilon(k) \omega_{\rho}$
this is true 'the way it is written
in general one needs a suitable interpretation of the curvature as a derivation of the braided Lie algebra $\mathfrak{g}$ and of the above expression

The space of connections $C(T, \mathfrak{g})$ :
an affine space modelled on $B$-module maps $\eta: T \rightarrow \mathfrak{g}$ with $\rho: T \rightarrow P$ a connection and $\eta: T \rightarrow \mathfrak{g}$, the sum $\rho^{\prime}=\rho+\eta$ is a connection.

An action of the braided Lie algebra $P: \quad P \times C(T, \mathfrak{g}) \longrightarrow C(T, \mathfrak{g})$

$$
(Y, \rho) \rightarrow \rho+\delta_{Y} \rho, \quad\left(\delta_{Y} \rho\right)(X):=[Y, \rho(X)]_{\mathrm{R}}-\rho\left(\left[Y^{\pi}, X\right]_{\mathrm{R}}\right.
$$

$\left(\delta_{Y} \rho\right)(X) \in \mathfrak{g}$ or $\delta_{Y} \rho: T \rightarrow \mathfrak{g}$.
For vertical elements $V \in \mathfrak{g}$, this is an infinitesimal gauge transformations:

$$
\left(\delta_{V} \rho\right)(X)=[V, \rho(X)]_{\mathrm{R}},
$$

thus $\mathfrak{g}$ is the braided Lie algebra of such transformations.

The curvature of the transformed connection $\rho^{\prime}=\rho+\delta_{Y} \rho$ :

$$
\Omega^{\prime}=\Omega+\delta_{Y} \Omega-\left[\delta_{Y} \rho, \delta_{Y} \rho\right]_{R}
$$

for $V \in \mathfrak{g}$ an infinitesimal gauge transformation this reduces to

$$
\left(\delta_{V} \Omega\right)\left(X, X^{\prime}\right)=\left[V, \Omega\left(X, X^{\prime}\right)\right]_{\mathrm{R}} .
$$

## Calabi pseudo-cohomology

Two sequences are equivalent if there is an isomorphism $P \rightarrow P^{\prime}$ with commutative diagrams

$$
\begin{gathered}
0 \rightarrow \mathfrak{g} \rightarrow P \rightarrow T \rightarrow 0 \\
\downarrow \\
0 \rightarrow \mathfrak{g} \rightarrow P^{\prime} \rightarrow T \rightarrow 0
\end{gathered}
$$

Classified by $\mathcal{H}^{2}(T, \mathfrak{g})$, the Calabi pseudo-cohomology of the Lie algebra $T$ with values in $\mathfrak{g}$. If $A$ is abelian $\mathcal{H}^{2}(T, \mathfrak{g})$ is the CE cohomology group $H^{2}(T, \mathfrak{g})$.

A pseudo-cochain: a pair ( $\phi, \Phi$ ),

$$
\phi: T \rightarrow \operatorname{Der}(\mathfrak{g}), \quad \Phi \text { a } \mathfrak{g} \text {-valued skew map on } T \times T, \text { such that }
$$

$$
\phi(X) \phi\left(X^{\prime}\right)-\phi\left(X^{\prime}\right) \phi(X)=\phi\left(\left[X, X^{\prime}\right]\right)+\operatorname{ad}_{\Phi\left(X, X^{\prime}\right)} \quad X, X^{\prime} \in T
$$

Such a pair is a 2-pseudo-cocycle if $\delta_{\phi}(\Phi)=0$, where

$$
\delta_{\phi}(\Phi)\left(X, X^{\prime}, X^{\prime \prime}\right)=\phi(X) \triangleright \Phi\left(X^{\prime}, X^{\prime \prime}\right)-\Phi\left(\left[X, X^{\prime}, X^{\prime \prime}\right)+c . p .\right.
$$

Two such pairs $(\phi, \Phi),\left(\phi^{\prime}, \Phi^{\prime}\right)$ are equivalent if there is a map $\eta: T \rightarrow \mathfrak{g}$, s.t.

$$
\begin{aligned}
\phi^{\prime}(X) & =\phi(X)+\operatorname{ad}_{\eta(X)} \\
\Phi^{\prime}\left(X, X^{\prime}\right) & =\Phi\left(X, X^{\prime}\right)+\left(\delta_{\phi} \eta\right)\left(X, X^{\prime}\right)+\left[\eta(X), \eta\left(X^{\prime}\right)\right] .
\end{aligned}
$$

Equivalent pseudo-cochains leads to equivalent pseudo-cocycles and the space of equivalent classes of 2-pseudo-cocycles is denoted $\mathcal{H}^{2}(T, \mathfrak{g})$, the order 2 Calabi pseudo-cohomology of the Lie algebra $T$ with values in $\mathfrak{g}$.

Given a splitting of the sequence, that is given a connection $\rho: T \rightarrow P$, one construct a pseudo-cocycle ( $\phi, \Phi$ ) by

$$
\begin{gathered}
\phi(X) \triangleright V=[\rho(X), V] \quad X \in T, V \in \mathfrak{g} \\
\Phi\left(X, X^{\prime}\right)=\Omega\left(X, X^{\prime}\right)=\rho\left(\left[X, X^{\prime}\right]\right)-\left[\rho(X), \rho\left(X^{\prime}\right)\right], \quad X, X^{\prime} \in T .
\end{gathered}
$$

Jacopi identity implies it is a pseudo-cocycle:

$$
\delta_{\phi}(\Phi)=0
$$

this is the Bianchi identity.

Given two connections $\rho$ and $\rho^{\prime}=\rho+\eta$, the corresponding pseudo-cocycles ( $\phi^{\prime}, \Phi^{\prime}$ ) and ( $\phi, \Phi$ ) are equivalent, they belong to the same class in $\mathcal{H}^{2}(T, \mathfrak{g})$.

Pseudo-cocycles associated with equivalent extensions determine the same class in $\mathcal{H}^{2}(T, \mathfrak{g})$.

Conversely, given a pseudo-cocycle one construct a sequence of Lie algebras $0 \rightarrow \mathfrak{g} \rightarrow P \rightarrow T \rightarrow 0$
cohomologous pseudo-cocycle give equivalent sequences.

The space of equivalent classes of extensions of $T$ by $\mathfrak{g}$ is in a bijective correspondence with $\mathcal{H}^{2}(T, \mathfrak{g})$.
$\mathcal{H}^{2}(T, \mathfrak{g})$ is a complicate object in general

An R-symmetric map of degree $q$

$$
\varphi: \mathfrak{g} \otimes^{\mathrm{R}} \ldots \otimes^{\mathrm{R}} \mathfrak{g} \rightarrow B
$$

which intertwining the representation $\operatorname{ad}_{\mathrm{R}} \otimes^{\mathrm{R}} \ldots \otimes^{\mathrm{R}} \operatorname{ad}_{\mathrm{R}}$ of $P$ on $\mathfrak{g} \otimes^{R} \ldots \otimes^{\mathrm{R}} \mathfrak{g}$ with the action of $P$ on $B \quad\left(\operatorname{ad}_{\mathrm{R}}\right.$ is the braided commutator $)$.
$\mathcal{S}_{\mathrm{R}}$ the braided anti-symmetrization.
Then

$$
\varphi_{\rho}=\mathcal{S}_{R} \circ f\left(\Omega \otimes^{R} \ldots \otimes^{R} \Omega\right)
$$

is a braided $B$-valued $2 q$-form on $T$.
One has:

$$
d \varphi_{\rho}=0
$$

For the cohomology classes:

$$
\begin{aligned}
{\left[\varphi_{\rho}\right] } & =\left[\varphi_{\rho^{\prime}}\right] \quad \rho, \rho^{\prime} \quad \text { two connections on the sequence } \\
\varphi_{\rho} & =\varphi_{\rho^{\prime}}+d(\ldots . .)
\end{aligned}
$$

Consider:
$\operatorname{Inv}{ }^{q}=\{$ all such $\varphi$ as before $\} \quad \operatorname{Inv}=\oplus_{q} \operatorname{Inv}^{q}$
$H_{C h}$ Chevalley cohomology of $(T, B)$
we get a linear map

$$
\text { cw : Inv } \rightarrow H_{C h} \quad \varphi \rightarrow\left[\varphi_{\rho}\right]
$$

When pulled back to $P$ :

$$
\pi^{*} \varphi_{\rho}=d(\text { Chern Simons })
$$

## Twisting

The constructions survive under a Drinfeld twists

Examples from $\theta$-deformations

$$
\begin{gathered}
F=e^{\pi i \theta\left(H_{1} \otimes H_{2}-H_{2} \otimes H_{1}\right)} \quad\left[H_{1}, H_{2}\right]=0 \\
\mathrm{R}_{\mathrm{F}}=\overline{\mathrm{F}}^{2}=e^{-2 \pi i \theta\left(H_{1} \otimes H_{2}-H_{2} \otimes H_{1}\right)}
\end{gathered}
$$

Jordanian twist . $\kappa$-Minkowski

$$
\begin{gathered}
\mathrm{F}=\exp \left(u \frac{\partial}{\partial u} \otimes \sigma\right) \quad \sigma=\ln \left(1+\frac{1}{\kappa} P_{0}\right) \\
P_{0}=i u \frac{\partial}{\partial x^{0}} \quad\left[u \frac{\partial}{\partial u}, P_{0}\right]=P_{0}
\end{gathered}
$$

In particular $\mathcal{O}\left(S_{\theta}^{4}\right)$
with generators $b_{\mu}, \mu=\left(\mu_{1}, \mu_{2}\right)=(0,0),( \pm 1,0),(0, \pm 1)$
the weights for the action of $H_{1}, H_{2}$.
Their commutation relations are

$$
b_{\mu} \bullet b_{\nu}=\lambda^{2 \mu \wedge \nu} b_{\nu} \bullet b_{\mu} \quad \lambda=e^{-\pi i \theta} .
$$

with sphere relation $\sum_{b_{\mu}} b_{\mu}^{*} \cdot \theta b_{\mu}=1$.
$\operatorname{Der}^{R_{F}}\left(\mathcal{O}\left(S_{\theta}^{4}\right)\right)$ is generated as an $\mathcal{O}\left(S_{\theta}^{4}\right)$-module by operators $\widetilde{H}_{\mu}$ defined on the algebra generators as

$$
\widetilde{H}_{\mu}\left(b_{\nu}\right):=\delta_{\mu^{*} \nu}-b_{\mu} \bullet b_{\nu}
$$

and extended to the whole algebra $\mathcal{O}\left(S_{\theta}^{4}\right)$ as braided derivations:

$$
\widetilde{H}_{\mu}\left(b_{\nu} \bullet_{\bullet} b_{\tau}\right)=\widetilde{H}_{\mu}\left(b_{\nu}\right) \bullet_{\bullet} b_{\tau}+\lambda^{2 \mu \wedge \nu} b_{\nu} \bullet_{\bullet} \widetilde{H}_{\mu}\left(b_{\tau}\right) .
$$

They verify

$$
\widetilde{H}_{\mu}\left(\sum_{\nu} b_{\nu}^{*} \bullet_{0} b_{\nu}\right)=0, \quad \sum_{\mu} b_{\mu}^{*} \bullet_{\bullet} \widetilde{H}_{\mu}=0
$$

In the classical limit $\theta=0$, the derivations $\widetilde{H}_{\mu}$ reduce to

$$
H_{\mu}=\partial_{\mu^{*}}-b_{\mu} \Delta, \quad \Delta=\sum_{\mu} b_{\mu} \partial_{\mu}
$$

the Liouville vector field.
The weights $\mu$ are those of the five dimensional representation of so(5).
The bracket in $\operatorname{Der}^{\mathrm{R}_{F}}\left(\mathcal{O}\left(S_{\theta}^{4}\right)\right)$ is the braided commutator

$$
\begin{aligned}
{\left[\widetilde{H}_{\mu}, \widetilde{H}_{\nu}\right]_{R_{\mathrm{F}}} } & :=\widetilde{H}_{\mu} \circ \widetilde{H}_{\nu}-\lambda^{2 \mu \wedge \nu} \widetilde{H}_{\nu} \circ \widetilde{H}_{\mu} \\
& =b_{\mu} \bullet \widetilde{H}_{\nu}-\lambda^{2 \mu \wedge \nu} b_{\nu} \bullet_{\bullet} \widetilde{H}_{\mu}
\end{aligned}
$$

The generators $\widetilde{H}_{\mu}$ can be expressed in terms of their commutators as

$$
\widetilde{H}_{\nu}=\sum_{\mu} b_{\mu}^{*} \bullet_{\bullet}\left[\widetilde{H}_{\mu}, \widetilde{H}_{\nu}\right]_{\mathrm{R}_{F}}
$$

Denote

$$
\widetilde{H}_{\mu, \nu}^{\pi}:=\left[\widetilde{H}_{\mu}, \widetilde{H}_{\nu}\right]_{\mathbb{R}_{\digamma}}=-\lambda^{2 \mu \wedge \nu} \widetilde{H}_{\nu, \mu}^{\pi}
$$

Their braided commutators close the braided Lie algebra $\operatorname{so}_{\theta}(5)$ :

$$
\left[\widetilde{H}_{\mu, \nu}^{\pi}, \widetilde{H}_{\tau, \sigma}^{\pi}\right]_{\mathrm{R}_{F}}=\delta_{\nu^{\bullet} \tau} \widetilde{H}_{\mu, \sigma}^{\pi}-\lambda^{2 \mu \wedge \nu} \delta_{\mu^{*} \tau}-\lambda^{2 \tau \wedge \sigma}\left(\delta_{\nu^{*} \sigma} \widetilde{H}_{\mu, \tau}^{\pi}-\lambda^{2 \mu \wedge \nu} \delta_{\sigma^{*} \mu} \widetilde{H}_{\nu, \tau}^{\pi}\right)
$$

The instanton $\mathcal{O}(S U(2))$ Hopf-Galois extension $\mathcal{O}\left(S_{\theta}^{4}\right) \subset \mathcal{O}\left(S_{\theta}^{7}\right)$.
A short exact sequence of braided Lie algebras

$$
0 \rightarrow \operatorname{aut}_{\mathcal{O}\left(S_{\theta}^{4}\right)}\left(\mathcal{O}\left(S_{\theta}^{7}\right)\right) \xrightarrow{\imath} \operatorname{Der}_{\mathcal{M}^{H}}\left(\mathcal{O}\left(S_{\theta}^{7}\right)\right) \xrightarrow{\pi} \operatorname{Der}\left(\mathcal{O}\left(S_{\theta}^{4}\right)\right) \rightarrow 0
$$

$\operatorname{Der}\left(\mathcal{O}\left(S_{\theta}^{4}\right)\right)$ generated as before by elements $\widetilde{H}_{\mu, \nu}^{\pi}$
$\operatorname{Der}_{\mathcal{M}^{H}}\left(\mathcal{O}\left(S_{\theta}^{7}\right)\right)$ generated by (explicit) derivations $\widetilde{H}_{\mu, \nu}$ realising a representation of $s_{\theta}(5)$ as derivations on $\mathcal{O}\left(S_{\theta}^{7}\right)$ and

$$
\pi\left(\widetilde{H}_{\mu, \nu}\right)=\widetilde{H}_{\mu, \nu}^{\pi} .
$$

$\operatorname{aut}_{\mathcal{O}\left(S_{\theta}^{4}\right)}\left(\mathcal{O}\left(S_{\theta}^{7}\right)\right)$ vertical and equivariant ( alternatively via a connection )
The horizontal lift: the $\mathcal{O}\left(S_{\theta}^{4}\right)$-module map $\rho: \operatorname{Der}\left(\mathcal{O}\left(S_{\theta}^{4}\right)\right) \rightarrow \operatorname{Der}_{\mathcal{M}^{H}}\left(\mathcal{O}\left(S_{\theta}^{7}\right)\right)$ defined on the generators $\widetilde{H}_{\nu}$ of $\operatorname{Der}^{R_{\mathrm{F}}}\left(\mathcal{O}\left(S_{\theta}^{4}\right)\right)$ as

$$
\rho\left(\widetilde{H}_{\nu}\right):=\sum_{\mu} b_{\mu}^{*} \bullet \widetilde{H}_{\mu, \nu}
$$

is a splitting of the sequence above .

The corresponding vertical projection is the $\mathcal{O}\left(S_{\theta}^{4}\right)$-module map
$\left.\Psi: \operatorname{Der}_{\mathcal{M}^{H}}\left(\mathcal{O}\left(S_{\theta}^{7}\right)\right)\right) \rightarrow \operatorname{aut}_{\mathcal{O}\left(S_{\theta}^{4}\right)}\left(\mathcal{O}\left(S_{\theta}^{7}\right)\right.$

$$
\Psi\left(\widetilde{H}_{\mu, \nu}\right):=\widetilde{H}_{\mu, \nu}-\rho\left(\widetilde{H}_{\mu, \nu}^{\pi}\right)=\widetilde{H}_{\mu, \nu}-\left(b_{\mu} \bullet \rho\left(\widetilde{H}_{\nu}\right)-\lambda^{2 \mu \wedge \nu} b_{\nu} \bullet \rho\left(\widetilde{H}_{\mu}\right)\right)
$$

These derivations generated the algebra aut ${ }_{\mathcal{O}\left(S_{\theta}^{4}\right)}\left(\mathcal{O}\left(S_{\theta}^{7}\right)\right)$.
The curvature

$$
\Omega(X, Y):=[\rho(X), \rho(Y)]_{R_{F}}-\rho\left([X, Y]_{R_{F}}\right)=\imath \circ \psi[\rho(X), \rho(Y)]_{\mathrm{R}_{F}}
$$

One finds

$$
\left[\rho\left(\widetilde{H}_{\mu}\right), \rho\left(\widetilde{H}_{\nu}\right)\right]_{\mathrm{R}_{\mathrm{F}}}=\widetilde{H}_{\mu, \nu}
$$

Then

$$
\Omega\left(\widetilde{H}_{\mu}, \widetilde{H}_{\nu}\right)=\widetilde{H}_{\mu, \nu}-\left(b_{\mu} \bullet \rho\left(\widetilde{H}_{\nu}\right)-\lambda^{2 \mu \wedge \nu} b_{\nu} \bullet \rho\left(\widetilde{H}_{\mu}\right)\right)=\imath \circ \Psi\left(\widetilde{H}_{\mu, \nu}\right) .
$$

There is also a connection 1-form; it is anti-selfdual.

An action of braided conformal transformations
$s o_{\theta}(5,1)$
yields noncommutative families of anti-selfdual connections

Galois objects
of a Hopf algebra $H$ ( noncommutative principal bundle over a point )
An $H$-Hopf-Galois extension $A$ of the ground field $\mathbb{C}$.

## Examples:

Group Hopf algebras $H=\mathbb{C}[G]$ : equivalence classes of $\mathbb{C}[G]$-Galois objects are in bijective correspondence with the cohomology group $H^{2}\left(G, \mathbb{C}^{\times}\right)$
$H^{2}\left(\mathbb{Z}^{r}, \mathbb{C}^{\times}\right)=\left(\mathbb{C}^{\times}\right)^{r(r-1) / 2}$ : infinitely many iso classes of $\mathbb{C}\left[\mathbb{Z}^{r}\right]$-Galois objects

Taft algebras: $q$ a primitive $N$-th root of unity; $T_{N}$, neither commutative nor cocommutative Hopf algebra; generators $x, g$ with relations:

$$
x^{N}=0, \quad g^{N}=1, \quad x g-q g x=0 .
$$

coproduct: $\quad \Delta(x):=1 \otimes x+x \otimes g, \quad \Delta(g):=g \otimes g$
counit: $\varepsilon(x):=0, \varepsilon(g):=1$, and antipode: $S(x):=-x g^{-1}, S(g):=g^{-1}$.

Summing up:

Worked out a gauge algebroid for a noncommutative principal bundle A suitable class of (infinitesimal ) gauge transformations

Infinite dimensional Hopf algebra ( of possibly braided derivations )
A Chern-Weil homomorphisms and characteristic classes
Chern-Simons terms
some natural structures but we are only at the beginning ...

Thanks

