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Background

A (commutative) Hopf Algebroid is somehow the dual of a groupoid

( like Hopf algebras vs groups )

Extension of scalars
( similarly to the passage from Hilbert space to Hilbert module ):

the ground field k ( the complex numbers C )
gets replaced by a (noncommutative) algebra B

so a Hopf algebra over a noncommutative base algebra

Not all structures survive:

(dual) source and target maps, (partial) coproduct, a counit

but in general there is no antipode or there are more than one

(dual) bisections make sense ( a version of gauge transformations )



Abstract

Try to work out a gauge algebroid for a noncommutative principal bundle

Try to get a suitable class of ( infinitesimal ) gauge transformations

some natural structures

braiding Lie algebras to get bigger classes

a sequenze of braided Lie algebras; its splitting as a connection

Weil algebra

Chern–Weil homomorphism and braided Lie algebra cohomology

upgrade it to Hopf algebra cyclic cohomology



The classical gauge groupoid

π : P →M a G-principal bundle over M

The diagonal action of G on P × P (u, v)g := (ug, vg);

[u, v] is the orbit of (u, v) and Ω = P ×G P the collection of orbits

Ω is a groupoid over M , — the gauge or Ehresmann groupoid of the bundle

Source and target projections”

s([u, v]) := π(v), t([u, v]) := π(u).

the object inclusion M → P ×G P :

m 7→ idm := [u, u], u ∈ π−1(m)

Partial multiplication [u, v′] · [v, w], defined when π(v′) = π(v) :

[u, v] · [v′, w] = [u,wg], v = v′g

with inverse [u, v]−1 = [v, u].



A bisection: a map σ : M → Ω, which is right-inverse to the source projection,
s ◦ σ = idM , and such that t ◦ σ : M →M is a diffeo of M

The collection of bisections, B(Ω), form a group

σ1 ∗ σ2(m) := σ1
(
(t ◦ σ2)(m)

)
σ2(m), for m ∈M.

The identity is the object inclusion m 7→ idm, with inverse

σ−1(m) =
(
σ
(
(t ◦ σ)−1(m)

))−1
;

(t ◦ σ)−1 as a diffeomorphism of M ; the second inversion is the one in Ω.

The subset BP/G(Ω) of vertical bisections, the ones that are right-inverse to
the target projection as well, t ◦ σ = idM , form a subgroup of B(Ω).

There is a group isomorphism between B(Ω) and the group of principal (G-
equivariant) bundle automorphisms of the principal bundle,

AutG(P ) := {ϕ : P → P ; ϕ(pg) = ϕ(p)g} ,
while BP/G(Ω) is isomorphic to the subgroup of gauge transformations, prin-
cipal bundle automorphisms which are vertical,

AutP/G(P ) := {ϕ : P → P ; ϕ(pg) = ϕ(p)g , π(ϕ(p)) = π(p)}.



The classical sequences Atiyah 1957

π : P →M a G-principal bundle over M

at level of groups

1→ AutP/G(P )→ AutG(P )→ Diff(M)→ 1

at level of derivations

0→ g→ X (P )G → X (M)→ 0

g = X (P )verG : vertical and invariant; infinitesimal gauge transformation

a splitting of this sequence is a way to give a connection

( horizontal lift or a vertical projection )

an obstruction: H1(M, g⊗Ω1(M))



Noncommutative principal bundles

• H a Hopf algebra

• A a right H-comodule algebra with coaction δA : A→ A⊗H; δ(a) = a(0)⊗a(1)

⇒ the subalgebra of coinvariant elements

B := AcoH =
{
b ∈ A | δA(b) = b⊗ 1H

}
The extension B ⊆ A is H-Hopf–Galois if the canonical Galois map

χ : A⊗B A −→ A⊗H, a′ ⊗B a 7→ a′a(0) ⊗ a(1)

is an isomorphism

χ is left A-linear, its inverse is determined by the restriction τ := χ−1
|1A⊗H

τ = χ−1
|1A⊗H

: H → A⊗B A , h 7→ τ(h) = h<1> ⊗B h<2> .

the translation map; thus by definition:

h<1>h<2>
(0) ⊗ h<2>

(1) = 1A ⊗ h



Everything algebraic

G be a semisimple affine algebraic group

π : P → P/G be a principal G-bundle with P and P/G affine varieties

H = O(G) the dual coordinate Hopf algebra

A = O(P ), B = O(P/G) the dual coordinate algebras

B ⊆ A be the subalgebra of functions constant on the fibers.

Then B = AcoH and O(P ×P/G P ) ' A⊗B A

Bijectivity of P × G → P ×P/G P , (p, g) 7→ (p, pg), characterizing principal
bundles, corresponds to the bijectivity of the canonical map χ : A⊗BA→ A⊗H

thus B = AcoH ⊆ A is a Hopf–Galois extension

An important notion is that of the classical translation map

t : P ×P/G P → G, (p, q) 7→ t(p, q) where q = p t(p, q)

the dual to τ before



Gauge transformations

Classical

The group GP of gauge transformations of a principal G-bundle π : P → P/G
is the group ( for point-wise product ) of G-equivariant maps

GP := {σ : P → G; σ(pg) = g−1σ(p)g}

Equivalently, is the subgroup ( for map composition ) of principal bundle
automorphisms which are vertical (project to the identity on the base space):

AutP/G(P ) := {ϕ : P → P ; ϕ(pg) = ϕ(p)g, π(ϕ(p)) = π(p)},



These definitions can be dualised for algebras rather than spaces.

For A = O(P ), B = O(P/G), H = O(G), the gauge group GP of G-equivariant
maps corresponds to H-equivariant maps that are also algebra maps

GA := {f : H → A; δA ◦ f = (f ⊗ id) ◦Ad , f algebra map} .
The group structure is the convolution product.

Similarly, the vertical automorphisms description leads to H-equivariant maps

AutB A = {F : A→ A; δA ◦ F = (F⊗ id) ◦ δA , F|B = id : B → B , F algebra map} .



The noncommutative case

Let B = AcoH ⊆ A be a faithfully flat Hopf–Galois extension

The collection AutH(A) of unital algebra maps of A into itself, which are
H-equivariant,

δA ◦ F = (F⊗ id) ◦ δA F (a)(0) ⊗ F (a)(1) = F (a(0))⊗ a(1)

and restrict to the identity on the subalgebra B, is a group by map composition

with inverse operation

F−1(a) = a(0)F (a(1)
<1>) a(1)

<2>

H.P. Schneider: vertical H-equivariant algebra maps are invertible



Bialgebroids

B an algebra

B-ring : a triple (A,µ, η) M. Takeuchi, G. Böhm ....

A a B-bimodule with B-bimodule maps µ : A⊗B A→ A and η : B → A

associativity and unit conditions:

µ ◦ (µ⊗B idA) = µ ◦ (idA ⊗B µ), µ ◦ (η ⊗B idA) = idA = µ ◦ (idA ⊗B η).

Dually, B-coring : a triple (C,∆, ε)

C is a B-bimodule with B-bimodule maps ∆ : C → C ⊗B C and ε : C → B

coassociativity and counit conditions:

(∆⊗B idC) ◦∆ = (idC ⊗B ∆) ◦∆, (ε⊗B idC) ◦∆ = idC = (idC ⊗B ε) ◦∆



A left B-bialgebroid C :

a (B ⊗Bop)-ring and a B-coring structure on C with compatibility conditions

There are source and target maps (with commuting ranges)

s := η( · ⊗B 1B) : B → C and t := η(1B ⊗B · ) : Bop → C

The compatibility conditions for a left B-bialgebroid C

(i) The bimodule structures in the B-coring (C,∆, ε) and those of the B⊗Bop-
ring (C, s, t) are related as

b . a / b̃ := s(b)t(̃b)a for b, b̃ ∈ B, a ∈ C.

(ii) The coproduct ∆ corestricts to an algebra map from C to

C ×B C :=
{ ∑

j
aj ⊗B ãj |

∑
j
ajt(b)⊗B ãj =

∑
j
aj ⊗B ãjs(b), ∀ b ∈ B

}
,

(iii) The counit ε : C → B satisfies the properties,

(1) ε(1C) = 1B,

(2) ε(s(b)a) = bε(a),

(3) ε(as(ε(ã))) = ε(aã) = ε(at(ε(ã))), for all b ∈ B and a, ã ∈ C.



A Hopf algebroid with invertible antipode G. Böhm

For a left bialgebroid (C,∆, ε, s, t) over the algebra B, an invertible antipode
S : C → C in an algebra anti-homomorphism with inverse S−1 : C → C s.t.

S ◦ t = s

and compatibility conditions with the coproduct:

(Sh(1))(1′)h(2) ⊗B S(h(1))(2′) = 1C ⊗B Sh

(S−1h(2))(1′) ⊗B (S−1h(2))(2′)h(1) = S−1h⊗B 1C

These then imply S(h(1))h(2) = t ◦ ε ◦ Sh.

The above similar to a Hopf algebra with an algebra B as the ground field.

source of difficulties/interest : there is no unique antipode in general



A weaker condition P. Schauenburg

A bialgebroid C is a Hopf algebroid if the map

λ : C ⊗Bop C → C ⊗B C, λ(p⊗Bop q) = p(1) ⊗B p(2)q

is invertible

⊗Bop pt(b)⊗Bop q = p⊗Bop t(b)q ⊗B t(b)p⊗B q = p⊗B s(b)q

For B = k, this reduces to the map

λ : C ⊗ C → C ⊗ C, p⊗ q 7→ p(1) ⊗ p(2)q

which for a usual Hopf algebra with an antipode has inverse

p⊗ q 7→ p(1) ⊗ S(p(2))q

Also here, if there is an invertible antipode S as before Böhm one constructs
an inverse for the map λ ; for X,Y ∈ C,

λ−1(X ⊗B Y ) = S−1(S(X)(2))⊗Bop S(X)(1)Y

No claim that S here is unique



The noncommutative gauge bialgebroid aka Ehresmann–Schauenburg

B = AcoH ⊆ A be a Hopf–Galois extension

right coaction : δ(a) = a(0) ⊗ a(1)

translation map : τ(h) = h<1> ⊗B h<2>

The B-bimodule C(A,H) of coinvariant elements for the diagonal coaction,

(A⊗A)coH = {a⊗ ã ∈ A⊗A ; a(0) ⊗ ã(0) ⊗ a(1)ã(1) = a⊗ ã⊗ 1H}

is a B-coring with coproduct and counit:

∆(a⊗ ã) = a(0) ⊗ τ(a(1))⊗ ã = a(0) ⊗ a(1)
<1> ⊗B a(1)

<2> ⊗ ã,

ε(a⊗ ã) = aã.

One see C(A,H) is a subalgebra of A⊗Aop and it is indeed a (left) B-bialgebroid

Product (x⊗ x̃) •C(A,H) (y ⊗ ỹ) = xy ⊗ ỹx̃

Target and source maps t(b) = 1A ⊗ b and s(b) = b⊗ 1A



Han, L. ; Han Majid - 2022

The Ehresmann–Schauenburg bialgebroid C(A,H) of a Hopf–Galois extension
is a Hopf algebroid :

If the Hopf algebra H is coquasitriangular with R matrix (a convolution in-
vertible map) R : H ⊗H → k ( + conditions),

there is an antipode: the inverse of the braiding induced by R:

Ψ(a⊗ ã) = a(0) ⊗ ã(0) ⊗R(a(1) ⊗ ã(1))

this is an invertible H-comodule map with inverse

Ψ−1(a⊗ ã) = a(0) ⊗ ã(0) ⊗R−1(a(1) ⊗ ã(1))

both map restrict to the invariant subspace C(A,H).

Then S = Ψ−1 obeys all properties of an antipode for C(A,H).



The bialgebroid C(A,H) of a Hopf–Galois extension as a quantization (of the
dualization) of the classical gauge groupoid principal bundle

Its bisections correspond to gauge transformations

C(A,H) the gauge bialgebroid of a Hopf–Galois extension B = AcoH ⊆ A

A bisection is a B-bilinear unital left character on the B-ring (C(A,H), s).

The collection B(C(A,H)) of bisections of the bialgebroid C(A,H) is a group
with convolution product :

σ1 ∗ σ2(x⊗ x̃) := σ1((x⊗ x̃)(1))σ2((x⊗ x̃)(2)) = σ1(x(0) ⊗ x(1)
<1>)σ2(x(1)

<2> ⊗ x̃)

using the B-coring coproduct ∆(x⊗ x̃) = (x⊗ x̃)(1) ⊗B (x⊗ x̃)(2)



A group isomorphism

α : AutH(A)→ B(C(A,H))

between gauge transformations and bisections:

B(C(A,H)) 3 σ 7→ Fσ(a) := σ(a(0) ⊗ a(1)
<1>) a(1)

<2>, Fσ ∈ AutH(A)

F ∈ AutH(A) 3 F 7→ σF(a⊗ ã) := F (a)ã, σF ∈ B(C(A,H))

Bisection can be given for any bialgebroid

For the general case one would need additional requirements so to get a
proper composition law for bisections



Explicit examples

the monopole bundles over the quantum S2
q

a not faithfully flat example from SL(2)

the SU(2) - bundle S7
θ → S4

θ

the SOθ(2n) bundle SOθ(2n+ 1)→ S2n
θ

some example from q-geometry

change from automorphisms to derivations
( infinitesimal gauge transformations )

Lie algebras of suitable ‘bisections’

braided versions of them

Atiyah sequences of braided Lie algebras of derivations



Braiding then

K a Hopf algebra

K-equivariant H-Hopf–Galois extension B ⊆ AH:

A carries a left action B : K ⊗A→ A of K, compatible with the H-coaction:

(k B a)(0) ⊗ (k B a)(1) = k B (a(0) ⊗ a(1)) .

Recall: K is quasitriangular if there exists an invertible element R ∈ K ⊗ K
with respect to which the coproduct ∆ of K is quasi-cocommutative

∆cop(k) = R∆(k)R ∆cop := τ ◦∆

and R ∈ K ⊗K the inverse of R, RR = RR = 1⊗ 1.

R is required to satisfy ( these allow for a good representation theory ) ,

(∆⊗ id)R = R13R23 and (id⊗∆)R = R13R12.

The Hopf algebra K is triangular when R = R21 = τ(R), τ the flip.



We further assume the Hopf algebra K to be triangular.

This allows for the study of braided Lie algebras.

A braided Lie algebra associated with a triangular Hopf algebra (K,R), is a
K-module g with a bilinear map

[ , ] : g⊗ g→ g

that satisfies the following conditions.

(i) K-equivariance: for ∆(k) = k(1) ⊗ k(2) the coproduct of K,

k B [u, v] = [k(1) B u, k(2) B v]

(ii) braided antisymmetry:

[u, v] = −[Rα B v,Rα B u],

(iii) braided Jacobi identity:

[u, [v, w]] = [[u, v], w] + [Rα B v, [Rα B u,w]]



Infinitesimal gauge transformations

B = AcoH ⊆ A a K-equivariant Hopf–Galois extension, for (K,R) triangular.

Inside the braided Lie algebra Der(A) consider the subspace of braided deriva-
tions that are H-equivariant

DerRMH(A) =
{
u ∈ Hom(A,A) | δ(u(a)) = u(a(0))⊗ a(1),

u(aa′) = u(a)a′ + (Rα B a)(Rα B u)(a′) , for all a, a′ ∈ A
}

and then those derivations that are vertical,

autRB(A) := {u ∈ DerRMH(A) | u(b) = 0, for all b ∈ B} .

Elements of autRB(A) are regarded as infinitesimal gauge transformations

of the K-equivariant Hopf–Galois extension B = AcoH ⊆ A.



Atiyah sequences and their splittings

A K-equivariant Hopf–Galois extension B = AcoH ⊆ A

The braided Lie algebra of vertical equivariant derivations

autRB(A) := {u ∈ DerRMH(A) | u(b) = 0, b ∈ B}
is a braided Lie subalgebra of equivariant derivations

DerRMH(A) = {u ∈ Der(A) | δ ◦ u = (u⊗ id) ◦ δ} .

Each derivation in DerRMH(A), being H-equivariant, restricts to a derivation
on the subalgebra of coinvariant elements B = AcoH

A sequence of braided Lie algebras autRB(A)→ DerRMH(A)→ DerR(B)

When exact,

0→ autRB(A)→ DerRMH(A)→ DerR(B)→ 0

is a version of the Atiyah sequence of a (commutative) principal fibre bundle.

An H-equivariant splitting of the sequence is a connection on the bundle



The general construction

(K,R) a triangular Hopf algebra ; an exact sequence of K-braided Lie algebras

0→ g
ı→ P

π→ T → 0

For B an algebra; take (B, T ) a braided Lie–Rinehart pair:

T is a B-module with a braided Lie algebra morphism T → DerR(B);

B is a T -module and T acts as braided derivations of B,

X(bb′) = X(b)b′ + (Rα B b)(Rα B X)(b′) , b, b′ ∈ B, X ∈ T ,
and

[X, bX ′]R = X(b)X ′ + (Rα B b)[(Rα B X), X ′]R , b ∈ B, X,X ′ ∈ T.

A connection on the sequence is a splitting: a B-module map,

ρ : T → P, π ◦ ρ = idT

the ‘vertical projection’, is the B-module map ωρ : P → g,

ωρ(Y ) = Y − ρ(Y π) , Y ∈ P



The extend to which ρ or ωρ fail to be braided Lie algebra morphisms is
measured by the (basic) curvature

Ω(X,X ′) := ρ([X,X ′]R)− [ρ(X), ρ(X ′)]R , X,X ′ ∈ T.

Ω is a g-valued braided two-form on T .

The curvature can also be given as a basic g-valued braided two-form on P
(spatial curvature):

Ωωρ(Y, Y
′) := Ω(Y π, Y ′

π), Y, Y ′ ∈ P.

Ωωρ(Y, Y
′) = [Y, ωρ(Y

′)]R + [ωρ(Y ), Y ′]R − ωρ([Y, Y ′]R)− [ωρ(Y ), ωρ(Y
′)]R.

This expression can be read as a structure equation:

dωρ = Ωωρ + [ωρ, ωρ]R .

Here

dζ(Y, Y ′) := [Y, ζ(Y ′)]R + [ζ(Y ), Y ′]R − ζ([Y, Y ′]R), Y, Y ′ ∈ P.

(generalised to higher forms)



There is a Bianchi identity:

dΩωρ + [Ωωρ, ωρ]R = 0 .

when the connection is equivariant: k B ωρ = ε(k)ωρ

this is true ‘the way it is written

in general one needs a suitable interpretation of the curvature as a derivation
of the braided Lie algebra g and of the above expression



The space of connections C(T, g):

an affine space modelled on B-module maps η : T → g

with ρ : T → P a connection and η : T → g, the sum ρ′ = ρ+η is a connection.

An action of the braided Lie algebra P : P × C(T, g) −→ C(T, g)

(Y, ρ)→ ρ+ δY ρ, (δY ρ)(X) := [Y, ρ(X)]R − ρ([Y π, X]R,

(δY ρ)(X) ∈ g or δY ρ : T → g.

For vertical elements V ∈ g, this is an infinitesimal gauge transformations:

(δV ρ)(X) = [V, ρ(X)]R ,

thus g is the braided Lie algebra of such transformations.

The curvature of the transformed connection ρ′ = ρ+ δY ρ:

Ω′ = Ω + δY Ω− [δY ρ, δY ρ]R

for V ∈ g an infinitesimal gauge transformation this reduces to

(δV Ω)(X,X ′) = [V,Ω(X,X ′)]R.



Calabi pseudo-cohomology

Two sequences are equivalent if there is an isomorphism P → P ′ with com-
mutative diagrams

0→ g→P→T → 0

↓
0→ g→P ′→T → 0

Classified by H2(T, g), the Calabi pseudo-cohomology of the Lie algebra T with
values in g. If A is abelian H2(T, g) is the CE cohomology group H2(T, g).

A pseudo-cochain: a pair (φ,Φ),

φ : T → Der(g), Φ a g-valued skew map on T × T , such that

φ(X)φ(X ′)− φ(X ′)φ(X) = φ([X,X ′]) + adΦ(X,X ′) X,X ′ ∈ T.

Such a pair is a 2-pseudo-cocycle if δφ(Φ) = 0, where

δφ(Φ)(X,X ′, X ′′) = φ(X) B Φ(X ′, X ′′)−Φ([X,X ′, X ′′) + c.p.



Two such pairs (φ,Φ), (φ′,Φ′) are equivalent if there is a map η : T → g, s.t.

φ′(X) = φ(X) + +adη(X)

Φ′(X,X ′) = Φ(X,X ′) + (δφη)(X,X ′) + [η(X), η(X ′)].

Equivalent pseudo-cochains leads to equivalent pseudo-cocycles and the space
of equivalent classes of 2-pseudo-cocycles is denoted H2(T, g), the order 2
Calabi pseudo-cohomology of the Lie algebra T with values in g.

Given a splitting of the sequence, that is given a connection ρ : T → P , one
construct a pseudo-cocycle (φ,Φ) by

φ(X) B V = [ρ(X), V ] X ∈ T, V ∈ g

Φ(X,X ′) = Ω(X,X ′) = ρ([X,X ′])− [ρ(X), ρ(X ′)] , X,X ′ ∈ T.

Jacopi identity implies it is a pseudo-cocycle:

δφ(Φ) = 0

this is the Bianchi identity.



Given two connections ρ and ρ′ = ρ + η, the corresponding pseudo-cocycles
(φ′,Φ′) and (φ,Φ) are equivalent, they belong to the same class in H2(T, g).

Pseudo-cocycles associated with equivalent extensions determine the same
class in H2(T, g).

Conversely, given a pseudo-cocycle one construct a sequence of Lie algebras
0→ g→P→T → 0

cohomologous pseudo-cocycle give equivalent sequences.

The space of equivalent classes of extensions of T by g is in a bijective
correspondence with H2(T, g).

H2(T, g) is a complicate object in general



An R-symmetric map of degree q

ϕ : g⊗R . . .⊗R g→ B

which intertwining the representation adR⊗R . . .⊗R adR of P on g⊗R . . .⊗R g with
the action of P on B ( adR is the braided commutator ).

SR the braided anti-symmetrization.

Then

ϕρ = SR ◦ f(Ω⊗R . . .⊗R Ω)

is a braided B-valued 2q-form on T .

One has:

dϕρ = 0



For the cohomology classes:

[ϕρ] = [ϕρ′] ρ, ρ′ two connections on the sequence

ϕρ = ϕρ′ + d(.....)

Consider:

Invq = { all such ϕ as before } Inv = ⊕qInvq

HCh Chevalley cohomology of (T,B)

we get a linear map

cw : Inv→ HCh ϕ→ [ϕρ]

When pulled back to P :

π∗ϕρ = d( Chern Simons )



Twisting

The constructions survive under a Drinfeld twists

Examples from θ-deformations

F = eπiθ(H1⊗H2−H2⊗H1) [H1, H2] = 0

RF = F
2

= e−2πiθ(H1⊗H2−H2⊗H1)

Jordanian twist . κ-Minkowski

F = exp
(
u ∂
∂u
⊗ σ

)
σ = ln

(
1 +

1

κ
P0

)

P0 = iu ∂
∂x0 [u ∂

∂u
, P0] = P0



In particular O(S4
θ )

with generators bµ, µ = (µ1, µ2) = (0,0), (±1,0), (0,±1)

the weights for the action of H1, H2.

Their commutation relations are

bµ•θbν = λ2µ∧ν bν•θbµ λ = e−πiθ .

with sphere relation
∑

bµ
b∗µ ·θ bµ = 1.

DerRF(O(S4
θ )) is generated as an O(S4

θ )-module by operators H̃µ

defined on the algebra generators as

H̃µ(bν) := δµ∗ν − bµ•θbν

and extended to the whole algebra O(S4
θ ) as braided derivations:

H̃µ(bν•θbτ) = H̃µ(bν)•θbτ + λ2µ∧νbν•θH̃µ(bτ).

They verify

H̃µ(
∑
ν

b∗ν•θbν) = 0 ,
∑

µ
b∗µ•θH̃µ = 0



In the classical limit θ = 0, the derivations H̃µ reduce to

Hµ = ∂µ∗ − bµ∆, ∆ =
∑
µ

bµ∂µ

the Liouville vector field.
The weights µ are those of the five dimensional representation of so(5).

The bracket in DerRF(O(S4
θ )) is the braided commutator

[H̃µ, H̃ν]RF
:= H̃µ ◦ H̃ν − λ2µ∧νH̃ν ◦ H̃µ

= bµ•θH̃ν − λ2µ∧νbν•θH̃µ

The generators H̃µ can be expressed in terms of their commutators as

H̃ν =
∑
µ

b∗µ•θ[H̃µ, H̃ν]RF

Denote H̃π
µ,ν := [H̃µ, H̃ν]RF

= −λ2µ∧νH̃π
ν,µ

Their braided commutators close the braided Lie algebra soθ(5) :

[H̃π
µ,ν, H̃

π
τ,σ]RF

= δν∗τH̃
π
µ,σ − λ2µ∧νδµ∗τ − λ2τ∧σ(δν∗σH̃

π
µ,τ − λ2µ∧νδσ∗µH̃

π
ν,τ)



The instanton O(SU(2)) Hopf–Galois extension O(S4
θ ) ⊂ O(S7

θ ).

A short exact sequence of braided Lie algebras

0→ autO(S4
θ )(O(S7

θ ))
ı→ DerMH(O(S7

θ ))
π→ Der(O(S4

θ ))→ 0

Der(O(S4
θ )) generated as before by elements H̃π

µ,ν

DerMH(O(S7
θ )) generated by (explicit) derivations H̃µ,ν realising a representa-

tion of soθ(5) as derivations on O(S7
θ ) and

π(H̃µ,ν) = H̃π
µ,ν.

autO(S4
θ )(O(S7

θ )) vertical and equivariant ( alternatively via a connection )

The horizontal lift: the O(S4
θ )-module map ρ : Der(O(S4

θ )) → DerMH(O(S7
θ ))

defined on the generators H̃ν of DerRF(O(S4
θ )) as

ρ(H̃ν) :=
∑
µ

b∗µ•θH̃µ,ν

is a splitting of the sequence above .



The corresponding vertical projection is the O(S4
θ )-module map

Ψ : DerMH(O(S7
θ )))→ autO(S4

θ )(O(S7
θ )

Ψ(H̃µ,ν) := H̃µ,ν − ρ(H̃π
µ,ν) = H̃µ,ν −

(
bµ•θρ(H̃ν)− λ2µ∧ν bν•θρ(H̃µ)

)
These derivations generated the algebra autO(S4

θ )(O(S7
θ )).

The curvature

Ω(X,Y ) := [ρ(X), ρ(Y )]RF
− ρ([X,Y ]RF

) = ı ◦Ψ[ρ(X), ρ(Y )]RF

One finds [ρ(H̃µ), ρ(H̃ν)]RF
= H̃µ,ν

Then

Ω(H̃µ, H̃ν) = H̃µ,ν −
(
bµ•θρ(H̃ν)− λ2µ∧ν bν•θρ(H̃µ)

)
= ı ◦Ψ(H̃µ,ν).

There is also a connection 1-form; it is anti-selfdual.



An action of braided conformal transformations

soθ(5,1)

yields noncommutative families of anti-selfdual connections



Galois objects

of a Hopf algebra H ( noncommutative principal bundle over a point )

An H-Hopf–Galois extension A of the ground field C.

Examples:

Group Hopf algebras H = C[G] : equivalence classes of C[G]-Galois objects
are in bijective correspondence with the cohomology group H2(G,C×)

H2(Zr,C×) = (C×)r(r−1)/2: infinitely many iso classes of C[Zr]-Galois objects

Taft algebras : q a primitive N-th root of unity; TN , neither commutative nor
cocommutative Hopf algebra; generators x, g with relations:

xN = 0 , gN = 1 , xg − q gx = 0 .

coproduct: ∆(x) := 1⊗ x+ x⊗ g, ∆(g) := g ⊗ g

counit: ε(x) := 0, ε(g) := 1, and antipode: S(x) := −xg−1, S(g) := g−1.



Summing up:

Worked out a gauge algebroid for a noncommutative principal bundle

A suitable class of ( infinitesimal ) gauge transformations

Infinite dimensional Hopf algebra ( of possibly braided derivations )

A Chern-Weil homomorphisms and characteristic classes

Chern-Simons terms

some natural structures but we are only at the beginning ...



Thanks


