InTEGRAND-LEVEL REDUCTION WITH HELAC2LOOP

Costas G. Papadopoulos

INPP, NCSR "Demokritos", 15310 Athens, Greece

Theory Challenges in the Precision Era of the Large Hadron Collider Aug 28, 2023 - Oct 13, 2023

September 11, 2023

Outline

(1) Introduction
(2) HELAC2LOOP
(3) Master Integrals
(1) Loop-by-loop approach

The PRECISION ADVENTURE

Leading Order

How to avoid Feynman diagrams

\rightarrow a highly subjective point of view

LO - Dyson-Schwinger Recursive Equations

MadGraph
\rightarrow T. Stelzer and W. F. Long, Comput. Phys. Commun. 81, 357 (1994)

- 1999 HELAC: The first code to calculate recursively tree-order amplitudes for (practically) arbitrary number of particles

LO - Dyson-Schwinger Recursive Equations

From Feynman Diagrams to recursive equations: taming the n !

- 1999 HELAC: The first code to calculate recursively tree-order amplitudes for (practically) arbitrary number of particles

Unfortunately not so much on the second line!

LO - Dyson-Schwinger Recursive Equations

From Feynman Diagrams to recursive equations: taming the n !

- 1999 HELAC: The first code to calculate recursively tree-order amplitudes for (practically) arbitrary number of particles
\rightarrow A. Kanaki and C. G. Papadopoulos, Comput. Phys. Commun. 132 (2000) 306 [arXiv:hep-ph/0002082].
\rightarrow F. A. Berends and W. T. Giele, Nucl. Phys. B 306 (1988) 759.
\rightarrow F. Caravaglios and M. Moretti, Phys. Lett. B 358 (1995) 332.

Unfortunately not so much on the second line !

TAMING THE BEAST ...

From Feynman graphs ...

$$
\begin{array}{ccccccccc}
g g \rightarrow n g \rightarrow & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\# \text { FG } & 4 & 25 & 220 & 2,485 & 34,300 & 559,405 & 10,525,900 & 224,449,225
\end{array}
$$

TAMING THE BEAST ...

From Feynman graphs ...

$$
\begin{array}{ccccccccc}
g g \rightarrow n g & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\# \text { FG } & 4 & 25 & 220 & 2,485 & 34,300 & 559,405 & 10,525,900 & 224,449,225
\end{array}
$$

to Dyson-Schwinger recursion! Helac-Phegas

$g g \rightarrow n g$	2	3	4	5	6	7	8	9
$\#$	5	15	35	70	126	210	330	495

BEYOND TREE-ORDER

NLO

Don't make integrals, make integrands!

Perturbative QCD at NLO

What do we need for an NLO calculation ?

$$
\begin{aligned}
& p_{1}, p_{2} \rightarrow p_{3}, \ldots, p_{m+2} \\
& \sigma_{N L O}=\int_{m} d \Phi_{m}\left|M_{m}^{(0)}\right|^{2} J_{m}(\Phi) \leftarrow L O \\
&+\int_{m} d \Phi_{m} 2 \operatorname{Re}\left(M_{m}^{(0) *} M_{m}^{(1)}\left(\epsilon_{U V}, \epsilon_{I R}\right)\right) J_{m}(\Phi) \leftarrow \text { Virtual } \\
&+\int_{m+1} d \Phi_{m+1}\left|M_{m+1}^{(0)}\right|^{2} J_{m+1}(\Phi) \leftarrow \text { Real }
\end{aligned}
$$

$J_{m}(\Phi)$ jet function: Infrared safeness $J_{m+1} \rightarrow J_{m}$

Perturbative QCD at NLO

What do we need for an NLO calculation ?

$$
\begin{aligned}
& p_{1}, p_{2} \rightarrow p_{3}, \ldots, p_{m+2} \\
& \sigma_{N L O}=\int_{m} d \Phi_{m}^{D=4}\left(\left|M_{m}^{(0)}\right|^{2}+2 \operatorname{Re}\left(M_{m}^{(0) *} M_{m}^{(C T)}\left(\epsilon_{U V}\right)\right)\right) J_{m}(\Phi) \\
&+\int_{m} d \Phi_{m}^{D=4} 2 \operatorname{Re}\left(M_{m}^{(0) *} M_{m}^{(1)}\left(\epsilon_{U V}, \epsilon_{I R}\right)\right) J_{m}(\Phi) \\
&+\int_{m+1} d \Phi_{m+1}^{D=4-2 \epsilon_{I R}}\left|M_{m+1}^{(0)}\right|^{2} J_{m+1}(\Phi)
\end{aligned}
$$

IR and UV divergencies, Four-Dimensional-Helicity scheme; scale dependence μ_{R}

Perturbative QCD at NLO

What do we need for an NLO calculation ?

$$
\begin{aligned}
& p_{1}, p_{2} \rightarrow p_{3}, \ldots, p_{m+2} \\
& \sigma_{N L O}=\int_{m} d \Phi_{m} J_{m}(\Phi) \\
&+\int_{m} d \Phi_{m} 2 \operatorname{Re}\left(M_{m}^{(0) *} M_{m}^{(1)}\left(\epsilon_{U V}, \epsilon_{I R}\right)\right) J_{m}(\Phi) \\
&+\int_{m+1} d \Phi_{m+1}\left|M_{m+1}^{(0)}\right|^{2} J_{m+1}(\Phi)
\end{aligned}
$$

QCD factorization $-\mu_{F}$ Collinear counter-terms when PDF are involved

The one loop paradigm

basis of scalar integrals:
known already before NLO-R; remember this is not the case for higher orders
\rightarrow G. 't Hooft and M. J. G. Veltman, Nucl. Phys. B 153 (1979) 365.
\rightarrow Z. Bern, L. J. Dixon and D. A. Kosower, Nucl. Phys. B 412 (1994) 751
\rightarrow G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160 (1979) 151.
\rightarrow Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B 425 (1994) 217.

$a, b, c, d \rightarrow$ cut-constructible part $\quad R \rightarrow$ rational terms

$$
\mathcal{A}=\sum_{I \subset\{0,1, \cdots, m-1\}} \int \frac{\mu^{(4-d) d^{d} q}}{(2 \pi)^{d}} \frac{\bar{N}_{l}(\bar{q})}{\prod_{i \in I} \bar{D}_{i}(\bar{q})}
$$

The OLD "MASTER" FORMULA

$$
\begin{aligned}
\mathcal{A} \rightarrow \int \frac{N(q)}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}} & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1} d\left(i_{0} i_{1} i_{2} i_{3}\right) \int \frac{1}{\bar{D}_{i 0} \bar{D}_{i 1} \bar{D}_{i 2} \bar{D}_{i 2}} \\
& +\sum_{i_{0}<i_{i}<i_{2}}^{m-1} c\left(i_{0} i_{1} i_{2}\right) \int \frac{1}{\bar{D}_{i 0} \bar{D}_{i 1} \bar{D}_{i 2}} \\
& +\sum_{i_{0}<i_{1}}^{m-1} b\left(i_{0} i_{1}\right) \int \frac{1}{\overline{D_{i 0}} \bar{D}_{i 1}} \\
& +\sum_{i_{0}}^{m-1} a\left(i_{0}\right) \int \frac{1}{\bar{D}_{i 0}} \\
& + \text { rational terms }
\end{aligned}
$$

OPP "MASTER" FORMULA - I

General expression for the 4-dim $N(q)$ at the integrand level in terms of D_{i}

$$
\begin{aligned}
N(q) & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1}\left[d\left(i_{0} i_{1} i_{2} i_{3}\right)+\tilde{d}\left(q ; i_{0} i_{1} i_{2} i_{3}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i} \\
& +\sum_{i_{0}<i_{1}<i_{2}}^{m-1}\left[c\left(i_{0} i_{1} i_{2}\right)+\tilde{c}\left(q ; i_{0} i_{1} i_{2}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i} \\
& +\sum_{i_{0}<i_{1}}^{m-1}\left[b\left(i_{0} i_{1}\right)+\tilde{b}\left(q ; i_{0} i_{1}\right)\right] \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i} \\
& +\sum_{i_{0}}^{m-1}\left[a\left(i_{0}\right)+\tilde{a}\left(q ; i_{0}\right)\right] \prod_{i \neq i_{0}}^{m-1} D_{i}
\end{aligned}
$$

The one-Loop calculation in a nutshell

The computation of $p p(p \bar{p}) \rightarrow e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu} b \bar{b}$ involves up to six-point functions.
The most generic integrand has therefore the form

$$
\mathcal{A}(q)=\sum \underbrace{\frac{N_{i}^{(6)}(q)}{\bar{D}_{i_{0}} \bar{D}_{i_{1}} \cdots \bar{D}_{i_{5}}}}_{-\infty}+\underbrace{\frac{N_{i}^{(5)}(q)}{\bar{D}_{i_{0}} \bar{D}_{i_{1}} \cdots \bar{D}_{i_{4}}}}_{-\alpha}+\underbrace{\frac{N_{i}^{(4)}(q)}{\bar{D}_{i_{0}} \bar{D}_{i_{1}} \cdots \bar{D}_{i_{3}}}}_{-}+\underbrace{\frac{N_{i}^{(3)}(q)}{\bar{D}_{i_{0}} \bar{D}_{i_{1}} \bar{D}_{i_{2}}}}+\cdots
$$

In order to apply the OPP reduction, HELAC evaluates numerically the numerators $N_{i}^{6}(q), N_{i}^{5}(q), \ldots$ with the values of the loop momentum q provided by CutTools

- generates all inequivalent partitions of $6,5,4,3 \ldots$ blobs attached to the loop, and check all possible flavours (and colours) that can be consistently running inside
- hard-cuts the loop (q is fixed) to get a $n+2$ tree-like process

The R_{2} contributions (rational terms) are calculated in the same way as the tree-order amplitude, taking into account extra vertices
\rightarrow BlackHat, MadGraph, RECOLA, OpenLoops

The one-Loop calculation in a nutshell

NLO Revolution

G. P. Salam, PoS ICHEP 2010, 556 (2010) [arXiv:1103.1318 [hep-ph]]

The NLO revolution

NLO Revolution

The NLO revolution

NLO Revolution

The NLO wishlist

Process ($V \in\{Z, W, \gamma\}$)	Status
1. $p p \rightarrow V V$ jet	$W W$ jet completed by Dittmaier/Kallweit/Uwer; Campbell/Ellis/Zanderighi $Z Z$ jet completed by Binoth/Gleisberg/Karg/Kauer/Sanguinetti $W Z$ jet, $W \gamma$ jet completed by Campanario et al.
2. $p p \rightarrow$ Higgs +2 jets	NLO QCD to the $g g$ channel completed by Campbell/Ellis/Zanderighi NLO QCD+EW to the VBF channel completed by Ciccolini/Denner/Dittmaier Interference QCD-EW in VBE channel
3. $p p \rightarrow V \vee V$	ZZZ completed by Lazopoulos/Melnikov/Petriello and $W W Z$ by Hankele/Zeppenfeld see also Binoth/Ossola/Papadopoulos/Pittau VBFNLOmeanwhile also contains $w w w, z Z W, \not Z Z Z, W W \gamma, Z Z_{\gamma}, W_{Z}, W_{\gamma \gamma}, Z_{\gamma \gamma}$, ${ }_{\gamma} \gamma \gamma, W \gamma \gamma j$
4. $p p \rightarrow t \bar{t} b \bar{b}$	relevant for $t \bar{t} H$, gemputed by Bredenstein/Denner/Dittmaier/Pozzorini and Bevilacqua/Czakon/Papadopoulos/Pittau/Worek
5. $p p \rightarrow V+3$ jets	$W+3$ jets calculated by the Blackhat/Sherpa and Rocket collaborations $z+3$ jets by Blackhat/Sherpa
6. $p p \rightarrow t \bar{t}+2 \mathrm{jets}$	relevant for $t \bar{t} H$, computed by Bevilacqua/Czakon/Papadopoulos/Worek
$\begin{aligned} & \text { 7. } p p \rightarrow V V b \bar{b}, \\ & \text { 8. } p p \rightarrow V V+2 \text { jets } \end{aligned}$	Rozzorini of al.Bevilacqua et al. $W^{+} W^{+}+2$ jets, $W^{+} W^{-}+2$ jets, relevant for VBF $H \rightarrow V V$ VBF contributions by (Bozzi/) Jäger/Oleari/Zeppenfeld
$\begin{aligned} & \text { 9. } p p \rightarrow b \bar{b} b \bar{b} \\ & \text { 10. } p p \rightarrow V+4 \text { jets } \end{aligned}$	```Binoth et al. top pair production, various new physics signatures Blackhat/Sherpa: \(W+4 j\) jets, \(Z+4\) jets see also HEJfor \(W+\) njets```
11. $p p \rightarrow W b \bar{b} j$ 12. $p p \rightarrow t \bar{t} t \bar{t}$	top, new physics signatures, Reina/Schutzmeier various new physics signatures, Bevilacqua/Worek
$p p \rightarrow W \gamma \gamma$ jet	Campanario/Englert/Rauch/Zeppenfeld
$p p \rightarrow 4 / 5$ jets	Blackhat+Sherpa/NJets

- NLO calculations requested by LHC experimenters
- List constructed in 2005
- Calculations completed 2012

NLO Revolution

\rightarrow G. Bevilacqua, M. Lupattelli, D. Stremmer and M. Worek, [arXiv:2212.04722 [hep-ph]].

NLO $2 \rightarrow 6$ ($2 \rightarrow 8$ including leptonic $W^{ \pm}$decays)

Towards higher precision:

NNLO and beyond

I have a dream ...

The two-loop frontier: $2 \rightarrow 3$

5-POINT 2-LOOP - MASSLESS: ALL FAMILIES

\rightarrow T. Gehrmann, J. M. Henn and N. A. Lo Presti, Phys. Rev. Lett. 116 (2016) no.6, 062001 [erratum: Phys. Rev. Lett. 116 (2016) no.18, 189903] [arXiv:1511.05409 [hep-ph]].
\rightarrow C. G. Papadopoulos, D. Tommasini and C. Wever, JHEP 04 (2016), 078 [arXiv:1511.09404 [hep-ph]].
\rightarrow D. Chicherin, T. Gehrmann, J. M. Henn, P. Wasser, Y. Zhang and S. Zoia, Phys. Rev. Lett. 123 (2019) no.4, 041603
\rightarrow D. Chicherin and V. Sotnikov, JHEP 20 (2020), 167
\rightarrow S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, M. Kraus, B. Page, E. Pascual, M. S. Ruf and V. Sotnikov, "Caravel: A C++ framework for the computation of multi-loop amplitudes with numerical unitarity," Comput. Phys. Commun. 267 (2021), 108069

(a)
penta-box

(b)
hexa-box

(c)
double-pentagon

FIG. 1: Integral topologies for massless five-particle scattering at two loops.
\rightarrow J. Henn, T. Peraro, Y. Xu and Y. Zhang, "A first look at the function space for planar two-loop six-particle Feynman integrals," JHEP 03 (2022), 056

5-POINT 2-LOOP - ONE LEG OFF-SHELL: ALL FAMILIES

\rightarrow C. G. Papadopoulos, D. Tommasini and C. Wever, JHEP 04 (2016), 078 [arXiv:1511.09404 [hep-ph]]. \rightarrow C. G. Papadopoulos and C. Wever, JHEP 2002 (2020) 112
\rightarrow S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, JHEP 2011 (2020) 117 \rightarrow D. D. Canko, C. G. Papadopoulos and N. Syrrakos, JHEP 2101 (2021) 199 \rightarrow S. Abreu, H. Ita, B. Page and W. Tschernow, JHEP 03 (2022), 182 [arXiv:2107.14180 [hep-ph]].
\rightarrow A. Kardos, C. G. Papadopoulos, A. V. Smirnov, N. Syrrakos and C. Wever, [arXiv:2201.07509 [hep-ph]]. \rightarrow S. Abreu, D. Chicherin, H. Ita, B. Page, V. Sotnikov, W. Tschernow and S. Zoia, [arXiv:2306.15431 [hep-ph]].

The three planar pentaboxes of the families P_{1} (left), P_{2} (middle) and P_{3} (right) with one external massive leg.

The five non-planar families with one external massive leg.

NNLO $2 \rightarrow 3$

NNLO QCD: $p p \rightarrow \gamma \gamma \gamma+X$
 leading-colour approximation for double-virtual

Figure 1. Predictions for the fiducial cross-section in LO (green), NLO (blue) and NNLO (red) QCD versus ATLAS data (black). Shown are predictions for six scale choices. The error bars on the theory predictions reflect scale variation only. For two of the scales only the central predictions are shown.

Figure 2. p_{T} distribution of the hardest photon γ_{1} (left), γ_{2} (center) and the softest one γ_{3} (right). Top plot shows the absolute distribution at NNLO (red), NLO (blue) and LO (green) versus ATLAS data (black). Middle plot shows same distributions but normalized to the NLO. Bottom plot shows central NNLO predictions for 6 different scale choices (only the central scale is shown) with respect to the default choice $\mu_{0}=H_{T} / 4$. The bands represent the 7 -point scale variations about the corresponding central scales.

NNLO $2 \rightarrow 3$

NNLO QCD: $p p \rightarrow \gamma \gamma \gamma+X$
leading-colour approximation for double-virtual

fiducial setup for $p p \rightarrow \gamma \gamma \gamma+X ;$ used in the ATLAS 8 TeV analysis of Ref. [37]
$p_{T, \gamma_{1}} \geq 27 \mathrm{GeV}, \quad p_{T, \gamma_{2}} \geq 22 \mathrm{GeV}, \quad p_{T, \gamma 3} \geq 15 \mathrm{GeV}, \quad 0 \leq\left\|\eta_{\gamma}\right\| \leq 1.37$ or $1.56 \leq\left\|\eta_{\gamma}\right\| \leq 2.37$,
$\Delta R_{\gamma \gamma} \geq 0.45, \quad m_{\gamma \gamma \gamma} \geq 50 \mathrm{GeV}, \quad$ Frixione isolation with $n=1, \delta_{0}=0.4$, and $E_{T}^{\text {ref }}=10 \mathrm{GeV}$.

Table 1: Definition of phase space cuts.

Figure 4: Fiducial cross sections for $p p \rightarrow \gamma \gamma \gamma+X$ as a function of the centre-of-mass energy at LO (black dotted), at NLO (red dashed), and at NNLO (blue, solid) The green data point at 8 TeV corresponds to the cross section measured by ATLAS in Ref. [37].
\rightarrow S. Kallweit, V. Sotnikov and M. Wiesemann, Phys. Lett. B 812 (2021) 136013

NNLO $2 \rightarrow 3$

NNLO QCD: $p p \rightarrow 3$ jets $+X$

leading-colour approximation for double-virtual

FIG. 1: The three panels show the i th leading jet transverse momentum $p_{T}\left(j_{i}\right)$ for $i=1,2,3$ for the production of (at least) three jets. LO (green), NLO (blue) and NNLO (red) are shown for the central scale (solid line). 7 -point scale variation is shown as a coloured band. The grey band corresponds to the uncertainty from Monte Carlo integration.
\rightarrow M. Czakon, A. Mitov and R. Poncelet, Phys. Rev. Lett. 127 (2021) no.15, 152001 [arXiv:2106.05331 [hep-ph]].
\rightarrow X. Chen, T. Gehrmann, N. Glover, A. Huss and M禺Marcoli, $[\operatorname{arXiv}: 22 \underline{\underline{0}} 3.13531 \text { hep-ph] }]_{Q}$

NNLO $2 \rightarrow 3$

NNLO QCD: $p p \rightarrow W b \bar{b}+X$
leading-colour approximation for double-virtual

\rightarrow H. B. Hartanto, R. Poncelet, A. Popescu and S. Zoia, Phys. Rev. D 106 (2022) no.7, 074016 [arXiv:2205.01687 [hep-ph]].

NNLO $2 \rightarrow 3$

NNLO QCD: $p p \rightarrow \gamma j_{1} j_{2}+X$

Full-colour; sub-leading colour contributions negligible

Figure 4. Differential cross sections w.r.t. the transverse energy of the photon $E_{\perp}(\gamma)$ in the inclusive (left plot) and direct-enriched (right plot) phase space at LO (green), NLO (blue) and NNLO (red) QCD compared to data (black) and Sherpa (purple) prediction provided by ATLAS[37]. The top panels show the absolute values for the H_{T} scale choice. The middle (bottom) panel shows the ratio to NLO QCD using the $H_{T}\left(E_{\perp}(\gamma)\right)$ scale. The coloured bands show scale variation and the vertical coloured bars indicate statistical uncertainties.
\rightarrow S. Badger, M. Czakon, H. B. Hartanto, R. Moodie, T. Peraro, R. Poncelet and S. Zoia, [arXiv:2304.06682 [hep-ph]].

NNLO $2 \rightarrow 3$

	Comment	Complete analytic results	Public numerical code	Cross sections
$p p \rightarrow j j j$	1.c.	Abreu et al.	Abreu et al.	Chen et al., Czakon et al.
$p p \rightarrow \gamma \gamma j$	1.c.*	Agarwal et al., Chawdhry et al.	Agarwal et al.	Chawdhry et al.
$p p \rightarrow \gamma \gamma \gamma$	1.c.*	Abreu et al., Chawdhry et al.	Abreu et al.	Chawdhry et al., Kallweit et al.
$p p \rightarrow \gamma \gamma j$		Agarwal et al.		
$g g \rightarrow \gamma \gamma g$	NLO loop induced	Badger et al.	Badger et al.	Badger et al.
$p p \rightarrow W b \bar{b}$	1.c.^ ${ }^{\star}$, on-shell W	Badger et al.		
$p p \rightarrow W(I v) b \bar{b}$	1.c.	Abreu et al., Hartanto et al.		Hartanto et al.
$p p \rightarrow W(l v) j j$	1.c.	Abreu et al.		
$p p \rightarrow Z(l \bar{l}) j j$	1.c.*	Abreu et al.		
$p p \rightarrow W(l v) \gamma j$	1.c.*	Badger et al.		
$p p \rightarrow H b \bar{b}$	1.c., b-quark Yukawa	Badger et al.		

Table 1: Known two-loop QCD corrections for five-point scattering processes at hardon colliders. "l.c." refers to the calculations in the leading-color approximation; "l.c.*" means that in addition non-planar i.c. contributions are omitted. All public codes employ PentagonFunctions++ Chicherin and Sotnikov, Chicherin et al. for numerical evaluation of special functions.

Perturbative QCD at NNLO

What do we need for an NNLO calculation ?

$$
p_{1}, p_{2} \rightarrow p_{3}, \ldots, p_{m+2}
$$

Perturbative QCD at NNLO

What do we need for an NNLO calculation?

$$
\begin{array}{rlr}
\sigma_{N N L O} & \rightarrow \int_{m} d \Phi_{m}\left(2 \operatorname{Re}\left(M_{m}^{(0) *} M_{m}^{(2)}\right)+\left|M_{m}^{(1)}\right|^{2}\right) J_{m}(\Phi) & V V \\
& +\int_{m+1} d \Phi_{m+1}\left(2 \operatorname{Re}\left(M_{m+1}^{(0) *} M_{m+1}^{(1)}\right)\right) J_{m+1}(\Phi) & R V \\
& +\int_{m+2} d \Phi_{m+2}\left|M_{m+2}^{(0)}\right|^{2} J_{m+2}(\Phi) & R R
\end{array}
$$

$R V+R R \rightarrow$ antenna-S, colorfull-NNLO, sector-improved residue subtraction, nested soft-collinear, local analytic sector subtraction, projection to born, q_{T}, N-jetiness
\rightarrow A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, JHEP 1210 (2012) 047 \rightarrow P. Bolzoni, G. Somogyi and Z. Trocsanyi, JHEP 1101 (2011) 059
\rightarrow M. Czakon and D. Heymes, Nucl. Phys. B 890 (2014) 152
\rightarrow S. Catani and M. Grazzini, Phys. Rev. Lett. 98 (2007) 222002
\rightarrow R. Boughezal, C. Focke, X. Liu and F. Petriello, Phys. Rev. Lett. 115 (2015) no.6, 062002
\rightarrow M. Cacciari, F. A. Dreyer, A. Karlberg, G. P. Salam and G. Zanderighi, Phys. Rev. Lett. 115, no. 8, 082002 (2015)
\rightarrow F. Caola, K. Melnikov and R. Röntsch, Eur. Phys. J. C 77, no. 4, 248 (2017)
\rightarrow L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and S. Uccirati, arXiv:1806.09570 [hep-ph].

Perturbative QCD at NNLO

Amplitude reduction

OPP AT TWO LOOPS

- Write the "OPP-type" equation at two loops

$$
\frac{N\left(l_{1}, l_{2} ;\left\{p_{i}\right\}\right)}{D_{1} D_{2} \ldots D_{n}}=\sum_{m=1}^{\min (n, 8)} \sum_{S_{m ; n}} \frac{\Delta_{i_{1} i_{2} \ldots i_{m}}\left(l_{1}, l_{2} ;\left\{p_{i}\right\}\right)}{D_{i_{1}} D_{i_{2}} \ldots D_{i_{m}}}
$$

cut equations: $D_{i_{1}}=D_{i_{2}}=\ldots=D_{i_{m}}=0$
$\Delta_{i_{1} i_{2} \ldots i_{m}}\left(I_{1}, I_{2} ;\left\{p_{i}\right\}\right) \rightarrow$ spurious $\oplus I S P$ - irreducible integrals

OPP AT TWO LOOPS

- Write the "OPP-type" equation at two loops

$$
\frac{N\left(l_{1}, l_{2} ;\left\{p_{i}\right\}\right)}{D_{1} D_{2} \ldots D_{n}}=\sum_{m=1}^{\min (n, 8)} \sum_{S_{m ; n}} \frac{\Delta_{i_{1} i_{2} \ldots i_{m}}\left(l_{1}, l_{2} ;\left\{p_{i}\right\}\right)}{D_{i_{1}} D_{i_{2}} \ldots D_{i_{m}}}
$$

ISP-irreducible integrals \rightarrow use IBPI to Master Integrals
Libraries in the future: QCD2LOOP, TwOLOop
$\quad \rightarrow$ P. Mastrolia, T. Peraro and A. Primo, arXiv:1605.03157 [hep-ph].
\rightarrow J. Gluza, K. Kajda and D. A. Kosower, Phys. Rev. D 83 (2011) 045012
\rightarrow H. Ita, arXiv: 1510.05626 [hep-th].
\rightarrow C. G. Papadopoulos, R. H. P. Kleiss and I. Malamos, PoS Corfu 2012 (2013) 019.
\rightarrow S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, M. Kraus, B. Page, E. Pascual, M. S. Ruf and V. Sotnikov, Comput. Phys. Commun. 267 (2021), 108069

HELAC2L00P: THE ALGORITHM

\rightarrow G. Bevilacqua, D. D. Canko, A. Kardos and C. G. Papadopoulos, J. Phys. Conf. Ser. 2105 (2021) no.5, 012010

HELAC2LOOP: THE ALGORITHM

HELAC2L00P：THE ALGORITHM

$\left\{c_{1}, c_{2}\right\}=\left\{i_{1}, i_{1}\right\}$
$\left\{c_{1}, c_{1}\right\}=\left\{i_{i}, i_{1}\right\}$
$\left\{c_{5}, c_{6}\right\}=\left\{i_{1}, i_{1}\right\}$
$\left\{c_{7}, c_{8}\right\}=\left\{i_{1}, i_{1}\right\}$
$\left\{\mathrm{c}_{1}, \mathrm{c}_{10}\right\}=\left\{i_{1}, i_{1}\right\}$
$\left\{c_{1}, c_{2}\right\}=\left\{i_{1}, i_{1}\right\}$
$\left\{c_{3}, c_{4}\right\}=\left\{i_{2}, i_{1}\right\}$
$\left\{c_{5}, c_{6}\right\}=\left\{i_{1}, i_{1}\right\}$
$\left\{c_{7}, c_{8}\right\}=\left\{i_{1}, i_{1}\right\}$
$\left\{c_{9}, c_{20}\right\}=\left\{i_{1}, i_{1}\right\}$
$\left\{c_{1}, c_{2}\right\}=\left\{i_{1}, i_{3}\right\}$
$\left\{c_{3}, c_{4}\right\}=\left\{i_{2}, i_{3}\right\}$
$\left\{c_{5}, c_{6}\right\}=\left\{i_{4}, i_{3}\right\}$
$\left\{c_{7}, c_{8}\right\}=\left\{i_{1}, i_{3}\right\}$
2）

$\left\{c_{1}, c_{2}\right\}=\left\{i_{1}, i_{4}\right\}$
$\left\{c_{3}, c_{4}\right\}=\left\{i_{2}, i_{4}\right\}$
$\left\{c_{5}, c_{6}\right\}=\left\{i_{3}, i_{4}\right\}$
$\left\{c_{7}, c_{8}\right\}=\left\{i_{3}, i_{4}\right\}$
$\left\{c_{7}, c_{8}\right\}=\left\{i_{3}, i_{4}\right\}$
sis

HELAC2LOOP: THE ALGORITHM

$\xrightarrow{\text { Dyran-Schurnyer }}$

\qquad

FIgURE: Schematic example of the construction of a two-loop contribution within HELAC-2LOOP.

HELAC2L00P: THE ALGORITHM

Figure: Form of the contribution constructed in previous Figure, as is stored in the skeleton.

HELAC2L00P: THE ALGORITHM

Process	Loops	Loop-Flavors	Color	Skeleton Size	Timing	Numerators
$g g \rightarrow g g$	2	$\{g, c, \bar{c}\}$	Leading	8.9 MB	15.017 s	4560
$g g \rightarrow g g$	2	$\{g, q, \bar{q}, c, \bar{c}\}$	Full	110.6 MB	6 m 54.574 s	89392
$g g \rightarrow q \bar{q}$	2	$\{g, q, \bar{q}, c, \bar{c}\}$	Full	16.1 MB	3 m 14.509 s	13856
$g g \rightarrow g g g$	2	$\{g, c, \bar{c}\}$	Leading	300.0 MB	21 m 42.609 s	81480
$g g \rightarrow g g$	1	$\{g, q, \bar{q}, c, \bar{c}\}$	Full	537.8 kB	2.386 s	768
$g g \rightarrow g g g$	1	$\{g, q, \bar{q}, c, \bar{c}\}$	Full	15.1 MB	8 m 53.349 s	11496
$g g \rightarrow g g g g$	1	$\{g, c, \bar{c}\}$	Leading	394.0 MB	104 m 14.95 s	19680

TABLE: Table containing information for the skeleton of some QCD processes at one- and two-loop. These results have been obtained running 1-core in a personal laptop (i7 processor, 8-core, 25GB RAM).

HELAC2LOOP: THE ALGORITHM

1) $\left.\left.k_{i} \cdot k_{j} \rightarrow \#_{1}=3, \quad 2\right) k_{i} \cdot p_{j} \rightarrow \#_{2}=\min [4, n-1] \times 2, \quad 3\right) k_{i} \cdot \eta_{j} \rightarrow \#_{3}=8-\#_{2}$, with $\eta_{i} \perp p_{j}$.

$$
\begin{gathered}
k_{i}=\bar{k}_{i}+k_{i}^{*} \quad \text { with } \quad k_{i} \cdot k_{j}=\bar{k}_{i} \cdot \bar{k}_{j}+\mu_{i j}, \quad \text { and } \quad \mu_{i j}=k_{i}^{*} \cdot k_{j}^{*} . \\
N_{I}=\sum_{m=1}^{n_{I}}\left(\sum_{\mathbf{i}_{\mathbf{m}}} c_{\mathbf{i}_{\mathbf{m}}} \prod_{i \notin \mathbf{i}_{\mathbf{m}}} D_{i}\right) \text { with } \quad \mathbf{i}_{\mathbf{m}}=\left\{i_{1}, \cdots, i_{m-1}, i_{m}\right\}, \\
c_{\mathbf{i}_{\mathbf{m}}}=\sum_{j=1} \tilde{c}_{\mathbf{i}_{\mathbf{m}}}^{(j)}(\vec{s}, \varepsilon)\left(\bar{z}_{1}^{\left(\mathbf{i}_{\mathbf{m}}\right)}\right)^{\alpha_{1}^{(j)}} \ldots\left(\bar{z}_{n_{i \mathbf{r}}}^{\left(\mathbf{i}_{\mathbf{m}}\right)}\right)^{\alpha}{ }_{n_{n_{i r}}^{(j)}}^{(0)}
\end{gathered}
$$

1) $\left(k_{i} \cdot \eta_{j}\right)^{2} \rightarrow\left(k_{i} \cdot \eta_{j}\right)^{2}-\frac{\mu_{i i}}{d-4}$
2) $\left(k_{i} \cdot \eta_{j}\right)^{2}\left(k_{i}{ }^{\prime} \cdot \eta_{j}\right)^{2} \rightarrow\left(k_{i} \cdot \eta_{j}\right)^{2}\left(k_{i^{\prime}} \cdot \eta_{j}\right)^{2}-\frac{\left(k_{i} \cdot \eta_{j}\right)^{2} \mu_{i^{\prime} i^{\prime}}+\left(k_{i^{\prime}} \cdot \eta_{j}\right)^{2} \mu_{i i}+4\left(k_{i} \cdot \eta_{j}\right)\left(k_{i^{\prime}} \cdot \eta_{j}\right) \mu_{i i^{\prime}}}{2(d-4)}$.

HELAC2LOOP: The ALGORITHM

(1) Determination of the 4-dimensional part of $\tilde{c}_{\mathrm{i}_{\mathbf{m}}}^{(j)}(\vec{s}, d)$ using values for the loop-momenta obtained from the cut equations $D_{i_{1}}=\cdots=D_{i_{m}}=0$ in an OPP-like approach.
(2) Determining the (polynomial) dependence on $\mu_{i j}$ terms $\left(\mathcal{R}_{1}\right)$.
(3) Determination of the missing ε-dimensional part of the numerator using two-loop rational terms $\left(\mathcal{R}_{2}\right)$.
\rightarrow S. Pozzorini, H. Zhang and M. F. Zoller, JHEP 05 (2020), 077
\rightarrow J. N. Lang, S. Pozzorini, H. Zhang and M. F. Zoller, JHEP 10 (2020), 016
(9) IBP reduction of the Feynman integrals resulted from ISP monomials to MIs.

Perturbative QCD at NNLO

Feynman Integrals

Perturbative QCD at NNLO

$$
\frac{\mathcal{N}\left(k_{1}, k_{2} ;\left\{p_{i}\right\}_{i=1}^{m+1},\{\varepsilon\}\right)}{\left(k^{2}-M_{0}^{2}\right)\left(\left(k_{1}+p_{1}\right)^{2}-M_{1}^{2}\right) \ldots\left(\left(k_{1}-k_{2}-p_{m+1}\right)^{2}-M_{j}^{2}\right) \ldots\left(k_{2}^{2}-M_{l}^{2}\right)}
$$

The SDE approach

5-POINT TWO-LOOP ONE-MASS

The three planar pentaboxes of the families P_{1} (left), P_{2} (middle) and P_{3} (right) with one external massive leg.

The five non-planar families with one external massive leg.

Pentabox - One leg off-shell: P1

\rightarrow J. M. Henn, Phys. Rev. Lett. 110 (2013) 251601
\rightarrow S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, JHEP 2011 (2020) 117
\rightarrow D. D. Canko, C. G. Papadopoulos and N. Syrrakos, JHEP 2101 (2021) 199

$$
d \vec{g}=\epsilon \sum_{a} d \log \left(W_{a}\right) \tilde{M}_{a} \vec{g}
$$

- Also from direct differentiation of MI wrt to \times (Fuchsian).

$$
\frac{d \vec{g}}{d x}=\epsilon \sum_{b} \frac{1}{x-\ell_{b}} M_{b} \vec{g}
$$

- ℓ_{b}, are independent of x, some depending only on the reduced invariants, $\left\{S_{12}, S_{23}, S_{34}, S_{45}, S_{51}\right\} . M_{b}$ are independent of the invariants.
- number of letters smaller than in AIMPTZ representation
- Main contribution for us from AIMPTZ: the canonical basis (+ numerics)

Pentabox - One leg off-SHell: P1

\rightarrow S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, JHEP 2011 (2020) 117 \rightarrow D. D. Canko, C. G. Papadopoulos and N. Syrrakos, JHEP 2101 (2021) 199

$$
\begin{gathered}
d \vec{g}=\epsilon \sum_{a} d \log \left(W_{a}\right) \tilde{M}_{a} \vec{g} \\
\\
\frac{d \log \left(W_{a}\right)}{d x}
\end{gathered}
$$

- Also from direct differentiation of MI wrt to \times (Fuchsian).

$$
\frac{d \vec{g}}{d x}=\epsilon \sum_{b} \frac{1}{x-\ell_{b}} M_{b} \vec{g}
$$

- ℓ_{b}, are independent of x, some depending only on the reduced invariants, $\left\{S_{12}, S_{23}, S_{34}, S_{45}, S_{51}\right\} . M_{b}$ are independent of the invariants.
- number of letters smaller than in AIMPTZ representation
- Main contribution for us from AIMPTZ: the canonical basis (+ numerics)

Pentabox - One leg off-shell: P1

\rightarrow J. M. Henn, Phys. Rev. Lett. 110 (2013) 251601
\rightarrow S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, JHEP 2011 (2020) 117
\rightarrow D. D. Canko, C. G. Papadopoulos and N. Syrrakos, JHEP 2101 (2021) 199

$$
d \vec{g}=\epsilon \sum_{a} d \log \left(W_{a}\right) \tilde{M}_{a} \vec{g}
$$

- Also from direct differentiation of MI wrt to x (Fuchsian).

$$
\frac{d \vec{g}}{d x}=\epsilon \sum_{b} \frac{1}{x-\ell_{b}} M_{b} \vec{g}
$$

- ℓ_{b}, are independent of x, some depending only on the reduced invariants, $\left\{S_{12}, S_{23}, S_{34}, S_{45}, S_{51}\right\} . M_{b}$ are independent of the invariants.
- number of letters smaller than in AIMPTZ representation
- Main contribution for us from AIMPTZ: the canonical basis (+ numerics)

Pentabox - One leg off-shell: P1

SDE parametrisation: n off-shell legs $\rightarrow n-1$ off-shell legs + the x variable.
\rightarrow C. G. Papadopoulos, "Simplified differential equations approach for Master Integrals," JHEP 1407 (2014) 088

- $p_{i}, i=1 \ldots 5$, satisfy $\sum_{1}^{5} p_{i}=0$, with $p_{i}^{2}=0, i=1 \ldots 5, p_{i \ldots j}:=p_{i}+\ldots+p_{j}$. The set of independent invariants: $\left\{S_{12}, S_{23}, S_{34}, S_{45}, S_{51}, x\right\}$, with $S_{i j}:=\left(p_{i}+p_{j}\right)^{2}$.

$$
\begin{gathered}
q_{1}^{2}=(1-x)\left(S_{45}-S_{12} x\right), s_{12}=\left(S_{34}-S_{12}(1-x)\right) x, s_{23}=S_{45}, s_{34}=S_{51} x \\
s_{45}=S_{12} x^{2}, s_{15}=S_{45}+\left(S_{23}-S_{45}\right) x
\end{gathered}
$$

Pentabox - One leg off-shell: P1

4-POINT UP TO TWO LEGS OFF-SHELL

\rightarrow J. M. Henn, K. Melnikov and V. A. Smirnov, JHEP 1405 (2014) 090
\rightarrow T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, JHEP 06 (2014), 032
\rightarrow F. Caola, J. M. Henn, K. Melnikov and V. A. Smirnov, JHEP 1409 (2014) 043
\rightarrow C. G. Papadopoulos, D. Tommasini and C. Wever, JHEP 1501 (2015) 072
\rightarrow T. Gehrmann, A. von Manteuffel and L. Tancredi, JHEP 09 (2015), 128

Figure 3. The parametrization of external momenta for the three planar double boxes of the families P_{12} (left), P_{13} (middle) and P_{23} (right) contributing to pair production at the LHC. All external momenta are incoming.

Figure 4. The parametrization of external momenta for the three non-planar double boxes of the families N_{12} (left), N_{13} (middle) and N_{34} (right) contributing to pair production at the LHC. All external momenta are incoming.

As well as planar and nonplanar double box with one off-shell leg expressed in UT basis.

Pentabox - One leg off-shell: P1-3

$$
\frac{d \mathbf{g}}{d x}=\epsilon \sum_{a} \frac{1}{x-\ell_{a}} \mathbf{M}_{a} \mathbf{g}
$$

Pentabox - one leg off-shell: P1-3

$$
\begin{gathered}
\frac{d \mathbf{g}}{d x}=\epsilon \sum_{a} \frac{1}{x-\ell_{a}} \mathbf{M}_{a} \mathbf{g} \\
\mathbf{g}=\epsilon^{0} \mathbf{b}_{0}^{(0)}+\epsilon\left(\sum \mathcal{G}_{a} \mathbf{M}_{a} \mathbf{b}_{0}^{(0)}+\mathbf{b}_{0}^{(1)}\right) \\
\\
+\epsilon^{2}\left(\sum \mathcal{G}_{a b} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{b}_{0}^{(0)}+\sum \mathcal{G}_{a} \mathbf{M}_{a} \mathbf{b}_{0}^{(1)}+\mathbf{b}_{0}^{(2)}\right) \\
\\
+\epsilon^{3}\left(\sum \mathcal{G}_{a b c} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{M}_{c} \mathbf{b}_{0}^{(0)}+\sum \mathcal{G}_{a b} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{b}_{0}^{(1)}+\sum \mathcal{G}_{a} \mathbf{M}_{a} \mathbf{b}_{0}^{(2)}+\mathbf{b}_{0}^{(3)}\right) \\
\\
+\epsilon^{4}\left(\sum \mathcal{G}_{a b c d} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{M}_{c} \mathbf{M}_{d} \mathbf{b}_{0}^{(0)}+\sum \mathcal{G}_{a b c} \mathbf{M}_{a} \mathbf{M}_{b} \mathbf{M}_{c} \mathbf{b}_{0}^{(1)}\right. \\
\\
\\
\mathcal{G}_{a b \ldots} \ldots \\
:=\mathcal{G}\left(\ell_{a}, \ell_{b}, \ldots ; x\right)
\end{gathered}
$$

HEXABOX - ONE LEG OFF-SHELL

$$
\begin{aligned}
& r_{1}=\sqrt{\lambda\left(p_{1 s}, s_{23}, s_{45}\right)} \\
& r_{2}=\sqrt{\lambda\left(p_{1 s}, s_{24}, s_{35}\right)} \\
& r_{3}=\sqrt{\lambda\left(p_{1 s}, s_{25}, s_{34}\right)} \\
& r_{4}=\sqrt{\operatorname{det} \mathbb{G}\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} \\
& r_{5}=\sqrt{\Sigma_{5}^{(1)}} \\
& r_{6}=\sqrt{\Sigma_{5}^{(2)}}
\end{aligned}
$$

HEXABOX - ONE LEG OFF-SHELL

- For topology N_{1}, the square roots r_{1} and r_{4} appear in its alphabet and are rationalized.

$$
\partial_{\times} \mathbf{g}=\epsilon\left(\sum_{i=1}^{I_{\max }} \frac{\mathbf{M}_{i}}{x-l_{i}}\right) \mathbf{g}
$$

$I_{\text {max }}=21$ from 39 letters in the original alphabet

- For topologies N_{2} and N_{3}, the square roots appearing are $\left\{r_{1}, r_{2}, r_{4}, r_{5}\right\}$ and $\left\{r_{1}, r_{3}, r_{4}, r_{6}\right\}$ not simultaneous rationalisation possible!

The more general form of the SDE takes the form:

$$
\partial_{\times} \mathbf{g}=\epsilon\left(\sum_{a=1}^{I_{\max }} \frac{d L_{a}}{d x} \mathbf{M}_{a}\right) \mathbf{g}
$$

where most of the L_{a} are simple rational functions of x, whereas the rest are algebraic functions of x involving the non-rationalisable square roots.

- One-dimensional integration based on weight-2 functions

HEXABOX - ONE LEG OFF-SHELL: WEIGHT 2

For instance element 11 of N_{2} is given as

$$
\begin{aligned}
g_{11}^{(2)} & =8\left(2 \mathcal{G}(0,-y)\left(\mathcal{G}(1, y)-\mathcal{G}\left(\frac{\tilde{S}_{45}}{\tilde{S}_{12}}, y\right)\right)+2 \mathcal{G}\left(0, \frac{\tilde{S}_{45}}{\tilde{S}_{12}}, y\right)-\mathcal{G}(1, y) \log \left(\frac{\tilde{S}_{45}}{\tilde{S}_{12}}\right)\right. \\
& \left.+\log \left(\frac{\tilde{S}_{45}}{\tilde{S}_{12}}\right) \mathcal{G}\left(\frac{\tilde{S}_{45}}{\tilde{S}_{12}}, y\right)-2 \mathcal{G}(0,1, y)\right)
\end{aligned}
$$

where the new parametrization of the external momenta is given by

$$
q_{1} \rightarrow \tilde{p}_{123}-y \tilde{p}_{12}, q_{2} \rightarrow y \tilde{p}_{2}, q_{3} \rightarrow-\tilde{p}_{1234}, q_{4} \rightarrow y \tilde{p}_{1}
$$

with the new momenta $\tilde{p}_{i}, i=1 \ldots 5$ satisfying as usual, $\sum_{1}^{5} \tilde{p}_{i}=0, \tilde{p}_{i}^{2}=0, i=1 \ldots 5$, with $\tilde{p}_{i \ldots j}:=\tilde{p}_{i}+\ldots+\tilde{p}_{j}$. The set of independent invariants is given by $\left\{\tilde{S}_{12}, \tilde{S}_{23}, \tilde{S}_{34}, \tilde{S}_{45}, \tilde{S}_{51}, y\right\}$, with $\tilde{S}_{i j}:=\left(\tilde{p}_{i}+\tilde{p}_{j}\right)^{2}$. The explicit mapping between the two sets of invariants is given by

$$
\begin{gathered}
q_{1}^{2}=(1-y)\left(\tilde{S}_{45}-\tilde{S}_{12} y\right), s_{12}=\tilde{S}_{45}(1-y)+\tilde{S}_{23} y, s_{23}=-y\left(\tilde{S}_{12}-\tilde{S}_{34}+\tilde{S}_{51}\right), \\
s_{34}=\tilde{S}_{51} y, s_{45}=y\left(\tilde{S}_{23}-\tilde{S}_{45}-\tilde{S}_{51}\right), s_{15}=y\left(\tilde{S}_{34}-\tilde{S}_{12}(1-y)\right) .
\end{gathered}
$$

HEXABOX - ONE LEG OFF-SHELL: WEIGHT 2

- By identifying $f_{-}=y$ and $f_{+}=y \frac{\tilde{S}_{12}}{\tilde{S}_{45}}$, which are given as

$$
f_{ \pm}=\frac{S_{45}+x\left(-S_{23}-S_{34}+2 S_{51}+S_{12} x\right) \pm r_{2}}{2\left(S_{12}-S_{34}+S_{51}\right) x}
$$

we can write the DE for this element in the simple and compact form

$$
\frac{d}{d x} g_{11}^{(2)}=-8\left(\mathrm{~d} \log \left(\frac{f_{+}-1}{f_{-}-1}\right) \log \left(f_{-} f_{+}\right)-\mathrm{d} \log \left(\frac{f_{+}}{f_{-}}\right) \log \left(\left(f_{-}-1\right)\left(f_{+}-1\right)\right)\right) .
$$

The form of the DE makes the determination of the ansatz rather straightforward, with the result

$$
g_{11}^{(2)}=-8\left(-\log \left(f_{-} f_{+}\right)\left(\mathcal{G}\left(1, f_{-}\right)-\mathcal{G}\left(1, f_{+}\right)\right)+2 \mathcal{G}\left(0,1, f_{-}\right)-2 \mathcal{G}\left(0,1, f_{+}\right)\right)
$$

- Concerning the other non-rationalisable square root in the family N_{2}, r_{5}, it also appears for the first time at weight 2 in the basis element 73 only, which is one of the new integrals to be calculated.

$$
g_{73}^{(2)}=16 \log \left(f_{-} f_{+}\right)\left(\mathcal{G}\left(1, f_{-}\right)-\mathcal{G}\left(1, f_{+}\right)\right)-32\left(\mathcal{G}\left(0,1, f_{-}\right)-\mathcal{G}\left(0,1, f_{+}\right)\right)
$$

with

$$
f_{ \pm}=\frac{S_{45}\left(2 S_{12} x-S_{34} x+S_{51}\right)+x\left(S_{23} S_{34}-S_{12} S_{23}+x S_{12} S_{51}\right) \pm r_{5}}{2 S_{45}\left(S_{12}-S_{34}+S_{51}\right)}
$$

HEXABOX - ONE LEG OFF-SHELL: INTEGRAL REP.

Weight 3:

The differential equation can be written in the form:

$$
\partial_{x} g_{I}^{(3)}=\sum_{a}\left(\partial_{x} \log L_{a}\right) \sum_{J} c_{I J}^{a} g_{J}^{(2)}
$$

Since the lower limit of integration corresponds to $x=0$, we need to subtract the appropriate term so that the integral is explicitly finite. This is achieved as follows:

$$
\partial_{x} g_{I}^{(3)}=\sum_{a} \frac{l_{a}}{x} \sum_{J} c_{I J}^{a} g_{J, 0}^{(2)}+\left(\sum_{a}\left(\partial_{x} \log L_{a}\right) \sum_{J} c_{I J}^{a} g_{J}^{(2)}-\sum_{a} \frac{l_{a}}{x} \sum_{J} c_{I J}^{a} g_{J, 0}^{(2)}\right)
$$

where $g_{l, 0}^{(2)}$ are obtained by expanding $g_{l}^{(2)}$ around $x=0$ and keeping terms up to order $\mathcal{O}\left(\log (x)^{2}\right)$, and $I_{a} \in \mathbb{Q}$ are defined through

$$
\partial_{x} \log L_{a}=\frac{l_{a}}{x}+\mathcal{O}\left(x^{0}\right)
$$

HEXABOX - ONE LEG OFF-SHELL: INTEGRAL REP.

The DE can now be integrated from $x=0$ to $x=\bar{x}$, and the result is given by

$$
g_{l}^{(3)}=g_{l, \mathcal{G}}^{(3)}+b_{l}^{(3)}+\int_{0}^{\bar{x}} \mathrm{~d} x\left(\sum_{a}\left(\partial_{x} \log L_{a}\right) \sum_{J} c_{I J}^{a} g_{J}^{(2)}-\sum_{a} \frac{l_{a}}{x} \sum_{J} c_{l J}^{a} g_{J, 0}^{(2)}\right)
$$

with $b_{I}^{(3)}$ being the boundary terms at $\mathcal{O}\left(\epsilon^{3}\right)$ and

$$
g_{l, \mathcal{G}}^{(3)}=\left.\int_{0}^{\bar{x}} \mathrm{~d} x \sum_{a} \frac{l_{a}}{x} \sum_{J} c_{L J}^{a} g_{J, 0}^{(2)}\right|_{\mathcal{G}}
$$

with the subscript \mathcal{G}, indicating that the integral is represented in terms of GPLs, following the convention

$$
\int_{0}^{\bar{x}} d x \frac{1}{x} \mathcal{G}(\underbrace{0, \ldots 0 ; x}_{n})=\mathcal{G}(\underbrace{0, \ldots 0 ; \bar{x}}_{n+1}) .
$$

Alternative for the analytical aficionados (AA): work out linear letters \rightarrow Goncharov MPL

HEXABOX - ONE LEG OFF-SHELL: INTEGRAL REP.

Weight 4:
At weight 4, the differential equation can be written in the form:

$$
\partial_{\times} g_{l}^{(4)}=\sum_{a}\left(\partial_{x} \log L_{a}\right) \sum_{J} c_{I J}^{a} g_{J}^{(3)}
$$

which after doubly-subtracting, in order to obtain integrals that are explicitly finite, is written as

$$
\partial_{x} g_{I}^{(4)}=\sum_{a} \partial_{x}\left(\log L_{a}-L L_{a}\right) \sum_{J} c_{I J}^{a} g_{J}^{(3)}+\sum_{a} \partial_{x}\left(L L_{a}\right) \sum_{J} c_{I J}^{a}\left(g_{J}^{(3)}-g_{J, 0}^{(3)}\right)+\sum_{a} \frac{l_{a}}{x} \sum_{J} c_{I J}^{a} g_{J, 0}^{(3)}
$$

where $L L_{a}$ are obtained by expanding $\log \left(L_{a}\right)$ around $x=0$ and keeping terms up to order $\mathcal{O}(\log (x))$, and

$$
g_{l, 0}^{(3)}=g_{l, \mathcal{G}}^{(3)}+b_{l}^{(3)}
$$

HEXABOX - ONE LEG OFF-SHELL: INTEGRAL REP.

Now, by integrating by parts we can write the final result as follows:

$$
\begin{aligned}
g_{I}^{(4)}= & g_{I, \mathcal{G}}^{(4)}+b_{I}^{(4)}+\left(\sum_{a} \log L_{a} \sum_{J} c_{I J}^{a} g_{J}^{(3)}\right)-\left(\sum_{a} L L_{a} \sum_{J} c_{I J}^{a} g_{J, 0}^{(3)}\right) \\
& -\int_{0}^{\bar{x}} \mathrm{~d} x \sum_{a}\left(\log L_{a}-L L_{a}\right) \sum_{J} c_{I J}^{a} \sum_{b} \frac{I_{b}}{x} \sum_{K} c_{J K}^{b} g_{K, 0}^{(2)} \\
& -\int_{0}^{\bar{x}} \mathrm{~d} x \sum_{a} \log L_{a} \sum_{J} c_{I J}^{a}\left(\sum_{b}\left(\partial_{x} \log L_{b}\right) \sum_{K} c_{J K}^{b} g_{K}^{(2)}-\sum_{b} \frac{I_{b}}{x} \sum_{K} c_{J K}^{b} g_{K, 0}^{(2)}\right)
\end{aligned}
$$

with a, b running over the set of contributing letters, I, J, K running over the set of basis elements, $b_{I}^{(4)}$ being the boundary terms at $\mathcal{O}\left(\epsilon^{4}\right)$ and

$$
g_{I, \mathcal{G}}^{(4)}=\left.\int_{0}^{\bar{x}} \mathrm{~d} x\left(\sum_{a} \frac{l_{a}}{x} \sum_{J} c_{I J}^{a} g_{J, 0}^{(3)}\right)\right|_{\mathcal{G}}
$$

where the subscript \mathcal{G} indicates that the integral is represented in terms of GPLs.
analytic continuation \rightarrow applying fibration on $b_{I}^{(1 \ldots 4)}$ and g up to weight two

HEXABOX - ONE LEG OFF-SHELL: BOUNDARY TERMS

- The pure basis elements can be written in general as follows:

$$
\begin{equation*}
g=C e^{2 \gamma_{E} \epsilon} \int \frac{d^{d} k_{1}}{i \pi^{d / 2}} \frac{d^{d} k_{2}}{i \pi^{d / 2}} \frac{P\left(\left\{D_{i}\right\},\left\{S_{i j}, x\right\}\right)}{\prod_{i \in \tilde{S}} D_{i}^{a_{i}}} \tag{1}
\end{equation*}
$$

where $D_{i}, i=1 \ldots 11$, represent the inverse scalar propagators, \tilde{S} the set of indices corresponding to a given sector, $S_{i j}, x$ the kinematic invariants, P is a polynomial, a_{i} are positive integers and C a factor depending on $S_{i j}, x$.

- This form is usually decomposed in terms of FI, F_{i},

$$
g=C \sum c_{i}\left(\left\{S_{i j}, x\right\}\right) F_{i}
$$

with c_{i} being polynomials in $S_{i j}, x$.

HEXABOX - ONE LEG OFF-SHELL: BOUNDARY TERMS

- An alternative approach, would be to build-up the Feynman parameter representation for the whole basis element, by considering the integral as a tensor integral in its Feynman parameter representation.

$$
\begin{aligned}
& \rightarrow \text { J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C } 71 \text { (2011), } 1516 \text { [arXiv: } 1010.1667 \text { [hep-ph]]. } \\
& \rightarrow \text { S. C. Borowka, [arXiv:1410.7939 [hep-ph]]. }
\end{aligned}
$$

Then, by using the expansion by regions approach

$$
\begin{aligned}
& \rightarrow \text { B. Jantzen, A. V. Smirnov and V. A. Smirnov, Eur. Phys. J. C } 72(2012), 2139[a r X i v: 1206.0546[\text { hep-ph }]] . \\
& \rightarrow \text { A. V. Smirnov, Comput. Phys. Commun. } 204(2016), 189-199[a r X i v: 1511.03614[\mathrm{hep}-\mathrm{ph}]] . \\
& \qquad b=\sum_{l} N_{I} \prod_{i \in S_{I}} d x_{i} U_{I}^{a_{I}} F_{I}^{b_{i}} \Pi_{I}
\end{aligned}
$$

where I runs over the set of contributing regions, U_{l} and F_{I} are the limits of the usual Symanzik polynomials, Π_{l} is a polynomial in the Feynman parameters, x_{i}, and the kinematic invariants $S_{i j}$, and $S_{/}$the subset of surviving Feynman parameters in the limit.

- In this way a significant reduction of the number of regions to be calculated is achieved, namely from 208 to 9 . Notice that in contrast to the approach described in the previous paragraphs, only the regions $x^{-2 \epsilon}$ and $x^{-4 \epsilon}$ contribute to the final result, making thus the evaluation of the region-integrals simpler.
- Moreover, this approach overpasses the need for an IBP reduction of the basis elements in terms of MI.

HEXABOX - ONE LEG OFF-SHELL: PERFORMANCE

As a proof of concept, we have implemented the final formulae in Mathematica. We use NIntegrate to perform the one-dimensional integrals, after expressing all weight-2 functions in terms of classical polylogarithms following reference
\rightarrow H. Frellesvig, D. Tommasini and C. Wever, JHEP 03 (2016), 189 [arXiv:1601.02649 [hep-ph]].

- The user can easily assess the performance of this straightforward implementation by running the provided codes and look at the minimum number of digits in agreement with the high-precision results from Abreu et. al, as well as at the number of integrand evaluations performed by NIntegrate.
- Notice that the integrand expressions involve logarithms and classical polylogarithms Li_{2} that are evaluated using very little CPU time.
- The parts of the formulae that can be represented in terms of GPLs up to weight four, as well as the results for the N_{1} family, for which we have all basis elements in terms of GPLs up to weight four, are evaluated with GiNaC, as implemented in PolyLogTools.
\rightarrow J. Vollinga, Nucl. Instrum. Meth. A 559 (2006), 282-284 [arXiv:hep-ph/0510057 [hep-ph]]. \rightarrow C. Duhr and F. Dulat, JHEP 08 (2019), 135 [arXiv:1904.07279 [hep-th]].

HEXABOX - ONE LEG OFF-SHELL: PERFORMANCE

- In the current implementation we use the default parameters for GiNaC and the default parameters for NIntegrate with the exception of WorkingPrecision and PrecisionGoal, in order to obtain reasonable results within reasonable time, taking into account that the provided implementation serves merely as a demonstration of the correctness of our representations.
- For the Euclidean point the precision is typically of the order of 32 digits, which is compatible with GiNaC setup.
- For the physical point, the typical precision is of the order of 25 digits, which is compatible with the expected one taking into account the numerical value of the infinitesimal imaginary part assigned to the kinematical invariants.

LOOP BY LOOP

The loop-by-loop approach

Loop by Loop

$$
\begin{aligned}
& \bar{u}_{L}(p)=\left\langle p \quad u_{L}(p)=p\right] \quad \bar{u}_{R}(p)=\left[\begin{array}{ll}
\left.p \quad u_{R}(p)=p\right\rangle \\
\ell_{3}{ }^{\mu} & \left.=\left\langle p_{1}\right| \gamma^{\mu} \mid p_{2}\right]=\bar{u}_{L}\left(p_{1}\right) \gamma^{\mu} u_{L}\left(p_{2}\right)=\bar{u}\left(p_{1}\right) \gamma^{\mu} \omega_{-} u\left(p_{2}\right) \\
\left.\ell_{4}^{\mu}=\left\langle p_{2}\right| \gamma^{\mu} \mid p_{1}\right]=\bar{u}_{L}\left(p_{2}\right) \gamma^{\mu} u_{L}\left(p_{1}\right)=\bar{u}\left(p_{2}\right) \gamma^{\mu} \omega_{-} u\left(p_{1}\right) \\
\omega_{-}=\frac{1-\gamma_{5}}{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& k_{2} \cdot \ell_{3} k_{2} \cdot \ell_{4}=\bar{u}\left(p_{1}\right) k_{2} \omega_{-} u\left(p_{2}\right) \bar{u}\left(p_{2}\right) k_{2} \omega_{-} u\left(p_{1}\right)=\operatorname{Tr}\left(\not p_{1} k_{2} \omega_{-} \not p_{2} k_{2} \omega_{-}\right)=\operatorname{Tr}\left(\not p_{1} k_{2} \not p_{2} k_{2} \omega_{-}\right) \\
& k_{2} \cdot \ell_{3} k_{2} \cdot \ell_{4}=\frac{1}{2} \operatorname{Tr}\left(\not p_{1} k_{2} \not p_{2} k_{2}\right)-\frac{1}{2} \operatorname{Tr}\left(\not p_{1} k_{2} \not p_{2} k_{2} \gamma_{5}\right)=2\left(2 p_{1} \cdot k_{2} p_{2} \cdot k_{2}-p_{1} \cdot p_{2} k_{2}^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
G\left(k_{2}, p_{1}, p_{2}\right)=\left(\begin{array}{ccc}
k_{2}{ }^{2} & k_{2} \cdot p_{1} & k_{2} \cdot p_{2} \\
k_{2} \cdot p_{1} & 0 & p_{1} \cdot p_{2} \\
k_{2} \cdot p_{2} & p_{1} \cdot p_{2} & 0
\end{array}\right) \\
G=\operatorname{det}\left(G\left(k_{2}, p_{1}, p_{2}\right)\right)=p_{1} \cdot p_{2}\left(2 p_{1} \cdot k_{2} p_{2} \cdot k_{2}-p_{1} \cdot p_{2} k_{2}^{2}\right) \\
k_{2} \cdot \ell_{3} k_{2} \cdot \ell_{4}=2 \frac{G}{p_{1} \cdot p_{2}}
\end{gathered}
$$

LOOP BY LOOP

$$
\begin{gathered}
\mathcal{N}_{1} \equiv k_{1} \cdot p_{3}=d_{1234}+\tilde{d}_{1234}\left(\ell_{3} \cdot k_{1} \ell_{4} \cdot k_{2}-\ell_{4} \cdot k_{1} \ell_{3} \cdot k_{2}\right)+c_{123} D_{4}+c_{124} D_{3}+c_{134} D_{2}+c_{234} D_{1} \\
d_{1234}=-p_{1} \cdot p_{3}-\frac{1}{2}\left(k_{2}-p_{1}\right)^{2} \frac{p_{1} \cdot p_{3} p_{2} \cdot k_{2}+p_{2} \cdot p_{3} p_{1} \cdot k_{2}-p_{1} \cdot p_{2} p_{3} \cdot k_{2}}{2 p_{1} \cdot k_{2} p_{2} \cdot k_{2}-p_{1} \cdot p_{2} k_{2}^{2}} \\
d_{1234}=-p_{1} \cdot p_{3}-\frac{1}{4}\left(k_{2}-p_{1}\right)^{2}\left(\frac{\ell_{3} \cdot p_{3}}{\ell_{3} \cdot k_{2}}+\frac{\ell_{4} \cdot p_{3}}{\ell_{4} \cdot k_{2}}\right) \\
\tilde{d}_{1234}=\frac{1}{8 p_{1} \cdot p_{2}}\left(\frac{\ell_{3} \cdot p_{3}}{\ell_{3} \cdot k_{2}}-\frac{\ell_{4} \cdot p_{3}}{\ell_{4} \cdot k_{2}}\right) \\
c_{123}=\frac{1}{4}\left(\frac{\ell_{3} \cdot p_{3}}{\ell_{3} \cdot k_{2}}+\frac{\ell_{4} \cdot p_{3}}{\ell_{4} \cdot k_{2}}\right) \\
c_{124}=\frac{1}{2 p_{1} \cdot p_{2}}\left(p_{1} \cdot p_{3}-\frac{1}{2} p_{1} \cdot k_{2}\left(\frac{\ell_{3} \cdot p_{3}}{\ell_{3} \cdot k_{2}}+\frac{\ell_{4} \cdot p_{3}}{\ell_{4} \cdot k_{2}}\right)\right) \\
c_{134}=\frac{1}{2 p_{1} \cdot p_{2}}\left(p_{2} \cdot p_{3}-p_{1} \cdot p_{3}+\frac{1}{2}\left(p_{1} \cdot k_{2}-p_{2} \cdot k_{2}\right)\left(\frac{\ell_{3} \cdot p_{3}}{\ell_{3} \cdot k_{2}}+\frac{\ell_{4} \cdot p_{3}}{\ell_{4} \cdot k_{2}}\right)\right) \\
c_{234}=-\frac{1}{2 p_{1} \cdot p_{2}}\left(p_{2} \cdot p_{3}+\frac{1}{2}\left(p_{1} \cdot p_{2}-p_{2} \cdot k_{2}\right)\left(\frac{\ell_{3} \cdot p_{3}}{\ell_{3} \cdot k_{2}}+\frac{\ell_{4} \cdot p_{3}}{\ell_{4} \cdot k_{2}}\right)\right)
\end{gathered}
$$

LOOP BY LOOP

$$
\begin{gathered}
\mathcal{N}=-p_{1} \cdot p_{3}+k_{2} \cdot p_{1} \frac{p_{1} \cdot p_{3} p_{2} \cdot k_{2}+p_{2} \cdot p_{3} p_{1} \cdot k_{2}-p_{1} \cdot p_{2} p_{3} \cdot k_{2}}{2 p_{1} \cdot k_{2} p_{2} \cdot k_{2}-p_{1} \cdot p_{2} k_{2}^{2}} \\
\mathcal{N}=-p_{1} \cdot p_{3}+\frac{D_{8}}{D_{10}}\left(p_{1} \cdot p_{3} \frac{1}{2}\left(D_{5}-2 D_{8}-D_{7}+p_{12}^{2}\right)+p_{2} \cdot p_{3} D_{8}-p_{1} \cdot p_{2} \frac{1}{2}\left(D_{7}-D_{6}-p_{12}^{2}\right)\right) \\
\mathcal{N}=-p_{1} \cdot p_{3}+\frac{1}{2} p_{1} \cdot p_{3} \frac{D_{8}\left(D_{5}-2 D_{8}-D_{7}+p_{12}^{2}\right)}{D_{10}}+p_{2} \cdot p_{3} \frac{D_{8}^{2}}{D_{10}}-\frac{1}{2} p_{1} \cdot p_{2} \frac{D_{8}\left(D_{7}-D_{6}-p_{12}^{2}\right)}{D_{10}} \\
\frac{D_{8}}{D_{10}}, \frac{D_{8} D_{5}}{D_{10}}, \frac{D_{8} D_{6}}{D_{10}}, \frac{D_{8} D_{7}}{D_{10}}, \frac{D_{8}^{2}}{D_{10}}
\end{gathered}
$$

LOOP BY LOOP

$$
\begin{aligned}
& \mathcal{N}=-p_{1} \cdot p_{3} F[1,1,1,1,1,1,1,0,0,0] \\
& +\frac{1}{2} p_{1} \cdot p_{3} F[1,1,1,1,0,1,1,-1,0,1] \\
& +\frac{1}{2} p_{1} \cdot p_{3}(-2) F[1,1,1,1,1,1,1,-2,0,1] \\
& +\frac{1}{2} p_{1} \cdot p_{3}(-1) F[1,1,1,1,1,1,0,-1,0,1] \\
& +\frac{1}{2} p_{1} \cdot p_{3}\left(p_{12}{ }^{2}\right) F[1,1,1,1,1,1,1,-1,0,1] \\
& +p_{2} \cdot p_{3} F[1,1,1,1,1,1,1,-2,0,1] \\
& -\frac{1}{2} p_{1} \cdot p_{2} F[1,1,1,1,1,1,0,-1,0,1] \\
& -\frac{1}{2} p_{1} \cdot p_{2}(-1) F[1,1,1,1,1,0,1,-1,0,1] \\
& -\frac{1}{2} p_{1} \cdot p_{2}\left(-p_{12}^{2}\right) F[1,1,1,1,1,1,1,-1,0,1]
\end{aligned}
$$

\rightarrow Laporta algorithm reduces this to the known result.
\rightarrow by special use of FIRE6 thanks to A. V. Smirnov

LOOP BY LOOP

\rightarrow For higher-rank tensors

$$
\begin{aligned}
& g=-s k_{2}^{2}+4 k_{2} \cdot p_{1} k_{2} \cdot p_{2} \\
& g_{1}=s k_{2}^{2}-\left(k_{2} \cdot p_{1}+k_{2} \cdot p_{2}\right)^{2} \\
& g_{2}=-\frac{s}{2}+k_{2} \cdot p_{2} \\
& g_{3}=k_{2} \cdot p_{1}
\end{aligned}
$$

$$
F^{(9)}, F^{(10)}[g], F^{(10)}\left[g_{1}\right], F^{(10)}\left[g_{2}\right], F^{(10)}\left[g_{3}\right], F^{(11)}\left[g, g_{1}\right], F^{(11)}\left[g, g_{2}\right], F^{(11)}\left[g, g_{3}\right]
$$

$\rightarrow k_{1}$-reduction increasing the rank of k_{2} terms $\rightarrow k_{2}$-reduction?

Summary \& Outlook

- Non-planar families
- We have completed the hexa-box families, N_{1}, N_{2}, N_{3}.
- Checks against known results successful.
- Next task: double-pentagon families, N_{4}, N_{5}.
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5 -point with up to one off-shell leg.
- Speed-up numerical evaluation
- Massive internal particles.
\rightarrow N. Syrrakos, JHEP 05 (2023), 131 [arXiv:2303.07395 [hep-ph]]
\rightarrow S. Badger, M. Becchetti, E. Chaubey and R. Marzucea, IHFP 01 (2023), 156 IarXiv. 221017477 Then-phll
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

Summary \& Outlook

- Non-planar families
- We have completed the hexa-box families, N_{1}, N_{2}, N_{3}.
\rightarrow A. Kardos, C. G. Papadopoulos, A. V. Smirnov, N. Syrrakos and C. Wever, JHEP 05 (2022), 033
- Checks against known results successful.
- Next task: double-pentagon families, N_{4}, N_{5}.
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5 -point with up to one off-shell leg.
- Speed-up numerical evaluation
- Massive internal particles. \rightarrow N. Syrrakos, JHEP 05 (2023), 131 [arXiv:2303.07395 [hep-ph]] \rightarrow S. Badger, M. Becchetti, E. Chaubey and R. Marzucca, JHEP 01 (2023), 156 [arXiv:2210.17477 [hep-ph]].
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

Summary \& Outlook

- Non-planar families
- We have completed the hexa-box families, N_{1}, N_{2}, N_{3}.
- Checks against known results successful.
\rightarrow S. Abreu, H. Ita, B. Page and W. Tschernow, JHEP 03 (2022), 182
- Next task: double-pentagon families, N_{4}, N_{5}.
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5 -point with up to one off-shell leg.
- Speed-up numerical evaluation
- Massive internal particles. \rightarrow N. Syrrakos, JHEP 05 (2023), 131 [arXiv:2303.07395 [hep-ph]] \rightarrow S. Badger, M. Becchetti, E. Chaubey and R. Marzucca, JHEP 01 (2023), 156 [arXiv:2210.17477 [hep-ph]].
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

Summary \& Outlook

- Non-planar families
- We have completed the hexa-box families, N_{1}, N_{2}, N_{3}.
- Checks against known results successful.
- Next task: double-pentagon families, N_{4}, N_{5}.
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5 -point with up to one off-shell leg
- Speed-up numerical evaluation
- Massive internal particles.
\rightarrow N. Syrrakos, JHEP 05 (2023), 131 [arXiv:2303.07395 [hep-ph]]
\rightarrow S. Badger, M. Becchetti, E. Chaubey and R. Marzucca, JHEP 01 (2023), 156 [arXiv:2210.17477 [hep-ph]].
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

Summary \& Outlook

- Non-planar families
- We have completed the hexa-box families, N_{1}, N_{2}, N_{3}.
- Checks against known results successful.
- Next task: double-pentagon families, N_{4}, N_{5}.
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5 -point with up to one off-shell leg.
- Speed-up numerical evaluation
- Massive internal particles.
\rightarrow N. Syrrakos, JHEP 05 (2023), 131 [arXiv:2303.07395 [hep-ph]]
\rightarrow S. Badger, M. Becchetti, E. Chaubey and R. Marzucca, JHEP 01 (2023), 156 [arXiv:2210.17477 [hep-ph]].
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

Summary \& Outlook

- Non-planar families
- We have completed the hexa-box families, N_{1}, N_{2}, N_{3}.
- Checks against known results successful.
- Next task: double-pentagon families, N_{4}, N_{5}.
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5 -point with up to one off-shell leg.
- SDEQ1-loop \rightarrow N. Syrrakos, "One-loop Feynman integrals for $2 \rightarrow 3$ scattering involving many scales including internal masses," JHEP 10 (2021), 041 [arXiv:2107.02106 [hep-ph]].
- SDE@3-loop \rightarrow D. D. Canko and N. Syrrakos, "Planar three-loop master integrals for $2 \rightarrow 2$ processes with one external massive particle," [arXiv:2112.14275 [hep-ph]].
- UT basis determination \rightarrow more criteria as experience dictates
\rightarrow H. Frellesvig and C. G. Papadopoulos, JHEP 04 (2017), 083
\rightarrow J. Henn, B. Mistlberger, V. A. Smirnov and P. Wasser, JHEP 04 (2020), 167
\rightarrow P. Wasser, "Scattering Amplitudes and Logarithmic Differential Forms,"
\rightarrow C. Dlapa, X. Li and Y. Zhang, JHEP 07 (2021), 227
- Boundary terms determination \rightarrow for UT basis elements
- Speed-up numerical evaluation
- Massive internal particles.
\rightarrow N. Syrrakos, JHEP 05 (2023), 131 [arXiv:2303.07395 [hep-ph]]
\rightarrow S. Badger. M. Becchetti, E. Chaubey and R. Marzucca, JHEP 01 (2023), 156 [arXiv:2210.17477 [hep-ph]].
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

Summary \& Outlook

- Non-planar families
- We have completed the hexa-box families, N_{1}, N_{2}, N_{3}.
- Checks against known results successful.
- Next task: double-pentagon families, N_{4}, N_{5}.
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Improving GPLs analytic continuation.
- Study letters ordering in physical regions, use different mappings and/or fibrations.
- Combine analytics with numerics \rightarrow one-dimensional integral representation
- Massive internal particles. \rightarrow N. Syrrakos, JHEP 05 (2023), 131 [arXiv:2303.07395 [hep-ph]] \rightarrow S. Badger, M. Becchetti, E. Chaubey and R. Marzucca, JHEP 01 (2023), 156 [arXiv:2210.17477 [hep-ph]].
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

Summary \& Outlook

- Non-planar families
- We have completed the hexa-box families, N_{1}, N_{2}, N_{3}.
- Checks against known results successful.
- Next task: double-pentagon families, N_{4}, N_{5}.
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Improving GPLs analytic continuation.
- Study letters ordering in physical regions, use different mappings and/or fibrations.
- Combine analytics with numerics \rightarrow one-dimensional integral representation
- Massive internal particles. \rightarrow N. Syrrakos, JHEP 05 (2023), 131 [arXiv:2303.07395 [hep-ph]] \rightarrow S. Badger, M. Becchetti, E. Chaubey and R. Marzucca, JHEP 01 (2023), 156 [arXiv:2210.17477 [hep-ph]].
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

Summary \& Outlook

- Non-planar families
- We have completed the hexa-box families, N_{1}, N_{2}, N_{3}.
- Checks against known results successful.
- Next task: double-pentagon families, N_{4}, N_{5}.
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Improving GPLs analytic continuation.
- Study letters ordering in physical regions, use different mappings and/or fibrations.
- Combine analytics with numerics \rightarrow one-dimensional integral representation
- Massive internal particles. $\quad \rightarrow$ N. Syrrakos, JHEP 05 (2023), 131 [arXiv:2303.07395 [hep-ph]]. \rightarrow S. Badger, M. Becchetti, E. Chaubey and R. Marzucca, JHEP 01 (2023), 156 [arXiv:2210.17477 [hep-ph]].
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

Summary \& Outlook

- Non-planar families
- We have completed the hexa-box families, N_{1}, N_{2}, N_{3}.
- Checks against known results successful.
- Next task: double-pentagon families, N_{4}, N_{5}.
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Improving GPLs analytic continuation.
- Study letters ordering in physical regions, use different mappings and/or fibrations.
- Combine analytics with numerics \rightarrow one-dimensional integral representation
- Massive internal particles.
\rightarrow N. Syrrakos, JHEP 05 (2023), 131 [arXiv:2303.07395 [hep-ph]]
\rightarrow S. Badger, M. Becchetti, E. Chaubey and R. Marzucca, JHEP 01 (2023), 156 [arXiv:2210.17477 [hep-ph]].
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

Summary \& Outlook

- Non-planar families
- We have completed the hexa-box families, N_{1}, N_{2}, N_{3}.
- Checks against known results successful.
- Next task: double-pentagon families, N_{4}, N_{5}.
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Improving GPLs analytic continuation.
- Study letters ordering in physical regions, use different mappings and/or fibrations.
- Combine analytics with numerics \rightarrow one-dimensional integral representation
- Massive internal particles.
\rightarrow N. Syrrakos, JHEP 05 (2023), 131 [arXiv:2303.07395 [hep-ph]].
\rightarrow S. Badger, M. Becchetti, E. Chaubey and R. Marzucca, JHEP 01 (2023), 156 [arXiv:2210.17477 [hep-ph]].
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

Summary \& Outlook

- Non-planar families
- We have completed the hexa-box families, N_{1}, N_{2}, N_{3}.
- Checks against known results successful.
- Next task: double-pentagon families, N_{4}, N_{5}.
- SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one off-shell leg.
- Speed-up numerical evaluation
- Improving GPLs analytic continuation.
- Study letters ordering in physical regions, use different mappings and/or fibrations.
- Combine analytics with numerics \rightarrow one-dimensional integral representation
- Massive internal particles.
\rightarrow N. Syrrakos, JHEP 05 (2023), 131 [arXiv:2303.07395 [hep-ph]].
\rightarrow S. Badger, M. Becchetti, E. Chaubey and R. Marzucca, JHEP 01 (2023), 156 [arXiv:2210.17477 [hep-ph]].
- HELAC2LOOP: generic approach to amplitude reduction and evaluation

Acknowledging

Thank you for your attention!

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the 2nd Call for H.F.R.I. Research Projects to support Faculty Members \& Researchers (Project Number: 2674).

