Balanced metrics and the Hull-Strominger System

Anna Fino

Dipartimento di Matematica, Universitá di Torino & Department of Mathematics and Physics, Florida International University

Emergent Geometries from Strings and Quantum Fields, Galileo Galilei Institute, Firenze 17-22 July 2023

A (10) × (10) × (10) ×

Definition (Michelsohn)

A balanced metric on a *n*-dim complex manifold is an Hermitian metric ω such that $d(\omega^{n-1}) = 0$.

• A metric is balanced if and only if $\Delta_{\partial} f = \Delta_{\overline{\partial}} f = 2\Delta_d f$ for every $f \in \mathcal{C}^{\infty}(M, \mathbb{C})$ (Gauduchon).

• A compact complex manifold M admits a balanced metric if and only if M carries no positive currents of degree (1,1) which are components of a boundary (Michelsohn).

In particular, Calabi-Eckmann manifolds have no balanced metrics!

< ロ > < 同 > < 三 > < 三 >

- The twistor space of a 4-dim oriented anti-self-dual Riemannian manifold always has a balanced metric (Michelsohn; Gauduchon).
- Every compact complex manifold bimeromorphic to a compact Kähler manifold is balanced (Alessandrini, Bassanelli) \Rightarrow
- Moishezon manifolds and complex manifolds in the Fujiki class ${\cal C}$ are balanced.
- Any left-invariant Hermitian metric on a unimodular complex Lie group is balanced [Abbena, Grassi].
- Applying conifold transitions to Calabi-Yau 3-folds [Li, Fu, Yau].
- Even-dim non-compact simple Lie groups of inner type with an invariant complex structure [Giusti, Podestá].

Every compact complex homogeneous space M with an invariant volume form is a principal homogeneous complex torus bundle

$$M \to G/K \times D$$

where G/K is a generalized flag manifold and D is a complex parallelizable manifold.

• If M admits a balanced metric, then $c_1(M) \neq 0$ [F, Grantcharov, Vezzoni]

 \hookrightarrow Compact semisimple Lie groups do not admit any balanced metric compatible with Samelson's complex structure.

- 6-dim balanced nilpotent Lie algebras [Ugarte].
- 6-dim balanced unimodular solvable Lie algebras admitting a holomorphic (3,0)-form [F, Otal, Ugarte].
- A characterization of balanced almost abelian Lie algebras.
- $\mathfrak{g} = \mathbb{R} \ltimes_B \mathfrak{h}$ (i.e. with abelian ideal \mathfrak{h} of codim one)
- \hookrightarrow 9 isomorphism classes in dim 6 [F, Paradiso].
- 6-dim balanced strongly unimodular (non almost abelian) almost nilpotent Lie algebras (i.e. with nilpotent ideal h of codim one)
- \hookrightarrow 8 isomorphism classes [F, Paradiso].

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

Motivation: The construction by Qin and Wang of 6-dim compact manifolds, which are simultaneously diffeomorphic to complex Calabi-Yau manifolds and symplectic Calabi-Yau manifolds.

Problem

Do they admit a balanced metric?

The QW construction is obtained using the Kummer surface Km.

Km is the smooth compact surface obtained blowing up the 16 double points p_j of $\mathbb{T}^2/\langle 1, \sigma \rangle$, where $\mathbb{T}^2 = \mathbb{C}^2/\mathbb{Z}^4$ and σ is the involution of \mathbb{T}^2 induced by $(z, w) \to (-z, -w)$.

Km can be also described as $X/ < 1, \tau >$, where X is the surface obtaining by blowing up \mathbb{T}^2 at each p_j and τ is the involution induced by σ .

Remark

• The fixed set *E* of τ is $\bigcup_j E_j$, where $E_j \cong \mathbb{P}^1$ is the exceptional divisor over p_j .

- $dz_1 \wedge dz_2$ induces a nowhere vanishing (2,0)-form on \mathbb{T}^2
- \Rightarrow its pullback on X induces a holomorphic (2,0)-form on Km.

Let $A \in SL(2, \mathbb{Z} + \sqrt{-1\mathbb{Z}})$ such that |tr(A)| > 2, diagonalizable with eigenvalues λ, λ^{-1} and let dv_1, dv_2 the associated eigenvectors of the induced map on $H^1(\mathbb{T}^2, \mathbb{C})$.

The induced map A preserves $dv_1 \wedge dv_2$ and $D = \sum_{i=1}^{16} E_i$

 \hookrightarrow it defines a holomorphic transformation ϕ_A on Km preserving the induced holomorphic (2,0)-form.

The $\mathbb{Z}\text{-}\mathsf{action}$ on $\mathbb{T}^2\times\mathbb{R}\times \mathcal{S}^1$ generated by

$$(p, x, y) \rightarrow (A(p), x+1, y)$$

extends to an action on $\text{Km} \times \mathbb{R} \times S^1$ and the quotient is a compact complex manifold A(Km) with trivial canonical bundle.

Definition

An holomorphic automorphism f of a compact Kähler manifold M is hyperbolic if the action of f on $H^{1,1}(M, \mathbb{R})$ has a unique eigenvector η with an eigenvalue $f^*\eta = \lambda\eta$ such that $\lambda > 1$.

Using an hyperbolic automorphism f of a compact Kähler M and a lattice \mathbb{Z}^2 in \mathbb{C} generated by $\xi_1, \xi_2 \hookrightarrow$

S(f) := hyperbolic toric suspension of M associated with the pair (f, Id_M) as the quotient of $M \times \mathbb{C}$ by the action of \mathbb{Z}^2

 $\xi_1(p,z) = (f(p), z + \xi_1), \quad \xi_2(p,z) = (p, z + \xi_2).$

 $\hookrightarrow S(f)$ is diffeomorphic to $M_f \times S^1$.

If M is a compact hyperkähler manifold (i.e. M is Kähler and has a holomorphically symplectic structure) and f is a hyperbolic automorphism of M preserving the holomorphic symplectic form

 \hookrightarrow one can construct the hyperbolic holomorphically symplectic suspension S(f).

Theorem (F, Grantcharov, Verbitsky)

A hyperbolic holomorphically symplectic suspension S(f) admits a balanced metric.

As a consequence A(Km) has a balanced metric!

The proof is by contradiction using

- the Michelsohn's characterization of balanced metrics
- the projection $S(f) \rightarrow S^1 \times S^1$, which is a locally trivial fibration with fiber the hyperkähler manifold M.

Remark

If we consider the suspension of the real 4-torus defined by

$$(p, x, y) \rightarrow (A(p), x+1, y), \quad x \in \mathbb{R}, y \in S^1$$

with A as above, the suspension is a balanced almost abelian compact solvmanifold and the metric is explicit!

Problem

Can we find on A(Km) an explicit balanced metric?

イロト イヨト イヨト イヨト

Interplay with other types of Hermitian metrics

A Hermitian metric which is balanced and puriclosed is Kähler [Alexandrov, Ivanov; Popovici].

Conjecture

Every compact complex manifold admitting a balanced and a pluriclosed metric is Kähler.

The conjecture is true for all the known examples of compact balanced manifolds!

Theorem (F, Grantcharov, Vezzoni)

There exists a compact complex non-Kähler manifold admitting a balanced and an astheno-Kähler metric.

 \hookrightarrow negative answer to a question posed by Székeleyhidi, Tosatti, Weinkove.

The Hull-Strominger system describes the geometry of compactification of heterotic superstrings with torsion to 4-dimensional Minkowski spacetime.

The geometric objects are a 10-dim Lorentzian manifold M^{10} (product of $\mathbb{R}^{1,3}$ and a compact 6-manifold M^6) and a vector bundle *E* over M^6

 \hookrightarrow reduce all the equations required by superstring theory to geometry of M^6 (and E).

• (Candelas, Horowitz, Strominger, Witten'85) fluxfree compactification: $M^{10} = \mathbb{R}^{1,3} \times M^6$ equipped with a product metric, "embed the gauge into spin connection" ($E = TM^6$) \Rightarrow M^6 must be a Calabi-Yau 3-fold with Kähler Ricci-flat metric (solved by Yau'77)

• (Hull'86, Strominger'86) compactification with flux: $M^{10} = \mathbb{R}^{1,3} \times M^6$ equipped with a warped product metric \Rightarrow Hull-Strominger system, in particular M^6 is a Calabi-Yau 3-fold ($K_{M^6} \cong \mathcal{O}$, not necessarily Kähler).

くぼう くほう くほう

• *M* a compact 3-dim complex manifold with a nowhere vanishing holomorphic (3, 0)-form Ω .

• *E* a complex vector bundle over *M* with a Hermitian metric *H* along its fibers and let $\alpha' \in \mathbb{R}$ be a constant (slope parameter).

The Hull-Strominger system, for the Hermitian metric ω on M, is: (1) $F_H^{2,0} = F_H^{0,2} = 0$, $F_H \wedge \omega^2 = 0$ (Hermitian-Yang-Mills), (2) $d(\|\Omega\|_{\omega}\omega^2) = 0$ (ω is conformally balanced), (3) $i\partial\overline{\partial}\omega = \frac{\alpha'}{4}(Tr(R_{\nabla} \wedge R_{\nabla}) - Tr(F_H \wedge F_H))$ (Bianchi identity), where F_H, R_{∇} are the curvatures of H and of a metric connection ∇ on TM.

- 4 回 ト 4 日 ト - 日 日

Remark

The Hull-Strominger system is a generalization of Ricci-flat metrics on non-Kähler Calabi-Yau 3-folds coupled with Hermitian-Yang-Mills equation!

• $F_H^{2,0} = F_H^{0,2} = 0$, $F_H \wedge \omega^2 = 0$ is the Hermitian-Yang-Mills equation which is equivalent to *E* being a stable bundle.

• Calabi-Yau manifolds can be viewed as special solutions: take $E = T^{1,0}M$, and $H = \omega$, thus the Hull-Strominger system reduces to $i\partial\overline{\partial}\omega = 0$, $d(||\Omega||_{\omega}\omega^2) = 0$, which imply that ω is Kähler and Ricci-flat.

イロト 不得 トイヨト イヨト

The 2nd equation $d(\|\Omega\|_{\omega}\omega^2) = 0$ says that ω is conformally balanced.

Remark

It was originally written as $d^*\omega = i(\overline{\partial} - \partial) \ln(\|\Omega\|_{\omega})$ (the equivalence was proved by Li and Yau).

The Hull-Strominger system can be interpreted as a notion of "canonical metric" for conformally balanced manifolds.

The third equation $i\partial \overline{\partial}\omega = \frac{\alpha'}{4}(Tr(R_{\nabla} \wedge R_{\nabla}) - Tr(F_H \wedge F_H))$ is the anomaly cancellation equation (or Bianchi identity) and couples the two metrics ω and H.

Remark

• It is the main equation accounting for both the novelty and the difficulty in solving the Hull-Strominger system.

• It originates from the famous Green-Schwarz anomaly cancellation mechanism required for the consistency of superstring theory.

▲ 同 ▶ ▲ 三 ▶ ▲ 三

• Since ω may not be Kähler, there is a one-parameter line of natural unitary connections on $T^{1,0}M$ defined by ω , passing through the Chern connection and the Bismut connection.

• From physical perspective one has $\alpha' \ge 0$ with $\alpha' = 0$ corresponding to the Kähler case, but in mathematical literature the case $\alpha' < 0$ is also considered [Phong, Picard, Zhang].

In this talk we will consider the case that ∇ is the Chern connection of ω .

Remark

Finding a solution of the HS system is a priori not enough to find a supersymmetric classical solution: a solution satisfies the heterotic equations of motion if and only if ∇ is an instanton [lvanov].

• The first Non-Kähler solutions have been found by Fu and Yau on a class of toric fibrations over K3 surfaces, constructed by Goldstein and Prokushkin.

• Non-Kähler solutions on Lie groups and their quotients by discrete subgroups [Fernández, Ivanov, Ugarte, Villacampa; Fei, Yau; Grantcharov...].

• New solutions on non-Kähler torus fibrations over K3 surfaces, leading to the first examples of T-dual solutions of the Hull-Strominger system [Garcia-Fernandez].

• Solutions on non-Kähler fibrations $p: M^6 \to \Sigma$ with fiber a compact HK manifold N^4 , where Σ is a compact Riemann surface of genus $g \ge 3$ [Fei, Huang, Picard].

(日本) (日本) (日本)

Let (S, ω_S) be a K3 surface with Ricci flat Kähler metric ω_S .

• To any pair ω_1, ω_2 of anti-self-dual (1,1)-forms on S such that $[\omega_i] \in H^2(S, \mathbb{Z})$, Goldstein and Prokushkin associated a toric fibration

$\pi: M \to S,$

with a nowhere vanishing holomorphic 3-form $\Omega = \theta \wedge \pi^*(\Omega_S)$, for a (1,0)-form $\theta = \theta_1 + i\theta_2$, where θ_i are connection 1-forms on M such that $d\theta_i = \pi^*\omega_i$.

• The (1, 1)-form

$$\omega_0 = \pi^*(\omega_S) + i\theta \wedge \overline{\theta}$$

is a balanced Hermitian metric on M, i.e. $d\omega_0^2 = 0$.

The Fu -Yau solution

Fu and Yau found a solution of the Hull-Strominger system with M given by the Goldstein-Prokushkin construction, and the following ansatz for the metric on M:

$$\omega_{u} = \pi^{*}(e^{u}\omega_{S}) + i\theta \wedge \overline{\theta},$$

where u is a function on S. This reduces the Hull-Strominger system to a 2-dim Monge-Ampère equation with gradient terms:

$$i\partial\overline{\partial}(e^{u}-fe^{-u})\wedge\omega+\alpha'i\partial\overline{\partial}u\wedge i\partial\overline{\partial}u+\mu=0,$$

under the ellipticity condition

$$(e^{u}+fe^{-u})\omega+4\alpha'i\partial\overline{\partial}u>0,$$

where $f \ge 0$ is a known function, and μ is a (2, 2)-form with average 0.

向下 イヨト イヨト

The solutions of the Hull-Strominger system can be viewed as stationary points of the following flow of positive (2, 2)-forms, called the "Anomaly flow"

$$\begin{cases} \partial_t (\||\Omega\|_{\omega(t)}\omega(t)^2) = i\partial\overline{\partial}\omega(t) + \alpha'(\operatorname{Tr}(R_t \wedge R_t) - \operatorname{Tr}(F_t \wedge F_t)) \\ H(t)^{-1}\partial_t H(t) = \frac{\omega(t)^2 \wedge F_t}{\omega(t)^3}, \quad \omega(0) = \omega_0, \ F(0) = F_0, \end{cases}$$

with ω_0 (conformally balanced) [Phong, Picard, Zhang].

In the compact case:

- Short-time existence and uniqueness [Phong, Picard, Zhang].
- For $t \to \infty$ the limit solves the Hull-Strominger system \hookrightarrow new proof of Fu-Yau non-Kähler solutions [Phong, Picard, Zhang].

A (10) × (10) × (10) ×

Theorem (F, Grantcharov, Vezzoni)

• S a compact K3 orbifold with a Ricci-flat Kähler form ω_S and orbifold Euler number e(S).

• ω_i , i = 1, 2 anti-self-dual (1, 1)-forms on S such that $[\omega_i] \in H^2_{orb}(S, \mathbb{Z})$ and the total space M of the principal T^2 orbifold bundle $\pi : M \to S$ determined by them is smooth.

• W a stable vector bundle of degree 0 over (S, ω_S) such that

$$\alpha'(e(S) - (c_2(W) - \frac{1}{2}c_1^2(S))) = \frac{1}{4\pi^2} \int_S (\|\omega_1\|^2 + \|\omega_2\|^2)^2 \frac{\omega_S^2}{2}.$$

Then M has a Hermitian structure (M, ω_u) and \exists a metric h along the fibers of W such that $(E = \pi^* W, H = \pi^*(h), M, \omega_u)$ solves the Hull-Strominger system.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- If θ_i are the connection 1-forms with $d\theta_i = \pi^* \omega_i$, then the smooth T^2 -bundle $\pi : M \to S$, determined by ω_i , has a complex structure such that $\theta = \theta_1 + i\theta_2$ is a (1,0)-form and π is a holomorphic projection.
- The Hermitian metric $\omega = \pi^*(\omega_S) + \theta_1 \wedge \theta_2$ on M is balanced if and only if $tr_{\omega_S}\omega_1 = tr_{\omega_S}\omega_2 = 0$.

If we choose ω_1, ω_2 to be harmonic, then this is equivalent to the topological condition $[\omega_S] \cup [\omega_1] = [\omega_S] \cup [\omega_2] = 0$.

• If Ω_S is a holomorphic (2,0)-form on S with $||\Omega_S||_{\omega_S} = const$, then the form $\Omega = \Omega_S \wedge \theta$ is holomorphic with constant norm with respect to ω .

• For every smooth function u on S, the metric $\omega_u = e^u \pi^*(\omega_S) + \theta_1 \wedge \theta_2$ on M is conformally balanced with conformal factor $||\Omega||_{\omega_u}$.

• If W is a stable bundle on S with respect to ω_S of degree 0 and Hermitian-Yang-Mills metric h and curvature F_h , then $E = \pi^*(W)$ is a stable bundle of degree 0 on M with respect to ω_u with Hermitian-Yang-Mills metric $H = \pi^*(h)$ and curvature $F_H := \pi^*(F_h)$.

- 4 回 ト 4 日 ト - 日 日

• We use that the argument by Fu and Yau depends only on the foliated structure of the manifold *M*.

- $(\theta, \omega_B = \pi^*(\omega_S), \Omega_B = \pi^*(\Omega_S))$ satisfy $d\omega_B = 0, \quad \omega_B \wedge d\theta = 0, \quad \iota_{\overline{Z}} d\theta = 0, \quad \iota_Z \Omega_B = 0,$ where Z is the dual to θ with respect to ω . Then (ω_B, Ω_B) induces a transverse Calabi-Yau structure on M.
- We reduce the Hull-Strominger system on *M* to a transversally elliptic equation, proving a generalization of the Fu-Yau theorem to Hermitian 3-folds with a transverse Calabi-Yau structure.
- We solve the transversally elliptic equation using a result of El Kacimi.

• (1) • (

3

To construct explicit examples we consider T^2 -bundles over an orbifold S which are given by the following sequence

where $M_1 \rightarrow S$ is a Seifert S^1 -bundle, M_1 is smooth and $M \rightarrow M_1$ is a regular principal S^1 -bundle over M_1 .

ヨマ イヨマ イヨマ

Roughly speaking, Seifert fibered manifolds are (2n + 1)-manifolds L with a locally free S^1 -action, for which the S^1 -foliation has an orbifold leaf space

 \hookrightarrow a differentiable map $f : L \to X$ to a complex *n*-manifold X such that every fiber is a circle.

The natural setting is study Seifert bundles where the base X is a complex locally cylic orbifold, i.e. locally it looks like \mathbb{C}^n/G where G is a cyclic group acting linearly.

The main idea is that there is a divisor $\cup_i D_i \subset X$ such that $L \to X$ is a circle bundle over $X \setminus \cup_i D_i$ and natural multiplicities m_i are assigned to the fibers over each D_i .

• (1) • (2) • (3) • (3) • (3)

 $\Delta := \sum_{i} (1 - \frac{1}{m_i}) D_i$ is a \mathbb{Q} divisor and is called the branch divisor of X.

Theorem (Kollar)

If (X, Δ) has trivial $H^1_{orb}(X, \mathbb{Z})$, then a Seifert S¹-bundle L is uniquely determined by its first Chern class

$$c_1(L/X) := [B] + \sum_{i=1}^n \frac{b_i}{m_i} [D_i] \in H^2(X, \mathbb{Q})$$

where b_i are integers such that $0 \le b_i < m_i$ and relatively prime to m_i and B is a Weil divisor over X.

向下 イヨト イヨト

• We consider as CY orbifold surface (K3 orbifold) *S* an intersection of two degree 6 hypersurfaces in $\mathbb{P}(2,2,2,3,3)$ in generic position (*S* has 9 isolated *A*₁-singularities and $\pi_1^{orb}(S) = 1$).

• Blowing up S at 9 - k points, $1 \le k \le 8$ (i.e. using partial resolutions) we construct a smooth Seifert S¹-bundle $M_1 \to S$.

• By applying the main theorem to $M = M_1 \times S^1$ we obtain a solution of the Hull-Strominger system on M.

• Using Barden's results and a Kollar's result for simply connected 5-manifolds with a semi-free S^1 -action we show that M is diffeomorphic $S^1 \times \sharp_k(S^2 \times S^3)$, where k is determined by the orbifold second Betti number of the surface.

To obtain simply connected examples the construction is similar:

- We consider the blow-up \tilde{S} of S at $k \ge 2$ of the singular points.
- We construct two indipendent over \mathbb{Q} divisors D_1 and D_2 such that the Seifert S^1 -bundle $\tilde{M}_1 \to \tilde{S}$ corresponding to D_1 is simply connected and a smooth S^1 -bundle $\pi_2 : \tilde{M} \to \tilde{M}_1$ determined by the pull-back of D_2 to \tilde{M}_1 .
- By a Kollar's result \tilde{M}_1 is diffeomorphic to $\#_k(S^2 \times S^3)$.
- Since \tilde{M} is a simply-connected 6-manifold with a free S^1 -action and $w_2(\tilde{M}) = 0$, then \tilde{M} has no torsion in the cohomology.
- \tilde{M} is diffeomorphic to $\#_r(S^2 \times S^4) \#_{r+1}(S^3 \times S^3)$, where $r = rk(H^2(\tilde{M}_1, \mathbb{Q})) 1 = rk(H^2(S, \mathbb{Q})) 2$.

白 ト イ ヨ ト イ ヨ ト

Theorem (F, Grantcharov, Vezzoni)

Let $13 \le k \le 22$ and $14 \le r \le 22$. Then on the smooth manifolds $S^1 \times \#_k(S^2 \times S^3)$ and $\#_r(S^2 \times S^4) \#_{r+1}(S^3 \times S^3)$ there are complex structures with trivial canonical bundle admitting a balanced metric and a solution to the Hull-Strominger system via the Fu-Yau ansatz.

Remark

- The cases k = 22 and r = 22 correspond to Fu-Yau solutions.
- They have the structure of a principal S^1 -bundle over Seifert S^1 -bundles.

• The simply-connected examples are obtained starting from a K3 orbifold with isolated A1 singular points and trivial orbifold fundamental group.

(4回) (4回) (4回)

Let X_k be the K3-orbifold surface obtained by blowing-up k, with $0 \le k \le 9$, singular points of the general intersection of two hypersurfaces of degree 6 in $\mathbb{P}(2, 2, 2, 3, 3)$.

 \hookrightarrow Using the Serre construction, which relates rank two vector bundles on a surface to subschemes of codimension two (Huybrecths-Lehn)

 \hookrightarrow we show that for k > 0 there exists on X_k a stable bundle E of rank 2 and with $c_1(E) = 0$ and $c_2(E) = c$ for any $c \le 4 + \frac{k}{2}$.

Remark

In the construction of the stable bundle E we use a 0-dimensional subscheme (isolated points which could be chosen different from the singular ones).

< ロ > < 同 > < 三 > < 三 >

THANK YOU VERY MUCH FOR THE ATTENTION !!

イロト イヨト イヨト イヨト 三日