Galileo Galilei Institute, Florence, Italy

13 September 2023

Updates on Sector Decomposition

Stephen Jones

Assistant Professor, IPPP Durham / Royal Society URF

Photo by Wolfgang Hasselmann on Unsplash

THE ROYAL SOCIETY

Based on work with...

Photo by Lisa Biermann

pySecDec 2023: Matthias Kerner, SJ, Gudrun Heinrich, Anton Olsson, Johannes Schlenk, Vitaly Magerya

2305.19768: Numerical Scattering Amplitudes with pySecDec (= pySecDec v1.6)
2211.14845: From Landau equations to the Newton polytope w/ E. Gardi, F. Herzog, Y. Ma, J. Schlenk
2112.09145: Targeting Multi-Loop Integrals with Neural Networks w/ R. Winterhalder, V. Magerya, E. Villa, M. Kerner, A. Butter, G. Heinrich, T. Plehn
2108.10807: Expansion by regions with pySecDec (= pySecDec v1.5) + S. Jahn, F. Langer, A. Poldaru, E. Villa

Computing Feynman Integrals

Feynman integrals can be difficult to compute analytically

Various methods to approximate/evaluate them numerically

- Numerical differential equations
- Series solutions of differential equations (DiffExp, AMFlow, Seasyde)
- Mellin-Barnes (MB, Ambre)
- Taylor expansion in Feynman parameters (TayInt)
- Tropical sampling (Feyntrop)
- Numerical Loop-Tree Duality (cLTD, Lotty) → Talk of Dario
- Sector decomposition (Sector_decomposition, FIESTA, pySecDec)

Sector Decomposition in a Nutshell

$$I \sim \int_{\mathbb{R}^{N+1}_{>0}} \left[\mathrm{d}x \right] x^{\nu} \frac{[\mathcal{U}(x)]^{N-(L+1)D/2}}{[\mathcal{F}(x,\mathbf{s}) - i\delta]^{N-LD/2}} \,\delta(1 - H(x))$$

Singularities

- 1. UV/IR singularities when some $x \rightarrow 0$ simultaneously \implies Sector Decomposition
- 2. Thresholds when \mathscr{F} vanishes inside integration region $\implies i\delta$

Sector decomposition

Find a local change of coordinates for each singularity that factorises it (blow-up)

Sector Decomposition in a Nutshell (II)

$$I \sim \int_{\mathbb{R}_{>0}^{N}} \left[\mathrm{d}\mathbf{x} \right] \mathbf{x}^{\nu} \left(c_{i} \mathbf{x}^{\mathbf{r}_{i}} \right)^{t}$$
$$\mathcal{N}(I) = \mathrm{convHull}(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots) = \bigcap_{f \in F} \left\{ \mathbf{m} \in \mathbb{R}^{N} \mid \langle \mathbf{m}, \mathbf{n}_{f} \rangle + a_{f} \ge 0 \right\}$$

Normal vectors incident to each extremal vertex define a local change of variables* Kaneko, Ueda 10

$$\begin{aligned} x_i &= \prod_{f \in S_j} y_f^{\langle \mathbf{n}_f, \mathbf{e}_i \rangle} \\ I &\sim \sum_{\sigma \in \Delta_{\mathcal{N}}^T} |\sigma| \int_0^1 \left[\mathrm{d} \mathbf{y}_f \right] \prod_{f \in \sigma} y_f^{\langle \mathbf{n}_f, \nu \rangle - ta_f} \left(c_i \prod_{f \in \sigma} y_f^{\langle \mathbf{n}_f, \mathbf{r}_i \rangle + a_f} \right)^t \\ & \overline{\text{Singularities}} \quad \overline{\text{Finite}} \end{aligned}$$

*If $|S_j| > N$, need triangulation to define variables (simplicial normal cones $\sigma \in \Delta_{\mathcal{N}}^T$)

Sector Decomposition in a Nutshell (III)

For each vertex make the local change of variables

e.g.
$$\mathbf{r}_1: x_1 = y_1^{-1}y_3^1, x_2 = y_1^0y_3^1, \mathbf{r}_2: x_1 = y_1^{-1}y_2^0, x_2 = y_1^0y_2^{-1}, \mathbf{r}_3: x_1 = y_2^0y_3^1, x_2 = y_2^{-1}y_3^1$$

$$I = -\Gamma(-1+2\varepsilon) (m^2)^{1-2\varepsilon} \int_0^1 dy_1 dy_2 dy_3 \frac{y_1^{-\varepsilon} y_2^{-\varepsilon} y_3^{-1+\varepsilon}}{(y_1+y_2+y_3)^{2-\varepsilon}} [\delta(1-y_2) + \delta(1-y_3) + \delta(1-y_1)]$$

Schlenk 2016

Challenges and Opportunities

Frontiers

- * 2 \rightarrow 2 @ 2-loop : fine (e.g. HH, HJ, ZZ, ZH)
 - + masses (e.g. EW corrections) suitable
 - + large hierarchies (e.g. small m_b , large s, thresholds)
- * 2 \rightarrow 3 @ 2-loop : challenging (high dim phase-space)
- * 3-loop+ : suitable, less explored

Opportunities

- 1. Improvements in algorithm & implementation
- 2. Smarter numerical integration routines
- 3. Improved contour deformation
- 4. Expansions

WIP: Gudrun Heinrich, SJ, Matthias Kerner, Tom Stone, Augustin Vestner

1. Algorithmic Improvements

Performance Improvements

v1.5: Adaptive sampling of sectors, automatic contour def. adjustment

v1.5.6: Optimisations in integrand code

v1.6: New Quasi-Monte Carlo integrator ``Disteval"

Faster implementation of old integrator ``IntLib"
CPU & GPU: fusion of integration/integrand code (less modular arithmetic)
CPU: better utilisation via SIMD instructions (AVX2, FMA)
GPU: sum result on GPU, less synchronisation
Parse amplitude coefficients w/GiNaC (supports e.g. partial fractioned input)
Workers can run on remote machines (via ssh)

Does it help?

Performance Improvements (II)

Profiling (I)

m	$d = 6 - 2\varepsilon$	10 ⁻² 10 ⁻³ 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁷	-7-1.6	1 Integr	10 ² ation time [secon	Diste IntLil	val Qmc, GPU b Qmc, GPU 10 ⁴
Integrator Accuracy		10^{-3}	10^{-4}	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷	10 ⁻⁸
GPU	DISTEVAL	4.2 s	6.3 s	27 s	1.5 m	17 m	54 m
	IntLib	22.0 s	22.0 s	110 s	6.7 m	50 m	263 m
	Speedup	5.2	5.2	4.1	5.6	3.0	4.9
CPU	DISTEVAL	5.1 s	14 s	1.6 m	8.3 m	57 m	4.7 h
	IntLib	20.8 s	86 s	14.2 m	62.2 m	480 m	43.1 h
	Speedup	4.1	6.1	8.7	7.5	8.4	9.2

[GPU: NVidia A100 40GB; CPU: AMD Epyc 7F32 with 32 threads]

Vitaly Magerya (Radcor 2023)

Profiling (II)

pySECDEC DISTEVAL <i>integration times</i> for 3-loop self-energy integrals: ³								
Relative precision			10 ⁻³	10^{-4}	10^{-5}	10 ⁻⁶	10 ⁻⁷	10 ⁻⁸
m _Z m _W	m _Z	GPU	15s	20s	40s	200s	13m	50m
		CPU	10s	50s	400s	4000s	180m	1200m
m_Z m_t m_t	$m_t m_Z$	GPU	18s	19s	30s	20s	1.2m	2m
m_t m_t m_t	m _t	CPU	5s	14s	60s	50s	12m	16m
mz	$m_t m_Z$	GPU	6s	11s	12s	30s	3m	24m
m _W	m _t	CPU	5s	10s	50s	800s	60m	800m

С

[Same diagrams as in Dubovyk, Usovitsch, Grzanka '21]

In short: seconds to minutes per integral to achieve practical precision.

[GPU: NVidia A100 40GB; CPU: AMD EPYC 7F32 with 32 threads]

Vitaly Magerya (Radcor 2023)

2. Integration: Median Lattice Rules

Quasi-Monte Carlo

Li, Wang, Yan, Zhao 15; de Doncker, Almulihi, Yuasa 17, 18; de Doncker, Almulihi 17; Kato, de Doncker, Ishikawa, Yuasa 18

$$Q_n^{(k)}[f] \equiv \frac{1}{n} \sum_{i=0}^{n-1} f\left(\left\{\frac{i\mathbf{z}}{n} + \mathbf{\Delta}_k\right\}\right) \qquad I[f] \approx \bar{Q}_{n,m}[f] \equiv \frac{1}{m} \sum_{k=0}^{m-1} Q_n^{(k)}[f],$$

- { } Fractional part
- Δ_k Random shift vector
- **z** Generating vector

Previously:

Precompute **z** with (CBC) construction Nuyens, Cools 06 Guarantee error $\sim 1/n^{\alpha}$ if $\delta_x^{(\alpha)}I(\mathbf{x})$ is squareintegrable and periodic Dick, Kuo, Sloan 13

CBC needs $\mathcal{O}(n)$ bytes memory $n \leq 4.10^{10}$ @ 2TB Can encounter ``unlucky'' lattices

Quasi-Monte Carlo: Unlucky Lattices

Good: Asymptotic error scaling $\sim 1/n^{1.5}$

Bad: Huge drop in precision for some "unlucky" lattices Not consistent across integrands

Quasi-Monte Carlo: Unlucky Lattices (II)

Good: Asymptotic error scaling $\sim 1/n^{1.5}$

Bad: Huge drop in precision for some "unlucky" lattices Not consistent across integrands

Median Lattice Rules

Instead:

Compute \mathbf{z} on-the-fly

- 1. Choose *R* random $z \in \text{Uniform}(0; N-1)$
- 2. Estimate integral on each lattice
- 3. Choose lattice with median integral value

If $\delta_x^{(\alpha)} I(\mathbf{x})$ is square-integrable and periodic Integration error: $C(\alpha, \varepsilon)/(\rho n)^{\alpha-\epsilon}$ With probability: $1 - \rho^{R+1/2}/4$ $\forall 0 < \varepsilon \& 0 < \rho < 1$

Goda, L'Ecuyer 22

3. Contour Deformation

3. Neural Networks for Contour Deformation

Feynman integral (multi-loop/leg):

$$I \sim \int_0^1 [\mathrm{d}\mathbf{x}] \, \mathbf{x}^{\nu} \, \frac{[\mathcal{U}(\mathbf{x})]^{N-(L+1)D/2}}{[\mathcal{F}(\mathbf{x},\mathbf{s})]^{N-LD/2}}$$

Must deform contour to avoid poles on real axis

Feynman prescription $\mathcal{F} \to \mathcal{F} - i\delta$ tells us how to do this

Expand
$$\mathscr{F}(z = x - i\tau)$$
 around $x: \mathscr{F}(z) = \mathscr{F}(x) - i\sum_{j} \tau_{j} \frac{\partial \mathscr{F}(x)}{\partial x_{j}} + \mathcal{O}(\tau^{2})$

Old Method

$$\tau_j = \lambda_j x_j (1 - x_j) \frac{\partial \mathcal{F}(\mathbf{x})}{\partial x_j}$$
 with small constants $\lambda_j > 0$

Soper 99; Binoth, Guillet, Heinrich, Pilon, Schubert 05; Nagy, Soper 06; Anastasiou, Beerli, Daleo 07; Beerli 08; Borowka, Carter, Heinrich 12; Borowka 14;...

New Method

Generalise $\lambda_j \rightarrow \lambda_j(\mathbf{x})$ and use Neural Network (Normalizing Flows) to pick contour Winterhalder, Magerya, Villa, SJ, Kerner, Butter, Heinrich, Plehn 22

3. Neural Networks for Contour Deformation (II)

Normalizing Flows consist of a series of (trainable) bijective mappings for which we can efficiently compute the Jacobian

Procedure

Loss: $L = L_{MC} + L_{sign}$ constructed to minimise variance without crossing poles

3. Neural Networks for Contour Deformation (III)

Applied to several 1 & 2-loop Feynman Integrals with multiple masses/thresholds using tensorflow

Proof of principle that Machine Learning can help to find improved contours and reduce variance, still a tradeoff between training time/ integrating time

4. Expansions: Method of Regions

Method of Regions

Consider expanding an integral about some limit: $p_i^2 \sim \lambda Q^2$, $p_i \cdot p_j \rightarrow \lambda Q^2$ or $m^2 \sim \lambda Q^2$ for $\lambda \rightarrow 0$

Issue: integration and series expansion do not necessarily commute

Method of Regions

$$I(\mathbf{s}) = \sum_{R} I^{(R)}(\mathbf{s}) = \sum_{R} T_{\mathbf{t}}^{(R)} I(\mathbf{s})$$

- 1. Split integrand up into regions (R)
- 2. Series expand each region in λ
- 3. Integrate each expansion over the whole integration domain
- 4. Discard scaleless integrals (= 0 in dimensional regularisation)
- 5. Sum over all regions

Smirnov 91; Beneke, Smirnov 97; Smirnov, Rakhmetov 99; Pak, Smirnov 11; Jantzen 2011; ...

Finding Regions

$$I \sim \int_{\mathbb{R}^{N}_{>0}} \left[\mathrm{d}\boldsymbol{x} \right] \boldsymbol{x}^{\boldsymbol{\nu}} \left(c_{i} \, \boldsymbol{x}^{\mathbf{r}_{i}} \right)^{t} \rightarrow \int_{\mathbb{R}^{N}_{>0}} \left[\mathrm{d}\boldsymbol{x} \right] \boldsymbol{x}^{\boldsymbol{\nu}} \left(c_{i} \, \boldsymbol{x}^{\mathbf{r}_{i}} \lambda^{r_{i,N+1}} \right)^{t} \rightarrow \mathcal{N}^{N+1}$$

Normal vectors w/ positive λ component define change of variables $\mathbf{n}_f = (v_1, \dots, v_N, 1)$

$$x = \lambda^{\mathbf{n}_f} \mathbf{y}, \qquad \lambda \to \lambda$$

Pak, Smirnov 10; Semenova, A. Smirnov, V. Smirnov 18

Original integral I may then be approximated as $I = \sum_{f \in F^+} I^{(f)} + \dots$

Additional Regulators/ Rapidity Divergences

MoR subdivides $\mathcal{N}(I) \to {\mathcal{N}(I^R)} \Longrightarrow$ new (internal) facets $F^{\text{int.}}$

New facets can introduce spurious singularities not regulated by dim reg

Lee Pomeransky Representation:

$$\mathcal{N}(I^{(R)}) = \bigcap_{f \in F} \left\{ \mathbf{m} \in \mathbb{R}^{N} \mid \langle \mathbf{m}, \mathbf{n}_{f} \rangle + a_{f} \ge 0 \right\}$$
$$I \sim \sum_{\sigma \in \Delta_{\mathcal{N}}^{T}} |\sigma| \int_{\mathbb{R}_{>0}^{N}} \left[\mathrm{d}\mathbf{y}_{f} \right] \prod_{f \in \sigma} y_{f}^{\langle \mathbf{n}_{f}, \boldsymbol{\nu} \rangle + \frac{D}{2}} a_{f} \left(c_{i} \prod_{f \in \sigma} y_{f}^{\langle \mathbf{n}_{f}, \mathbf{r}_{i} \rangle + a_{f}} \right)^{-\frac{D}{2}}$$

If $f \in F^{\text{int}}$ have $a_f = 0$ need analytic regulators $\nu \to \nu + \delta \nu$ Heinrich, Jahn, SJ, Kerner, Langer, Magerya, Põldaru, Schlenk, Villa 21; Schlenk 16

Additional Regulators/ Rapidity Divergences

Toy Example:

pySecDec can find the constraints on the analytic regulators for you

extra_regulator_constraints(): $v_2 - v_4 \neq 0, v_1 - v_3 \neq 0$

suggested_extra_regulator_exponent(): $\{\delta\nu_1, \delta\nu_2, \delta\nu_3, \delta\nu_4\} = \{0, 0, \eta, -\eta\}$

Applying Expansion by Regions

Ratio of the finite $\mathcal{O}(\epsilon^0)$ piece of numerical result R_n to the analytic result R_a

For large ratio of scales (m^2/s) the EBR result is **faster** & **easier** to integrate

Building Bridges: LP ↔ Propagator Scaling

Region vectors in momentum space and Lee-Pomeransky space are related, we can see this using Schwinger parameters \tilde{x}_e

$$\frac{1}{D_n^{\nu_e}} = \frac{1}{\Gamma(\nu_e)} \int_0^\infty \frac{\mathrm{d}\tilde{x}_e}{\tilde{x}_e} \ \tilde{x}_e^{\nu_e} \ e^{-\tilde{x}_e D_e} \text{ , with } x_e \propto \tilde{x}_e$$

$$(D_1^{-1}, \dots, D_N^{-1}) \sim (\tilde{x}_1, \dots, \tilde{x}_N) \sim (x_1, \dots, x_N)$$

Example: 1-loop form factor

Hard :
$$(D_1^{-1}, D_2^{-1}, D_3^{-1}) \sim (\lambda^0, \lambda^0, \lambda^0),$$
 $(x_1, x_2, x_3) \sim (\lambda^0, \lambda^0, \lambda^0)$
Collinear to p_1 : $(D_1^{-1}, D_2^{-1}, D_3^{-1}) \sim (\lambda^{-1}, \lambda^0, \lambda^{-1}),$ $(x_1, x_2, x_3) \sim (\lambda^{-1}, \lambda^0, \lambda^{-1})$
Collinear to p_2 : $(D_1^{-1}, D_2^{-1}, D_3^{-1}) \sim (\lambda^0, \lambda^{-1}, \lambda^{-1}),$ $(x_1, x_2, x_3) \sim (\lambda^0, \lambda^{-1}, \lambda^{-1})$
Soft : $(D_1^{-1}, D_2^{-1}, D_3^{-1}) \sim (\lambda^{-1}, \lambda^{-1}, \lambda^{-2}),$ $(x_1, x_2, x_3) \sim (\lambda^{-1}, \lambda^{-1}, \lambda^{-2})$

Can connect the regions in mom. space with those we determine geometrically

Next step: automatically find (Sudakov decomposed) loop momentum scalings compatible with region vectors WIP w/ Yannick Ulrich

Building Bridges: Landau ↔ Regions

The Landau equations give the necessary conditions for an integral to diverge

1)
$$\alpha_e l_e^2(k, p, q) = 0$$
 $\forall e \in G$
2) $\frac{\partial}{\partial k_a^{\mu}} \mathscr{D}(k, p, q; \alpha) = \frac{\partial}{\partial k_a^{\mu}} \sum_{e \in G} \alpha_e \left(-l_e^2(k, p, q) - i\varepsilon \right) = 0$ $\forall a \in \{1, \dots, L\}$

Solutions are *pinched surfaces* of the integral where IR divergences may arise

Idea is to explore the neighbourhood of a pinched surface, defined by

1)
$$\alpha_e l_e^2(k, p, q) \sim \lambda^p \quad \forall e \in G, \text{ with } p \in \{1, 2\}$$

2) $\frac{\partial}{\partial k_a^{\mu}} \mathscr{D}(k, p, q; \alpha) \lesssim \lambda^{1/2} \quad \forall a \in \{1, \dots, L\}$

with the goal of further understanding the connection between

Solutions of the Landau equations ↔ Regions

Gardi, Herzog, Ma, Schlenk 22

On-Shell Expansion

Consider an arbitrary loop, (K + L)-leg wide-angle scattering graph

$$p_i^2 \sim \lambda Q^2 \quad (i = 1, \dots, K),$$
$$q_j^2 \sim Q^2 \quad (j = 1, \dots, L),$$
$$p_k \cdot p_l \sim Q^2 \quad (k \neq l).$$

Assuming only hard, collinear & soft modes in momentum space:

What can we say about the regions?

On-Shell Expansion

Using MoR we find:

$$\begin{aligned} \mathbf{v}_{R} &= (u_{R,1}, u_{R,2}, \dots, u_{R,N}; 1), \qquad u_{R,e} \in \{0, -1, -2\}, \\ u_{R,e} &= 0 \quad \leftrightarrow \quad e \in \mathbf{H} \\ u_{R,e} &= -1 \quad \leftrightarrow \quad e \in J \equiv \bigcup_{i=1}^{K} J_{i} \\ u_{R,e} &= -2 \quad \leftrightarrow \quad e \in \mathbf{S} \end{aligned}$$

Consider possible solutions of the Landau equations, search for the scaleful ones \implies constraints from Landau equations & scalefulness

Appears to hold at any order in the power expansion (i.e. any order in λ)

31

On Shell Expansion: Graphical Method

Can construct graphical method for writing down the region vectors

Checked algorithm explicitly for all diagrams in ϕ^3 , ϕ^4 with up to 3-legs @ 5-loops & 4-legs @ 4-loops

Work in Progress...

$t\bar{t}H$: Quark Initiated n_f Piece

Compute 2-loop ingredients for $t\bar{t}H$, starting with $q\bar{q}$, n_f pieces

New challenges

5-point amplitudes depending on 5 kinematic scales + 2 masses 831 master integrals

WIP: **V. Magerya,** G. Heinrich, SJ, M. Kerner, S. Klein, J. Lang, A. Olsson

$t\bar{t}H$: Quark Initiated n_f Piece (II)

Projectors: Born amplitudes **Reduction:** On-the-fly numerical reduction for each phase-space point with Ratracer Magerya 22

Integrals: quasi-finite, d-factorizing, possible with pySecDec, also investigating DiffExp approach

First look at phase-space points...

Target $\epsilon_{\rm rel} = 1 \cdot 10^{-4}$ precision on amplitude

$$m_{H}^{2} = \frac{8085251}{15486360} m_{t}^{2},$$

$$x_{12} = 10m_{t}^{2},$$

$$x_{23} = -\frac{2571}{620} m_{t}^{2},$$

$$x_{35} = \frac{357583}{168330} m_{t}^{2},$$

$$x_{54} = \frac{19381}{5704} m_{t}^{2},$$

$$x_{41} = -\frac{2734}{465} m_{t}^{2},$$

$d_{33}N_fT_f$	ε^{-2}	+0.0049204
	ε^{-1}	+0.010292 + 0.022622I
	ε^0	-0.042837 + 0.069854I
$d_{33}N_{ft}T_f$	ε^{-2}	+0.0065606
	ε^{-1}	+0.020794 + 0.016814I
	ε^0	+0.039555 + 0.099444I
$C_a^2 C_f N_f T_f^2$	ε^{-2}	-0.0056536 - 0.011281I
U U	ε^{-1}	+0.034203 - 0.046061I
	ε^0	+0.11670 + 0.0067178I
$C_a C_f^2 N_f T_f^2$	ε^{-3}	+0.0025559
	ε^{-2}	-0.010942 + 0.028986I
	ε^{-1}	-0.15880 + 0.030480I
	ε^0	-0.41022 - 0.17499I
$C_a^2 C_f N_{ft} T_f^2$	ε^{-2}	-0.0050392 - 0.015042I
	ε^{-1}	+0.0053639 - 0.059042I
	ε^0	+0.071442 - 0.084413I
$C_a C_f^2 N_{ft} T_f^2$	ε^{-3}	0.0040894
	ε^{-2}	-0.0047233 + 0.032887I
	ε^{-1}	-0.14753 + 0.12175I
	ε^0	-0.59562 + 0.11786I
$C_a C_f N_f^2 T_f^3$	ε^{-2}	+0.0013631
	ε^{-1}	+0.0021910 + 0.0085648I
	ε^0	-0.023414 + 0.013766I
$C_a C_f N_f N_{ft} T_f^3$	ε^{-2}	+0.0027262
	ε^{-1}	+0.011458 + 0.012303I
	ε^0	-0.0010859 + 0.053128I
$C_a C_f N_{ft}^2 T_f^3$	ε^{-2}	+0.0013631
	ε^{-1}	+0.0092667 + 0.0037380I
	ε^0	+0.026549 + 0.029970I

t $\bar{t}H$: Quark Initiated n_f Piece

Poles - checked (subtraction formulae + cross-check)Finite part - O(16k) pointsChen, Ma, Wang, Yang, Ye 22

```
amp3=(
 +eps^-3*(+2.4812080814589719e-03-2.8947822690179251e-12j)
 +eps^-3*(+1.9029876783836805e-12+1.9981956842417825e-12j)*plusminus
 +eps^-2*(-1.2795194320055608e-02+2.5786079682589620e-02j)
 +eps^-2*(+3.2657872292033090e-11+3.3012784793239365e-11j)*plusminus
 +eps^-1*(-1.4218012895908955e-01-7.6189537659053942e-04j)
 +eps^-1*(+1.8573326634188658e-07+1.7282326416744234e-07j)*plusminus
 +eps^0*(-2.5869321981561438e-01-2.1758799270790402e-01j)
 +eps^0*(+2.2204593845353293e-06+2.3132847824753248e-06j)*plusminus
amp3 relative errors by order: 0.00e+00, 0.00e+00, 1.78e-06, 9.49e-06
amp4=(
 +eps^-3*(-2.2776225350185086e-13-5.7714358636920437e-14i)
 +eps^-3*(+1.5245922908967811e-13+1.3428935998390410e-13j)*plusminus
 +eps^-2*(-4.6780134875432436e-03-1.3033417608064988e-02j)
 +eps^-2*(+4.4565990403149097e-09+5.1370665056934937e-09j)*plusminus
 +eps^-1*(+1.1134216059718732e-02-4.4304381365715018e-02j)
 +eps^-1*(+9.5922064468682343e-07+9.4844016477226567e-07j)*plusminus
 +eps^0*(+4.5781345959152238e-02-4.4723941222410774e-02j)
  +eps^0*(+3.0592105076939906e-06+3.1320453916005085e-06j)*plusminus
amp4 relative errors by order: 0.00e+00, 4.91e-07, 2.95e-05, 6.84e-05
```

amp3=(+eps^-3*(+7.4339015599071689e-04-7.9500880445625670e-13j) +eps^-3*(+5.7145309613096924e-13+5.9971316345385848e-13j)*plusminus +eps^-2*(-3.0981991383820405e-03+9.1682626032127991e-03j) +eps^-2*(+9.7650289569317253e-12+9.9189849982950227e-12j)*plusminus +eps^-1*(-4.6793708870014772e-02+9.3085610262487999e-03j) +eps^-1*(+6.2340661736749192e-07+6.4733201139491059e-07j)*plusminus +eps^0*(-1.1711570776049893e-01-4.2728554150957172e-02j) +eps^0*(+2.9732556334539358e-06+2.9950056109814405e-06j)*plusminus amp3 relative errors by order: 0.00e+00, 0.00e+00, 1.88e-05, 3.39e-05 amp4=(+eps^-3*(-1.2956460461802100e-08+7.8310287578327527e-09j) +eps^-3*(+3.3667459966638271e-08+2.6375283024654377e-08j)*plusminus +eps^-2*(-1.6697924163405768e-03-4.8625186952290581e-03j) +eps^-2*(+8.1602698321304684e-07+6.7055067134358471e-07j)*plusminus +eps^-1*(+9.5428369411900554e-04-1.9084852520645498e-02j) +eps^-1*(+1.1890510956916082e-04+5.8577385741283674e-04i)*plusminus +eps^0*(+3.1867828485252998e-02+4.1227641634472185e-03j) +eps^0*(+5.6825877897303881e-03+3.3489604326241845e-02j)*plusminus

amp4 relative errors by order: 2.83e+00, 2.05e-04, 3.13e-02, 1.06e+00

Good point: 3-4 mins

GPU: NVidia A100 40GB

Bad point: >24 hr

GPU: NVidia A100 40GB

Need to deal with poor performance near thresholds, decide how to sample the PS

Conclusion

Updates

- New``DistEval" integrator: ~3-5x faster than old ``IntLib"
- Median lattice rules: lattices of unlimited size, smaller fluctuations in error
- Coefficients: accept GiNaC compatible input
- Tools for MoR: including extra regulator construction

Applications

- Various processes at $2 \rightarrow 2$ with many masses
- First applications to $2 \rightarrow 3$ amplitudes

MoR

- How does the analysis generalise to other types of expansion (e.g. Regge, massive particles, threshold/potential)?
- How should we deal with regions due to cancellation? (e.g. negative c_i)

Thank you for listening!

Backup

Graphical Algorithm

A taste of why this might hold

1) Partition the graph into hard (*H*), jet (*J_i*) and soft (*S*) subgraphs with n_H , n_J , n_S propagators and LP parameters scaling as $\{0, -1, -2\}$

2) Define contracted subgraphs (\widetilde{J}_i) and (\widetilde{S}) by contracting $G \setminus J_i$ or $G \setminus S$ to a point

Possible to show:

$$\begin{split} L(G) &= L(H) + \sum_{i=1}^{K} L(\widetilde{J}_i) + L(\widetilde{S}) \\ n_H &\geq L(H), \quad n_S \leq L(\widetilde{S}) \end{split}$$

We want to minimise $\mathbf{r} \cdot \mathbf{v}_R$ \implies small $n_{H'}$, large n_S

Consider $\mathscr{U}(G)$ (degree L(G)): $n_H = L(H), \quad n_J = L(\widetilde{J}), \quad n_S = L(\widetilde{S})$ $\mathscr{U}^{(R)}(\mathbf{x}) = U_H(\mathbf{x}^{[H]}) \cdot \left(\prod_i U_{J_i}(\mathbf{x}^{[J_i]})\right) \cdot U_S(\mathbf{x}^{[S]})$

A taste of why this might hold

Similar (though slightly longer) arguments lead to the following theorem

Theorem 2. For any region R in the on-shell expansion of a wide-angle scattering graph G, the leading Lee-Pomeransky polynomial takes the form

$$\mathcal{P}_0^{(R)}(\boldsymbol{x};\boldsymbol{s}) = \mathcal{U}^{(R)}(\boldsymbol{x}) + \mathcal{F}^{(R)}(\boldsymbol{x};\boldsymbol{s})$$
(3.34)

$$\mathcal{F}^{(R)}(\boldsymbol{x};\boldsymbol{s}) = \sum_{i=1}^{K} \mathcal{F}^{(p_i^2,R)}(\boldsymbol{x};\boldsymbol{s}) + \mathcal{F}_{\mathrm{I}}^{(q^2,R)}(\boldsymbol{x};\boldsymbol{s}) + \sum_{i>j=1}^{K} \mathcal{F}_{\mathrm{II}}^{(q_{ij}^2,R)}(\boldsymbol{x};\boldsymbol{s})$$
(3.35)

These polynomials factorise as follows

$$\mathcal{U}^{(R)}(\boldsymbol{x}) = \mathcal{U}_{H}(\boldsymbol{x}^{[H]}) \cdot \left(\prod_{i=1}^{K} \mathcal{U}_{J_{i}}(\boldsymbol{x}^{[J_{i}]})\right) \cdot \mathcal{U}_{S}(\boldsymbol{x}^{[S]}),$$

$$\mathcal{F}^{(p_{i}^{2},R)}(\boldsymbol{x};\boldsymbol{s}) = \mathcal{U}_{H}(\boldsymbol{x}^{[H]}) \cdot \mathcal{F}^{(p_{i}^{2})}_{J_{i}}(\boldsymbol{x}^{[J_{i}]};\boldsymbol{s}) \cdot \left(\prod_{j\neq i}^{K} \mathcal{U}_{J_{j}}(\boldsymbol{x}^{[J_{j}]})\right) \cdot \mathcal{U}_{S}(\boldsymbol{x}^{[S]}),$$

$$\mathcal{F}^{(q^{2},R)}_{I}(\boldsymbol{x};\boldsymbol{s}) = \mathcal{F}^{(q^{2})}_{H\cup J}(\boldsymbol{x}^{[H]},\boldsymbol{x}^{[J]}) \cdot \mathcal{U}_{S}(\boldsymbol{x}^{[S]}),$$

$$\mathcal{F}^{(q_{ij}^{2},R)}_{II}(\boldsymbol{x};\boldsymbol{s}) = \mathcal{U}_{H}(\boldsymbol{x}^{[H]}) \cdot \mathcal{F}^{(q_{ij}^{2})}_{J_{i}\cup J_{j}\cup S}(\boldsymbol{x}^{[J_{i}]},\boldsymbol{x}^{[J_{j}]},\boldsymbol{x}^{[S]}) \cdot \prod_{k\neq i,j} \mathcal{U}_{J_{k}}(\boldsymbol{x}^{[J_{k}]}).$$
(3.36)

We find that contributions correspond to solutions of the Landau equations only if some further conditions hold (suggested by our previous figures)

Some Definitions

Motic: components become 1PI after connecting all external lines to a point Brown 15

Mojetic: components become 1VI after connecting all external lines to a point (= motic & scaleful, for massless diagrams)

(d) Neither motic nor mojetic.

(c) Motic but not mojetic.

Graphical Construction Algorithm

Step 1: For each i = 1, ..., K, construct the one-external subgraph γ_i in the p_i channel, such that the subgraph $H_i \equiv G \setminus \gamma_i$ is mojetic

Graphical Construction Algorithm

Step 2: Consider all possible sets $\{\gamma_1, ..., \gamma_K\}$.

If an edge has been assigned to two or more γ_i , it belongs to the soft subgraph *S*; if it has been assigned to exactly one γ_i , it belongs to the jet subgraph J_i ; if it has not been assigned to any γ_i , it belongs to *H*.

Graphical Construction Algorithm

Step 3: Check that result obeys: (i) each jet subgraph J_i is connected; (ii) each hard subgraph H is connected; (iii) each of the K subgraphs $H \cup J \setminus J_i$ (i = 1, ..., K) is mojetic. The region is ruled out if any of these conditions are not satisfied.

$$H \cup J \setminus J_2 = \prod_{p_1}^{q_1} , \qquad H \cup J \setminus J_2|_c = \prod_{p_1}^{q_1}$$

Example - Failing criterion (iii): not mojetic

Expansion by Regions

pySecDec: EBR Box Example

Example: 1-loop massive box expanded for small $m_t^2 \ll s$, |t|

Requires the use of analytic regulators Can regulate spurious singularities by adjusting

propagators powers

$$G_4 = \mu^{2\epsilon} \int_{-\infty}^{\infty} \frac{d^D k}{i\pi^{D/2}} \frac{1}{[k^2 - m_t^2]^{\delta_1} [(k+p_1)^2 - m_t^2]^{\delta_2} [(k+p_1+p_2)^2 - m_t^2]^{\delta_3} [(k-p_4)^2 - m_t^2]^{\delta_4}}$$

Can keep $\delta_1, \ldots, \delta_4$ symbolic or $\delta_1 = 1 + n_1/2, \delta_2 = 1 + n_1/3, \ldots$ and take $n_1 \to 0^+$

Output region vectors: $\mathbf{v}_1 = (0,0,0,0,1)$ $\mathbf{v}_2 = (-1, -1,0,0,1)$ $\mathbf{v}_3 = (0,0, -1, -1,1)$ $\mathbf{v}_4 = (-1,0,0, -1,1)$ $\mathbf{v}_5 = (0, -1, -1,0,1)$ **Result:** $s = 4.0, t = -2.82843, m_t^2 = 0.1, m_h^2 = 0$) $I = -1.30718 \pm 2.7 \cdot 10^{-6} + (1.85618 \pm 3.0 \cdot 10^{-6}) i$ $+ \mathcal{O}\left(\epsilon, n_1, \frac{m_t^2}{s}, \frac{m_t^2}{t}\right)$

Geometric Method: Negative Coefficients

Issue 2: What happens if we have negative coefficients $c_i < 0?$ **not handled by pySecDec (yet!)**

Consider a 1-loop massive bubble at threshold $y = m^2 - q^2/4 \rightarrow 0$ $\mathscr{F} = q^2/4(x_1 - x_2)^2 + y(x_1 + x_2)^2$ Can split integral into two subdomains $x_1 \le x_2$ and $x_2 \le x_1$ then remap $x_1 = x_1'/2$ $x_2 = x_2' + x_1'/2$: $\mathscr{F} \rightarrow \frac{q^2}{4}x_2'^2 + y(x_1' + x_2')^2$ (for first domain)

Various tools attempt to find such re-mappings:

FIESTA Jantzen, A. Smirnov, V. Smirnov 12

Check all pairs of variables (x_1, x_2) which are part of monomials of opposite sign For each pair, try to build linear combination x'_1 s.t negative monomial vanishes Repeat until all negative monomials vanish **or** warn user

ASPIRE Ananthanarayan, Pal, Ramanan, Sarkar 18; B. Ananthanarayan, Das, Sarkar 20 Consider Gröbner basis of $\{\mathscr{F}, \partial \mathscr{F}/x_1, \partial \mathscr{F}/x_2, ...\}$ (i.e. \mathscr{F} and Landau equations) Eliminate negative monomials with linear transformations $x_1 \rightarrow ax'_1, x_2 \rightarrow x'_2 + ax'_1$

Geometric Method: Determining the Regions (VI)

Rewrite our polynomial as: $P(\mathbf{x}) = Q(\mathbf{x}) + R(\mathbf{x})$

With $Q(\mathbf{x})$ defined such that it contains all of the lowest order terms in t

Then, binomial expansion of

$$P(\mathbf{x})^m = Q(\mathbf{x})^m \left(1 + \frac{R(\mathbf{x})}{Q(\mathbf{x})}\right)^m \text{ converges for } \mathbf{x} = t^{\mathbf{u}} \text{ if } R(\mathbf{x})/Q(\mathbf{x}) < 1$$

Some observations:

- An expansion with region vector v converges at a point u if the lowest order terms along the direction v contain the lowest order terms along the direction u
- For any direction **u** the vertices with the smallest < **p**_i, **u** > must be part of some facet F of the polytope
- Since u_{N+1} > 0, the lowest order terms for any u must lie on a facet whose inwards pointing normal vector has a positive (N + 1)-th component, let us call the set of such facets F⁺

Transform the expression for the full integral:

$$F = \int_{k \in D_{h}} Dk I + \int_{k \in D_{s}} Dk I = \sum_{i} \int_{k \in D_{h}} Dk T_{i}^{(h)} I + \sum_{j} \int_{k \in D_{s}} Dk T_{j}^{(s)} I$$

$$= \sum_{i} \left(\int_{k \in \mathbb{R}^{d}} Dk T_{i}^{(h)} I - \sum_{j} \int_{k \in D_{s}} Dk T_{j}^{(s)} T_{i}^{(h)} I \right) + \sum_{j} \left(\int_{k \in \mathbb{R}^{d}} Dk T_{j}^{(s)} I - \sum_{i} \int_{k \in D_{h}} Dk T_{i}^{(h)} T_{j}^{(s)} I \right)$$
The expansions commute:

$$T_{i}^{(h)} T_{j}^{(s)} I = T_{j}^{(s)} T_{i}^{(h)} I \equiv T_{i,j}^{(h,s)} I$$

$$\Rightarrow \text{ Identity: } F = \sum_{i} \int_{i} Dk T_{i}^{(h)} I + \sum_{j} \int_{i} Dk T_{j}^{(s)} I - \sum_{i,j} \int_{i} Dk T_{i,j}^{(h,s)} I$$

All terms are integrated over the whole integration domain \mathbb{R}^d as prescribed for the expansion by regions \Rightarrow location of boundary Λ between D_h, D_s is irrelevant.

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012

The general formalism (details)

Identities as in the examples are generally valid, under some conditions.

Consider

- a (multiple) integral $F = \int Dk I$ over the domain D (e.g. $D = \mathbb{R}^d$),
- a set of N regions $R = \{x_1, \ldots, x_N\}$,
- for each region $x \in R$ an expansion $T^{(x)} = \sum_j T_j^{(x)}$ which converges absolutely in the domain $D_x \subset D$.

Conditions

- $\bigcup_{x \in R} D_x = D$ $[D_x \cap D_{x'} = \emptyset \ \forall x \neq x'].$
- Some of the expansions commute with each other. Let $R_c = \{x_1, \ldots, x_{N_c}\}$ and $R_{nc} = \{x_{N_c+1}, \ldots, x_N\}$ with $1 \le N_c \le N$. Then: $T^{(x)}T^{(x')} = T^{(x')}T^{(x)} \equiv T^{(x,x')} \ \forall x \in R_c, \ x' \in R$.
- Every pair of non-commuting expansions is invariant under some expansion from R_c : $\forall x'_1, x'_2 \in R_{nc}, x'_1 \neq x'_2, \exists x \in R_c : T^{(x)}T^{(x'_2)}T^{(x'_1)} = T^{(x'_2)}T^{(x'_1)}$.
- ∃ regularization for singularities, e.g. dimensional (+ analytic) regularization.
 → All expanded integrals and series expansions in the formalism are well-defined.

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012

Model With MatrixBernd Jantzen, Expansion by regions: foundation, generalization and automated search for regions35The general formalism (2)Under these conditions, the following identity holds: $[F^{(x,...)} \equiv \sum_{j,...} \int Dk T_{j,...}^{(x,...)} I]$ $F = \sum_{x \in R} F^{(x)} - \sum_{\{x'_1, x'_2\} \subset R} F^{(x'_1, x'_2)} + \ldots - (-1)^n \sum_{\{x'_1, \ldots, x'_n\} \subset R} F^{(x'_1, \ldots, x'_n)} + \ldots + (-1)^{N_c} \sum_{x' \in R_{nc}} F^{(x', x_1, \ldots, x_{N_c})}$

where the sums run over subsets $\{x'_1, \ldots\}$ containing at most one region from R_{nc} .

Comments

- This identity is exact when the expansions are summed to all orders. ✓
 Leading-order approximation for F → dropping higher-order terms.
- It is independent of the regularization (dim. reg., analytic reg., cut-off, infinitesimal masses/off-shellness, ...) as long as all individual terms are well-defined.
- Usually regions & regularization are chosen such that multiple expansions
 F^(x'_1,...,x'_n) (n ≥ 2) are scaleless and vanish.
 [✓ if each F^(x)₀ is a homogeneous function of the expansion parameter with unique scaling.]
- If $\exists F^{(x'_1, x'_2, ...)} \neq 0 \rightsquigarrow$ relevant overlap contributions (\rightarrow "zero-bin subtractions"). They appear e.g. when avoiding analytic regularization in SCET. Chiu, Fuhrer, Hoang, Kelley, Manohar '09; ...

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012

Quasi Monte-Carlo

Periodising Transforms

Lattice rules work especially well for continuous, smooth and periodic functions Functions can be periodized by a suitable change of variables: $\mathbf{x} = \phi(\mathbf{u})$

$$I[f] \equiv \int_{[0,1]^d} d\mathbf{x} \ f(\mathbf{x}) = \int_{[0,1]^d} d\mathbf{u} \ \omega_d(\mathbf{u}) f(\phi(\mathbf{u}))$$

$$\phi(\mathbf{u}) = (\phi(u_1), \dots, \phi(u_d)), \quad \omega_d(\mathbf{u}) = \prod_{j=1}^d \omega(u_j) \quad \text{and} \quad \omega(u) = \phi'(u)$$

Korobov transform: $\omega(u) = 6u(1-u), \quad \phi(u) = 3u^2 - 2u^3$ Sidi transform: $\omega(u) = \pi/2 \sin(\pi u), \quad \phi(u) = 1/2(1 - \cos \pi t)$ Baker transform: $\phi(u) = 1 - |2u - 1|$

