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Testing the SM at Percent Level Accuracy

Higgs measurements 
at the moment are 
limited by statistics

…but statistics will improve dramatically with HL LHC…

ATL-PHYS-PUB-2022-018

With percent level 
measurement of Higgs 

distributions, theory errors 
are projected to be a major 
limiting factor for Higgs 

precision program

Astonishing level of precision in experimental measurements of 
key benchmark processes.

 
Example: normalized differential distributions in Drell-Yan 

measured with few per-mille level accuracy

CMS Collaboration 
[1909.04133]

ATLAS 
Collaboration 
[1912.02844]

…and plethora of very precise differential distributions from LEP, 
future EIC measurements, possible future colliders, etc…



Standard Model Phenomenology at percent level

We should aim at comparable precision from the theory side!
PerturbativeNon Perturbative

[Mistlberger 1802.00833]

CAVEAT! 
Often times convergence turns 

out to be slower than naive 
estimate 

=> N3LO gives few percent 
(not per-mille) shift
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n3loxs [Baglio, Duhr, Mistlberger, Szafron ‘22]

“The Path Forward to N3LO”
Snowmass Whitepaper

[Caola, Chen, Duhr, Liu, Mistlberger, 
Petriello, GV, Weinzierl]

N3LO corrections (or at least 

good estimates of them) will be 
necessary for percent level 

phenomenology

https://arxiv.org/search/hep-ph?searchtype=author&query=Mistlberger%2C+B


Predictions for Differential Cross Sections: 
IR singularities

4

● Cross sections require integration over phase space

● Complexity of infrared singularities grows with loop order

● Extremely challenging to systematize their treatment order by order

● Use EFT methods to systematize study of collinear and soft 

radiation at the cross section level

● Obvious applications: building universal counterterms (e.g. 

EFT-based subtractions) and improve resummation



● EFT-based subtractions (AKA slicing methods) 

                       qT  subtraction                                N-Jettiness subtraction

Differential Distributions via Slicing

[Boughezal, Focke, Liu, Petriello ‘15]
[Gaunt, Stahlhofen, Tackmann, Walsh ‘15]

5

[Catani, Grazzini ‘07]

Below the cut region: 
● Singular distribution
● Contains most complicated 

cancellation of IR divergences
● Control it analytically via 

factorization theorems

Above the cut region: 
● Resolved extra radiation 
● No events in Born configuration 
● Lower number of loops
● Calculate numerically and/or with 

lower order subtraction schemes

Residual:
Non singular terms 
from below the cut 
(power correction).
Minimized by going 
to very small qT cut

● With N-Jettiness ability to tackle also processes with jets in the final state
[Boughezal, Focke, Liu, Petriello + Campbell, Ellis, Giele ’15, ’16] [Campbell, Ellis, Williams ’16] [Mondini, Williams ‘21][Campbell, Ellis, Seth ’19]

● Extremely successful program for many color singlet (and top) processes at NNLO 

● Note also recent work on extending qT to processes with jets [Grazzini et. al ‘22-23]

● Very CPU intensive. Efficiency can be improved by calculating residual power corr. analytically 
[Ebert, Moult, Stewart, Tackmann, GV, Zhu, ‘18, ‘18, ‘19] [Boughezal, Isgro’, Petriello ‘19] [Michel et al. ‘21] [Wiesemann et al. ‘21]
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● Control it analytically via 
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● Extremely successful program for many color singlet (and top) processes at NNLO 

● Note also recent work on extending qT to processes with jets [Grazzini et. al ‘22-23]

● Very CPU intensive. Efficiency can be improved by calculating residual power corr. analytically 
[Ebert, Moult, Stewart, Tackmann, GV, Zhu, ‘18, ‘18, ‘19] [Boughezal, Isgro’, Petriello ‘19] [Michel et al. ‘21] [Wiesemann et al. ‘21]

How do we extend this to N3LO?



Singular Region of LHC Observables

● Singular region (i.e. below the cut) can be understood at all orders via

qT Beam Functions

Leading power factorization for Transverse-Momentum Distributions in pp

Soft FunctionHard Function

● Perturbatively: H, B, and S take generic form in terms of logs and boundaries

● For N3LO slicing we need Hard, Beam and Soft functions boundaries at N3LO

● For H and S, boundaries are constants: 
known at N3LO since 2010 (H) and 
2016 (S) [Li, Zhu ‘16] [Gehrmann, Glover, Huber,

Ikizlerli, Studerus ‘10]

● Beam function boundaries are full 
functions (of the collinear splitting 
variable)



Beam Functions

● Beam Functions can be understood as generalization of Parton Distribution Functions (PDFs)

PDF:

Beam Function:
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Longitudinal momentum fraction

Longitudinal momentum fraction

Additional observable (qT, beam thrust, etc…)

● Beam functions are non-perturbative objects! 

However,  in perturbative regime of the observable                 , they can be matched 

perturbatively onto PDF, via an observable dependent matching kernel
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● Beam Functions can be understood as generalization of Parton Distribution Functions (PDFs)
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Beam Function:
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Longitudinal momentum fraction

Longitudinal momentum fraction

Additional observable (qT, beam thrust, etc…)

● Beam functions are non-perturbative objects! 

However,  in perturbative regime of the observable                 , they can be matched 

perturbatively onto PDF, via an observable dependent matching kernel

PDF:

Longitudinal momentum fraction

Additional observable (qT, beam thrust, etc…)

Bare matching kernel can be calculated using collinear expansion of 

differential partonic cross sections for LHC processes!

“Collinear expansion 

for color singlet cross 
sections” 

[2006.03055]

Ebert, Mistlberger, GV



Collinear expansion of the 
partonic cross section for 

Drell Yan and Higgs at N3LO 
differential in (QT, 𝜏, z)

“Transverse Momentum Dependent
PDFs at N3LO” 

Beam Functions at N3LO
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pro
jec

t to
 𝜏 

project to q
T  

“N-Jettiness Beam Functions
at N3LO”

○ Quark 𝜏 beam functions
(Quark N-Jettiness Beam Function)

○ Gluon 𝜏 beam functions
(Gluon N-Jettiness Beam Function)

○ Quark TMDPDF 
(Quark qT Beam Function)

○ Unpolarized Gluon TMDPDF
(Gluon qT Beam Function)

M.Ebert, B.Mistlberger, GV 
[2006.05329]

M.Ebert, B.Mistlberger, GV 
[2006.03056]



○ ~ 100k Feynman diagrams

○ Reverse unitarity for phase space integrals

○ Collinear Expansion at the XS level

○ Reduction to basis of Master Integrals via 
Integration By Parts (IBPs) using Water

● Calculation of the collinear expansion of the partonic cross section for DY and Higgs 
@N3LO differential in (QT, 𝜏, z)

Expanded diagrams 
admit (simplified) 
IBPs identities
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○ RVV: known in full kinematics

“Collinear expansion for color singlet cross sections” [Ebert, Mistlberger, GV]

○ RRV: 170 Collinear
Master Integrals

○ RRR: 320 Collinear 
Master Integrals

○ Derived system of Differential 
Equations for the Master Integrals

○ System has 2 non trivial scales with 
algebraic dependence on the variables
(not something solvable algorithmically)

○ Algebraic sectors: constructed dlog 
integrand basis via calculation of 
leading singularities of candidate 
integrals on maximal cut surface

○ Boundaries from soft integrals 
and constraints on singular behavior

[Anastasiou, Duhr, 
Dulat, Mistlberger]

[Duhr, Gehrmann] [Duhr, Gehrmann, Jaquier] [Dulat, Mistlberger]

Beam Functions calculation at N3LO [2006.05329], [2006.03056] 

(Ebert, Mistlberger, GV)



And many more:
[Ju, Schönherr ‘21]

[Camarda, Cieri, Ferrera ‘21]
[Re, Rottoli, Torrielli ‘21]

[ATLAS alpha_S extraction ‘23]

Slicing at N3LO:
Enabling N3LO differential predictions for the LHC
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● qT beam functions at N3LO were last missing ingredient for:
○ qT subtraction for differential and fiducial Drell-Yan and Higgs production at N3LO
○ qT resummation at N3LL`

● Many new exciting phenomenological results at N3LO employing them!

[Neumann,
Campbell ‘22] 

[Chen, 
Gehrmann, 

Glover, Huss, 
Yang, Zhu ‘21]

[Chen, Gehrmann, 
Glover, Huss, Monni, 

Re, Rottoli, Torrielli ‘22]

[Billis, Dehnadi, Ebert, 
Michel, Tackmann ‘21] 

[Neumann,
Campbell ‘23] 



Collinear expansion of cross sections: Applications

Collinear 
expansion of 

cross 
sections

Approximation of 
differential 

distributions
(e.g. Higgs rapidity at LHC, DY, ...)

Fixed order QCD 
beyond leading power

(Data for subleading power RGEs, 
improvement for slicing methods, ...)

Universal objects of QCD 
IR at high perturbative 

order

Anomalous 
dimensions
(Splitting functions, 
collinear, rapidity)

Observable dependent initial state 
radiation dynamics

(TMD PDFs, Beam Functions, double differential Beam Func, ...)

Observable dependent
final state radiation dynamics

(TMD Fragmentation Functions, EEC, thrust jet functions, ...)

Differential 
counterterms 

for local 
subtractions
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“Collinear expansion for color 
singlet cross sections” 

Ebert, Mistlberger, GV



Going Beyond N3LO: 
Rapidity Anomalous Dimension to Four Loops

and Resummation at N4LL

14

C.Duhr, B.Mistlberger, G.Vita 
[2205.02242]



The Rapidity Anomalous dimension
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● Key ingredients for the resummation of large logarithms for transverse observables 
is the rapidity anomalous dimension. It appears in many contexts under different 
names: Collins Soper Kernel, Anomaly Exponent, piece of B coefficient in Sudakov 
Exponent, TMD anomalous dimension, etc… 

In short: if you want to do anything involving transverse momentum logs beyond  
NLL, you need this ingredient.



The Rapidity Anomalous dimension
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● Key ingredients for the resummation of large logarithms for transverse observables 
is the rapidity anomalous dimension. It appears in many contexts under different 
names: Collins Soper Kernel, Anomaly Exponent, piece of B coefficient in Sudakov 
Exponent, TMD anomalous dimension, etc… 

In short: if you want to do anything involving transverse momentum logs beyond 
NLL, you need this ingredient.

● Non cusp term vanishes at LO and NLO. 

● NNLO: known for a long time. 

● N3LO: determined in 2016 via bootstrap methods

● N4LO: C.Duhr, B.Mistlberger, GV [2205.02242]     (see also [Moult, Zhu, Zhu ‘22])

[Davies, Webber, Stirling ‘85] [de Florian, Grazzini ‘00]

[Li, Zhu ‘16]



● The calculation of the Rapidity anomalous dimension to 4 loops by brute force would require 
calculation of some differential object (e.g. pT soft function) to 4 loops

● This is beyond the current technology for fixed order calculations (more difficult than 4 loop 
splitting functions)

● Anomalous dimensions known at 4 loops:

○ Hard/Collinear Anomalous Dimension to 4 loops [von Manteuffel, Panzer, Schabinger - 2002.04617]

○ Virtual Anomalous Dimension to 4 loops [Das, Moch, Vogt - 1912.12920]

Rapidity Anomalous Dimension to Four Loops

17

Hard anomalous dimension
(2 x collinear anomalous dimension 

of form factors)

DGLAP at threshold



● Threshold anomalous dimension is part of RGE of soft function

● Via SCET I consistency relations, relate Threshold to Virtual and Collinear anomalous dimensions

● There is a Rapidity/Threshold correspondence for conformal theories, which holds at the 
critical dimension of QCD [Vladimirov -  1610.05791]

Rapidity Anomalous Dimension to Four Loops

18

Critical dimension of QCD



● Difference between threshold and rapidity anomalous dimension comes from higher 
orders in dimensional regularization evaluated at critical point!

● To obtain these terms it is necessary to calculate 
the TMD Soft Function at N3LO to higher orders in dimensional regularization

● We obtained this in

“Soft Integrals and Soft Anomalous Dimensions at N3LO and Beyond”
C.Duhr, B.Mistlberger, GV [2205.04493]

● Key point: Use method of differential equations and fix boundaries by relations 
between differential and inclusive threshold integrals

Rapidity Anomalous Dimension to Four Loops

19



Rapidity Anomalous Dimension to Four Loops

20

4 Loop Rapidity Anomalous Dimension

4 Loop Threshold 
Anomalous 
Dimension 

(dipole)

3 Loop 
qT Soft Function 

at higher orders in 𝟄

4 Loop 
Virtual

An. Dim.

4 Loop 
Collinear 
An. Dim.

3 Loop 
Threshold Soft Function 

at higher orders in 𝟄

Generalized 
Casimir



Resummation at N4LL
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Energy-Energy Correlation
● Interesting TMD observable is the Energy-Energy Correlation (EEC)

● Measures angle 𝜒 between pairs of colored particles, weighted by energy
● Ton of interest in this observable:      extraction, precision QCD, related 

to correlators in CFT, playground for           and QCD connections, …

[Basham, Brown, Ellis, Love, PRL 41, 1585 (1978)]
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● EEC has two singular limits with very different 
structure (no symmetry between them)

● Single logarithmic series in small angle limit

● Double logarithmic series at

● We have factorization theorems at both ends in SCET 
for resummation [Moult, Zhu] [Moult, Dixon, Zhu] [Ebert, Mistlberger, GV]



EEC in the back-to-back limit

Back-to-back region of EEC has Sudakov 
peak and obeys TMD-like factorization 

theorem and resummation 
(“crossed version of qT”)

Back-to-Back
Limit



EEC in the back-to-back limit

Back-to-back region of EEC has Sudakov 
peak and obeys TMD-like factorization 

theorem and resummation 
(“crossed version of qT”)

Standard RGE

Rapidity RGE

Resummed cross section to all orders (at LP)
[C.Duhr, B.Mistlberger, GV ‘22]

24

Back-to-Back
Limit



Logarithmic Accuracy for Resummed Predictions
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● Resummation accuracy is 
determined by the perturbative 
accuracy of ingredients entering 
resummed cross section

● For N4LL resummation:
○ 3 Loop Hard Function 

[Gehrmann, Glover, Huber, Ikizlerli, Studerus ‘10]

○ 3 Loop EEC Jet Function     
[Ebert, Mistlberger, GV 2012.07859]

○ 4 Loop Collinear Anom. Dim. 
[von Manteuffel, Panzer, Schabinger ‘20]

○ 4 Loop Rapidity Anomalous 
Dimension

○ 5 Loop Beta function
[Baikov, Chetyrkin, Kuhn ‘16]

○ 5 Loop Cusp (approx)
[Herzog, Moch, Ruijl,Ueda, Vermaseren, Vogt ‘18]

Resummed cross section to all orders (at LP)

NEW!



EEC in the back to back limit to N4LL
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● Implemented the 
resummation of this 
event shape at N4LL in 
new numerical 
framework: pySCET

● Nice convergence of 
perturbative result

● Uncertainties obtained 
by 15 point scale 
variation in SCET

First resummation for an event 

shape at this accuracy!



Conclusion

27

➢ Introduced motivations and techniques for theoretical predictions at N3LO

 
➢ Discussed the calculation of 

TMDPDF and N-Jettiness Beam 

Functions at N3LO via collinear 

expansion of cross sections

➢ Presented computation of quark and gluon 

Rapidity Anomalous Dimension at N4LO

➢ Illustrated first results 

for Resummation at 

N4LL on event shapes



Backup
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EEC in the back to back limit to N4LL
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● Implemented the 
resummation of this 
event shape at N4LL in 
new numerical 
framework: pySCET

● Nice convergence of 
perturbative result

● Uncertainties obtained 
by 15 point scale 
variation in SCET

First resummation for an event 

shape at this accuracy!

Impact of uncertainty from 5-loop Cusp is negligible



● Obtained results at N4LO 

● Quark and gluon related by generalized casimir scaling

● Well behaved series (stable coefficients) (see also [Moult, Zhu, Zhu])

● 4 coefficients are not known analytically but only 
numerically (very well)

Rapidity Anomalous Dimension to Four Loops
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More things towards percent level predictions…



Bare Beam Functions and Renormalization
N-Jettiness Beam Function qT Beam Function

● Coupling renormalization

● SCETI renormalization

● IR poles subtracted via NNLO PDF 
counterterms

project to 𝜏 project to qT Collinear expansion of the 
partonic cross section for 

Drell Yan and Higgs at N3LO 
differential in (QT, 𝜏, z)

● Coupling renormalization

● Zero-bin subtraction via calculation of 
bare qT Soft Function at N3LO

● SCETII renormalization

● IR poles subtracted via NNLO PDF 
counterterms 32

● Poles in dimensional regularization 
(up to 1/ε6)

● Logs/Plus Distributions in 𝜏

● Iterated Integrals up to weight 5, with 
alphabet

● Constants to weight 6 

● Poles in dimensional regularization

● Rapidity divergences regulated by 
exponential regulator

● Logs/Plus Distributions in bT/qT

● HPLs in z up to weight 5

● Constants to weight 6
R

enorm
alization

Bare
Results



● 6 orders of poles cancel in all channels

● Terms involving                              vs RGE prediction

● Eikonal limit vs threshold consistency

● Generalized leading color approx
[Billis, Ebert, Michel and Tackmann]

● All rapidity divergences regulated

● 3 orders of 𝜺 poles cancel for all channels

● Log terms vs RGE prediction

● Eikonal limit vs threshold consistency

● Quark channels vs [Luo, Yang, Zhu, Zhu 1912.05778] 
(found small discrepancy)

Checks
N-Jettiness Beam Function qT Beam Function

project to 𝜏 project to qT Collinear expansion of the 
partonic cross section for 

Drell Yan and Higgs at N3LO 
differential in (QT, 𝜏, z)

Checks

[Behring, Melnikov, Rietkerk, Tancredi, Wever]

[Billis, Ebert, Michel and Tackmann]
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Confirmation of our results 
in later independent calculation

(Baranowski, Behring, Melnikov, 
Tancredi, Wever) 

[2211.05722]

Confirmation of our results 
in later independent calculation

(Luo, Yang, Zhu, Zhu) 
[2012.03256]



Slicing Power Corrections 
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● Error due to higher order terms in slicing observable expansion

○ In principle: made negligible by pushing cut to small values

○ In practice: tradeoff between numerical stability and size of power 

corrections

● Interesting prospects of improving them by computing power corrections 

analytically See for example: [Ebert, Moult, Stewart, Tackmann, GV, Zhu, 1807.10764, 1812.08189]
[Boughezal, Isgro’, Petriello ‘19]



Analytic cross sections for collider observables

VVV
“Pure amplitude” 

contribution 

RVV RVxRV

Example: 
Higgs production at N3LO in gg

RRR

RRV
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See phase space constraints
as “cut” propagators

[Anastasiou, Melnikov] [Anastasiou, Dixon, Melnikov]

See this as a 
loop integral

● Important! Analytic (not numerical) 
computations of cross sections (not amplitudes)

● Integral over phase space of final state 
particles

● Sum over all Real and Virtual corrections

● Analytic control of IR divergences

Trade phase space integrals for loop 
integrals with reverse unitarity

More measurements, more cut 
propagators, more difficult integrals



Expansion for Color Singlet Cross Sections
● Consider production of a color singlet state h in proton-proton collision

● Measurements: total momentum of radiation, color singlet Q and Y

● Limit where total momentum of radiation is soft compared to Q

● Limit where total momentum of radiation is collinear to proton axis

Threshold expansion

(very well known in literature)

Collinear Expansion

Our work! 36

Reverse Unitarity: 

think of 

measurements as cut 

propagators!



Collinear Expansion for Matrix Elements

● Kinematic limit            expansion of Feynman integrands appearing in 
the calculation of partonic cross sections

● Take for example double real emission (RR) scalar integral

General idea has long history, see e.g. 
Expansion by region [Beneke, Smirnov ‘97]

                                            In the collinear limit:
○ Differential double real

particle phase space 
scales homogeneously

○ Propagators can 
be expanded easily

3737



Collinear Expansion for double real graphs

● We can perform a collinear expansion of the integrand

● Collinear expansion admits diagrammatic representation!

● Same procedure can be applied for mixed loop/radiation integrals
(like RV integrals at NNLO)

38



Collinear Expansion and IBPs

● We can make use of modern technology 
for multiloop calculations with simplified 
kinematic dependence!

Key Point! 
Expanded diagrams admit
(simplified) integration by

parts (IBPs) identities

IBPs

Reverse Unitarity

Canonical
Differential Equations

● Simplifications w.r.t. full kinematics are huge and enter at each step:

○ IBPs (smaller set of MI, smaller coefficients)

○ System of DE  (e.g. ~ 10 MB for differential N3LO in collinear limit
       vs  ~ 10 GB in full kinematics)

○ Space of functions (e.g. @N3LO: Elliptic functions for inclusive color singlet 
production in full kinematics vs only HPL for qT distributions in collinear limit)
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SIDIS at small qT

● Factorization for SIDIS at small qT contains TMD Fragmentation Functions (TMDFFs)
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TMDPDF
(qT Beam Functions)

TMD Fragmentation 
Function

Factorization for SIDIS at small qT

● TMDFFs are final state (time-like) analog of TMDPDFs

● TMDFFs can be OPEd onto longitudinal Fragmentation Functions (FF) for   

LP Collinear expansion of SIDIS


