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Background
A (commutative) Hopf Algebroid is somehow the dual of a groupoid

( like Hopf algebras vs groups )

Extension of scalars
( similarly to the passage from Hilbert space to Hilbert module ):

the ground field k¥ ( the complex numbers C )
gets replaced by a (noncommutative) algebra B

so a Hopf algebra over a noncommutative base algebra

Not all structures survive:
(dual) source and target maps, (partial) coproduct, a counit

but in general there is no antipode or there are more than one

(dual) bisections make sense ( a version of gauge transformations )



Abstract
Try to work out a gauge algebroid for a noncommutative principal bundle

Try to get a suitable class of ( infinitesimal ) gauge transformations
some natural structures

braiding Lie algebras to get bigger classes

a sequenze of braided Lie algebras; its splitting as a connection

Weil algebra
Chern—Weil homomorphism and braided Lie algebra cohomology

upgrade it to Hopf algebra cyclic cohomology



The classical gauge groupoid

w . P — M a G-principal bundle over M

The diagonal action of G on P x P (u,v)g := (ug,vg);
[u,v] is the orbit of (u,v) and Q2 = P x¢ P the collection of orbits

€2 is a groupoid over M, — the gauge or Ehresmann groupoid of the bundle

Source and target projections”
s([u,v]) 1= 7(v), t([u,v]) = 7 (u).

the object inclusion M — P xqg P:

m — idy, = [u, u], uw € w1 (m)

Partial multiplication [u,v'] - [v,w], defined when #«(v") = w(v) :

[’U,, U] ) [Ula ’U)] — [u7 ’LUg], v = U,g

with inverse [u,v]™! = [v, u].



A bisection: a map o : M — €2, which is right-inverse to the source projection,
soo = idys, and such that tooc : M — M is a diffeo of M

The collection of bisections, B(£2), form a group
o1 *xo2(m) := 01((75 o 02)(m))02(m), for m e M.
The identity is the object inclusion m — id,,, with inverse

ot (m) = (o((to o) (m)))

(too)~ ! as a diffeomorphism of M; the second inversion is the one in Q.

The subset Bp,(€2) of vertical bisections, the ones that are right-inverse to
the target projection as well, t oo = id);, form a subgroup of B(£2).

There is a group isomorphism between B(2) and the group of principal (G-
equivariant) bundle automorphisms of the principal bundle,

Autg(P) :={p: P — P; o(pg) = ¢(p)g},

while BP/G(Q) is isomorphic to the subgroup of gauge transformations, prin-
cipal bundle automorphisms which are vertical,

Autp/a(P) :={p: P — P; v(pg) = ¢(p)g, m(p(p)) = m(p)}.



The classical sequences Atiyah 1957

7w P — M a G-principal bundle over M

at level of groups

1 — Autp/(P) — Autg(P) — DIiff(M) — 1

at level of derivations

0O—>g—>X(P)g—>X(M)—0
g = X(P)g" : vertical and invariant; infinitesimal gauge transformation
a splitting of this sequence is a way to give a connection

( horizontal lift or a vertical projection )

an obstruction: H'(M,g® Q1 (M))



Noncommutative principal bundles
e H a Hopf algebra
e A aright H-comodule algebra with coaction 64 : A - AQH; §(a) = ay,®a.

= the subalgebra of coinvariant elements
B:=A"={bec A|s'(b) =bx 1y}

The extension B C A is H-Hopf—Galois if the canonical Galois map
X AQpA—AQH, dQ®pa— da,® agy

IS an isomorphism
x Is left A-linear, its inverse is determined by the restriction 7 := X|_11®H

T=x,. H>A®pA, h—1(h)=h"@ph™.

the translation map; thus by definition:

h<1>h<2>(o) ® h<2>(1) — 1A ® h



Everything algebraic

G be a semisimple affine algebraic group

w . P — P/G be a principal G-bundle with P and P/G affine varieties
H = O(G) the dual coordinate Hopf algebra

A= 0O(P), B=0O(P/G) the dual coordinate algebras

B C A be the subalgebra of functions constant on the fibers.
Then B = A“" and O(P xp/c P) ~ A®p A

Bijectivity of P x G — P Xp/;g P, (p,g9) — (p,pg), characterizing principal
bundles, corresponds to the bijectivity of the canonical map x : AQpA - AQH

thus B = A C A is a Hopf—Galois extension

An important notion is that of the classical translation map

t:PxpgP—G, (pq)—t(p,q) where g =pt(p,q)

the dual to T before



Gauge transformations
Classical

The group Gp of gauge transformations of a principal G-bundle = : P — P/G
is the group ( for point-wise product ) of G-equivariant maps

Gp:={o:P—G; o(pg) =g ‘o(p)g}

Equivalently, is the subgroup ( for map composition ) of principal bundle
automorphisms which are vertical (project to the identity on the base space):

Autp,c(P) :={¢p: P = P; p(pg) = ¢(p)g, 7(e(p)) = n(p)},



These definitions can be dualised for algebras rather than spaces.

For A= O(P), B=0O(P/G), H= O(G), the gauge group Gp of G-equivariant
maps corresponds to H-equivariant maps that are also algebra maps

Ga ={f: H— A; 6"of =(f®id) o Ad, f algebra map} .
The group structure is the convolution product.

Similarly, the vertical automorphisms description leads to H-equivariant maps

Autp A={F: A— A; 6'oF=(F®id)odé*, Flg=id: B — B, F algebra map} .



The noncommutative case

Let B = A" C A be a faithfully flat Hopf—Galois extension

The collection Autyg(A) of unital algebra maps of A into itself, which are
H-equivariant,

Ao F = (F®id) o o4 F(a)o® F(a)a = F(aw) ® ag,

and restrict to the identity on the subalgebra B, is a group by map composition

with inverse operation

F_l(a) - a(O)F(a(1)<l>) auy™”

H.P. Schneider: vertical H-equivariant algebra maps are invertible



Bialgebroids

B an algebra
B-ring : a triple (A, u,n) M. Takeuchi, G. Bohm ....
A a B-bimodule with B-bimodule maps u: AQpA—Aandn: B — A

associativity and unit conditions:

po(n®pida) =po(ida®ppu), po(n®pida) =ida = po (ida®pn).

Dually, B-coring : a triple (C,A,¢)
C is a B-bimodule with B-bimodule maps A :C —-C®pC and e:C — B

coassociativity and counit conditions:

(AQ®pidc)o A= (ildc®pA)oA, (e®pidc)oA =idc=(ildc®pe)oA



A left B-bialgebroid C :

a (B ® B°P)-ring and a B-coring structure on C with compatibility conditions

There are source and target maps (with commuting ranges)
s:=n(-®plg): B—-C and t:=n(lp®p -):B? —>_C

The compatibility conditions for a left B-bialgebroid C

(i) The bimodule structures in the B-coring (C, A, <) and those of the BR B°P-
ring (C,s,t) are related as

b>a<b:= s(b)t(b)a for b,b € B, a € C.
(ii) The coproduct A corestricts to an algebra map from C to

CxpC :={ Zjaj ®pd; | Zjajt(b) ®p d; = Zjaj ®p ajs(b), Vbe B }

(iii) The counit ¢ : C — B satisfies the properties,
(1) e(1c) = 13,

(2) e(s(b)a) = be(a),
(3) e(as(e(a))) = e(aa) = e(at(e(a))), for all b€ B and a,a € C.



A Hopf algebroid with invertible antipode G. Bohm

For a left bialgebroid (C, A,e,s,t) over the algebra B, an invertible antipode
S :C — C in an algebra anti-homomorphism with inverse S—1:C — C s.t.

Sot=s

and compatibility conditions with the coproduct:

(Sh(n)(l’)h(z) XB S(hm)(z’) = 1lc ®pB Sh

(S_lh@))(l’) XB (S_lh(2))(2’)h<1) — S_lh XB 1C

These then imply S(hy) hy, =toeo Sh.

The above similar to a Hopf algebra with an algebra B as the ground field.

source of difficulties/interest : there is no unique antipode in general



A weaker condition P. Schauenburg
A bialgebroid C is a Hopf algebroid if the map

A:C®psC—CRpC, AP ®pr q) = poy @B Peq
iS invertible

Rp»  pt(b) ®pr ¢ = p @pa t(b)q ®p tb)p®pq=pRps(b)q

For B = k, this reduces to the map

ACRC—-CRC, PR qG— pPuy & Px»nq
which for a usual Hopf algebra with an antipode has inverse

PR g poy ®S(Pe)q

Also here, if there is an invertible antipode S as before Bohm one constructs
an inverse for the map X\ ; for X,Y € C,

A_I(X ®pY) = S_l(S(X)(2>) ®pr S(X)wY

No claim that S here is unique



The noncommutative gauge bialgebroid aka Ehresmann—Schauenburg
B = A“H C A be a Hopf—Galois extension
right coaction : §(a) = an ® a,

translation map : 7(h) = h*> Qg h*

The B-bimodule C(A, H) of coinvariant elements for the diagonal coaction,

(AQA)H ={a®RaCAQRA; ap®dpaniy, =aQaQ 1y}
is a B-coring with coproduct and counit:
A(a ® Zi) = ap ® T(au)) ®a=aynQay" Qpay Qa,

e(a®a) = aa.

One see C(A, H) is a subalgebra of AQ A°? and it is indeed a (left) B-bialgebroid
Product (r®RZ)ociam (Y®TF) = 2y Q yz
Target and source maps t(b))=14®b and s(b)=b6® 14



Han, L. ; Han Majid - 2022

The Ehresmann—Schauenburg bialgebroid C(A, H) of a Hopf—Galois extension
is a Hopf algebroid :

If the Hopf algebra H is coquasitriangular with R matrix (a convolution in-
vertible map) R : H® H — k ( 4+ conditions),

there is an antipode: the inverse of the braiding induced by R:
\U(a X a) = 0 Q ag @ R(au) ) a(l))
this is an invertible H-comodule map with inverse
W_l(a ® a) = Qe Q ae @ R_l(au) 020 5,(1))

both map restrict to the invariant subspace C(A, H).
Then S = W1 obeys all properties of an antipode for C(A, H).



The bialgebroid C(A, H) of a Hopf—Galois extension as a quantization (of the
dualization) of the classical gauge groupoid principal bundle

Its bisections correspond to gauge transformations

C(A, H) the gauge bialgebroid of a Hopf—Galois extension B = A®H C A
A bisection is a B-bilinear unital left character on the B-ring (C(A, H), s).

The collection B(C(A, H)) of bisections of the bialgebroid C(A, H) is a group
with convolution product :

o1 * 0'2(37 029 55) L= 0'1((x 029 55)(1)) 0'2((55 ® 55)(2)) - Ul(x(m & x(1)<1>) 0'2(x<1><2> 029 55)

using the B-coring coproduct A(z ® %) = (x ® T)y, B ( @ T)



A group isomorphism

a: Auty(A) — B(C(A,H))

between gauge transformations and bisections:

B(C(A,H))>0 w— Fy(a):=o0(apy®an™)an™, F, € Autg(A)

FeAutg(A)> F +— op(a®a):=F(a)a, oreB(C(A H))

Bisection can be given for any bialgebroid

For the general case one would need additional requirements so to get a
proper composition law for bisections



Explicit examples

the monopole bundles over the quantum S§
a not faithfully flat example from SL(2)
the SU(2) - bundle Sj — S7

the SOy(2n) bundle SOy(2n + 1) — Sz"

some example from g-geometry

change from automorphisms to derivations
( infinitesimal gauge transformations )

Lie algebras of suitable ‘bisections’

braided versions of them

Atiyah sequences of braided Lie algebras of derivations



Braiding then

K a Hopf algebra

K-equivariant H-Hopf—Galois extension B C A;

A carries a left action >: K ® A —- A of K, compatible with the H-coaction:

(k>a)o®(k>a)y=Fkb> (g ®ay) .

Recall: K is quasitriangular if there exists an invertible element R € K ® K
with respect to which the coproduct A of K is quasi-cocommutative

AP(k) = RA(K)R AP =710 A

and Re K ® K the inverse of R, RR=RR=1® 1.
R is required to satisfy ( these allow for a good representation theory ) ,

(A 29 id)R = R13R>3 and (id (029 A)R = R13R1o.

The Hopf algebra K is triangular when R = Ro; = 7(R), T the flip.



We further assume the Hopf algebra K to be triangular.
This allows for the study of braided Lie algebras.

A braided Lie algebra associated with a triangular Hopf algebra (K,R), is a
K-module g with a bilinear map

[, ] 9®g—9g

that satisfies the following conditions.

(i) K-equivariance: for A(k) =k, ® k., the coproduct of K,

k> [u,v] = [ky > u, ko > v]

(ii) braided antisymmetry:
[u,v] = —[Ra > v, RY > w],
(iii) braided Jacobi identity:
[u7 [an]] — [[’U,,’U],’LU] _l_ [ROé > v, [Ra > ’LL,’U)]]



Infinitesimal gauge transformations
B = A“H C A a K-equivariant Hopf—Galois extension, for (K,R) triangular.

Inside the braided Lie algebra Der(A) consider the subspace of braided deriva-
tions that are H-equivariant

Der/R\AH(A) = {U € Hom(A, A) | 6(u(a)) = u(ae) ® au,

u(aa’) = u(a)a’ + (Ry > a)(R* > u)(a’), for all a,a’ € A}

and then those derivations that are vertical,

autR(A) := {u € Der}x(A) | u(b) =0, for all b€ B} .

Elements of aut%(A) are regarded as infinitesimal gauge transformations

of the K-equivariant Hopf—Galois extension B = A«H C A.



Atiyah sequences and their splittings
A K-equivariant Hopf—Galois extension B = A®H C A

The braided Lie algebra of vertical equivariant derivations
autR(A4) := {u € Der} ,(A) | u(b) =0, b€ B}
is a braided Lie subalgebra of equivariant derivations

Der}.(A) = {u € Der(A) | §ou = (u®id) o0} .

Each derivation in DerR,,(A), being H-equivariant, restricts to a derivation
on the subalgebra of coinvariant elements B = A«H

A sequence of braided Lie algebras aut®(A4) — DerR.(A) — Der?(B)

When exact,
0 — aut®(A) — Der’y,(A) — Der?(B) — 0

is a version of the Atiyah sequence of a (commutative) principal fibre bundle.

An H-equivariant splitting of the sequence is a connection on the bundle



The general construction
(K,R) a triangular Hopf algebra ; an exact sequence of K-braided Lie algebras

0—>g—>P5T—0

For B an algebra; take (B,T) a braided Lie—Rinehart pair:
T is a B-module with a braided Lie algebra morphism T — Der?(B);
B is a T-module and T acts as braided derivations of B,
X (b)) = XY + (Ry > b)(R* > X)) (b)), b e B, X eT,
and
[X,0X'[r = X(B)X 4+ (Ra > b)[(R* > X), X']r, beB, X, X'eT.

A connection on the sequence is a splitting: a B-module map,
p: T — P, mop=Iidr

the ‘vertical projection’, is the B-module map w, : P — g,
w(Y)=Y —p(Y™),  YEP



The extend to which p or w, fail to be braided Lie algebra morphisms is
measured by the (basic) curvature

QX, X') == p([X, X']r) — [p(X), p(X)]R, X, X"eT.

2 is a g-valued braided two-form on T..

The curvature can also be given as a basic g-valued braided two-form on P
(spatial curvature):

Q, (YY) :=Q"™,Y'™), Y,Y' € P.

Qw,)(Ya Y/) — [Y7 wp(Y/>]R + [wp(Y)7 Y/]R — wp([Ya Y/]R) — [wp(Y)a w,O(Y/)]R-

This expression can be read as a structure equation:

dw, = 2, + [wp, wplr -
Here

dC(Y,Y") == [V, ¢(Y)Ir + [((Y), Y']r — (([Y, Y]R), Y,Y'€P.

(generalised to higher forms)



There is a Bianchi identity:
dQ2,, + [, wp]lr = 0.

when the connection is equivariant: k> w, = e(k)w,

this is true ‘the way it is written

in general one needs a suitable interpretation of the curvature as a derivation
of the braided Lie algebra g and of the above expression



The space of connections C(T,g):
an affine space modelled on B-module maps n: T — g

with p : T — P a connection and n : T'— g, the sum p/ = p+4n is a connection.

An action of the braided Lie algebra P: PxC(T,g) — C(T,g9)
(Y,p) = p+ dvp, (Oyp)(X) = [V, p(X)]r — p([YT, X]g,
(dyp)(X) €gordyp:T —g.
For vertical elements V € g, this is an infinitesimal gauge transformations:
Oy p)(X) = [V, p(X)]r,

thus g is the braided Lie algebra of such transformations.

The curvature of the transformed connection p/ = p + dyp:
Q' = Q4 6yQ2 — [dyp, dyplr

for V € g an infinitesimal gauge transformation this reduces to
(5VQ)(Xa X/) — [V7Q(X7 X/)]R-



Calabi pseudo-cohomology

Two sequences are equivalent if there is an isomorphism P — P’ with com-
mutative diagrams

O —=g—P—->T—0

1

0—g—>P—=T—0

Classified by H?(T, g), the Calabi pseudo-cohomology of the Lie algebra T with
values in g. If A is abelian H?(T,g) is the CE cohomology group H?(T,g).

A pseudo-cochain: a pair (¢, dP),
¢ T — Der(g), $ a g-valued skew map on T x T, such that
P(X)P(X") — (XNP(X) = ¢([X, X']) + ado(x,x7) X, X' eT.

Such a pair is a 2-pseudo-cocycle if §,(P) = 0, where

0p(P)(X, X', X") = ¢(X) > &X', X") — o([X, X, X") + c.p.



Two such pairs (¢, ®), (¢, P’) are equivalent if thereisa mapn:T — g, s.t.
¢'(X) = ¢(X) + +ad,(x)

DX, X)) = P(X, X)) + (0sm) (X, X) + [n(X), n(X)].

Equivalent pseudo-cochains leads to equivalent pseudo-cocycles and the space
of equivalent classes of 2-pseudo-cocycles is denoted H?(T,g), the order 2
Calabi pseudo-cohomology of the Lie algebra T with values in g.

Given a splitting of the sequence, that is given a connection p: T — P, one
construct a pseudo-cocycle (¢, P) by

¢(X) >V = [p(X),V] XeTl Veg
(X, X") =Q(X, X") = p([X, X']) — [p(X), p(X)], X, X' eT.
Jacopi identity implies it is a pseudo-cocycle:

5o(P) =0

this is the Bianchi identity.



Given two connections p and p' = p + n, the corresponding pseudo-cocycles
(¢/,®') and (¢, P) are equivalent, they belong to the same class in H?(T,g).

Pseudo-cocycles associated with equivalent extensions determine the same
class in H2(T,g).

Conversely, given a pseudo-cocycle one construct a sequence of Lie algebras
O —g—>P—>T—0

cohomologous pseudo-cocycle give equivalent sequences.

The space of equivalent classes of extensions of T by g is in a Dbijective
correspondence with H?(T,g).

H2(T,g) is a complicate object in general



An R-symmetric map of degree ¢
¢:g®R...®Rg—>B
which intertwining the representation adg ®<...®Radg of P on g®R...®@Rg with
the action of P on B  ( adg is the braided commutator ).
Sr the braided anti-symmetrization.

Then
QO,O:SROf(Q@R...@RQ)
is a braided B-valued 2¢-form on T.

One has:
dpp =10



For the cohomology classes:

o] = [pp] p, P two connections on the sequence

Consider:
Inv? = { all such ¢ as before } Inv = @ Inv?
H¢yp, Chevalley cohomology of (T, B)

we get a linear map

cw : Inv — H¢y, v — [¢p]

When pulled back to P:
", = d( Chern Simons )



Twisting

The constructions survive under a Drinfeld twists
Examples from 6-deformations
F = emf(hoH-Hot) [H1, Ho) = 0

Re = > — o 2mi0(Hi@H,— Ha®Hy)

Jordanian twist . k-Minkowski

1
F=exp(ua%®0) oc=1In (1—|——Po)
K

Py = iu-2; [u%, Po] = Po

0x°



In particular O(Sy)

with generators b,, u = (u1,pu2) = (0,0),(+1,0),(0,£1)
the weights for the action of Hi, Ho.

Their commutation relations are

bueiby = A2* N beb, A= ™
with sphere relation ), b5 4b, = 1.

Derf (0(S5%)) is generated as an O(S3)-module by operators H,

defined on the algebra generators as
ﬁ’u,(by) = 5u*y - b’u/.gby
and extended to the whole algebra (’)(Sg) as braided derivations:

H, (byebr) = H,(b,)ebr + N2*\Vb,e,H,(b,).

They verify
H, (> " bieb,) =0, ZM b%eH, =0



In the classical limit § = 0, the derivations flﬂ reduce to

H, = 9, —b.A, A=) b,
7!

the Liouville vector field.
The weights p are those of the five dimensional representation of so(5).

The bracket in Der®(O(S3)) is the braided commutator
[ﬁy],.ﬁy]RF = ﬁuoﬁy_A2MAyﬁVOﬁ“
— bu.gﬁy - AQ#Ayby.gﬁ’U,

~

The generators H, can be expressed in terms of their commutators as

H, = bre[Hyu Hr,
7!

Denote HT, = [H,, Hr, = —NMVH]

Their braided commutators close the braided Lie algebra soy(5) :

[H],

T - T 2uUNV 2TN\o T 2uAV T
IR H’T,O’] Re — 5V*THLL,U - A H# 5#*7’ i A (6V*O'H'u,7- — )\ H 60-*,LLHI/,T)



The instanton O(SU(2)) Hopf—Galois extension O(Sg) C O(S)).

A short exact sequence of braided Lie algebras

0 — autep(s(O(S))) = Dery=(0(S§)) = Der(0(S5)) — 0

Der(O(Sy)) generated as before by elements ﬁg}u

Derpx(O(S))) generated by (explicit) derivations ﬁu,y realising a representa-
tion of soyp(5) as derivations on O(S)) and

m(Hyuy) = HT,.

aut@(sg)(O(Sg)) vertical and equivariant ( alternatively via a connection )

The horizontal lift: the O(S7)-module map p : Der(O(Sy)) — Deraw(O(S)))
defined on the generators H, of DerRF(O(Sg)) as

p(Hy)) == breHpuy
v

is a splitting of the sequence above .



The corresponding vertical projection is the O(Sg)-module map
W Derpu(0(S5)))) — autpsn(O(S))
W (Hyy) 1= Hyy — p(H} ) = Hyy — (busip(H,) — X2 bye,p(H,))
These derivations generated the algebra aut@(gg)(O(Sg)).
The curvature

QUX,Y) = [p(X), p(Y)]r. — p([X, Y]r:) = 20 W[p(X), p(Y)]r

One finds [p(H,), p(H,)]g, = H,.
Then
QH,, H) = Huy — (busp(Hy) — X0 byap(H,)) = 10 W(Hy).

There is also a connection 1-form: it is anti-selfdual.



An action of braided conformal transformations
309(57 1)

yvields noncommutative families of anti-selfdual connections



Galois objects
of a Hopf algebra H ( noncommutative principal bundle over a point )

An H-Hopf—Galois extension A of the ground field C.

Examples:

Group Hopf algebras H = C[G] : equivalence classes of C[G]-Galois objects
are in bijective correspondence with the cohomology group H?(G,C*)

H2(Z",C*) = (C*)r(r=1)/2: infinitely many iso classes of C[Z"]-Galois objects

Taft algebras : g a primitive N-th root of unity,; T, neither commutative nor
cocommutative Hopf algebra; generators x, g with relations:

N =0, gN=1, xg—qgr = 0.
coproduct: Alz) =1z+zRg, A(g) =9g®yg

counit: e(z) := 0,e(g) := 1, and antipode: S(z) := —zg~1,S(g) ;=g !.



Summing up:

Worked out a gauge algebroid for a noncommutative principal bundle
A suitable class of ( infinitesimal ) gauge transformations

Infinite dimensional Hopf algebra ( of possibly braided derivations )
A Chern-Weil homomorphisms and characteristic classes

Chern-Simons terms

some natural structures but we are only at the beginning ...



Thanks



