Galileo Galilei Institute, Florence, Italy

Updates on Sector Decomposition

Stephen Jones
Assistant Professor, IPPP Durham / Royal Society URF

THE
ROYAL
SOCIETY

Based on work with...

Photo by Lisa Biermann
pySecDec 2023: Matthias Kerner, SJ, Gudrun Heinrich, Anton Olsson, Johannes Schlenk, Vitaly Magerya
2305.19768: Numerical Scattering Amplitudes with pySecDec (= pySecDec v1.6)
2211.14845: From Landau equations to the Newton polytope
w/ E. Gardi, F. Herzog, Y. Ma, J. Schlenk
2112.09145: Targeting Multi-Loop Integrals with Neural Networks w/ R. Winterhalder, V. Magerya, E. Villa, M. Kerner, A. Butter, G. Heinrich, T. Plehn
2108.10807: Expansion by regions with pySecDec (= pySecDec v1.5)

+ S. Jahn, F. Langer, A. Poldaru, E. Villa

Computing Feynman Integrals

Feynman integrals can be difficult to compute analytically

Various methods to approximate/evaluate them numerically
Numerical differential equations
Series solutions of differential equations (DiffExp, AMFlow, Seasyde)
Mellin-Barnes (MB, Ambre)
Taylor expansion in Feynman parameters (Taylnt)
Tropical sampling (Feyntrop)
Numerical Loop-Tree Duality (cLTD, Lotty) \rightarrow Talk of Dario
Sector decomposition (Sector_decomposition, FIESTA, pySecDec)

Sector Decomposition in a Nutshell

$$
I \sim \int_{\mathbb{R}_{>0}^{N+1}}[\mathrm{~d} \boldsymbol{x}] \boldsymbol{x}^{\nu} \frac{[\mathscr{U}(\boldsymbol{x})]^{N-(L+1) D / 2}}{[\mathscr{F}(\boldsymbol{x}, \mathbf{s})-i \delta]^{N-L D / 2}} \delta(1-H(\boldsymbol{x}))
$$

Singularities

1. UV/IR singularities when some $x \rightarrow 0$ simultaneously \Longrightarrow Sector Decomposition
2. Thresholds when \mathscr{F} vanishes inside integration region $\Longrightarrow i \delta$

Sector decomposition

Find a local change of coordinates for each singularity that factorises it (blow-up)

Sector Decomposition in a Nutshell (II)

$$
\begin{gathered}
I \sim \int_{\mathbb{R}_{>0}^{N}}[\mathrm{~d} \boldsymbol{x}] \boldsymbol{x}^{\nu}\left(c_{i} \boldsymbol{x}^{\mathbf{r}_{i}}\right)^{t} \\
\mathscr{N}(I)=\operatorname{convHull}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots\right)=\bigcap_{f \in F}\left\{\mathbf{m} \in \mathbb{R}^{N} \mid\left\langle\mathbf{m}, \mathbf{n}_{f}\right\rangle+a_{f} \geq 0\right\}
\end{gathered}
$$

Normal vectors incident to each extremal vertex define a local change of variables* Kaneko, Ueda 10

$$
\begin{gathered}
x_{i}=\prod_{f \in S_{j}} y_{f}^{\left\langle\mathbf{n}_{f}, \mathbf{e}_{i}\right\rangle} \\
I \sim \sum_{\sigma \in \Delta_{\mathcal{J}}^{T}}|\sigma| \int_{0}^{1}\left[\mathrm{~d} \mathbf{y}_{f}\right] \prod_{f \in \sigma} y_{f}^{\left\langle\mathbf{n}_{f}, \nu\right\rangle-t a_{f}}\left(\frac{\left.c_{i} \prod_{f \in \sigma} y_{f}^{\left\langle\mathbf{n}_{f}, \mathbf{r}_{i}\right\rangle+a_{f}}\right)^{t}}{\text { Singularities }} \frac{\text { Finite }}{}\right.
\end{gathered}
$$

*|f $\left|S_{j}\right|>N$, need triangulation to define variables (simplicial normal cones $\sigma \in \Delta_{\mathcal{N}}^{T}$)

Sector Decomposition in a Nutshell (III)

$$
\begin{aligned}
=\quad \mathbf{n}_{1} & =\binom{-1}{0} \mathbf{n}_{2} \\
=\binom{0}{-1} & \mathbf{n}_{3}=\binom{1}{1} \\
a_{1} & =1 \quad a_{2}=1 \quad a_{3}=-1
\end{aligned}
$$

For each vertex make the local change of variables
e.g. $\mathbf{r}_{1}: x_{1}=y_{1}^{-1} y_{3}^{1}, x_{2}=y_{1}^{0} y_{3}^{1}, \mathbf{r}_{2}: x_{1}=y_{1}^{-1} y_{2}^{0}, x_{2}=y_{1}^{0} y_{2}^{-1}, \mathbf{r}_{3}: x_{1}=y_{2}^{0} y_{3}^{1}, x_{2}=y_{2}^{-1} y_{3}^{1}$
$I=-\Gamma(-1+2 \varepsilon)\left(m^{2}\right)^{1-2 \varepsilon} \int_{0}^{1} \mathrm{~d} y_{1} \mathrm{~d} y_{2} \mathrm{~d} y_{3} \frac{y_{1}^{-\varepsilon} y_{2}^{-\varepsilon} y_{3}^{-1+\varepsilon}}{\left(y_{1}+y_{2}+y_{3}\right)^{2-\varepsilon}}\left[\delta\left(1-y_{2}\right)+\delta\left(1-y_{3}\right)+\delta\left(1-y_{1}\right)\right]$

Challenges and Opportunities

Frontiers

* $2 \rightarrow 2$ @ 2-loop : fine (e.g. HH, HJ, ZZ, ZH)
+ masses (e.g. EW corrections) - suitable
+ large hierarchies (e.g. small m_{b}, large s, thresholds)
* $2 \rightarrow 3$ @ 2-loop : challenging (high dim phase-space)
* 3-loop+ : suitable, less explored

Opportunities

WIP: Gudrun Heinrich, SJ, Matthias Kerner, Tom Stone, Augustin Vestner

1. Improvements in algorithm \& implementation
2. Smarter numerical integration routines
3. Improved contour deformation
4. Expansions
5. Algorithmic Improvements

Performance Improvements

v1.5: Adaptive sampling of sectors, automatic contour def. adjustment
v1.5.6: Optimisations in integrand code
v1.6: New Quasi-Monte Carlo integrator "Disteval"
Faster implementation of old integrator "IntLib"
CPU \& GPU: fusion of integration/integrand code (less modular arithmetic)
CPU: better utilisation via SIMD instructions (AVX2, FMA)
GPU: sum result on GPU, less synchronisation
Parse amplitude coefficients w/GiNaC (supports e.g. partial fractioned input)
Workers can run on remote machines (via ssh)

Does it help?

Performance Improvements (II)

Profiling (I)

Integrator $\\) Accuracy & \(10^{-3}$	10^{-4}	10^{-5}	10^{-6}	10^{-7}	10^{-8}		
GPU	DISTEVAL	4.2 s	6.3 s	27 s	1.5 m	17 m	54 m
	INTLIB	22.0 s	22.0 s	110 s	6.7 m	50 m	263 m
	Speedup	5.2	5.2	4.1	5.6	3.0	4.9
CPU	DISTEVAL	5.1 s	14 s	1.6 m	8.3 m	57 m	4.7 h
	INTLIB	20.8 s	86 s	14.2 m	62.2 m	480 m	43.1 h
	Speedup	4.1	6.1	8.7	7.5	8.4	9.2

[GPU: NVidia A100 40GB; CPU: AMD EPYC 7F32 with 32 threads]
Vitaly Magerya (Radcor 2023)

Profiling (II)

pySecDec DIsteval integration times for 3-loop self-energy integrals: ${ }^{3}$

| Diagram $\left.\right\|^{\text {Relative precision }}$ | 10^{-3} | 10^{-4} | 10^{-5} | 10^{-6} | 10^{-7} | 10^{-8} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[Same diagrams as in Dubovyk, Usovitsch, Grzanka '21]
In short: seconds to minutes per integral to achieve practical precision.
[GPU: NVidia A100 40GB; CPU: AMD EPYC 7F32 with 32 threads]
2. Integration: Median Lattice Rules

Quasi-Monte Carlo

Li, Wang, Yan, Zhao 15; de Doncker, Almulihi, Yuasa 17, 18; de Doncker, Almulihi 17; Kato, de Doncker, Ishikawa, Yuasa 18

$$
Q_{n}^{(k)}[f] \equiv \frac{1}{n} \sum_{i=0}^{n-1} f\left(\left\{\frac{i \mathbf{z}}{n}+\boldsymbol{\Delta}_{k}\right\}\right) \quad I[f] \approx \bar{Q}_{n, m}[f] \equiv \frac{1}{m} \sum_{k=0}^{m-1} Q_{n}^{(k)}[f]
$$

\{\} - Fractional part
Δ_{k} - Random shift vector
z - Generating vector
Previously:
Precompute \mathbf{z} with (CBC) construction
Nuyens, Cools 06
Guarantee error $\sim 1 / n^{\alpha}$ if $\delta_{x}^{(\alpha)} I(\mathbf{x})$ is squareintegrable and periodic Dick, Kuo, Sloan 13

CBC needs $\mathcal{O}(n)$ bytes memory $n \lesssim 4.10^{10} @ 2$ TB

Can encounter "unlucky" lattices

Quasi-Monte Carlo: Unlucky Lattices

Good: Asymptotic error scaling $\sim 1 / n^{1.5}$
Bad: Huge drop in precision for some "unlucky" lattices Not consistent across integrands

Quasi-Monte Carlo: Unlucky Lattices (II)

Good: Asymptotic error scaling $\sim 1 / n^{1.5}$
Bad: Huge drop in precision for some "unlucky" lattices Not consistent across integrands

Median Lattice Rules

Instead:

Compute \mathbf{z} on-the-fly

1. Choose R random $\mathbf{z} \in \operatorname{Uniform}(0 ; N-1)$
2. Estimate integral on each lattice
3. Choose lattice with median integral value

If $\delta_{x}^{(\alpha)} I(\mathbf{x})$ is square-integrable and periodic
Integration error: $C(\alpha, \varepsilon) /(\rho n)^{\alpha-\epsilon}$
With probability: $1-\rho^{R+1 / 2} / 4$
$\forall 0<\varepsilon \& 0<\rho<1$
Goda, L'Ecuyer 22

3. Contour Deformation

3. Neural Networks for Contour Deformation

Feynman integral (multi-loop/leg):
$I \sim \int_{0}^{1}[\mathrm{~d} \boldsymbol{x}] \boldsymbol{x}^{\nu} \frac{[\mathscr{U}(\boldsymbol{x})]^{N-(L+1) D / 2}}{[\mathscr{F}(\boldsymbol{x}, \mathbf{s})]^{N-L D / 2}}$
Must deform contour to avoid poles on real axis

Feynman prescription $\mathscr{F} \rightarrow \mathscr{F}-i \delta$ tells us how to do this
Expand $\mathscr{F}(z=\boldsymbol{x}-i \boldsymbol{\tau})$ around $\boldsymbol{x}: \mathscr{F}(\boldsymbol{z})=\mathscr{F}(\boldsymbol{x})-i \sum_{j} \tau_{j} \frac{\partial \mathscr{F}(\boldsymbol{x})}{\partial x_{j}}+\mathscr{O}\left(\tau^{2}\right)$
Old Method
$\tau_{j}=\lambda_{j} x_{j}\left(1-x_{j}\right) \frac{\partial \mathscr{F}(\boldsymbol{x})}{\partial x_{j}}$ with small constants $\lambda_{j}>0$
New Method
Generalise $\lambda_{j} \rightarrow \lambda_{j}(\boldsymbol{x})$ and use Neural Network (Normalizing Flows) to pick contour Winterhalder, Magerya, Villa, SJ, Kerner, Butter, Heinrich, Plehn 22

3. Neural Networks for Contour Deformation (II)

Normalizing Flows consist of a series of (trainable) bijective mappings for which we can efficiently compute the Jacobian

Procedure

1. Contour deformation:
used if multi-scale integral
2. Λ-glob:
optimization of λ_{j} parameters

$$
\begin{array}{r}
\int_{0}^{1} \prod_{j=1}^{N} \mathrm{~d} x_{j} \operatorname{det}\left(\frac{\partial \vec{y}(\vec{x})}{\partial \vec{x}}\right) \mathcal{I}(\vec{y}(\vec{x})) \\
x_{j} \in \mathbb{R}
\end{array}
$$

Loss: $L=L_{\mathrm{MC}}+L_{\text {sign }}$ constructed to minimise variance without crossing poles

3. Neural Networks for Contour Deformation (III)

Applied to several 1 \& 2-loop Feynman Integrals with multiple masses/thresholds using tensorflow

Proof of principle that Machine Learning can help to find improved contours and reduce variance, still a tradeoff between training time/ integrating time

4. Expansions: Method of Regions

Method of Regions

Consider expanding an integral about some limit:

$$
p_{i}^{2} \sim \lambda Q^{2}, p_{i} \cdot p_{j} \rightarrow \lambda Q^{2} \text { or } m^{2} \sim \lambda Q^{2} \text { for } \lambda \rightarrow 0
$$

Issue: integration and series expansion do not necessarily commute

Method of Regions

$$
I(\mathbf{s})=\sum_{R} I^{(R)}(\mathbf{s})=\sum_{R} T_{\mathbf{t}}^{(R)} I(\mathbf{s})
$$

1. Split integrand up into regions (R)
2. Series expand each region in λ
3. Integrate each expansion over the whole integration domain
4. Discard scaleless integrals ($=0$ in dimensional regularisation)
5. Sum over all regions

Smirnov 91; Beneke, Smirnov 97; Smirnov, Rakhmetov 99; Pak, Smirnov 11; Jantzen 2011; ...

Finding Regions

Normal vectors w/ positive λ component define change of variables $\mathbf{n}_{f}=\left(v_{1}, \ldots, v_{N}, 1\right)$

$$
\begin{array}{lll}
\boldsymbol{x}=\lambda^{\mathbf{n}_{f}} \mathbf{y}, \quad \lambda \rightarrow \lambda \quad \begin{array}{l}
\text { Pak, Smirnov 10; Semenova, } \\
\text { A. Smirnov, V. Smirnov } 18
\end{array}, ~
\end{array}
$$

$$
\begin{array}{r}
1,2 \in F^{+} \\
3 \notin F^{+}
\end{array}
$$

Original integral I may then be approximated as $I=\sum_{f \in F^{+}} I^{(f)}+\ldots$

Additional Regulators/ Rapidity Divergences

MoR subdivides $\mathcal{N}(I) \rightarrow\left\{\mathscr{N}\left(I^{R}\right)\right\} \Longrightarrow$ new (internal) facets $F^{\text {int. }}$
New facets can introduce spurious singularities not regulated by dim reg

Lee Pomeransky Representation:

$$
\begin{gathered}
\mathcal{N}\left(I^{(R)}\right)=\bigcap_{f \in F}\left\{\mathbf{m} \in \mathbb{R}^{N} \mid\left\langle\mathbf{m}, \mathbf{n}_{f}\right\rangle+a_{f} \geq 0\right\} \\
I \sim \sum_{\sigma \in \Delta_{\cdot}^{T}}|\sigma| \int_{\mathbb{R}_{>0}^{N}}\left[\mathrm{~d} \mathbf{y}_{f}\right] \prod_{f \in \sigma} y_{f}^{\left\langle\mathbf{n}_{f}, \nu\right\rangle+\frac{D}{2} a_{f}}\left(c_{i} \prod_{f \in \sigma} y_{f}^{\left\langle\mathbf{n}_{f}, \mathbf{r}_{i}\right\rangle+a_{f}}\right)^{-\frac{D}{2}}
\end{gathered}
$$

If $f \in F^{\text {int }}$ have $a_{f}=0$ need analytic regulators $\boldsymbol{\nu} \rightarrow \boldsymbol{\nu}+\boldsymbol{\delta} \boldsymbol{\nu}$
Heinrich, Jahn, SJ, Kerner, Langer, Magerya, Põldaru, Schlenk, Villa 21; Schlenk 16

Additional Regulators/ Rapidity Divergences

Toy Example:

$$
P_{1}(x, \lambda)=1+\lambda x_{1}+x_{1} x_{2}+\lambda x_{2}
$$

pySecDec can find the constraints on the analytic regulators for you
extra_regulator_constraints():

$$
v_{2}-v_{4} \neq 0, \quad v_{1}-v_{3} \neq 0
$$

suggested_extra_regulator_exponent():

$$
\left\{\delta \nu_{1}, \delta \nu_{2}, \delta \nu_{3}, \delta \nu_{4}\right\}=\{0,0, \eta,-\eta\}
$$

Small m expansion

Applying Expansion by Regions

Ratio of the finite $\mathcal{O}\left(\epsilon^{0}\right)$ piece of numerical result R_{n} to the analytic result R_{a}

For large ratio of scales $\left(\mathrm{m}^{2} / \mathrm{s}\right)$ the EBR result is faster \& easier to integrate

Building Bridges: LP \leftrightarrow Propagator Scaling

Region vectors in momentum space and Lee-Pomeransky space are related, we can see this using Schwinger parameters \tilde{x}_{e}

$$
\begin{gathered}
\frac{1}{D_{n}^{\nu_{e}}}=\frac{1}{\Gamma\left(\nu_{e}\right)} \int_{0}^{\infty} \frac{\mathrm{d} \tilde{x}_{e}}{\tilde{x}_{e}} \tilde{x}_{e}^{\nu_{e}} e^{-\tilde{x}_{e} D_{e}}, \text { with } x_{e} \propto \tilde{x}_{e} \\
\left(D_{1}^{-1}, \ldots, D_{N}^{-1}\right) \sim\left(\tilde{x}_{1}, \ldots, \tilde{x}_{N}\right) \sim\left(x_{1}, \ldots, x_{N}\right)
\end{gathered}
$$

Example: 1-loop form factor

$$
\text { Hard : } \quad\left(D_{1}^{-1}, D_{2}^{-1}, D_{3}^{-1}\right) \sim\left(\lambda^{0}, \lambda^{0}, \lambda^{0}\right), \quad\left(x_{1}, x_{2}, x_{3}\right) \sim\left(\lambda^{0}, \lambda^{0}, \lambda^{0}\right)
$$

Collinear to $\mathrm{p}_{1}: \quad\left(D_{1}^{-1}, D_{2}^{-1}, D_{3}^{-1}\right) \sim\left(\lambda^{-1}, \lambda^{0}, \lambda^{-1}\right), \quad\left(x_{1}, x_{2}, x_{3}\right) \sim\left(\lambda^{-1}, \lambda^{0}, \lambda^{-1}\right)$
Collinear to $\mathrm{p}_{2}: \quad\left(D_{1}^{-1}, D_{2}^{-1}, D_{3}^{-1}\right) \sim\left(\lambda^{0}, \lambda^{-1}, \lambda^{-1}\right), \quad\left(x_{1}, x_{2}, x_{3}\right) \sim\left(\lambda^{0}, \lambda^{-1}, \lambda^{-1}\right)$
Soft: $\quad\left(D_{1}^{-1}, D_{2}^{-1}, D_{3}^{-1}\right) \sim\left(\lambda^{-1}, \lambda^{-1}, \lambda^{-2}\right), \quad\left(x_{1}, x_{2}, x_{3}\right) \sim\left(\lambda^{-1}, \lambda^{-1}, \lambda^{-2}\right)$
Can connect the regions in mom. space with those we determine geometrically
Next step: automatically find (Sudakov decomposed) loop momentum scalings compatible with region vectors WIP w/ Yannick Ulrich

Building Bridges: Landau \leftrightarrow Regions

The Landau equations give the necessary conditions for an integral to diverge

$$
\begin{aligned}
& \text { 1) } \alpha_{e} l_{e}^{2}(k, p, q)=0 \quad \forall e \in G \\
& \text { 2) } \frac{\partial}{\partial k_{a}^{\mu}} \mathscr{D}(k, p, q ; \alpha)=\frac{\partial}{\partial k_{a}^{\mu}} \sum_{e \in G} \alpha_{e}\left(-l_{e}^{2}(k, p, q)-i \varepsilon\right)=0 \quad \forall a \in\{1, \ldots, L\}
\end{aligned}
$$

Solutions are pinched surfaces of the integral where IR divergences may arise

Idea is to explore the neighbourhood of a pinched surface, defined by

$$
\begin{aligned}
& \text { 1) } \alpha_{e} l_{e}^{2}(k, p, q) \sim \lambda^{p} \quad \forall e \in G, \quad \text { with } \quad p \in\{1,2\} \\
& \text { 2) } \quad \frac{\partial}{\partial k_{a}^{\mu}} \mathscr{D}(k, p, q ; \alpha) \lesssim \lambda^{1 / 2} \quad \forall a \in\{1, \ldots, L\}
\end{aligned}
$$

with the goal of further understanding the connection between
Solutions of the Landau equations \leftrightarrow Regions

On-Shell Expansion

Consider an arbitrary loop, $(K+L)$-leg wide-angle scattering graph

$$
\begin{array}{lr}
\text { on-shell: } & p_{i}^{2} \sim \lambda Q^{2}(i=1, \ldots, K), \\
\text { off-shell: } & q_{j}^{2} \sim Q^{2}(j=1, \ldots, L), \\
\text { wide-angle: } & p_{k} \cdot p_{l} \sim Q^{2}(k \neq l) .
\end{array}
$$

Assuming only hard, collinear \& soft modes in momentum space:
What can we say about the regions?

On-Shell Expansion

Using MoR we find:

$$
\begin{aligned}
& v_{R}=\left(u_{R, 1}, u_{R, 2}, \ldots, u_{R, N} ; 1\right), \quad u_{R, e} \in\{0,-1,-2\}, \\
& u_{R, e}=0 \leftrightarrow \quad e \in H \\
& u_{R, e}=-1 \quad \leftrightarrow \quad e \in J \equiv \cup_{i=1}^{K} J_{i} \\
& u_{R, e}=-2 \quad \leftrightarrow \quad e \in S
\end{aligned}
$$

Consider possible solutions of the Landau equations, search for the scaleful ones \Longrightarrow constraints from Landau equations \& scalefulness

We find:

Appears to hold at any order in the power expansion (i.e. any order in λ)

On Shell Expansion: Graphical Method

Can construct graphical method for writing down the region vectors

Checked algorithm explicitly for all diagrams in ϕ^{3}, ϕ^{4} with up to 3-legs @ 5-loops \& 4-legs @ 4-loops

Work in Progress...

$t \bar{t} H:$ Quark Initiated n_{f} Piece

Compute 2-loop ingredients for $t \bar{t} H$, starting with $q \bar{q}, n_{f}$ pieces

(a) $n_{h} C_{A}^{2} C_{F} T_{F}$

(d) $n_{h} n_{l} C_{A} C_{F} T_{F}^{2}$

(g) $n_{l}^{2} C_{A} C_{F} T_{F}^{2}$

(j) $n_{l} T_{F}\left(\frac{1}{2} C_{A}^{2} C_{F}+4 d_{33}\right)$

(b) $n_{l} C_{A} C_{F}^{2} T_{F}$

(e) $n_{h}^{2} C_{A} C_{F} T_{F}^{2}$

(h) $n_{h} C_{A} C_{F} T_{F}\left(C_{A}-2 C_{F}\right)$

(k) $n_{l} T_{F}\left(\frac{1}{2} C_{A}^{2} C_{F}-4 d_{33}\right)$

(m) $n_{h} T_{F}\left(\frac{1}{2} C_{A}^{2} C_{F}-4 d_{33}\right)$

(c) $n_{h} C_{A} C_{F}^{2} T_{F}$

(f) $n_{l} C_{A}^{2} C_{F} T_{F}$

(i) $n_{l} C_{A} C_{F} T_{F}\left(C_{A}-2 C_{F}\right)$

(1) $n_{h} T_{F}\left(\frac{1}{2} C_{A}^{2} C_{F}+4 d_{33}\right)$

New challenges

5-point amplitudes depending on 5 kinematic scales +2 masses 831 master integrals

WIP: V. Magerya, G. Heinrich, SJ, M. Kerner, S. Klein, J. Lang, A. Olsson

$t \bar{t} H$: Quark Initiated n_{f} Piece (II)

Projectors: Born amplitudes
Reduction: On-the-fly numerical reduction for each phase-space point with Ratracer

Magerya 22
Integrals: quasi-finite, d-factorizing, possible with pySecDec, also investigating DiffExp approach

First look at phase-space points...

Target $\epsilon_{\text {rel }}=1 \cdot 10^{-4}$ precision on amplitude

$$
\begin{aligned}
m_{H}^{2} & =\frac{8085251}{15486360} m_{t}^{2}, \\
x_{12} & =10 m_{t}^{2}, \\
x_{23} & =-\frac{2571}{620} m_{t}^{2}, \\
x_{35} & =\frac{357583}{168330} m_{t}^{2}, \\
x_{54} & =\frac{19381}{5704} m_{t}^{2}, \\
x_{41} & =-\frac{2734}{465} m_{t}^{2},
\end{aligned}
$$

$$
\begin{array}{ccl}
d_{33} N_{f} T_{f} & \varepsilon^{-2} & +0.0049204 \\
& \varepsilon^{-1} & +0.010292+0.022622 I \\
& \varepsilon^{0} & -0.042837+0.069854 I \\
d_{33} N_{f t} T_{f} & \varepsilon^{-2} & +0.0065606 \\
& \varepsilon^{-1} & +0.020794+0.016814 I \\
& \varepsilon^{0} & +0.039555+0.099444 I \\
C_{a}^{2} C_{f} N_{f} T_{f}^{2} & \varepsilon^{-2} & -0.0056536-0.011281 I \\
& \varepsilon^{-1} & +0.034203-0.046061 I \\
& \varepsilon^{0} & +0.11670+0.0067178 I \\
C_{a} C_{f}^{2} N_{f} T_{f}^{2} & \varepsilon^{-3} & +0.0025559 \\
& \varepsilon^{-2} & -0.010942+0.028986 I \\
& \varepsilon^{-1} & -0.15880+0.030480 I \\
& \varepsilon^{0} & -0.41022-0.17499 I \\
C_{a}^{2} C_{f} N_{f t} T_{f}^{2} & \varepsilon^{-2} & -0.0050392-0.015042 I \\
& \varepsilon^{-1} & +0.0053639-0.059042 I \\
& \varepsilon^{0} & +0.071442-0.084413 I \\
C_{a} C_{f}^{2} N_{f t} T_{f}^{2} & \varepsilon^{-3} & 0.0040894 \\
& \varepsilon^{-2} & -0.0047233+0.032887 I \\
& \varepsilon^{-1} & -0.14753+0.12175 I \\
& \varepsilon^{0} & -0.59562+0.11786 I \\
C_{a} C_{f} N_{f}^{2} T_{f}^{3} & \varepsilon^{-2} & +0.0013631 \\
& \varepsilon^{-1} & +0.0021910+0.0085648 I \\
& \varepsilon^{0} & -0.023414+0.013766 I \\
C_{a} C_{f} N_{f} N_{f t} T_{f}^{3} & \varepsilon^{-2} & +0.0027262 \\
& \varepsilon^{-1} & +0.011458+0.012303 I \\
C_{a} C_{f} N_{f t}^{2} T_{f}^{3} & \varepsilon^{0} & -0.0010859+0.053128 I \\
& \varepsilon^{-2} & +0.0013631 \\
& \varepsilon^{-1} & +0.0092667+0.0037380 I \\
& +0.026549+0.029970 I
\end{array}
$$

$t \bar{t} H:$ Quark Initiated n_{f} Piece

Poles - checked (subtraction formulae + cross-check)

Finite part - O(16k) points Chen, Ma, Wang, Yang, Ye 22

```
amp3=(
    +eps^-3*(+2.4812080814589719e-03-2.8947822690179251e-12j)
    +eps^-3*(+1.9029876783836805e-12+1.9981956842417825e-12j)*plusminus
    +eps^-2*(-1.2795194320055608e-02+2.5786079682589620e-02j)
    +eps^-2*(+3.2657872292033090e-11+3.3012784793239365e-11j)*plusminus
    +eps^-1*(-1.4218012895908955e-01-7.6189537659053942e-04j)
    +eps^-1*(+1.8573326634188658e-07+1.7282326416744234e-07j)*plusminus
    +eps^0*(-2.5869321981561438e-01-2.1758799270790402e-01j)
    +eps^0*(+2.2204593845353293e-06+2.3132847824753248e-06j)*plusminus
)
amp3 relative errors by order: 0.00e+00, 0.00e+00, 1.78e-06, 9.49e-06
amp4=(
    +eps^-3*(-2.2776225350185086e-13-5.7714358636920437e-14j)
    +eps^-3*(+1.5245922908967811e-13+1.3428935998390410e-13j)*plusminus
    +eps^-2*(-4.6780134875432436e-03-1.3033417608064988e-02j)
    +eps^-2*(+4.4565990403149097e-09+5.1370665056934937e-09j)*plusminus
    +eps^-1*(+1.1134216059718732e-02-4.4304381365715018e-02j)
    +eps^-1*(+9.5922064468682343e-07+9.4844016477226567e-07j)*plusminus
    +eps^0*(+4.5781345959152238e-02-4.4723941222410774e-02j)
    +eps^0*(+3.0592105076939906e-06+3.1320453916005085e-06j)*plusminus
)
amp4 relative errors by order: 0.00e+00, 4.91e-07, 2.95e-05, 6.84e-05
```

Good point: 3-4 mins
GPU: NVidia A100 40GB
amp3=(
$+e p s^{\wedge}-3 *(+7.4339015599071689 e-04-7.9500880445625670 e-13 j)$
$+e p s^{\wedge}-3 *(+5.7145309613096924 \mathrm{e}-13+5.9971316345385848 \mathrm{e}-13 \mathrm{j}) * \mathrm{plusminus}$ $+e p s^{\wedge}-2 *(-3.0981991383820405 \mathrm{e}-03+9.1682626032127991 \mathrm{e}-03 \mathrm{j})$
$+e p s^{\wedge}-2 *(+9.7650289569317253 e-12+9.9189849982950227 e-12 j) * p l u s m i n u s$
$+e p s^{\wedge}-1 *(-4.6793708870014772 \mathrm{e}-02+9.3085610262487999 \mathrm{e}-03 \mathrm{j})$
$+e p s^{\wedge}-1 *(+6.2340661736749192 e-07+6.4733201139491059 e-07 j) * p l u s m i n u s$ $+e p s^{\wedge} 0 *(-1.1711570776049893 e-01-4.2728554150957172 e-02 j)$
$+\mathrm{eps}^{\wedge} 0 *(+2.9732556334539358 \mathrm{e}-06+2.9950056109814405 \mathrm{e}-06 \mathrm{j}) * \mathrm{plusminus}$
)
amp3 relative errors by order: 0.00e+00, $0.00 \mathrm{e}+00,1.88 \mathrm{e}-05,3.39 \mathrm{e}-05$ amp4=(
$+e p s^{\wedge}-3 *(-1.2956460461802100 e-08+7.8310287578327527 e-09 j)$
$+e p s^{\wedge}-3 *(+3.3667459966638271 e-08+2.6375283024654377 e-08 j) * p l u s m i n u s$ $+e p s^{\wedge}-2 *(-1.6697924163405768 \mathrm{e}-03-4.8625186952290581 \mathrm{e}-03 \mathrm{j})$
$+e p s^{\wedge}-2 *(+8.1602698321304684 \mathrm{e}-07+6.7055067134358471 \mathrm{e}-07 \mathrm{j}) * \mathrm{plusminus}$ +eps^-1*(+9.5428369411900554e-04-1.9084852520645498e-02j)
$+\operatorname{cs}^{\wedge}-1 *(+1.1890510956916082 e-04+5.8577385741283674 \mathrm{e}-04 i) * \mathrm{plusminu}$ $+e p s^{\wedge} 0 *(+3.1867828485252998 \mathrm{e}-02+4.1227641634472185 \mathrm{e}-03 \mathrm{j})$
$+e s^{\wedge} 0 *(+5.6825877897303881 \mathrm{e}-03+3.3489604326241845 \mathrm{e}-02 \mathrm{j}) * \mathrm{plusminus}$

Need to deal with poor performance near thresholds, decide how to sample the PS

Conclusion

Updates

- New"DistEval" integrator: ~3-5x faster than old "IntLib"
- Median lattice rules: lattices of unlimited size, smaller fluctuations in error
- Coefficients: accept GiNaC compatible input
- Tools for MoR: including extra regulator construction

Applications

- Various processes at $2 \rightarrow 2$ with many masses
- First applications to $2 \rightarrow 3$ amplitudes

MoR

- How does the analysis generalise to other types of expansion (e.g. Regge, massive particles, threshold/potential)?
- How should we deal with regions due to cancellation? (e.g. negative c_{i})

Thank you for listening!

Backup

Graphical Algorithm

A taste of why this might hold

1) Partition the graph into hard (H), jet $\left(J_{i}\right)$ and soft (S) subgraphs with n_{H}, n_{J}, n_{S} propagators and LP parameters scaling as $\{0,-1,-2\}$
2) Define contracted subgraphs $\left(\widetilde{J}_{i}\right)$ and (\widetilde{S}) by contracting $G \backslash J_{i}$ or $G \backslash S$ to a point Possible to show:
$L(G)=L(H)+\sum_{i=1}^{K} L\left(\widetilde{J}_{i}\right)+L(\widetilde{S})$
$n_{H} \geq L(H), \quad n_{S} \leq L(\widetilde{S})$
We want to minimise $\boldsymbol{r} \cdot \boldsymbol{v}_{R}$
\Longrightarrow small n_{H}, large n_{S}

Consider $\mathscr{U}(G)$ (degree $L(G)$):

$n_{H}=L(H), \quad n_{J}=L(\widetilde{J}), \quad n_{S}=L(\widetilde{S})$
$\mathscr{U}^{(R)}(\boldsymbol{x})=U_{H}\left(\boldsymbol{x}^{[H]}\right) \cdot\left(\prod U_{J_{i}}\left(\boldsymbol{x}^{\left[J_{i}\right]}\right)\right) \cdot U_{S}\left(\boldsymbol{x}^{[S]}\right)$

A taste of why this might hold

Similar (though slightly longer) arguments lead to the following theorem
Theorem 2. For any region R in the on-shell expansion of a wide-angle scattering graph G, the leading Lee-Pomeransky polynomial takes the form

$$
\begin{align*}
& \mathcal{P}_{0}^{(R)}(\boldsymbol{x} ; \boldsymbol{s})=\mathcal{U}^{(R)}(\boldsymbol{x})+\mathcal{F}^{(R)}(\boldsymbol{x} ; \boldsymbol{s}) \tag{3.34}\\
& \mathcal{F}^{(R)}(\boldsymbol{x} ; \boldsymbol{s})=\sum_{i=1}^{K} \mathcal{F}^{\left(p_{i}^{2}, R\right)}(\boldsymbol{x} ; \boldsymbol{s})+\mathcal{F}_{\mathrm{I}}^{\left(q^{2}, R\right)}(\boldsymbol{x} ; \boldsymbol{s})+\sum_{i>j=1}^{K} \mathcal{F}_{\mathrm{II}}^{\left(q_{i j}^{2}, R\right)}(\boldsymbol{x} ; \boldsymbol{s}) \tag{3.35}
\end{align*}
$$

These polynomials factorise as follows

$$
\begin{align*}
& \mathcal{U}^{(R)}(\boldsymbol{x})=\mathcal{U}_{H}\left(\boldsymbol{x}^{[H]}\right) \cdot\left(\prod_{i=1}^{K} \mathcal{U}_{J_{i}}\left(\boldsymbol{x}^{\left[J_{i}\right]}\right)\right) \cdot \mathcal{U}_{S}\left(\boldsymbol{x}^{[S]}\right), \\
& \mathcal{F}^{\left(p_{i}^{2}, R\right)}(\boldsymbol{x} ; \boldsymbol{s})=\mathcal{U}_{H}\left(x^{[H]}\right) \cdot \mathcal{F}_{J_{i}}^{\left(p_{i}^{2}\right)}\left(\boldsymbol{x}^{\left[J_{j}\right]} ; \boldsymbol{s}\right) \cdot\left(\prod_{j \neq i}^{K} \mathcal{U}_{J_{j}}\left(\boldsymbol{x}^{\left[J_{j}\right]}\right)\right) \cdot \mathcal{U}_{S}\left(\boldsymbol{x}^{[S]}\right), \tag{3.36}\\
& \mathcal{F}_{\mathrm{I}}^{\left(q^{2}, R\right)}(\boldsymbol{x} ; \boldsymbol{s})=\mathcal{F}_{H \cup J}^{\left(q^{2}\right)}\left(\boldsymbol{x}^{[H]}, \boldsymbol{x}^{[J]}\right) \cdot \mathcal{U}_{S}\left(\boldsymbol{x}^{[S]}\right), \\
& \mathcal{F}_{\mathrm{II}}^{\left(q_{i j}^{2}, R\right)}(\boldsymbol{x} ; \boldsymbol{s})=\mathcal{U}_{H}\left(\boldsymbol{x}^{[H]}\right) \cdot \mathcal{F}_{J_{i} \cup \mathcal{U}_{j} \cup S}^{\left(q_{i j}^{2}\right)}\left(\boldsymbol{x}^{\left[J_{i}\right]}, \boldsymbol{x}^{\left[J_{j}\right]}, \boldsymbol{x}^{[S]}\right) \cdot \prod_{k \neq i, j} \mathcal{U}_{J_{k}}\left(\boldsymbol{x}^{\left[J_{k}\right]}\right) .
\end{align*}
$$

We find that contributions correspond to solutions of the Landau equations only if some further conditions hold (suggested by our previous figures)

Some Definitions

Motic: components become 1PI after connecting all external lines to a point Brown 15
Mojetic: components become 1 VI after connecting all external lines to a point (= motic \& scaleful, for massless diagrams)

(a) Both motic and mojetic.

(c) Motic but not mojetic.

(b) Both motic and mojetic.

(d) Neither motic nor mojetic.

Graphical Construction Algorithm

Step 1: For each $i=1, \ldots, K$, construct the one-external subgraph γ_{i} in the p_{i} channel, such that the subgraph $H_{i} \equiv G \backslash \gamma_{i}$ is mojetic

Graphical Construction Algorithm

Step 2: Consider all possible sets $\left\{\gamma_{1}, \ldots, \gamma_{K}\right\}$.
If an edge has been assigned to two or more γ_{i}, it belongs to the soft subgraph S; if it has been assigned to exactly one γ_{i}, it belongs to the jet subgraph J_{i}; if it has not been assigned to any γ_{i}, it belongs to H.

Graphical Construction Algorithm

Step 3: Check that result obeys: (i) each jet subgraph J_{i} is connected; (ii) each hard subgraph H is connected; (iii) each of the K subgraphs $H \cup J \backslash J_{i}(i=1, \ldots, K)$ is mojetic. The region is ruled out if any of these conditions are not satisfied.

Example - Failing criterion (iii): not mojetic

Expansion by Regions

pySecDec: EBR Box Example

Example: 1-loop massive box expanded for small $m_{t}^{2} \ll s,|t|$

Requires the use of analytic regulators
Can regulate spurious singularities by adjusting propagators powers
$G_{4}=\mu^{2 \epsilon} \int_{-\infty}^{\infty} \frac{d^{D} k}{i \pi^{D / 2}} \frac{1}{\left[k^{2}-m_{t}^{2}\right]^{\delta_{1}}\left[\left(k+p_{1}\right)^{2}-m_{t}^{2}\right]^{\delta_{2}}\left[\left(k+p_{1}+p_{2}\right)^{2}-m_{t}^{2}\right]^{\delta_{3}}\left[\left(k-p_{4}\right)^{2}-m_{t}^{2}\right]^{\delta_{4}}}$
Can keep $\delta_{1}, \ldots, \delta_{4}$ symbolic or $\delta_{1}=1+n_{1} / 2, \delta_{2}=1+n_{1} / 3, \ldots$ and take $n_{1} \rightarrow 0^{+}$

Output region vectors:
$\mathbf{v}_{1}=(0,0,0,0,1)$
$\mathbf{v}_{2}=(-1,-1,0,0,1)$
$\mathbf{v}_{3}=(0,0,-1,-1,1)$
$\mathbf{v}_{4}=(-1,0,0,-1,1)$
$\mathbf{v}_{5}=(0,-1,-1,0,1)$

Result: $s=4.0, t=-2.82843, m_{t}^{2}=0.1, m_{h}^{2}=0$)

$$
I=-1.30718 \pm 2.7 \cdot 10^{-6}+\left(1.85618 \pm 3.0 \cdot 10^{-6}\right) i
$$

$$
+\mathcal{O}\left(\epsilon, n_{1}, \frac{m_{t}^{2}}{s}, \frac{m_{t}^{2}}{t}\right)
$$

Geometric Method: Negative Coefficients

Issue 2: What happens if we have negative coefficients $c_{i}<0$? \leftarrow not handled by pySecDec (yet!)

Consider a 1-loop massive bubble at threshold $y=m^{2}-q^{2} / 4 \rightarrow 0$

$$
\mathscr{F}=q^{2} / 4\left(x_{1}-x_{2}\right)^{2}+y\left(x_{1}+x_{2}\right)^{2}
$$

Can split integral into two subdomains $x_{1} \leq x_{2}$ and $x_{2} \leq x_{1}$ then remap

$$
\begin{aligned}
& x_{1}=x_{1}^{\prime} / 2 \\
& x_{2}=x_{2}^{\prime}+x_{1}^{\prime} / 2
\end{aligned}: \mathscr{F} \rightarrow \frac{q^{2}}{4} x_{2}^{\prime 2}+y\left(x_{1}^{\prime}+x_{2}^{\prime}\right)^{2} \quad \text { (for first domain) }
$$

Various tools attempt to find such re-mappings:
FIESTA Jantzen, A. Smirnov, V. Smirnov 12
Check all pairs of variables (x_{1}, x_{2}) which are part of monomials of opposite sign For each pair, try to build linear combination x_{1}^{\prime} s.t negative monomial vanishes Repeat until all negative monomials vanish or warn user

ASPIRE Ananthanarayan, Pal, Ramanan, Sarkar 18; B. Ananthanarayan, Das, Sarkar 20
Consider Gröbner basis of $\left\{\mathscr{F}, \partial \mathscr{F} / x_{1}, \partial \mathscr{F} / x_{2}, \ldots\right\}$ (i.e. \mathscr{F} and Landau equations) Eliminate negative monomials with linear transformations $x_{1} \rightarrow a x_{1}^{\prime}, x_{2} \rightarrow x_{2}^{\prime}+a x_{1}^{\prime}$

Geometric Method: Determining the Regions (VI)

Rewrite our polynomial as: $P(\mathbf{x})=Q(\mathbf{x})+R(\mathbf{x})$
With $Q(\mathbf{x})$ defined such that it contains all of the lowest order terms in t

Then, binomial expansion of
$P(\mathbf{x})^{m}=Q(\mathbf{x})^{m}\left(1+\frac{R(\mathbf{x})}{Q(\mathbf{x})}\right)^{m}$ converges for $\mathbf{x}=t^{\mathbf{u}}$ if $R(\mathbf{x}) / Q(\mathbf{x})<1$

Some observations:

- An expansion with region vector \mathbf{v} converges at a point \mathbf{u} if the lowest order terms along the direction \mathbf{v} contain the lowest order terms along the direction \mathbf{u}
- For any direction \mathbf{u} the vertices with the smallest $<\mathbf{p}_{i}, \mathbf{u}>$ must be part of some facet F of the polytope
- Since $u_{N+1}>0$, the lowest order terms for any \mathbf{u} must lie on a facet whose inwards pointing normal vector has a positive $(N+1)$-th component, let us call the set of such facets F^{+}

Transform the expression for the full integral:

$$
\begin{aligned}
F & =\int_{k \in D_{h}} \mathrm{D} k I+\int_{k \in D_{s}} \mathrm{D} k I=\sum_{i} \int_{k \in D_{h}} \mathrm{D} k T_{i}^{(h)} I+\sum_{j} \int_{k \in D_{s}} \mathrm{D} k T_{j}^{(s)} I \\
& =\sum_{i}\left(\int_{k \in \mathbb{R}^{d}} \mathrm{D} k T_{i}^{(h)} I-\sum_{j} \int_{k \in D_{s}} \mathrm{D} k T_{j}^{(s)} T_{i}^{(h)} I\right)+\sum_{j}\left(\int_{k \in \mathbb{R}^{d}} \mathrm{D} k T_{j}^{(s)} I-\sum_{i} \int_{k \in D_{h}} \mathrm{D} k T_{i}^{(h)} T_{j}^{(s)} I\right)
\end{aligned}
$$

The expansions commute: $T_{i}^{(h)} T_{j}^{(s)} I=T_{j}^{(s)} T_{i}^{(h)} I \equiv T_{i, j}^{(h, s)} I$
\Rightarrow Identity: $F=\underbrace{\sum_{i} \int \mathrm{D} k T_{i}^{(h)} I}_{\boldsymbol{F}^{(h)}}+\underbrace{\sum_{j} \int \mathrm{D} k T_{j}^{(s)} I}_{\boldsymbol{F}^{(s)}}-\underbrace{\sum_{i, j} \int \mathrm{D} k T_{i, j}^{(h, s)} I}_{\boldsymbol{F}^{(h, s)}}$
All terms are integrated over the whole integration domain \mathbb{R}^{d} as prescribed for the expansion by regions \Rightarrow location of boundary Λ between D_{h}, D_{s} is irrelevant.

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012

The general formalism (details)

Identities as in the examples are generally valid, under some conditions.

Consider

- a (multiple) integral $F=\int \mathrm{D} k I$ over the domain D (e.g. $D=\mathbb{R}^{d}$),
- a set of N regions $R=\left\{x_{1}, \ldots, x_{N}\right\}$,
- for each region $x \in R$ an expansion $T^{(x)}=\sum_{j} T_{j}^{(x)}$ which converges absolutely in the domain $D_{x} \subset D$.

Conditions

- $\bigcup_{x \in R} D_{x}=D \quad\left[D_{x} \cap D_{x^{\prime}}=\emptyset \forall x \neq x^{\prime}\right]$.
- Some of the expansions commute with each other.

Let $R_{\mathrm{c}}=\left\{x_{1}, \ldots, x_{N_{\mathrm{c}}}\right\}$ and $R_{\mathrm{nc}}=\left\{x_{N_{\mathrm{c}}+1}, \ldots, x_{N}\right\}$ with $1 \leq N_{\mathrm{c}} \leq N$.
Then: $T^{(x)} T^{\left(x^{\prime}\right)}=T^{\left(x^{\prime}\right)} T^{(x)} \equiv T^{\left(x, x^{\prime}\right)} \forall x \in R_{\mathrm{c}}, x^{\prime} \in R$.

- Every pair of non-commuting expansions is invariant under some expansion from R_{c} : $\forall x_{1}^{\prime}, x_{2}^{\prime} \in R_{\mathrm{nc}}, x_{1}^{\prime} \neq x_{2}^{\prime}, \exists x \in R_{\mathrm{c}}: T^{(x)} T^{\left(x_{2}^{\prime}\right)} T^{\left(x_{1}^{\prime}\right)}=T^{\left(x_{2}^{\prime}\right)} T^{\left(x_{1}^{\prime}\right)}$.
- \exists regularization for singularities, e.g. dimensional (+ analytic) regularization. \hookrightarrow All expanded integrals and series expansions in the formalism are well-defined.

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012

The general formalism (2)

Under these conditions, the following identity holds: $\quad\left[F^{(x, \ldots)} \equiv \sum_{j, \ldots .} \int \mathrm{D} k T_{j, \ldots}^{(x, \ldots)} I\right]$

$$
F=\sum_{x \in R} F^{(x)}-\sum_{\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\} \subset R}^{\left\langle R_{\mathrm{c}}+1\right\rangle} F^{\left(x_{1}^{\prime}, x_{2}^{\prime}\right)}+\ldots-(-1)^{n} \sum_{\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\} \subset R} F^{\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)}+\ldots+(-1)^{N_{\mathrm{c}}} \sum_{x^{\prime} \in R_{\mathrm{nc}}} F^{\left(x^{\prime}, x_{1}, \ldots, x_{N_{\mathrm{c}}}\right)}
$$

where the sums run over subsets $\left\{x_{1}^{\prime}, \ldots\right\}$ containing at most one region from R_{nc}.

Comments

- This identity is exact when the expansions are summed to all orders. \checkmark Leading-order approximation for $F \rightsquigarrow$ dropping higher-order terms.
- It is independent of the regularization (dim. reg., analytic reg., cut-off, infinitesimal masses/off-shellness, ...) as long as all individual terms are well-defined.
- Usually regions \& regularization are chosen such that multiple expansions $F^{\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)}(n \geq 2)$ are scaleless and vanish.
[\checkmark if each $F_{0}^{(x)}$ is a homogeneous function of the expansion parameter with unique scaling.]
- If $\exists F^{\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots\right)} \neq 0 \rightsquigarrow$ relevant overlap contributions (\rightarrow "zero-bin subtractions") . They appear e.g. when avoiding analytic regularization in SCET.

Quasi Monte-Carlo

Periodising Transforms

Lattice rules work especially well for continuous, smooth and periodic functions Functions can be periodized by a suitable change of variables: $\mathbf{x}=\phi(\mathbf{u})$

$$
\begin{gathered}
I[f] \equiv \int_{[0,1]^{d}} \mathrm{~d} \mathbf{x} f(\mathbf{x})=\int_{[0,1]^{d}} \mathrm{~d} \mathbf{u} \omega_{d}(\mathbf{u}) f(\phi(\mathbf{u})) \\
\phi(\mathbf{u})=\left(\phi\left(u_{1}\right), \ldots, \phi\left(u_{d}\right)\right), \quad \omega_{d}(\mathbf{u})=\prod_{j=1}^{d} \omega\left(u_{j}\right) \quad \text { and } \quad \omega(u)=\phi^{\prime}(u)
\end{gathered}
$$

Korobov transform: $\omega(u)=6 u(1-u), \quad \phi(u)=3 u^{2}-2 u^{3}$
Sidi transform: $\quad \omega(u)=\pi / 2 \sin (\pi u), \quad \phi(u)=1 / 2(1-\cos \pi t)$
Baker transform: $\quad \phi(u)=1-|2 u-1|$

