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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, d"# = s dφ φ̂, hence

∮

B · d"# =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
ẑ . (7)

In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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By elaborating on the recent progress made in the area of Feynman integrals, we apply the
intersection theory for twisted de Rham cohomologies to special functions appearing in Quantum
Mechanics and Quantum Field Theory, showing that the algebraic identities they obey can be derived
by means of intersection numbers. Our investigation suggests an algebraic approach generically
applicable to the study of higher-order moments of probability distributions, which are interpreted
as a basis of integrals, where the number of independent moments corresponds to the dimension of
the cohomology groups. Our study o↵ers additional evidence of the intertwinement between physics,
geometry, and statistics.

I. INTRODUCTION

In electromagnetism, Ampere’s theorem states that in
presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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FIG. 1. Circuits linked with the boundary � of a surface S.
The central vector is the orientation of S. Link numbers:
Link(�1, �) = +2, Link(�2, �) = �1, and Link(�3, �) = 0.
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Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, I-35131 Padova, Italy

INFN, sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy

(Dated: February 16, 2023)

By elaborating on the recent progress made in the area of Feynman integrals, we apply the
intersection theory for twisted de Rham cohomologies to special functions appearing in Quantum
Mechanics and Quantum Field Theory, showing that the algebraic identities they obey can be derived
by means of intersection numbers. Our investigation suggests an algebraic approach generically
applicable to the study of higher-order moments of probability distributions, which are interpreted
as a basis of integrals, where the number of independent moments corresponds to the dimension of
the cohomology groups. Our study o↵ers additional evidence of the intertwinement between physics,
geometry, and statistics.

I. INTRODUCTION

In electromagnetism, Ampere’s theorem states that in
presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.

I3I3I3 �3�3�3

���

�1�1�1

I1I1I1

�2�2�2

I2I2I2

SSS

FIG. 1. Circuits linked with the boundary � of a surface S.
The central vector is the orientation of S. Link numbers:
Link(�1, �) = +2, Link(�2, �) = �1, and Link(�3, �) = 0.

⇤ sergio.cacciatori@uninsubria.it
† pierpaolo.mastrolia@unipd.it

Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional

-



Z

�
' = h'|�] (4.146)

= h'|� + @�] (4.147)

= h'|�] + h'|@�] (4.148)

= h'|�] + hd'|�] (4.149)

= h'+ d'|�] (4.150)

Z

@�
' =

Z

�
d' () h'|@�] = hd'|�] (4.151)

Z

�
' =

X

i=1

ai

Z

�i

' (4.152)

(4.153)

h'|�] =
X

i=1

ai h'|�i] =
X

i=1

ci hei|�] (4.154)

z0 z1 z2 (4.155)

– 21 –

Ampere’s Law

I

Intersection Numbers in Quantum Mechanics and Field Theory

Sergio L. Cacciatori⇤

Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, 22100, Como, Italy
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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, d"# = s dφ φ̂, hence

∮

B · d"# =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
ẑ . (7)

In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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By elaborating on the recent progress made in the area of Feynman integrals, we apply the
intersection theory for twisted de Rham cohomologies to special functions appearing in Quantum
Mechanics and Quantum Field Theory, showing that the algebraic identities they obey can be derived
by means of intersection numbers. Our investigation suggests an algebraic approach generically
applicable to the study of higher-order moments of probability distributions, which are interpreted
as a basis of integrals, where the number of independent moments corresponds to the dimension of
the cohomology groups. Our study o↵ers additional evidence of the intertwinement between physics,
geometry, and statistics.

I. INTRODUCTION

In electromagnetism, Ampere’s theorem states that in
presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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FIG. 1. Circuits linked with the boundary � of a surface S.
The central vector is the orientation of S. Link numbers:
Link(�1, �) = +2, Link(�2, �) = �1, and Link(�3, �) = 0.
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Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, d"# = s dφ φ̂, hence

∮

B · d"# =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
ẑ . (7)

In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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ABSTRACT

We propose a universal strategy, based on intersection theory, to access the vector space structure of generic classes of
integrals that are ubiquitous in scientific calculus. We show that the relations linking them can be derived by projections, where
the intersection number for differential forms acts as a scalar product. By elaborating on the recent progress made in the
area of Feynman integrals, de Rham’s intersection theory is applied to special functions appearing in Quantum Mechanics
and Quantum Field Theory. Our investigation suggests a novel approach, generally applicable to the study of higher-order
moments of probability distributions, which are interpreted as a basis of integrals. Our study offers additional evidence of the
intertwinement between fundamental physics, geometry, and statistics.

1 Introduction
In electromagnetism, Ampere’s theorem states that in presence of a circuit carrying an electric current I, the circulation of the
induced magnetic field along the boundary of an oriented surface is just µ0(±n)I, where µ0 is the magnetic permeability of
empty space, and n is the total number of times the wire crosses the surface, whereas the sign depends on the alignment of the
normal to the surface and of the direction of the current flow. In presence of several closed circuits gk, each carrying a current Ik,
computing the circulation of the induced magnetic field along a closed path g that wounds them, may look like a complicated
problem, depending on the shapes of g and gk. Nevertheless, the answer turns out to be simple, because it can be expressed as a
combination of elementary terms, as µ0 Âk(±nk)Ik, exploiting the geometric information carried by the intersection number of
gk and (the surface bounded by) g , i.e. nk = Link(gk,g), known as Gauss’ linking number. See Figure 1, for an illustration.
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Figure 1. Circuits linked with the boundary g of a surface S. The central vector is the orientation of S. Link numbers:
Link(g1,g) = +2, Link(g2,g) =�1, and Link(g3,g) = 0.

Computing integrals is routine in any scientific ambit: expectation values in Quantum Mechanics, Feynman integrals in
Quantum Field Theory, Partition Functions in Statistical Mechanics, and higher momenta in Statistics are just a few paradigmatic
examples out of a plethora of cases. Stokes’ theorem represents a first step toward a unifying vision of integrals evaluation
as a whole: when it is possible to look at them as representing fluxes of closed differential forms through surfaces, it tells us
that such integrals are invariant upon deforming either the integrand, by exact forms, or the contour, by boundary terms. This
gives rise to the de Rham theory of cohomology, and its generalizations, as its twisted version, which allows to include singular
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I. INTRODUCTION

In electromagnetism, Ampere’s theorem states that in
presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, d"# = s dφ φ̂, hence

∮

B · d"# =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
ẑ . (7)

In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, d"# = s dφ φ̂, hence

∮

B · d"# =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
ẑ . (7)

In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, I-35131 Padova, Italy

INFN, sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy

(Dated: February 16, 2023)

By elaborating on the recent progress made in the area of Feynman integrals, we apply the
intersection theory for twisted de Rham cohomologies to special functions appearing in Quantum
Mechanics and Quantum Field Theory, showing that the algebraic identities they obey can be derived
by means of intersection numbers. Our investigation suggests an algebraic approach generically
applicable to the study of higher-order moments of probability distributions, which are interpreted
as a basis of integrals, where the number of independent moments corresponds to the dimension of
the cohomology groups. Our study o↵ers additional evidence of the intertwinement between physics,
geometry, and statistics.

I. INTRODUCTION

In electromagnetism, Ampere’s theorem states that in
presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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applicable to the study of higher-order moments of probability distributions, which are interpreted
as a basis of integrals, where the number of independent moments corresponds to the dimension of
the cohomology groups. Our study o↵ers additional evidence of the intertwinement between physics,
geometry, and statistics.

I. INTRODUCTION

In electromagnetism, Ampere’s theorem states that in
presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.

I3I3I3 �3�3�3

���

�1�1�1

I1I1I1

�2�2�2

I2I2I2

SSS

FIG. 1. Circuits linked with the boundary � of a surface S.
The central vector is the orientation of S. Link numbers:
Link(�1, �) = +2, Link(�2, �) = �1, and Link(�3, �) = 0.

⇤ sergio.cacciatori@uninsubria.it
† pierpaolo.mastrolia@unipd.it

Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, 22100, Como, Italy

INFN, sezione di Milano, Via Celoria 16, 20133, Milano, Italy

Pierpaolo Mastrolia†
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Integral decomposition by geometry

Master Contributions

Gauss’ Linking Number

Dual twisted cocycle �R: Without loss of generality, let us consider a non-regulated pole in the
point z = 0 2 Prel, and define the dual twisted cocycle,

�R := �(z) dz . (A.8)

The calculation of the intersection number h'L|�Ri using (1.11) gives,

h'L|�Ri = (�1)n
X

p2P
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�1(0)
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= (�1)n Resz=0

⇣
'L uu

�1(0)
⌘
, (A.9)

which receives contribution only from the (unregulated) pole at z = 0, because only in this case
'L uu

�1(0) is single valued, and, therefore, its Laurent expansion might contain a term proportional
to 1/z. Di↵erently, for Pall 3 p 6= 0, the term 'L uu

�1(0) remains multivalued, and its Laurent
expansion contains terms of the type (z� p)� , for � = �(↵i), generically non-integer, therefore having
no residue at z = p.

Twisted cocycle �L: With similar arguments, we can consider any non-regulated pole, say z = 0 2

Prel, and define the twisted cocycle

�L := �(z) dz . (A.10)

We can compute the intersection number h�L|'Ri using (1.10), as,

h�L|'Ri =
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p2P
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⌘
, (A.11)

which takes the contribution just from the pole at z = 0, for the same reason giving above.

We conclude this section by observing that the use of the �-basis [], the solution by ansatz of the mod-
ified di↵erential equation [], as well as the analytic integration [] provide three equivalent algorithms
for computeing intersection numbers in the case relative twisted de Rham cohomology.
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Feynman Integrals

Integration-by-parts Identites

Momentum-space Representation

Tkachov; Chetyrkin & 
Tkachov Laporta, Remiddi, Kuehn, Baikov, Smirnov, Melnikov, Gehrmann, Weinzierl, Anastasiou, Bonciani, &P.M. …,  

=

N-denominator  
generic Integral

3 Feynman Integral Decomposition

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N = LE +
1
2L(L+1) (generalised) denominators2 in a generic dimension d:

Ia1,a2,...,aN ⌘
Z LY

i=1

d
d
ki

⇡d/2

NY

j=1

1

D
aj

j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.

1. Standard Baikov Representation. In this case, after the change of variables, the
Feynman integral may be written as,

Ia1,a2,...,aN ⌘ K

Z

C
u' (3.2)

where
u = B

�
, � ⌘ (d�E�L�1)/2 (3.3)

and

' ⌘ '̂ d
Nz , '̂ ⌘ 1

z
a1
1 z

a2
2 · · · zaN

N

, d
Nz ⌘ dz1 ^ dz2 ^ · · · ^ dzN , (3.4)

and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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Linear relations for Feynman Integrals identities

 Relations among Integrals in dim. reg.

=

N-denominator  
generic Integral

N-denominator 
Master Integrals

(n<N)-denominator 
Master Integrals 
[subtopologies]

4. FOR the COLLOQUIUM

4.1 Massless Spin-1 propagator (photon, gluon)

�i
gµ⌫

k2 � i0
(4.1)

1

k2 � i0
! �(k2) ) �gµ⌫ !

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.2)

4.2 Fermion propagator

i
(/p+m)

p2 �m2 � i0
(4.3)

1

p2 �m2 � i0
! �(p2 �m2

) ) (/p+m) !
X

spin�s

us(p) ūs(p) (4.4)

4.3 Phase-space

d4� ⌘ d4`1 d4`2 �(4)
⇣
`1 + `2 � P12

⌘
�(+)

⇣
`21 �m2

1

⌘
�(+)

⇣
`22 �m2

2

⌘
(4.5)

4.4 BCFW

(qi � zi⌘)
2 �m2

i = 0 , zi =
q2i �m2

i

2⌘.qi
, (qi � zj⌘)

2 �m2

i = 2⌘.qi(zi � zj) (4.6)
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1

q2
1
�m2

1

1

q2
2
�m2

2

· · · 1
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n
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· · · 1
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n

+
1
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1
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q2
2
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2

· · · 1
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+ . . . . . .

+
1

(q1 � zn⌘)2 �m2
1

1

(q2 � zn⌘)2 �m2
2

· · · 1

q2n �m2
n

(4.7)

I
dz

z(z � z1)(z � z2) · · · (z � zn)
= 0 (4.8)

(�1)

z1z2 · · · zn
=

1

z1(z1 � z2) · · · (z1 � zn)

+
1

(z2 � z1)z2 · · · (z2 � zn)
+ . . . . . .

+
1

(zn � z1)(zn � z2) · · · (zn � zn�1)zn
(4.9)
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Pinches

+ +…+ +

1st order Differential Equations for MIs

= + +…+ +

�NLO =

Z

n

✓
d�Born + d�Virtual

◆
+

Z

n+1

d�Real

�NLO =

Z

n

✓
d�Born + d�Virtual +

Z

1

d�Subtractions

◆
+

Z

n+1

✓
d�Real � d�Subtractions

◆

(p2 �m2
) = (/p�m)(/p+m) (4.10)

�gµ⌫ =

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.11)

(/p+m) =

X

spin�s

us(p) ūs(p) (4.12)

D = 4� 2✏

Z
d4�2✏K ⌘

Z
d4k

Z
d�2✏µ ⌘

Z
d4k

Z
d⌦(✏)

Z 1

0

dµ2
(µ2

)
�1�✏

(4.13)

K↵ = k↵ + µ↵ , /K = /k + /µ , K2
= k2 � µ2 ,

�
/k, /µ

 
= 0 =

⇥
�5, /µ

⇤
, /µ = iµ�5

X

s=±
us(k) ūs(k) = (/k +m� iµ�5) (4.14)

X

�=±,0

✏↵�(k)
⇣
✏��(k)

⌘⇤
= �g↵� +

k↵k�

µ2
(4.15)

@x = A(d, x) (4.16)
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2.7 Vector Space Decomposition

⌫ = dimension of the vector space of Feynman integrals

I =
⌫X

i=1

ci Ji (2.45)

Projection

if Ji · Jj = �ij ,

I·Ji = ci , (2.46)

if Ji · Jj = Cij 6= �ij (metric matrix)

X

i,j

I · Jj(C
�1)ji =

⌫X

i,j,k=1

ck Jk · Jj(C
�1)ji =

⌫X

i,j,k=1

ck Ckj(C
�1)ji =

⌫X

i,k=1

ck �ki = ci

Completeness

Plugging back in

I =
X

i,j

I · Jj(C
�1)ji Ji ()

X

i,j

Jj (C
�1)ji Ji = I⌫⇥⌫ (2.47)

The two questions:

1) what is the vector space dimension ⌫ ?

2) what is the scalar product “·” between integrals ?
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Vector decomposition

Projections

Completeness

�1 �2 �3 �4 e1 e2 e3 e4 (4.169)

P (t� t0) = e
H(t�t0)

Z
t

ti

dt P (t� ti)V (4.170)

X

FeynmanGraphs

(4.171)

B(@C) = 0 (4.172)

h'L|'Ri =

Z

X

'L ^ 'R =
X

zi2P (!)

I

�i

 i 'R (4.173)

ai = [�i|�] , [�i|�j ] = �ij (4.174)

ci = h'|eii , hei|eji = �ij (4.175)

ci = I · Ji , Ji · Jj = �ij (4.176)
X

i

Ji Ji = I⌫⇥⌫ (4.177)

– 22 –

�1 �2 �3 �4 e1 e2 e3 e4 (4.169)

P (t� t0) = e
H(t�t0)

Z
t

ti

dt P (t� ti)V (4.170)

X

FeynmanGraphs

(4.171)

B(@C) = 0 (4.172)

h'L|'Ri =

Z

X

'L ^ 'R =
X

zi2P (!)

I

�i

 i 'R (4.173)

ai = [�i|�] , [�i|�j ] = �ij (4.174)

ci = h'|eii , hei|eji = �ij (4.175)

ci = I · Ji , Ji · Jj = �ij (4.176)
X

i

Ji Ji = I⌫⇥⌫ (4.177)

– 22 –

Master Integral = basis

Vector Space Structure of Feynman [- Euler-Mellin - GKZ - A-hypegeometric] Integrals
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�1 �2 �3 �4 e1 e2 e3 e4 (4.169)

P (t� t0) = e
H(t�t0)

Z
t

ti

dt P (t� ti)V (4.170)

X

FeynmanGraphs

(4.171)

B(@C) = 0 (4.172)

h'L|'Ri =

Z

X

'L ^ 'R =
X

zi2P (!)

I

�i

 i 'R (4.173)

ai = [�i|�] , [�i|�j ] = �ij (4.174)

ci = h'|eii , hei|eji = �ij (4.175)

ci = I · Ji , Ji · Jj = �ij (4.176)
X

i

Ji Ji = I⌫⇥⌫ (4.177)
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.34)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.35)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.36)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (2.37)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(2.38)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m
! (2.39)

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.40)

Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(2.41)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (2.42)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (2.43)

r�! ⌘ d� ! ^ (2.44)
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Basics of Intersection Theory / De Rham Twisted Co-Homology Groups



Aomoto, Brown, Cho, Goto, Kita, Matsubara-Heo, Mazumoto, Mimachi, Mizera, Ohara, Yoshida,… 

Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.34)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.35)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.36)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (2.37)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(2.38)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m
! (2.39)

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.40)

Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(2.41)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (2.42)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (2.43)

r�! ⌘ d� ! ^ (2.44)
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Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (2.37)
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Z

C
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Z

C
u

⇣
'm +r!'m�1

⌘
(2.38)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m
! (2.39)

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.40)

Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(2.41)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (2.42)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (2.43)

r�! ⌘ d� ! ^ (2.44)
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Equivalence Classes of DIFFERENTIAL FORMS 

The dawn of Integration by parts identities:

Equivalence Classes of INTEGRATION CONTOURS 

4.6 Intersection Theory

I =
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u(z) 'm(z) (4.35)

'm(z) = '̂(z)dmz d
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'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)
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'm�1 =

Z
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Z

C
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⇣
u
�1

'm�1

⌘
=

Z

C

⇣
u
�1

d'm�1 � u
�2

du ^ 'm�1

⌘
=

Z

C
u
�1

⇣
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�1

r�!'m�1

r! ⌘ d+ !^ , ! = dlogu (4.38)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(4.39)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m

! (4.40)

H
m
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C
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�1

⇣
�m +r�!�m�1

⌘
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Vector Space Structure of Twisted Period Integrals



Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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Covariant Derivative

I(g) =

Z
g(x)e�f(x)

dx (2.99)

[...]

di↵erential N-form

If h'L| and h'R| are dLog n-forms (hence contain only simple poles)

h'L|'Ri =

Z
dz1 · · · dzn �(!1) · · · �(!n) '̂L '̂R = (2.100)

In the 1-variate case:

h'L|'Ri = Resz2P!1

✓
'̂L '̂R

!

◆

=

Z
dz1 �(!1) '̂L '̂R =

X

(z⇤1 )

'̂L '̂R

@!1/@z1
(2.101)

⌘ u
�1

· d · u

⌘ u · d · u
�1 (2.102)

h'
(n)
L |'

(n)
R i = h'

(n)
L |

✓X

i,j

|h
(n�1)
j i(C(n�1))

�1
j,i he

(n�1)
i |

◆
|'

(n)
R i (2.103)
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3.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (3.35)

'm(z) = '̂(z)dmz d
mz = dz1 ^ . . . ^ dzm (3.36)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(3.37)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (3.38)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(3.39)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m
! (3.40)

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (3.41)

Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(3.42)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (3.43)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (3.44)

r�! ⌘ d� !^ (3.45)
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2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.34)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.35)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =
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u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle
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Integrals

�1 �2 �3 �4 e1 e2 e3 e4 (4.169)

P (t� t0) = e
H(t�t0)

Z
t

ti

dt P (t� ti)V (4.170)

X

FeynmanGraphs

(4.171)

B(@C) = 0 (4.172)

h'L|'Ri =

Z

X

'L ^ 'R =
X

zi2P (!)

I

�i

 i 'R (4.173)

ai = [�i|�] , [�i|�j ] = �ij (4.174)

ci = h'|eii , hei|eji = �ij (4.175)

ci = I · Ji , Ji · Jj = �ij (4.176)
X

i

Ji Ji = I⌫⇥⌫ (4.177)

⌫ = number of critical points 2 Z(!) (4.178)

P (!) = {poles of !, including 1} (4.179)

X = C� P (!) (4.180)

for z ! zi 2 P (!)

=

Z

C+@�
u'm (4.181)

=

Z

C+@�
u
�1
�m (4.182)

(4.183)
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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Covariant Derivative

I(g) =

Z
g(x)e�f(x)

dx (2.99)

[...]

di↵erential N-form

If h'L| and h'R| are dLog n-forms (hence contain only simple poles)

h'L|'Ri =

Z
dz1 · · · dzn �(!1) · · · �(!n) '̂L '̂R = (2.100)

In the 1-variate case:

h'L|'Ri = Resz2P!1

✓
'̂L '̂R

!

◆

=

Z
dz1 �(!1) '̂L '̂R =

X

(z⇤1 )

'̂L '̂R

@!1/@z1
(2.101)

⌘ u
�1

· d · u

⌘ u · d · u
�1 (2.102)

h'
(n)
L |'

(n)
R i = h'

(n)
L |

✓X

i,j

|h
(n�1)
j i(C(n�1))

�1
j,i he

(n�1)
i |

◆
|'

(n)
R i (2.103)
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3.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (3.35)

'm(z) = '̂(z)dmz d
mz = dz1 ^ . . . ^ dzm (3.36)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(3.37)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,
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! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (3.41)
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m
�! (3.43)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (3.44)

r�! ⌘ d� !^ (3.45)
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m

! (X) =
Ker(r! : 'm ! 'm+1)

Im(r! : 'm�1 ! 'm)
(4.38)

There could exist many contours C that do not alter the the result of I
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p (X) =
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Hp(X) =
Ker(@p)
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| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.37)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (2.38)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(2.39)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m
! (2.40)

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.41)

Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(2.42)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (2.43)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (2.44)

r�! ⌘ d� !^ (2.45)
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I(g) =

Z
g(x)e�f(x)

dx (2.99)

[...]

di↵erential N-form

If h'L| and h'R| are dLog n-forms (hence contain only simple poles)

h'L|'Ri =

Z
dz1 · · · dzn �(!1) · · · �(!n) '̂L '̂R = (2.100)

In the 1-variate case:

h'L|'Ri = Resz2P!1

✓
'̂L '̂R

!

◆

=

Z
dz1 �(!1) '̂L '̂R =

X

(z⇤1 )

'̂L '̂R

@!1/@z1
(2.101)

⌘ u
�1

· d · u

⌘ u · d · u
�1 (2.102)

h'
(n)
L |'

(n)
R i = h'

(n)
L |

✓X

i,j

|h
(n�1)
j i(C(n�1))

�1
j,i he

(n�1)
i |

◆
|'

(n)
R i (2.103)
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2.6 Intersection Theory
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There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,
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u
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u
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⇣
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⌘
(2.41)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
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H
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�1 �2 �3 �4 e1 e2 e3 e4 (4.169)

P (t� t0) = e
H(t�t0)

Z
t

ti

dt P (t� ti)V (4.170)

X

FeynmanGraphs

(4.171)

B(@C) = 0 (4.172)

h'L|'Ri =

Z

X

'L ^ 'R =
X

zi2P (!)

I

�i

 i 'R (4.173)

ai = [�i|�] , [�i|�j ] = �ij (4.174)

ci = h'|eii , hei|eji = �ij (4.175)

ci = I · Ji , Ji · Jj = �ij (4.176)
X

i

Ji Ji = I⌫⇥⌫ (4.177)

⌫ = number of critical points 2 Z(!) (4.178)

P (!) = {poles of !, including 1} (4.179)

X = C� P (!) (4.180)

for z ! zi 2 P (!)

=

Z

C+@�
u'm (4.181)

=

Z

C+@�
u
�1
�m (4.182)

(4.183)
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Dual Covariant Derivative

4.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (4.35)

'm(z) = '̂(z)dmz d
mz = dz1 ^ . . . ^ dzm (4.36)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(4.37)

There could exist many forms 'm that upon integration give the same result I

There could exist many contours C that do not alter the the result of I

Consider the (m� 1)-di↵erential form 'm�1,
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d
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Z
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⇣
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⌘
=

Z

C
u
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d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

0 =

Z

C
d

⇣
u
�1

'm�1

⌘
=

Z

C

⇣
u
�1

d'm�1 � u
�2

du ^ 'm�1

⌘
=

Z

C
u
�1

⇣
d� ! ^

⌘
'm�1 =

Z

C
u
�1

r�!'m�1

r! ⌘ d+ !^ , ! = dlogu (4.38)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(4.39)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m

! (4.40)

H
m

! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (4.41)

Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(4.42)
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4.6 Intersection Theory
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There could exist many forms 'm that upon integration give the same result I

H
m

! (X) =
Ker(r! : 'm ! 'm+1)

Im(r! : 'm�1 ! 'm)
(4.38)

H
m

�!(X) =
Ker(r�! : 'm ! 'm+1)

Im(r�! : 'm�1 ! 'm)
(4.39)

There could exist many contours C that do not alter the the result of I

H
!

p (X) =
Ker(@ : Cp+1 ! Cp)

Im(@ : Cp ! Cp�1)
(4.40)

H
�!

p (X) =
Ker(@ : Cp+1 ! Cp)

Im(@ : Cp ! Cp�1)
(4.41)

Hp(X) =
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Im(@p)
(4.42)
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Dual Twisted Homology Group

Dual Twisted Cohomology Group

Basics of Intersection Theory / De Rham Twisted Co-Homology Groups



Pairings of Cycles and Co-cycles

Basic building blocks

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.32)

H
m
�! , r�! = d� ! ^ (2.33)

|CL] ⌘

Z

CL
u(z) (2.34)

[CR| ⌘

Z

CR
u(z)�1 (2.35)

h'L| ⌘ 'L(z) 2 H
m
! (2.36)

|'Ri ⌘ 'R(z) 2 H
m
�! (2.37)

! ⌘ d log(u) (2.38)

h 'L | CL ] ⌘

Z

CL
u(z) 'L(z) = I (2.39)

[ CR | 'R i ⌘

Z

CR
u(z)�1

'R(z) = Ĩ (2.40)

h 'L | 'R i ⌘

Z

C
◆('L) ^ 'R (2.41)

⇥
CL | CR

⇤
⌘ intersection number (2.42)

h 'L | 'R i = h 'L | CL
⇤ ⇥

CL | CR
⇤�1 ⇥

CR | 'R i (2.43)

r! = 'L (2.44)

(2.45)
d

dz
 + ! = 'L (2.46)
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⇤ ⇥
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|CR] ⌘

Z

CR
u(z) 2 H

!

m (4.62)

[CL| ⌘

Z

CL
u(z)�1

2 H
�!

m (4.63)

h'L| ⌘ 'L(z) 2 H
m

! (4.64)

|'Ri ⌘ 'R(z) 2 H
m

�! (4.65)

! ⌘ d log(u) (4.66)

h 'L | CR ] ⌘

Z

CR
u(z) 'L(z) = I (4.67)

[ CL | 'R i ⌘

Z

CL
u(z)�1

'R(z) = Ĩ (4.68)

h 'L | 'R i ⌘

Z

C
◆('L) ^ 'R (4.69)

⇥
CL | CR

⇤
⌘ intersection number (4.70)

h 'L | 'R i =
X

i,j

h 'L | CR,j

⇤ ⇥
CL,j | CR,i

⇤�1 ⇥
CL,i | 'R i (4.71)

⇥
CL | CR

⇤
=

X

i,j

⇥
CL | 'R,j i h 'L,j | 'R,i i

�1
h 'L | CR

⇤
(4.72)

X

i,j

| CR,j

⇤ ⇥
CL,j | CR,i

⇤�1 ⇥
CL,i | = Ih (4.73)
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Dual Integrals :: pairings of cycles and co-cycles

Integrals :: pairings of cycles and co-cycles

Intersection numbers for co-cycles :: pairings of co-cycles

⌫ = number of independent forms (twisted cocycles)

|C] ⌘

Z

C
u(z) (2.32)

h'| ⌘ '(z) (2.33)

! ⌘ d log(u) (2.34)

h ' | C ] ⌘

Z

C
u(z) '(z) = I (2.35)

h 'L | 'R i ⌘

Z

C
◆('L) ^ 'R (2.36)

⇥
CL | CR

⇤
⌘ intersection numbers (2.37)

h 'L | 'R i = h 'L | CL
⇤ ⇥

CL | CR
⇤�1 ⇥

CR | 'R i (2.38)
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Intersection numbers for cycles :: pairings of cycles
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⇤ ⇥
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H
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Z

C
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⇥
CL | CR

⇤
⌘ intersection number (2.42)

h 'L | 'R i =
X

i,j

h 'L | CR,j
⇤ ⇥

CL,i | CR,j
⇤�1 ⇥

CL,i | 'R i (2.43)

⇥
CL | CR

⇤
=

X

i,j

⇥
CL,i | 'R,j i h 'L,i | 'R,j i

�1
h 'L | CR

⇤
(2.44)
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Identity Resolution

Forms

Contours

4.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (4.35)

'm(z) = '̂(z)dmz d
mz = dz1 ^ . . . ^ dzm (4.36)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(4.37)

There could exist many forms 'm that upon integration give the same result I

H
m

! (X) =
Ker(r! : 'm ! 'm+1)

Im(r! : 'm�1 ! 'm)
(4.38)

H
m

�!(X) =
Ker(r�! : 'm ! 'm+1)

Im(r�! : 'm�1 ! 'm)
(4.39)

There could exist many contours C that do not alter the the result of I

H
!

p (X) =
Ker(@ : Cp+1 ! Cp)

Im(@ : Cp ! Cp�1)
(4.40)

H
�!

p (X) =
Ker(@ : Cp+1 ! Cp)

Im(@ : Cp ! Cp�1)
(4.41)

dimH
m

±! = dimH
±!

m ⌘ ⌫ (4.42)

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1
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Metric Matrix for Forms 

Metric Matrix for Contours 

PoS(MA2019)015

From Diagrammar to Diagrammalgebra

can be determined by counting the number of critical points of B, namely a = dim(Zl) [24], or
equivalently from the Euler characterisics j(Pl) of the projective variety generated by the poles of
l, as a = (�1)= (= + 1 � j(Pl)) [33], see also [74], or by the Shape Lemma [35].

The corresponding elements, generically denoted as hi! | 2 �=
l , |i'i 2 �=

�l , [C! | 2 �=
l ,

|C'] 2 �=
�l , can be used to define four types of natural twisted Poincarè pairings:

• Integrals:

� = hi! |C'] ⌘
π
C'

D i! ; (9)

• Dual Integrals:

�̃ = [C! |i'i ⌘
π
C!

D�1 i' ; (10)

• Intersection numbers for twisted cycles (or topological intersection numbers):

[C! |C'] ; (11)

• Intersection numbers for twisted cocycles

hi! |i'i ⌘
π
"
(D i!) ^ (D�1 i') =

π
"

i! ^ i' . (12)

where i!,' are understood to have compact support on " .

2.1 Linear and Bilinear Relations

Consider the following bases generating the four spaces introduced above: {h48 |}8=1,...,a 2 �=
l

and {|⌘8i}8=1,...,a 2 �=
�l , respectively for the cohomology and for the dual cohomoloygy spaces;

as well as, {[W8 |}8=1,...,a 2 �l
= , and {|[8]}8=1,...,a 2 ��l

= , respectively for the homology and for the
dual homoloygy spaces. The bases of cocycles {h48 |}8=1,...,a 2 �=

l and {|⌘8i}8=1,...,a 2 �=
�l , can

be used to express the identity operator in the cohomology space as [27, 31],

I2 =
a’

8, 9=1

|⌘8i
⇣
C
�1
⌘
8 9
h4 9 | (13)

where we defined the metric matrix
C8 9 ⌘ h48 |⌘ 9i , (14)

whose elements are intersection numbers of the twisted basic forms. Similarly, by using the bases of
cycles {[W8 |}8=1,...,a 2 �l

= and {|[8]}8=1,...,a 2 ��l
= , the resolution of the identity in the homology

space reads as,

I⌘ =
a’

8, 9=1

|W8]
⇣
H

�1
⌘
8 9
[[ 9 | , (15)

where
H8 9 ⌘ [[8 |W 9] , (16)

is the metric matrix, in terms of intersection numbers of the basic twisted cycles.
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l, as a = (�1)= (= + 1 � j(Pl)) [33], see also [74], or by the Shape Lemma [35].
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whose elements are intersection numbers of the twisted basic forms. Similarly, by using the bases of
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= and {|[8]}8=1,...,a 2 ��l
= , the resolution of the identity in the homology
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I⌘ =
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⇣
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8 9
[[ 9 | , (15)

where
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is the metric matrix, in terms of intersection numbers of the basic twisted cycles.
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4.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (4.35)

'm(z) = '̂(z)dmz d
mz = dz1 ^ . . . ^ dzm (4.36)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(4.37)

There could exist many forms 'm that upon integration give the same result I

H
m

! (X) =
Ker(r! : 'm ! 'm+1)

Im(r! : 'm�1 ! 'm)
(4.38)

H
m

�!(X) =
Ker(r�! : 'm ! 'm+1)

Im(r�! : 'm�1 ! 'm)
(4.39)

There could exist many contours C that do not alter the the result of I

H
!

p (X) =
Ker(@ : Cp+1 ! Cp)

Im(@ : Cp ! Cp�1)
(4.40)

H
�!

p (X) =
Ker(@ : Cp+1 ! Cp)

Im(@ : Cp ! Cp�1)
(4.41)

dimH
m

±! = dimH
±!

m ⌘ ⌫ (4.42)

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

– 10 –
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where: z = (z1, . . . , zn) are integration variables; C is the
integration domain; u is a multi-valued function of the
form u =

Q
i Bi(z)�i with �i /2 Z, such that

Q
i Bi vanishes

on the integration boundary @C; and ' is a single-valued
differential n-form,

'(z) = '̂(z) dnz , d
nz ⌘ dz1 ^ . . . ^ dzn , (2)

with '̂ being a rational function with all poles regulated by
u(z). Then employing Stokes’ theorem we find equivalence
classes of n-forms,

' ⇠ '+r!⇠, (3)

for any (n�1)-form ⇠ and where r! ⌘ d + !^ is a co-
variant derivative with a one-form ! ⌘ d log u. The space
of n-forms modulo the relation eq. (3) forms a vector
space called a twisted cohomology group1

H
n
! . We denote

its elements by h'| 2 H
n
! . Within this framework, the

integral I from eq. (1) can be interpreted as a pairing of
h'| with the integration contour |C],

I = h'|C] . (4)

Since in our applications |C] will always stay constant,
the vector space of such integrals is the same as that of
h'|.

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (5)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji,

I =
⌫X

i=1

ci Ji , (6)

can be interpreted as coming from the more fundamental
decomposition of the differential form h'| in terms of the
basis forms hei| , namely

h'| =
⌫X

i=1

ci hei| , (7)

with the coefficients determined by the master decompo-
sition formula [8, 10],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (8)

1
We refer the interested reader to [20–22] for reviews of twisted

(co)homologies and their intersection theory, as well as [8, 10, 18,

20, 23–28] and [29–32] for some recent applications of these ideas

to physics.

where |hji (j = 1, . . . , ⌫)2, span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called an intersection
number of differential forms [9].

Using eqs. (6,8), our algorithm for expressing any inte-
gral of the type of eq. (1) as linear combinations of MIs
proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

Number of Master Integrals. Under some assump-
tions one can show that all other vector spaces H

k 6=n
±! are

trivial, which means that ' can only be n-forms [33]. In
those cases the dimension of these vector spaces, i.e. the
number ⌫ of MIs, can be determined topologically3,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (9)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !.

This connection allows us to use complex Morse (Picard–
Lefschetz) theory to determine ⌫ as the number of critical
points of the function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (10)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (11)

with the short-hand notation @zi ⌘ @/@zi, provided that
the set of solutions is finite. Additional details are pro-
vided in the App. A.

INTERSECTION NUMBERS

In this section we review a recursive algorithm for
the evaluation of intersection numbers of multivariate
differential forms introduced in [20].

We start by decomposing the n-dimensional space with
coordinates (z1, . . . , zn) into a (n�1)-dimensional sub-
space parametrized by (z1, . . . , zn�1), which we call inner

2
Suitable choices of the basis forms hei| and |hii can be made,

such that C = I⌫⇥⌫ , yielding a simplified decomposition formula

[8, 10], h'| =
P⌫

i=1h'|hii hei|.
3

In the Feynman integral literature, the finiteness of ⌫ was first

considered in [34], while its connection to the number of critical

points and Euler characteristics were previously explored in [8,

10, 35–38].
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PoS(MA2019)015

From Diagrammar to Diagrammalgebra

The identity resolutions I2 and I⌘ can be derived purely algebraically, as in [27, 31]; also,
in the context of di�erential topology, the bilinear Riemann relations for periods of holomorphic
di�erentials, see f.i. [44], can be suitably expressed in order to identify I⌘ (for non twisted-forms),
as shown later.

Linear and bilinear relations for Aomoto-Gel’fand-Feynman integrals, as well as the di�erential
equations and the finite di�erence equation they obey are a consequence of the purely algebraic
application of the identity operators defined above [27].

In the context of Feynman integrals calculus, the decomposition of scattering amplitudes in
terms of MIs, as well as the equations obeyd by the latter, are derived by means of IBPs [69] and of
the Laporta method [70]. In the following, we show how these relations emerge by employing the
algebraic properties of twisted cycles and co-cycles.

2.1.1 Linear Relations

• Decomposition of di�erential forms. Generic twisted cocycles and dual twisted cocycles
can be projected onto the bases in the correspsonding vector spaces as,

hi! | = hi! |I2 =
a’
8=1

28 h48 | , with 28 =
a’
9=1

hi! |⌘ 9i
⇣
C
�1
⌘
98

; (17)

|i'i = I2 |i'i =
a’
8=1

2̃8 |⌘8i , with 2̃8 =
a’
9=1

⇣
C
�1
⌘
8 9

h4 9 |i'i . (18)

The latter two formulas, dubbed master decomposition formulas for (dual) twisted cocycles
[27, 31], imply that the decomposition of any (dual) Aomoto-Gel’fand-Feynman integral can
be expressed as linear combination of (dual) master integrals is an algebraic operation, similar
to the decomposition/projection of any vector within a vector space, which can be carried out
by computing intersection numbers of twisted de Rham di�erential forms.

• Integral decomposition (1). By using the master decomposition formulas of forms and dual
forms, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

28 �8 , and �̃ = [C! |i'i =
a’
8=1

2̃8 �̃8 , (19)

respectively in terms the MIs �8 = h48 |C'], and of the dual MIs �̃8 = [C! |⌘8i, for 8 = 1, . . . , a.

• Decomposition of integration contours. Equivalently, using the resolution of the identity in
the homology space. twisted cycles and dual twisted cycles can be projected onto the bases
in the corresponding vector spaces as,

|C'] = I⌘ |C'] =
’
8

08 |W8] , with 08 =
a’
9=1

⇣
H

�1
⌘
8 9
[[ 9 |C'] , (20)

[C! | = [C! | I⌘ =
’
8

0̃8 [[8 | , with 0̃8 =
a’
8=1

[C! |W 9]
⇣
H

�1
⌘
98

(21)

The latter two formulas are dubbed master decomposition formulas for (dual) twisted cycles,
and may lead to alternative decomposition of integrals and dual integrals.
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where: z = (z1, . . . , zn) are integration variables; C is the
integration domain; u is a multi-valued function of the
form u =

Q
i Bi(z)�i with �i /2 Z, such that

Q
i Bi vanishes

on the integration boundary @C; and ' is a single-valued
differential n-form,

'(z) = '̂(z) dnz , d
nz ⌘ dz1 ^ . . . ^ dzn , (2)

with '̂ being a rational function with all poles regulated by
u(z). Then employing Stokes’ theorem we find equivalence
classes of n-forms,

' ⇠ '+r!⇠, (3)

for any (n�1)-form ⇠ and where r! ⌘ d + !^ is a co-
variant derivative with a one-form ! ⌘ d log u. The space
of n-forms modulo the relation eq. (3) forms a vector
space called a twisted cohomology group1

H
n
! . We denote

its elements by h'| 2 H
n
! . Within this framework, the

integral I from eq. (1) can be interpreted as a pairing of
h'| with the integration contour |C],

I = h'|C] . (4)

Since in our applications |C] will always stay constant,
the vector space of such integrals is the same as that of
h'|.

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (5)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji,

I =
⌫X

i=1

ci Ji , (6)

can be interpreted as coming from the more fundamental
decomposition of the differential form h'| in terms of the
basis forms hei| , namely

h'| =
⌫X

i=1

ci hei| , (7)

with the coefficients determined by the master decompo-
sition formula [8, 10],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (8)

1
We refer the interested reader to [20–22] for reviews of twisted

(co)homologies and their intersection theory, as well as [8, 10, 18,

20, 23–28] and [29–32] for some recent applications of these ideas

to physics.
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ci Ji , (6)

can be interpreted as coming from the more fundamental
decomposition of the differential form h'| in terms of the
basis forms hei| , namely

h'| =
⌫X

i=1

ci hei| , (7)

with the coefficients determined by the master decompo-
sition formula [8, 10],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (8)

1
We refer the interested reader to [20–22] for reviews of twisted

(co)homologies and their intersection theory, as well as [8, 10, 18,

20, 23–28] and [29–32] for some recent applications of these ideas

to physics.

where |hji (j = 1, . . . , ⌫)2, span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called an intersection
number of differential forms [9].

Using eqs. (6,8), our algorithm for expressing any inte-
gral of the type of eq. (1) as linear combinations of MIs
proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

Number of Master Integrals. Under some assump-
tions one can show that all other vector spaces H

k 6=n
±! are

trivial, which means that ' can only be n-forms [33]. In
those cases the dimension of these vector spaces, i.e. the
number ⌫ of MIs, can be determined topologically3,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (9)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !.

This connection allows us to use complex Morse (Picard–
Lefschetz) theory to determine ⌫ as the number of critical
points of the function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (10)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (11)

with the short-hand notation @zi ⌘ @/@zi, provided that
the set of solutions is finite. Additional details are pro-
vided in the App. A.

INTERSECTION NUMBERS

In this section we review a recursive algorithm for
the evaluation of intersection numbers of multivariate
differential forms introduced in [20].

We start by decomposing the n-dimensional space with
coordinates (z1, . . . , zn) into a (n�1)-dimensional sub-
space parametrized by (z1, . . . , zn�1), which we call inner

2
Suitable choices of the basis forms hei| and |hii can be made,

such that C = I⌫⇥⌫ , yielding a simplified decomposition formula

[8, 10], h'| =
P⌫

i=1h'|hii hei|.
3

In the Feynman integral literature, the finiteness of ⌫ was first

considered in [34], while its connection to the number of critical

points and Euler characteristics were previously explored in [8,

10, 35–38].

Mizera & P.M. (2018)

  Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera & P.M. (2019)

  Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera & P.M. (2019)
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The identity resolutions I2 and I⌘ can be derived purely algebraically, as in [27, 31]; also,
in the context of di�erential topology, the bilinear Riemann relations for periods of holomorphic
di�erentials, see f.i. [44], can be suitably expressed in order to identify I⌘ (for non twisted-forms),
as shown later.

Linear and bilinear relations for Aomoto-Gel’fand-Feynman integrals, as well as the di�erential
equations and the finite di�erence equation they obey are a consequence of the purely algebraic
application of the identity operators defined above [27].

In the context of Feynman integrals calculus, the decomposition of scattering amplitudes in
terms of MIs, as well as the equations obeyd by the latter, are derived by means of IBPs [69] and of
the Laporta method [70]. In the following, we show how these relations emerge by employing the
algebraic properties of twisted cycles and co-cycles.

2.1.1 Linear Relations

• Decomposition of di�erential forms. Generic twisted cocycles and dual twisted cocycles
can be projected onto the bases in the correspsonding vector spaces as,

hi! | = hi! |I2 =
a’
8=1

28 h48 | , with 28 =
a’
9=1

hi! |⌘ 9i
⇣
C
�1
⌘
98

; (17)

|i'i = I2 |i'i =
a’
8=1

2̃8 |⌘8i , with 2̃8 =
a’
9=1

⇣
C
�1
⌘
8 9

h4 9 |i'i . (18)

The latter two formulas, dubbed master decomposition formulas for (dual) twisted cocycles
[27, 31], imply that the decomposition of any (dual) Aomoto-Gel’fand-Feynman integral can
be expressed as linear combination of (dual) master integrals is an algebraic operation, similar
to the decomposition/projection of any vector within a vector space, which can be carried out
by computing intersection numbers of twisted de Rham di�erential forms.

• Integral decomposition (1). By using the master decomposition formulas of forms and dual
forms, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

28 �8 , and �̃ = [C! |i'i =
a’
8=1

2̃8 �̃8 , (19)

respectively in terms the MIs �8 = h48 |C'], and of the dual MIs �̃8 = [C! |⌘8i, for 8 = 1, . . . , a.

• Decomposition of integration contours. Equivalently, using the resolution of the identity in
the homology space. twisted cycles and dual twisted cycles can be projected onto the bases
in the corresponding vector spaces as,

|C'] = I⌘ |C'] =
’
8

08 |W8] , with 08 =
a’
9=1

⇣
H

�1
⌘
8 9
[[ 9 |C'] , (20)

[C! | = [C! | I⌘ =
’
8

0̃8 [[8 | , with 0̃8 =
a’
8=1

[C! |W 9]
⇣
H

�1
⌘
98

(21)

The latter two formulas are dubbed master decomposition formulas for (dual) twisted cycles,
and may lead to alternative decomposition of integrals and dual integrals.
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Twisted Riemann Periods Relations (TRPR) Cho, Matsumoto (1995)
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where the product between generally non commuting matrices is understood.

Following a similar approach, in the homology space, hence using I⌘, it is possible to derive
di�erential equations for (dual) master cycles, |W8] and [[8 |, and the secondary equations
obeyed the corresponding H intersection matrix.

2.1.3 Bilinear Relations

Riemann bilinear relations for periods of closed holomorphic (non-twisted) di�erentials forms,
q! and q', see [44] reads as,

hq! |q'i =
π
⌃
q! ^ q' =

6’
8=1

⇣ π
08

q!

π
18

q' �
π
18

q!

π
08

q'

⌘
, (27)

where ⌃ is an oriented Riemann surface of genus 6 > 0, built out of a 46-gon with edgesŒ6
8=1 08180

�1
8 1�1

8 (where the exponent ±1 stands for clock/anticlockwise orientation) and gluing
each edge with its inverse. The integration contours 08 and 18 , for 8 = 1, . . . 6, are a canoni-
cal bases of cycles, hence intersect transversally, i.e. their pairwise intersection numbers are:
08 · 0 9 = 18 · 1 9 = 0 , and 08 · 1 9 = �1 9 · 08 = X8 9 . Riemann bilinear relation can be cast as,

hq! |q'i =
26’
8, 9

π
W8

q! (H�1)8 9
π
W 9

q' , (28)

where {W8}8=1,...,6 = 08 and {W8}8=6+1,...,26 = 18 , and H8 9 = [W8 |W 9] , namely

H =

 
0 I6⇥6

�I6⇥6 0

!
, yielding H

�1 =

 
0 �I6⇥6
I6⇥6 0

!
, (29)

and I6⇥6 is the identity matrix in the (6 ⇥ 6)-space.

Bilinear relations can be derived also for the cases of twisted co-cycles. The operators I2 and
I⌘ can be inserted in the pairing between twisted (co)cyles, to obtain the following identities:

• Twisted Riemann Periods Relations.

hi! |i'i = hi! |I⌘ |i'i =
a’

8, 9=1

hi! |W8]
⇣
H

�1
⌘
8 9
[[ 9 |q'i (30)

[C! |C'] = [C! |I2 |C'] =
a’

8, 9=1

[C! |⌘8i
⇣
C
�1

⌘
8 9
h4 9 |C'] , (31)

which are the Twisted Riemann Period Relations (TRPR) [50]. TRPR relates intersection
numbers for (co)-homologies to products of integrals and dual integrals.

2.1.4 Trilinear Identies

Multiple insertions of the identity resolutions I⌘ and I2 can generate multilinear relations.

8

@� (4.189)

= c1 + c2 + c3 (4.190)

c1 = c2 = c3 = (4.191)

=
⇣
P!.H

�1
.P�!

⌘

LR

(4.192)

=
⇣
P�!.C

�1
.P!

⌘

LR

(4.193)

C = (4.194)

(c1, c2, c3) = (4.195)

Ih =
X

i

|�i] [�i| , Ic =
X

i

|eii hei| (4.196)

– 25 –
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Vector Space Structure of Feynman Integrals



Vector Space Dimensions

Primo, Tancredi (2017)

Space Dimensions = Number of Master Integrals

Chetyrkin, Tkachov (1981); Remiddi, Laporta (1996); Laporta (2000)

Smirnov, Petuckhov (2010)

Lee, Pomeranski (2013)

Bitoun, Bogner, Klausen, Panzer (2018)

Bosma, Sogaard, Zhang (2017)

⌫ = number of independent master integrals

= is finite

= number of critical points of graph polynomials

= is related to Euler characteritics �E

= number of independent integration contours

= number of independent forms

= dimH
m
±!

h'| =
⌫X

i,j=1

h'|eji (C
�1)ij hei| (2.50)

⌫X

i,j=1

|eji (C
�1)ij hei| = Ic (2.51)

Cij ⌘ hei|eji (2.52)

⌫X

i,j=1

|Cj ] (H
�1)ij [Ci| = Ih (2.53)

Hij ⌘ [Ci|Cj ] (2.54)

– 10 –

Aluffi, Marcolli (2008)

Mizera & P.M. (2018)

  Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera & P.M. (2019)

  Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera & P.M. (2019)

Lee, Pomeranski (2013)

f(z, z̄) =
AL(z, z̄)AR(z, z̄)

(1 + zz̄)2+↵L+↵R

Z
d
4
`1 �(`

2
1) �((`1 �K)

2
) AL(`1) AR(`1)

AL(t`) AR(t`)

= c2 (4.112)

I =

Z
d
d
`1 . . . d

d
`L Ii1···in (4.113)

�’s are the remainders of the polynomial divisions (modulo Gröbner bases)

The number ns of solutions of a zero dimensional system, whose polynomials generate

the ideal I(V ), with V ⇢ Cn
, corresponds to the dimension of the Quotient Ring:

ns = dim

⇣
C[z]/I(V )

⌘
= dim

⇣
C[z]/ < G >

⌘

The number ⌫ corresponds to the dimension of the Quotient Ring:

⌫ = dim

⇣
C[z]/ < !̂1, . . . , !̂n >

⌘
= dim

⇣
C[z]/ < G >

⌘

rx,� ⌘ @x + �

u ! u
�1

=) rx,� ! rx,�� (4.114)

@xh'i| = ⌦ijh'j | (4.115)

@xh'1| @xh'2| @xh'3| ⌦ (4.116)

I↵ 'L and ! contain ony simple poles

 p =
'L

!

����
z!zp

(4.117)

�A(0)�

X

poles

ResA(z) (4.118)

Amplitudes ⇠

Z

C
dz1 . . . dzn · z

a1
1 · · · z

an
n · (Scattering Manifold)

�
(4.119)

(d� E � L� 1)/2 = � ! �� , d ! �d+ 2(E + L+ 1) (4.120)

I1 = h�1|C] I2 = h�2|C] (4.121)

– 19 –

  Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera & P.M. (2020)

Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera & P.M. (2019)  



Parametric Representation(s)
Upon a change of integration variables

Integration-by-parts: two situations may occur

2.2 Feynman

Ia1,...,aN =

Z LY

i=1

d
d
ki

✓ NY

n=1

1

D
an
n

◆
(2.9)

Z LY

i=1

d
d
ki

@

@k
µ
j

✓
vµ

NY

n=1

1

D
an
n

◆
= 0 (2.10)

vµ = vµ(pi, kj) (2.11)

2.3 Parametric
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IBP identities

3F2
�a1a2a3

b1b2 ;x
�
= ↵1 3F2

�a1�1,a2,a3
b1�1,b2

;x
�
, +↵2 3F2

�a1,a2�1,a3
b1,b2�1 ;x

�
, +↵3 3F2

�a1,a2,a3
b1,b2�1 ;x

�
. (2.87)

(z1, z2)-space

ê
(2)
1 =

1

z2
, ê

(2)
2 =

1

1� z2
(2.88)

ĥ
(2)
i = ê

(2)
i (i = 1, 2)

c1 is the same as found in Cut1,3,4,5

r�⌦(n)
~ 
(n) = ~'

(n)
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@znhei
(n�1)

| = ⌦(n)
ij hei

(n�1)
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imim�1

= ĥ
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ci = h'|hji (C
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D
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E
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D
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g(x)e�f(x)

dx (2.98)

[...]
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3.3 Two special cases

Two types of integrals generated from the master integrands

• Polynomial insertion:

Z

q1...q`

P (qi · pj , qi · qj) mi(x̄, ȳ) =
X

n,m

↵n,m F
[d]
n,m(x,y)

IBP
=

X

i

ci M
[d]
i

(3.10)

• External-leg derivatives:

p
µ

i

@
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µ

j

M
[d]
k

=

Z

q1...q`

p
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i

@

@p
µ

j

mk(x̄, ȳ) =
X

n,m

�n,m F
[d]
n,m(x,y)

IBP
=

X

i

ci M
[d]
i

(3.11)

3.4 Dimensional Recurrence Relations

P (qi · pj , qi · qj) = G(qi, pj) (3.12)

with G = Gram determinant

G(qi, pj) =

��������

q
2
1 . . . (q1 · pe�1)

.

.

.
. . .

.

.

.

(pe�1 · q1) . . . p
2
e�1

��������
(3.13)

B(pi, kj) =

��������

k
2
1 . . . (k1 · pE�1)

.

.

.
. . .

.

.

.

(pE�1 · k1) . . . p
2
E�1

��������
= B(z) (3.14)

Dimension-shifted integrals

G-insertion:

F
[d]
n,m(x,y) ⌘

Z

q1...q`

fn,m(x,y) , (3.15)

)

Z

q1...q`

G fn,m(x,y) = ⌦(d, pi) F
[d+2]
n,m (x,y) (3.16)

In the case of Master integrals

x̄ = (1, . . . , 1) , ȳ = (0, . . . , 0)

M
[d+2]
k

= ⌦(d, pi)
�1

Z

q1...q`

G mk(x̄, ȳ)
IBP
=

X
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ck,i M
[d]
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(3.17)
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1-loop Nonagon 2-loop Box11 Massless Double-Box

Figure 8: Massless double-box.

Let us consider the massless double-box [100, 101] in Fig. 8. The external (outgoing)
momenta are denoted pi with p

2
i
= 0 for i = 1, 2, 3, 4. We define the kinematic invariants to

be s = (p1 + p2)2, and t = (p2 + p3)2.
The denominators are given by:

D1 = k
2
1 , D2 = (k1 � p1)

2
, D3 = (k1 � p1 � p2)

2
, D4 = (k1 � k2)

2
,

D5 = (k2 � p1 � p2)
2
, D6 = (k2 � p1 � p2 � p3)

2
, D7 = k

2
2 . (11.1)

The leftover ISP is:
z = D8 = (k2 � p1)

2
. (11.2)

The Loop-by-Loop Baikov representation, after a hepta-cut, gives,

u = z
d
2�3(s+ z)2�

d
2 (t� z)d�5

, ! =

✓
4� d

2(s+ z)
+

d� 5

z � t
+

d� 6

2z

◆
dz , (11.3)

⌫ = 2 , P = {0 , �s , t , 1}. (11.4)

Mixed Bases. We pick the two master integrals

J1 = I1,1,1,1,1,1,1;0 , J2 = I1,1,1,1,1,1,1;�1 , (11.5)

corresponding to �1 = 1 dz and �2 = z dz.
Additionally we pick the right basis as

'̂1 =
1

z
� 1

z + s
, '̂2 =

1

z + s
� 1

z � t
, (11.6)

This gives the intersection matrix C to be

C = h�i|'ji =
 �s

d�5
s+t

d�5
s((3d�14)s+2(d�5)t)

2(d�5)(d�4)
�(3d�14)s(s+t)
2(d�5)(d�4)

!
(11.7)

If we want to reduce I1,1,1,1,1,1,1;�2 corresponding to �3 = z
2
dz, we also need the

intersections

h�3|'1i =
s(4(d� 5)t2 � 3(d� 4)(3d� 14)s2 � 4(d� 5)(2d� 9)st)

4(d� 5)(d� 4)(d� 3)
, (11.8)

– 39 –

� ⌘ (d� E � L� 1)/2 (2.14)

q = {pi, kj}, i = 1, . . . , E j = 1, . . . , L (2.15)

sij = pi · pj , i, j = 1, . . . , E (2.16)

B(@C = 0) (2.17)

Z

C
d

 
h(z) B(z)�

NY

i=1

1

zani

!
= 0 (2.18)

h(z) arbitrary rational function

D1 = . . . , Dm = 0 () z1 = . . . , zm = 0 , m  N (2.19)

h'| ⌘ '̂(z) dz (2.20)

'̂(z) rational function

@xI = @xh'|C] = @x

Z

C
u' =

Z
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Feynman Integrals :: Baikov Representation

Integration-by-parts Identities Zhang, Larsen; Lee;

Denominators as integration variables
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3.3 Two special cases

Two types of integrals generated from the master integrands

• Polynomial insertion:
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q1...q`

P (qi · pj , qi · qj) mi(x̄, ȳ) =
X

n,m

↵n,m F
[d]
n,m(x,y)
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=

X

i

ci M
[d]
i

(3.10)

• External-leg derivatives:
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µ
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@
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j
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[d]
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=

Z

q1...q`

p
µ

i

@

@p
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j
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[d]
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=

X
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ci M
[d]
i

(3.11)

3.4 Dimensional Recurrence Relations

P (qi · pj , qi · qj) = G(qi, pj) (3.12)
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��������

q
2
1 . . . (q1 · pe�1)

.

.

.
. . .

.

.

.

(pe�1 · q1) . . . p
2
e�1

��������
(3.13)

B(pi, kj) =

��������

k
2
1 . . . (k1 · pE�1)

.

.

.
. . .

.

.

.

(pE�1 · k1) . . . p
2
E�1

��������
= B(z) (3.14)

Dimension-shifted integrals

G-insertion:

F
[d]
n,m(x,y) ⌘

Z

q1...q`

fn,m(x,y) , (3.15)

)
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q1...q`

G fn,m(x,y) = ⌦(d, pi) F
[d+2]
n,m (x,y) (3.16)

In the case of Master integrals

x̄ = (1, . . . , 1) , ȳ = (0, . . . , 0)

M
[d+2]
k

= ⌦(d, pi)
�1

Z

q1...q`

G mk(x̄, ȳ)
IBP
=

X

i

ck,i M
[d]
i

(3.17)
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Three special applications:



i) Dimensional Recurrence Relation 

MIs in (d+2n) dimensions

Master Decomposition Formula @ special basis choice

Recurrence Relations for Master Forms

Recurrence Relations for Master Integrals

Solutions. The system of differential equations in eq. (3.47) can be used to deduce a
single homogeneous differential equation of order ⌫ for each hei| separately (i = 1, 2, . . . , ⌫).
For each i, the ⌫ independent solutions of such an equation can be found by building the
pairing

Pij = hei|Cj ] =
Z

Cj
u ei , i, j = 1, 2, . . . , ⌫ , (3.50)

where Cj are the independent sub-regions considered in eq. (3.13), see, e.g., [64, 68, 69]. The
⌫ ⇥ ⌫ matrix P is the resolvent matrix of the system of differential equations. For instance,
by choosing a ⌫-dimensional basis formed by hei| and its derivatives up the (⌫ � 1)th-order,
P becomes the Wronski matrix, whose determinant is the Wronskian of the differential
equation obeyed by hei|.

The matrix P plays an important role in the construction of canonical systems of
differential equation [9], as it was observed in [67–69], generalizing the role of Magnus
exponential matrix [31] to the case of elliptic equations. More generally, in the theory of
hypergeometric functions, P is known as twisted period matrix. It can be used, for instance,
to build the so called twisted Riemann period relations [74], a fundamental identity giving
quadratic relations between hypergeometric functions. A proper study of twisted Riemann
period relations to Feynman integrals goes beyond the scope of the current manuscript, and
it is left to future investigations.

3.3 Dimensional Recurrence Relation

Within the standard Baikov representation, the d dependence of Feynman integrals is carried
solely by the prefactor K and by the exponent � of the Baikov polynomial B. Let us write
the MIs in d+ 2n dimensions as,

J
(d+2n)
i

⌘ K(d+ 2n)E(d+2n)
i

, (3.51)

with

E
(d+2n)
i

⌘ hBn
ei|C] =

Z

C
u (Bn

ei) , i = 1, 2, . . . , ⌫ , (3.52)

and consider the decomposition of the hBn
ei| in terms of the basis hej |,

hBn
ei| = (Rn)ij hej | , n = 0, 1, . . . , ⌫ � 1 . (3.53)

This equation can be interpreted as a change of basis, from hei| with (i = 1, 2, . . . , ⌫) to
hBn

ei| with (n = 0, 1, . . . , ⌫ � 1). We can, therefore, decompose hu⌫ei| in terms of the new
basis hBn

ei|, as

hB⌫
ei| =

⌫�1X

n=0

cn hBn
ei| , (3.54)

which can be written in the suggestive fashion,
⌫X

n=0

cn hBn
ei| = 0 , (3.55)
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with c⌫ ⌘ �1. Upon the pairing with |C], it yields the recursion formula for the integral Ei,

⌫X

n=0

cnE
(d+2n)
i

= 0 , (3.56)

where the coefficients cn, computed by means of the master decomposition formula eq. (3.30),
may depend on d and on the kinematics. Finally, by a simple redefinition of the coefficients,
the dimensional recurrence relation for the MIs Ji arises,

⌫X

n=0

↵n J
(d+2n)
i

= 0 , (3.57)

with ↵n ⌘ cn/K(d+ 2n) .

4 Special Functions

One-variable integrals of the hypergeometric type considered in this paper, may always4 be
expressed in the form

I
(↵) /

Z 1

0
z
�1 (1� z)�2

↵Y

i=3

(1� xiz)
�i dz . (4.1)

For ↵ = 2, 3, 4, this integral (up to pre-factors) corresponds to the Euler beta-function, the
Gauss hypergeometric function 2F1, and the Appell F1 function repectively, and the general
case is known as the Lauricella FD functions.

In this section, we apply the ideas of intersection theory to these paradigmatic cases
with their increasing level of complexity, in order to derive contiguity relations, which for
hypergeometric functions play the same role that IBP identities play for Feynman integrals5.

4.1 Euler Beta Integrals

We start by discussing integral relations associated to a simple class of integrals such as the
Euler beta function, defined as

�(a, b) ⌘
Z 1

0
dz z

a�1 (1� z)b�1 =
�(a)�(b)

�(a+ b)
. (4.2)

4.1.1 Direct Integration

Let us consider integrals of the type

In ⌘
Z

C
u z

n
dz , u ⌘ B

�
, B ⌘ z(1� z) , C ⌘ [0, 1] . (4.3)

4If the integrand is just a product of linear terms
Q

i(z � ai)
�i with the integration path being between

two of the ai, a Möbius transform can bring it into the form discussed in the text.
5Recent applications of the theory of hypergeometric functions to the coaction of one-loop (cut)Feynman

integrals can be found in [86, 87].

– 17 –

with c⌫ ⌘ �1. Upon the pairing with |C], it yields the recursion formula for the integral Ei,

⌫X

n=0

cnE
(d+2n)
i

= 0 , (3.56)

where the coefficients cn, computed by means of the master decomposition formula eq. (3.30),
may depend on d and on the kinematics. Finally, by a simple redefinition of the coefficients,
the dimensional recurrence relation for the MIs Ji arises,
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n=0

↵n J
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i

= 0 , (3.57)
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3 Feynman Integral Decomposition

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N = LE +
1
2L(L+1) (generalised) denominators2 in a generic dimension d:

Ia1,a2,...,aN ⌘
Z LY

i=1

d
d
ki

⇡d/2

NY

j=1

1

D
aj

j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.

1. Standard Baikov Representation. In this case, after the change of variables, the
Feynman integral may be written as,

Ia1,a2,...,aN ⌘ K

Z

C
u' (3.2)

where
u = B

�
, � ⌘ (d�E�L�1)/2 (3.3)

and

' ⌘ '̂ d
Nz , '̂ ⌘ 1

z
a1
1 z

a2
2 · · · zaN

N

, d
Nz ⌘ dz1 ^ dz2 ^ · · · ^ dzN , (3.4)

and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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ii) Differential Equations

External Derivative

3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
numbers,

h�i| = h�i|hki
�
C�1

�
kj

hej | (3.41)

= Fik

�
C�1

�
kj
hej | (3.42)

= ⌦ijhej | , (3.43)

where summation over indices j, k is implied and we introduced the intersection matrix

Fik ⌘ h�i|hki (3.44)

as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)

then the system of differential equations for Ji reads,

@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)
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2.2 Baikov

Z LY

i=1

ddki
⇡d/2

@

@kµj

✓
vµ

NY

n=1

1

Dan
n

◆
= 0 (2.9)

vµ = vµ(pi, kj) (2.10)

{D1, . . . , DN} ! {z1, . . . , zN} ⌘ z (2.11)

Ia1,...,aN ⌘ K(d, sij)

Z

C
dz B(z)�

NY

i=1

1

zani
(2.12)

B(z) = det(qi · qj) (2.13)

� ⌘ (d� E � L� 1)/2 (2.14)

q = {pi, kj}, i = 1, . . . , E j = 1, . . . , L (2.15)

sij = pi · pj , i, j = 1, . . . , E (2.16)

B(@C = 0) (2.17)

Z

C
d

 
h(z) B(z)�

NY

i=1

1

zani

!
= 0 (2.18)

h(z) arbitrary rational function

D1 = . . . , Dm = 0 () z1 = . . . , zm = 0 , m  N (2.19)

h'| ⌘ '̂(z) dz (2.20)

'̂(z) rational function

@xI = @xh'|C] = @x

Z

C
u' =

Z

C
u

✓
@xu

u
^+@x

◆
' = h(@x + �)'|C] (2.21)

@x freely exchanged with the integral sign,

even if C = C(x), because u(@C) = 0
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External (connection) dLog-form

Derivative of Master Forms

f(z, z̄) =
AL(z, z̄)AR(z, z̄)

(1 + zz̄)2+↵L+↵R

Z
d
4
`1 �(`

2
1) �((`1 �K)

2
) AL(`1) AR(`1)

AL(t`) AR(t`)

= c2 (3.106)

I =

Z
d
d
`1 . . . d

d
`L Ii1···in (3.107)

�’s are the remainders of the polynomial divisions (modulo Gröbner bases)

The number ns of solutions of a zero dimensional system, whose polynomials generate

the ideal I(V ), with V ⇢ Cn
, corresponds to the dimension of the Quotient Ring:

ns = dim

⇣
C[z]/I(V )

⌘
= dim

⇣
C[z]/ < G >

⌘

rx,� ⌘ @x + � (3.108)
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An analogous System of DEQ can be derived for dual forms:

f(z, z̄) =
AL(z, z̄)AR(z, z̄)

(1 + zz̄)2+↵L+↵R

Z
d
4
`1 �(`

2
1) �((`1 �K)

2
) AL(`1) AR(`1)

AL(t`) AR(t`)

= c2 (3.106)

I =

Z
d
d
`1 . . . d

d
`L Ii1···in (3.107)

�’s are the remainders of the polynomial divisions (modulo Gröbner bases)

The number ns of solutions of a zero dimensional system, whose polynomials generate

the ideal I(V ), with V ⇢ Cn
, corresponds to the dimension of the Quotient Ring:

ns = dim

⇣
C[z]/I(V )

⌘
= dim

⇣
C[z]/ < G >

⌘

rx,� ⌘ @x + �

u ! u
�1

=) rx,� ! rx,�� (3.108)
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iii) Secondary Equation

DEQ for forms

Secondary Equation for the Intersection Matrix

Matsubara-Heo, Takayama (2019)

PoS(MA2019)015

From Diagrammar to Diagrammalgebra

• Integral decomposition (2). By using the master decomposition formulas of contours and
dual contours, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

08 �
0
8 , and �̃ = [C! |i'i =

a’
8=1

0̃8 �̃
0
8 , (22)

respectively in terms the MIs � 08 = hi! |W8], and of the dual MIs �̃ 08 = [[8 |i'i, for 8 = 1, . . . , a.

In the above formulas, C and H are (a⇥a)-matrices of intersection numbers, which, in general,
di�er from the identity matrix. For intersections number of orthonormal elelements they turn
into unit matrices, hence simplifying the decomposition formulas. The Gram-Schmidt algorithm
can be employed to build orthonormal bases from generic sets of independent elements, using
the intersection numbers as scalar products. More generally the coe�cients appearing in the four
types of decomposition formulas for twisted cocycles and cycles and their duals given above are
independent of the respective dual elements. Therefore, by exploiting the freedom in choosing the
corresponding dual bases may yield striking simplifications [31, 102, 103].

Let me remark that the above discussion and the decomposition formulas defined above hold
also in the case of relative twisted de Rham theory, namely releasing the non-integer conditions for
the exponents U8 that appear in the definition of D [102–104].

2.1.2 Di�erential Equations

• Di�erential Forms. The identity resolution I2 can be used to derive the system of di�erential
equation obeyed by the master forms h48 |. In fact, let as assume that the D depends on an
external variables, say G, then

mG h48 | = h(mG + fG)48 | = h(mG + fG)48 | I2 = ⌦8 9 h4 9 | , (23)

where the entries of the matrix of the system are ⌦8 9 = h(mG + fG)48 |⌘:i (C�1): 9 , and
fG ⌘ mG log(D).
Following similar steps, the system of di�erential equations for the master dual forms |⌘8i
reads,

mG |⌘8i = | (mG � fG)⌘8i = I2 | (mG � fG)⌘8i = ⌦̃8 9 |⌘ 9i , (24)

where the entries of the matrix ⌦̃ are ⌦̃8 9 = (C�1) 9: h4: | (mG � fG)⌘8i .

• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices ⌦ and ⌦̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of di�erential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,

mG �8 = ⌦8 9 � 9 , mG �̃8 = ⌦8 9 �̃ 9 . (25)

• Intersection Matrices. The systems of di�erential equations for forms and dual forms can be
used to show that the intersection matrices C and its inverse C

�1 satisfy di�erential equations,
known as secondary equations [35, 36, 105],

mGC = ⌦.C + C.⌦̃ , mGC
�1 = ⌦̃.C�1 � C

�1.⌦ , (26)
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respectively in terms the MIs � 08 = hi! |W8], and of the dual MIs �̃ 08 = [[8 |i'i, for 8 = 1, . . . , a.

In the above formulas, C and H are (a⇥a)-matrices of intersection numbers, which, in general,
di�er from the identity matrix. For intersections number of orthonormal elelements they turn
into unit matrices, hence simplifying the decomposition formulas. The Gram-Schmidt algorithm
can be employed to build orthonormal bases from generic sets of independent elements, using
the intersection numbers as scalar products. More generally the coe�cients appearing in the four
types of decomposition formulas for twisted cocycles and cycles and their duals given above are
independent of the respective dual elements. Therefore, by exploiting the freedom in choosing the
corresponding dual bases may yield striking simplifications [31, 102, 103].

Let me remark that the above discussion and the decomposition formulas defined above hold
also in the case of relative twisted de Rham theory, namely releasing the non-integer conditions for
the exponents U8 that appear in the definition of D [102–104].

2.1.2 Di�erential Equations

• Di�erential Forms. The identity resolution I2 can be used to derive the system of di�erential
equation obeyed by the master forms h48 |. In fact, let as assume that the D depends on an
external variables, say G, then
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where the entries of the matrix of the system are ⌦8 9 = h(mG + fG)48 |⌘:i (C�1): 9 , and
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• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices ⌦ and ⌦̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of di�erential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,
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• Intersection Matrices. The systems of di�erential equations for forms and dual forms can be
used to show that the intersection matrices C and its inverse C

�1 satisfy di�erential equations,
known as secondary equations [35, 36, 105],

mGC = ⌦.C + C.⌦̃ , mGC
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can be determined by counting the number of critical points of B, namely a = dim(Zl) [24], or
equivalently from the Euler characterisics j(Pl) of the projective variety generated by the poles of
l, as a = (�1)= (= + 1 � j(Pl)) [33], see also [74], or by the Shape Lemma [35].

The corresponding elements, generically denoted as hi! | 2 �=
l , |i'i 2 �=

�l , [C! | 2 �=
l ,

|C'] 2 �=
�l , can be used to define four types of natural twisted Poincarè pairings:

• Integrals:

� = hi! |C'] ⌘
π
C'

D i! ; (9)

• Dual Integrals:

�̃ = [C! |i'i ⌘
π
C!

D�1 i' ; (10)

• Intersection numbers for twisted cycles (or topological intersection numbers):

[C! |C'] ; (11)

• Intersection numbers for twisted cocycles

hi! |i'i ⌘
π
"
(D i!) ^ (D�1 i') =

π
"

i! ^ i' . (12)

where i!,' are understood to have compact support on " .

2.1 Linear and Bilinear Relations

Consider the following bases generating the four spaces introduced above: {h48 |}8=1,...,a 2 �=
l

and {|⌘8i}8=1,...,a 2 �=
�l , respectively for the cohomology and for the dual cohomoloygy spaces;

as well as, {[W8 |}8=1,...,a 2 �l
= , and {|[8]}8=1,...,a 2 ��l

= , respectively for the homology and for the
dual homoloygy spaces. The bases of cocycles {h48 |}8=1,...,a 2 �=

l and {|⌘8i}8=1,...,a 2 �=
�l , can

be used to express the identity operator in the cohomology space as [27, 31],

I2 =
a’

8, 9=1

|⌘8i
⇣
C
�1
⌘
8 9
h4 9 | (13)

where we defined the metric matrix
C8 9 ⌘ h48 |⌘ 9i , (14)

whose elements are intersection numbers of the twisted basic forms. Similarly, by using the bases of
cycles {[W8 |}8=1,...,a 2 �l

= and {|[8]}8=1,...,a 2 ��l
= , the resolution of the identity in the homology

space reads as,

I⌘ =
a’

8, 9=1

|W8]
⇣
H

�1
⌘
8 9
[[ 9 | , (15)

where
H8 9 ⌘ [[8 |W 9] , (16)

is the metric matrix, in terms of intersection numbers of the basic twisted cycles.
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and use directly K, u, !, ' and z to express the various quantities on the cut. Moreover,
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and define P as the set of poles of ! ,
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i.e.,

r!p p = 'L,p , (3.23)

where r! was defined in eq. (2.5) (the notation fp indicates the Laurent expansion of f
around z = p). The above equation can be also solved globally, however only a handful of
terms in the Laurent expansion around z = p are needed to evaluate the residue in (3.22).
In particular, after defining ⌧ ⌘ z � p, and the ansatz,
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max+1

�
, (3.24)

min = ordp('L) + 1 , max = �ordp('R)� 1 , (3.25)

the differential equation in eq. (3.23) freezes all unknown coefficients  (j)
p . In other words,

the Laurent expansion of  p around each p, is determined by the Laurent expansion of 'L,R

and of !. A given point p contributes only if the condition min  max is satisfied, and the
above expansion exists only if Resz=p(!) is not a non-positive integer.

3 The number ⌫ of master integrals is equal, up to a sign, to the Euler characteristic � = �⌫ of the space
CP1

\ P, on which the forms are defined, where the number of poles in P is exactly ⌫+2, provided that
all Resz=p(!) are not non-negeative integers. See also [56, 59] for discussion of Euler characteristic in the
context of Feynman integrals. Earlier considerations on possible relations between the number of MIs and
geometric properties of differential manifolds can be found in [84, 85]
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= 0 (2.9)

vµ = vµ(pi, kj) (2.10)

{D1, . . . , DN} ! {z1, . . . , zN} ⌘ z (2.11)

Ia1,...,aN ⌘ K(d, sij)

Z

C
dz B(z)�

NY

i=1

1

zani
(2.12)

B(z) = det(qi · qj) (2.13)

� ⌘ (d� E � L� 1)/2 (2.14)

q = {pi, kj}, i = 1, . . . , E j = 1, . . . , L (2.15)

sij = pi · pj , i, j = 1, . . . , E (2.16)

B(@C = 0) (2.17)

Z

C
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h(z) B(z)�

NY

i=1

1

zani

!
= 0 (2.18)

h(z) arbitrary rational function

D1 = . . . , Dm = 0 () z1 = . . . , zm = 0 , m  N (2.19)

h'| ⌘ '̂(z) dz (2.20)
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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where,  p is a function (0-form), solution to the differential equation r! = 'L, around p,
i.e.,

r!p p = 'L,p , (3.23)

where r! was defined in eq. (2.5) (the notation fp indicates the Laurent expansion of f
around z = p). The above equation can be also solved globally, however only a handful of
terms in the Laurent expansion around z = p are needed to evaluate the residue in (3.22).
In particular, after defining ⌧ ⌘ z � p, and the ansatz,
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Intersection Numbers for Logarithmic n-Forms
Matsumoto (1998), Mizera (2017)

3.3 Intersection numbers for m-log forms

Intersection numbers for multivariate logarithmic forms were considered in [6]. Alternative
formulas for a more direct calculations were later presented in [21]. In particular

h'L,'Ri =
X

(z⇤1 ,...,z
⇤
n)

det�1

2

64

@!1
@z1

. . . @!1
@zn... . . . ...

@!n
@z1

. . . @!n
@zn

3

75 b'L b'R

�����
(z1,...,zn)=(z⇤1 ,...z

⇤
n)

(3.67)

where the sum is extend over the critical points, namely the solutions of the system of
equations:

!i = 0, i = 1, . . . n. (3.68)

The intersection number h'L|'Ri introduced above obeys an important property, which is
relevant for the decomposition of Feynman integrals, namely the invariance under differential
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Efficiently implemented also via Companion Matrix credit Salvatori
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Multivariate integral decomposition

Independent (Master) Integrals
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Multivariate Intersection Numbers (I)

3

space, and a one-dimensional subspace with zn, dubbed
outer space. The aim is to express the original intersection
number nh'

(n)
L |'

(n)
R i in terms of one-dimensional residues

on the outer space and intersection numbers n�1h. . . | . . .i

on the inner space, which are assumed to be known at
this stage. The choice of the variables (and their ordering)
parametrizing the inner and outer spaces is arbitrary: in
the following, we use the generic notation m ⌘ (12 . . .m)
to denote the variables taking part in a specific computa-
tion.

Thus, the original n-forms can be decomposed accord-
ing to

h'
(n)
L | =

⌫n�1X

i=1

he
(n�1)
i | ^ h'

(n)
L,i | , (12)

|'
(n)
R i =

⌫n�1X

i=1

|h
(n�1)
i i ^ |'

(n)
R,ii , (13)

where ⌫n�1 is the number of master integrals on the
inner space with arbitrary bases he

(n�1)
i |, |h(n�1)

j i and
the metric matrix

�
C(n�1)

�
ij
⌘ n�1he

(n�1)
i |h

(n�1)
j i . (14)

In the above expressions h'
(n)
L,i | and |'

(n)
R,ji are dzn-forms

treated as coefficients of the basis expansion. They can be
obtained by a projection similar to eq. (8), for example:

|'
(n)
R,ii =

�
C�1

(n�1)

�
ij n�1he

(n�1)
j |'

(n)
R i , (15)

where from now on we use the implicit sum notation for re-
peated indices. The recursive formula for the intersection
number reads

nh'
(n)
L |'

(n)
R i=�

X

p2Pn

Res
zn=p

⇣
n�1h'

(n)
L |h

(n�1)
i i 

(n)
i

⌘
, (16)

where functions  (n)
i are solutions of the system of differ-

ential equations

@zn 
(n)
i � ⌦̂(n)

ij  
(n)
j = '̂

(n)
R,i , (17)

where h'
(n)
R,i| = '̂

(n)
R,idzn from eq. (15). The ⌫n�1⇥⌫n�1

matrix ⌦̂(n) given by

⌦̂(n)
ij = �

�
C�1

(n�1)

�
ik n�1he

(n�1)
k |(@zn�!̂n)h

(n�1)
j i, (18)

and finally Pn is the set of poles of ⌦̂(n) given by the
union of the poles of its entries (including possible poles
at infinity).

We observe that the solution of eq. (17) around zn=p

can be formally written in terms of a path-ordered matrix
exponential

~ 
(n)=

✓Z zn

p
~'
(n)
R (y)Pe

�
R y
p ⌦(n)(w)

◆⇣
Pe

R zn
p ⌦(n)(w)

⌘
(19)

for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
orders of ~ 

(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.

The recursion terminates when n=1, in which case the
inner space is trivial: ⌫0 = he

(0)
1 | = |h

(0)
1 i = 1, and we

impose the initial conditions

⌦̂(1)
11 = !̂1 , 0h'

(1)
L |h

(0)
1 i = '

(n)
L , '

(1)
R,1 = '

(n)
R . (20)

In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as

nh'
(n)
L |'

(n)
R i =(�1)n

X

pn2Pn

· · ·

X

p12P1

Res
zn=pn

· · · Res
z1=p1

⇣
'
(n)
L  

(1)
1i1
 
(2)
i1i2

· · · 
(n�1)
in�2in�1

 
(n)
in�1

⌘
, (21)

where the ranges of summations are im = 1, . . . , ⌫m and
each  (m)

im�1im
for m = 1, . . . ,n�1 is the solution of

@zm 
(m)
im�1im

� ⌦̂(m)
im�1jm�1

 
(m)
jm�1im

= ĥ
(m)
im�1im

, (22)

for all im with |h
(m)
im�1im

i = ĥ
(m)
im�1im

dzm coming from the
projection:

|h
(m)
im

i = |h
(m�1)
im�1

i ^ |h
(m)
im�1im

i , (23)

which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.

HYPERGEOMETRIC FUNCTION 3F2

In order to illustrate application of the above algorithm
we start with a more familiar case of contiguity relation for
the hypergeometric function 3F2. Consider the function
H, defined as,

H
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for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
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holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
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In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as
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which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.
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for a vector ~ (n) with entries  (n)
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use in eq. (16), it is sufficient to know only a few leading
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(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.

The recursion terminates when n=1, in which case the
inner space is trivial: ⌫0 = he

(0)
1 | = |h

(0)
1 i = 1, and we

impose the initial conditions

⌦̂(1)
11 = !̂1 , 0h'

(1)
L |h

(0)
1 i = '

(n)
L , '

(1)
R,1 = '

(n)
R . (20)
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which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
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master decomposition formula eq. (8), the above recursion
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for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
orders of ~ 

(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.
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In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as
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which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.
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this stage. The choice of the variables (and their ordering)
parametrizing the inner and outer spaces is arbitrary: in
the following, we use the generic notation m ⌘ (12 . . .m)
to denote the variables taking part in a specific computa-
tion.

Thus, the original n-forms can be decomposed accord-
ing to
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In the above expressions h'
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treated as coefficients of the basis expansion. They can be
obtained by a projection similar to eq. (8), for example:

|'
(n)
R,ii =

�
C�1

(n�1)

�
ij n�1he

(n�1)
j |'

(n)
R i , (15)

where from now on we use the implicit sum notation for re-
peated indices. The recursive formula for the intersection
number reads
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where functions  (n)
i are solutions of the system of differ-
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and finally Pn is the set of poles of ⌦̂(n) given by the
union of the poles of its entries (including possible poles
at infinity).

We observe that the solution of eq. (17) around zn=p

can be formally written in terms of a path-ordered matrix
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for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
orders of ~ 

(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.

The recursion terminates when n=1, in which case the
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In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as
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where the ranges of summations are im = 1, . . . , ⌫m and
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which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.

HYPERGEOMETRIC FUNCTION 3F2

In order to illustrate application of the above algorithm
we start with a more familiar case of contiguity relation for
the hypergeometric function 3F2. Consider the function
H, defined as,
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following, we use the generic notation m ⌘ (12 . . .m) to denote the variables taking part in
a specific computation.

Thus, the original n-forms can be decomposed according to
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where ⌫n�1 is the number of master integrals on the inner space with arbitrary bases he(n�1)
i |,
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j i. In the above expressions h'(n)

L,i | and |'(n)
R,ji are one-forms in the variables zn, and

they treated as coefficients of the basis expansion.
They can be obtained by a projection similar to eq. (2.17), namely (sum over repeated is
understood)
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We stress again that, the (n�1)-variable intersection numbers are assumed to be known at
this stage. The recursive formula for the intersection number reads
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i is the solution of the system of differential equations
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and '̂L,i are obtained through eq. (3.34).
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and finally Pn is the set of poles of ⌦̂(n) defined as the union of the poles of its entries
(including a possible pole at infinity).

We observe that the solution of eq. (3.38) around zn=p can be formally written in terms
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If h'L| and h'R| are dLog n-forms (hence contain only simple poles)

h'L|'Ri =

Z
dz1 · · · dzn �(!1) · · · �(!n) '̂L '̂R = (2.100)

In the 1-variate case:

h'L|'Ri = Resz2P!1

✓
'̂L '̂R

!

◆

=

Z
dz1 �(!1) '̂L '̂R =

X

(z⇤1 )

'̂L '̂R

@!1/@z1
(2.101)

⌘ u
�1

· d · u

⌘ u · d · u
�1 (2.102)

h'
(n)
L,i | (C(n�1))ij = h'

(n)
L |h

(n�1)
j i (2.103)

h'
(n)
L |'

(n)
R i = h'

(n)
L |

✓X

i,j

|h
(n�1)
j i(C(n�1))

�1
ji he

(n�1)
i |

◆
|'

(n)
R i

=
X

i,j

h'
(n)
L |h

(n�1)
j i(C(n�1))

�1
ji he

(n�1)
i |'

(n)
R i

(2.104)

– 15 –

I(g) =

Z
g(x)e�f(x)

dx (2.99)

[...]

di↵erential N-form

If h'L| and h'R| are dLog n-forms (hence contain only simple poles)

h'L|'Ri =

Z
dz1 · · · dzn �(!1) · · · �(!n) '̂L '̂R = (2.100)

In the 1-variate case:

h'L|'Ri = Resz2P!1

✓
'̂L '̂R

!

◆

=

Z
dz1 �(!1) '̂L '̂R =

X

(z⇤1 )

'̂L '̂R

@!1/@z1
(2.101)

⌘ u
�1

· d · u

⌘ u · d · u
�1 (2.102)

h'
(n)
L,i | (C(n�1))ij = h'

(n)
L |h

(n�1)
j i

(C(n�1))ij |'
(n)
R,ji = he

(n�1)
i |'

(n)
R i (2.103)

h'
(n)
L |'

(n)
R i = h'

(n)
L |

✓X

i,j

|h
(n�1)
j i(C(n�1))

�1
ji he

(n�1)
i |

◆
|'

(n)
R i

=
X

i,j

h'
(n)
L |h

(n�1)
j i(C(n�1))

�1
ji he

(n�1)
i |'

(n)
R i

(2.104)

– 15 –

(n-1)-form Vector Space: known!

by Induction:

Mizera (2019)

Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera & P.M. (2019) 

Ohara (1998)



(n-1)-form Vector Space: known!

3

space, and a one-dimensional subspace with zn, dubbed
outer space. The aim is to express the original intersection
number nh'

(n)
L |'

(n)
R i in terms of one-dimensional residues

on the outer space and intersection numbers n�1h. . . | . . .i

on the inner space, which are assumed to be known at
this stage. The choice of the variables (and their ordering)
parametrizing the inner and outer spaces is arbitrary: in
the following, we use the generic notation m ⌘ (12 . . .m)
to denote the variables taking part in a specific computa-
tion.

Thus, the original n-forms can be decomposed accord-
ing to
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In the above expressions h'
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L,i | and |'
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R,ji are dzn-forms

treated as coefficients of the basis expansion. They can be
obtained by a projection similar to eq. (8), for example:

|'
(n)
R,ii =

�
C�1

(n�1)

�
ij n�1he

(n�1)
j |'

(n)
R i , (15)

where from now on we use the implicit sum notation for re-
peated indices. The recursive formula for the intersection
number reads
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where functions  (n)
i are solutions of the system of differ-
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and finally Pn is the set of poles of ⌦̂(n) given by the
union of the poles of its entries (including possible poles
at infinity).

We observe that the solution of eq. (17) around zn=p

can be formally written in terms of a path-ordered matrix
exponential
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for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
orders of ~ 

(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.

The recursion terminates when n=1, in which case the
inner space is trivial: ⌫0 = he
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In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as
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which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.

HYPERGEOMETRIC FUNCTION 3F2

In order to illustrate application of the above algorithm
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the hypergeometric function 3F2. Consider the function
H, defined as,
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space, and a one-dimensional subspace with zn, dubbed
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in [8, 10]. Plugging everything together, eq. (16) can be
expressed as
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which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.

HYPERGEOMETRIC FUNCTION 3F2

In order to illustrate application of the above algorithm
we start with a more familiar case of contiguity relation for
the hypergeometric function 3F2. Consider the function
H, defined as,
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space, and a one-dimensional subspace with zn, dubbed
outer space. The aim is to express the original intersection
number nh'
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on the inner space, which are assumed to be known at
this stage. The choice of the variables (and their ordering)
parametrizing the inner and outer spaces is arbitrary: in
the following, we use the generic notation m ⌘ (12 . . .m)
to denote the variables taking part in a specific computa-
tion.
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ing to
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for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
orders of ~ 

(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.

The recursion terminates when n=1, in which case the
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In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as
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which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.
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for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
orders of ~ 

(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.

The recursion terminates when n=1, in which case the
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In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as
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where the ranges of summations are im = 1, . . . , ⌫m and
each  (m)

im�1im
for m = 1, . . . ,n�1 is the solution of

@zm 
(m)
im�1im

� ⌦̂(m)
im�1jm�1

 
(m)
jm�1im

= ĥ
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which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.
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at infinity).
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for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
orders of ~ 

(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.

The recursion terminates when n=1, in which case the
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In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as
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which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.

HYPERGEOMETRIC FUNCTION 3F2

In order to illustrate application of the above algorithm
we start with a more familiar case of contiguity relation for
the hypergeometric function 3F2. Consider the function
H, defined as,

H
�a1a2a3

b1b2 ;x
�
⌘ �(a1, b1�a1)�(a2, b2�a2)3F2

�a1a2a3
b1b2 ;x

�

=

Z

C
u d

2z = h1(12)|C] , (24)

3

space, and a one-dimensional subspace with zn, dubbed
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In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
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where the ranges of summations are im = 1, . . . , ⌫m and
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(m)
im�1im

, (22)
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projection:
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which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.

HYPERGEOMETRIC FUNCTION 3F2

In order to illustrate application of the above algorithm
we start with a more familiar case of contiguity relation for
the hypergeometric function 3F2. Consider the function
H, defined as,
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following, we use the generic notation m ⌘ (12 . . .m) to denote the variables taking part in
a specific computation.

Thus, the original n-forms can be decomposed according to
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where ⌫n�1 is the number of master integrals on the inner space with arbitrary bases he(n�1)
i |,

|h(n�1)
j i. In the above expressions h'(n)

L,i | and |'(n)
R,ji are one-forms in the variables zn, and

they treated as coefficients of the basis expansion.
They can be obtained by a projection similar to eq. (2.17), namely (sum over repeated is
understood)
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We stress again that, the (n�1)-variable intersection numbers are assumed to be known at
this stage. The recursive formula for the intersection number reads
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where the set of functions  (n)
i is the solution of the system of differential equations
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and '̂L,i are obtained through eq. (3.34).
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and finally Pn is the set of poles of ⌦̂(n) defined as the union of the poles of its entries
(including a possible pole at infinity).

We observe that the solution of eq. (3.38) around zn=p can be formally written in terms
of a path-ordered matrix exponential
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3.3 Intersection numbers for m-log forms

Intersection numbers for multivariate logarithmic forms were considered in [6]. Alternative
formulas for a more direct calculations were later presented in [21]. In particular
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det�1
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(3.67)

where the sum is extend over the critical points, namely the solutions of the system of
equations:

!i = 0, i = 1, . . . n. (3.68)

The intersection number h'L|'Ri introduced above obeys an important property, which is
relevant for the decomposition of Feynman integrals, namely the invariance under differential
forms redefinition within the same equivalence classes,

h'L|'Ri = h'0
L|'

0
Ri , (3.69)

where

'0
L = 'L +r!⇠L , (3.70)

'0
R = 'R +r�!⇠R . (3.71)

As observed in ref. [16], one can properly choose ⇠L and ⇠R, to build differential forms
'0
L and '0

R that contain only simple poles, hence simplifying the evaluation of the recursive
algorithm for the computation of multivariate intesection number, which can benefit of the
evaluation of intersection numbers for dlog forms at each step of the iteration.

We will use the invariance of the intersection number under redefinition of differential
forms within the same equivalence classes to propose a novel strategy for the decomposion
of Feynman integrals.

4 Feynman Integral Decomposition

As proposed in refs. [1–3, 15, 16], the use of multivariate intersection numbers yields a direct
decomposition of a given Feynman integral I in terms of an a priori chosen set of MIs Ji,
with i = 1, . . . , ⌫.
The decomposition given by eq. (2.13) is on the form

I =
⌫X

i=1

ciJi (4.1)

with the determination of the coefficients ci being the goal of this section. We identify three

possible strategies which can be adopted in order to achieve this task. They all employ
the master projection formula eq. (2.17), which is applied to differential forms constucted
differently in the the three cases. We name them the straight decomposition, the bottom-up
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di↵erential N-form

If h'L| and h'R| are dLog n-forms (hence contain only simple poles)
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and if ⌦̂(n) is reduced to Fuchsian form
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Multi-pole ansatz Fontana Peraro (2022)

Multivariate Intersection Numbers (I)
Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera & P.M. (2019) 

Ohara (1998) Mizera (2019)

Solving                            , bypassing the pole factorisation, and using FF reconstruction methods. 
(avoiding irrational functions which would disappear in the intersection numbers) 

Special dual basis choice CaronHuot Pokraka (2019-2021)

Relative Dirac-delta basis elements trivialise the evaluation of  the intersection numbers

J
H
E
P
0
5
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2
0
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9
)
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Given two (univariate) 1-forms ϕL and ϕR, we define the intersection number as [77, 78]

〈ϕL|ϕR〉ω =
∑

p∈P
Resz=p

(
ψp ϕR

)
, (3.22)

where, ψp is a function (0-form), solution to the differential equation ∇ωψ = ϕL, around

p, i.e.,

∇ωpψp = ϕL,p , (3.23)

where ∇ω was defined in eq. (2.5) (the notation fp indicates the Laurent expansion of f

around z = p). The above equation can be also solved globally, however only a handful of

terms in the Laurent expansion around z = p are needed to evaluate the residue in (3.22).

In particular, after defining τ ≡ z − p, and the ansatz,

ψp =
max∑

j=min

ψ(j)
p τ j +O

(
τmax+1

)
, (3.24)

min = ordp(ϕL) + 1 , max = −ordp(ϕR)− 1 , (3.25)

the differential equation in eq. (3.23) freezes all unknown coefficients ψ(j)
p . In other words,

the Laurent expansion of ψp around each p, is determined by the Laurent expansion of

ϕL,R and of ω. A given point p contributes only if the condition min ≤ max is satisfied,

and the above expansion exists only if Resz=p(ω) is not a non-positive integer.

Symmetry properties. Intersection numbers of one-forms have the following symmetry

property under the exchange of ϕL and ϕR,

〈ϕL|ϕR〉ω = −〈ϕR|ϕL〉−ω , (3.26)

Notice that on the r.h.s. the intersection number is evaluated with respect to the form −ω
(instead of ω).

Logarithmic forms. When both ϕL and ϕR are logarithmic, meaning that ordp(ϕL/R) ≥
−1 for all points p ∈ P , then the formula (3.22) simplifies to

〈ϕL|ϕR〉ω =
∑

p∈P

Resz=p(ϕL) Resz=p(ϕR)

Resz=p(ω)
. (3.27)

Note that in this case the intersection number becomes symmetric in ϕL and ϕR, i.e.,

〈ϕL|ϕR〉ω = 〈ϕR|ϕL〉ω , (3.28)

while (3.26) still holds.

Vector space metric, integral decomposition and master integrals. Following the

discussion in section 2, consider an ν-dimensional vector space, and its dual space, whose

basis are respectively represented as, 〈ei| and |hi〉 with i = 1, 2, . . . , ν. We use intersection

numbers to define a metric on this space

Cij ≡ 〈ei|hj〉 , (3.29)
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Contiguity relations for Special Functions



1

I. DE OF 3F2

Let us consider the following

u(z) = ((1� z1)z1(1� z2)z2(1� xz1z2))
� ; (1)

we define

! ⌘ d log u(z) =
2X

i=1

!̂i dzi; (2)

a. Number of MIs :: I choose the ordering as {z1, z2}.

⌫2 = 2, {!2 = 0} (3)

⌫12 = 3, {!1 = 0,!2 = 0} (4)

b. Choice of bases ::

e(2) = { 1

z2
,

1

z2 � 1
} (5)

e(12) = { 1

z2(z1 � 1
x)

,
1

(z1 � 1) (z2 � 1)
,

1

z1(z2 � xz1)
} (6)

We are interested in the DE, which is the following

@xhê(12)i |C] = ⌦ijhê(12)j |C] (7)

h@xê(12)i + �ê(12)i |C] = ⌦ijhê(12)j |C] (8)

where � is defined as follows

� =
dLogu

dx
=

�z1z2
xz1z2 � 1

(9)

Now using Master decomposition formula, we get
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0
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where � is defined as follows

� =
dLogu

dx
=

�z1z2
xz1z2 � 1

(9)

Now using Master decomposition formula, we get

⌦ = �

0

BBB@

� x�2
4(x�1)x

3x+10
20(x�1)x

13 x�10
20(x�1)x

3
4(x�1)x

20x+19
20(x�1)x

9
20(x�1) x

0 0 1
x

1

CCCA
(10)

1

I. DE OF 3F2

Let us consider the following

u(z) = ((1� z1)z1(1� z2)z2(1� xz1z2))
� ; (1)

we define

! ⌘ d log u(z) =
2X

i=1

!̂i dzi; (2)

a. Number of MIs :: I choose the ordering as {z1, z2}.

⌫2 = 2, {!2 = 0} (3)

⌫12 = 3, {!1 = 0,!2 = 0} (4)

b. Choice of bases ::

e(2) = { 1

z2
,

1

z2 � 1
} (5)

e(12) = { 1

z2(z1 � 1
x)

,
1

(z1 � 1) (z2 � 1)
,

1

z1(z2 � xz1)
} (6)

We are interested in the DE, which is the following

@xhê(12)i |C] = ⌦ijhê(12)j |C] (7)
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3

space, and a one-dimensional subspace with zn, dubbed
outer space. The aim is to express the original intersection
number nh'

(n)
L |'

(n)
R i in terms of one-dimensional residues

on the outer space and intersection numbers n�1h. . . | . . .i

on the inner space, which are assumed to be known at
this stage. The choice of the variables (and their ordering)
parametrizing the inner and outer spaces is arbitrary: in
the following, we use the generic notation m ⌘ (12 . . .m)
to denote the variables taking part in a specific computa-
tion.

Thus, the original n-forms can be decomposed accord-
ing to

h'
(n)
L | =

⌫n�1X

i=1

he
(n�1)
i | ^ h'

(n)
L,i | , (12)

|'
(n)
R i =

⌫n�1X

i=1

|h
(n�1)
i i ^ |'

(n)
R,ii , (13)

where ⌫n�1 is the number of master integrals on the
inner space with arbitrary bases he

(n�1)
i |, |h(n�1)

j i and
the metric matrix

�
C(n�1)

�
ij
⌘ n�1he

(n�1)
i |h

(n�1)
j i . (14)

In the above expressions h'
(n)
L,i | and |'

(n)
R,ji are dzn-forms

treated as coefficients of the basis expansion. They can be
obtained by a projection similar to eq. (8), for example:

|'
(n)
R,ii =

�
C�1

(n�1)

�
ij n�1he

(n�1)
j |'

(n)
R i , (15)

where from now on we use the implicit sum notation for re-
peated indices. The recursive formula for the intersection
number reads

nh'
(n)
L |'

(n)
R i=�

X

p2Pn

Res
zn=p

⇣
n�1h'

(n)
L |h

(n�1)
i i 

(n)
i

⌘
, (16)

where functions  (n)
i are solutions of the system of differ-

ential equations

@zn 
(n)
i � ⌦̂(n)

ij  
(n)
j = '̂

(n)
R,i , (17)

where h'
(n)
R,i| = '̂

(n)
R,idzn from eq. (15). The ⌫n�1⇥⌫n�1

matrix ⌦̂(n) given by

⌦̂(n)
ij = �

�
C�1

(n�1)

�
ik n�1he

(n�1)
k |(@zn�!̂n)h

(n�1)
j i, (18)

and finally Pn is the set of poles of ⌦̂(n) given by the
union of the poles of its entries (including possible poles
at infinity).

We observe that the solution of eq. (17) around zn=p

can be formally written in terms of a path-ordered matrix
exponential

~ 
(n)=

✓Z zn

p
~'
(n)
R (y)Pe

�
R y
p ⌦(n)(w)

◆⇣
Pe

R zn
p ⌦(n)(w)

⌘
(19)

for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
orders of ~ 

(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.

The recursion terminates when n=1, in which case the
inner space is trivial: ⌫0 = he

(0)
1 | = |h

(0)
1 i = 1, and we

impose the initial conditions

⌦̂(1)
11 = !̂1 , 0h'

(1)
L |h

(0)
1 i = '

(n)
L , '

(1)
R,1 = '

(n)
R . (20)

In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as

nh'
(n)
L |'

(n)
R i =(�1)n

X

pn2Pn

· · ·

X

p12P1

Res
zn=pn

· · · Res
z1=p1

⇣
'
(n)
L  

(1)
1i1
 
(2)
i1i2

· · · 
(n�1)
in�2in�1

 
(n)
in�1

⌘
, (21)
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)
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cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
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We determine the set of spanning cuts as (Cut{1,3},
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u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
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(3)
2 = ĥ
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of
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in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2
� 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (34)
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ê
(13)
1 = ĥ
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
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MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
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J1 = , J2 = , J3 = , (35)
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be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
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ê
(4)
1 = ĥ
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(13)
1 =

1

z1z3
, ê
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ê
(3)
1 = ĥ
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appearaspropagators.Thedeterminationofcoefficients
canbeperformedonunitaritycuts,wheretheintegrands
aresimpler,andtheevaluationofthemultivariatein-
tersectionsrequiresfeweriterations.Aminimalsetof
spanningcutswillbesufficienttoretrievetheinformation
onthecompletedecomposition[42],andthen,usingthe
regulatedu,themasterdecompositionformula(8)yields
thecoefficientsofthoseMIsthatsurviveonthecut.As
inthecaseofIBP-basedapproaches,additionalrelations
maybeobtainedfromthesymmetriesofthediagrams,in
ordertominimizethenumberofindependentintegrals.

Asdiscussedinrefs.[8,10]alsodifferentialequations
inkinematicvariables,e.g.@sJi=

P
jaijJj,canbe

obtainedwiththeabovetechniques.
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(13)
1=

1

z1z3
,ê
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,ê

(3)
2=ĥ
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thecoefficientsofthoseMIsthatsurviveonthecut.As
inthecaseofIBP-basedapproaches,additionalrelations
maybeobtainedfromthesymmetriesofthediagrams,in
ordertominimizethenumberofindependentintegrals.
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inkinematicvariables,e.g.@sJi=
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Foreachofthe15(=24�1)sectors,weuseeq.(11)on
thecorrespondingcut,todeterminethenumberNsectorof
MIs.Thenon-zerocasesare6:N{1,2,3,4}=1,N{1,3}=1,
N{2,3}=1,amountingto3MIs.Wechoosethemtobe:

J1=,J2=,J3=,(35)
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ineq.(34),and'definedineq.(33)(withn=4),can
bedecomposedas,

=c1+c2+c3.(36)
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•Cut{1,3}:Onthisspecificcut,weusetheregularized
u1,3=z

⇢2
2z

⇢4
4u(0,z2,0,z4)toobtainthecorresponding
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(3)
1=

1

z3
,ê
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)
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(24)
2 = ĥ
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
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eq. (36).
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appearaspropagators.Thedeterminationofcoefficients
canbeperformedonunitaritycuts,wheretheintegrands
aresimpler,andtheevaluationofthemultivariatein-
tersectionsrequiresfeweriterations.Aminimalsetof
spanningcutswillbesufficienttoretrievetheinformation
onthecompletedecomposition[42],andthen,usingthe
regulatedu,themasterdecompositionformula(8)yields
thecoefficientsofthoseMIsthatsurviveonthecut.As
inthecaseofIBP-basedapproaches,additionalrelations
maybeobtainedfromthesymmetriesofthediagrams,in
ordertominimizethenumberofindependentintegrals.

Asdiscussedinrefs.[8,10]alsodifferentialequations
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P
jaijJj,canbe

obtainedwiththeabovetechniques.

MASSLESSBOX

FIG.1:Masslessboxwithmasslessexternallegs
(p2i=0,fori=1,2,3,4).Theinvariantsares=(p1+p2)2

andt=(p2+p3)2.

Letusconsiderthemasslessboxdiagramatoneloop,
Fig.1.WithintheBR,

u(z)=
�
(st�sz4�tz3)

2
�2tz1(s(t+2z3�z2�z4)+tz3)

+s
2
z

2
2+t

2
z

2
1�2sz2(t(s�z3)+z4(s+2t))

�d�5
2

.(34)

Foreachofthe15(=24�1)sectors,weuseeq.(11)on
thecorrespondingcut,todeterminethenumberNsectorof
MIs.Thenon-zerocasesare6:N{1,2,3,4}=1,N{1,3}=1,
N{2,3}=1,amountingto3MIs.Wechoosethemtobe:

J1=,J2=,J3=,(35)

sothatanyintegralIoftheformofeq.(1),withugiven
ineq.(34),and'definedineq.(33)(withn=4),can
bedecomposedas,

=c1+c2+c3.(36)

6
IftheBaikovpolynomialBisanon-zeroconstantonthemaximal

cut,theintegralisfullylocalizedbythecut-conditions.Inthis

case,thecondition!=0isalwayssatisfied,andthereis⌫=1
masterintegral.

Wedeterminethesetofspanningcutsas(Cut{1,3},
Cut{2,4})toobtainthefulldecomposition.

•Cut{1,3}:Onthisspecificcut,weusetheregularized
u1,3=z
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⇢4
4u(0,z2,0,z4)toobtainthecorresponding

!̂2and!̂4.Afterchoosingthez4-coordinateastheinner
space,usingeq.(11),weget⌫(24)=2,and⌫(4)=2.
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(4)
2=1.(38)
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Example: 1-Loop Box Integrals

5

appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2
� 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (34)

For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z
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4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
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• Cut{2,4} : On this specific cut, we use the regularized
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ê
(13)
1 = ĥ

(13)
1 =

1

z1z3
, ê
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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Let us consider the massless box diagram at one loop,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
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(4)
1 =

1

z4
, ê
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(13)
2 = 1 , (39)

and for the inner space,

ê
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
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on the complete decomposition [42], and then, using the
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(24)
1 =

1

z2z4
, ê
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)
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If the Baikov polynomial B is a non-zero constant on the maximal
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case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.
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appearaspropagators.Thedeterminationofcoefficients
canbeperformedonunitaritycuts,wheretheintegrands
aresimpler,andtheevaluationofthemultivariatein-
tersectionsrequiresfeweriterations.Aminimalsetof
spanningcutswillbesufficienttoretrievetheinformation
onthecompletedecomposition[42],andthen,usingthe
regulatedu,themasterdecompositionformula(8)yields
thecoefficientsofthoseMIsthatsurviveonthecut.As
inthecaseofIBP-basedapproaches,additionalrelations
maybeobtainedfromthesymmetriesofthediagrams,in
ordertominimizethenumberofindependentintegrals.

Asdiscussedinrefs.[8,10]alsodifferentialequations
inkinematicvariables,e.g.@sJi=

P
jaijJj,canbe

obtainedwiththeabovetechniques.
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,ê

(13)
2=ĥ
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ê
(4)
1=ĥ
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,ê

(13)
2=ĥ
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,ê

(3)
2=ĥ
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ê
(24)
1=ĥ
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(4)
2=1.(38)

•Cut{2,4}:Onthisspecificcut,weusetheregularized
u2,4=z

⇢1
1z

⇢3
3u(z1,0,z3,0)toobtainthecorresponding

!̂1and!̂3.Afterchoosingthez3-coordinateastheinner
space,usingeq.(11),weget⌫(13)=2,and⌫(3)=2.
Accordinglywechoosethebasisforms,

ê
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,ê

(13)
2=ĥ
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)
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case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.
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(3)
1 =

1

z3
, ê
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(3)
2 = 1 . (40)

Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z

C

u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:

c1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)(d� 5)

st
, (44)

c2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

= �
4(d� 5)(d� 3)

s3t
.

5

appearaspropagators.Thedeterminationofcoefficients
canbeperformedonunitaritycuts,wheretheintegrands
aresimpler,andtheevaluationofthemultivariatein-
tersectionsrequiresfeweriterations.Aminimalsetof
spanningcutswillbesufficienttoretrievetheinformation
onthecompletedecomposition[42],andthen,usingthe
regulatedu,themasterdecompositionformula(8)yields
thecoefficientsofthoseMIsthatsurviveonthecut.As
inthecaseofIBP-basedapproaches,additionalrelations
maybeobtainedfromthesymmetriesofthediagrams,in
ordertominimizethenumberofindependentintegrals.

Asdiscussedinrefs.[8,10]alsodifferentialequations
inkinematicvariables,e.g.@sJi=

P
jaijJj,canbe

obtainedwiththeabovetechniques.
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ê
(4)
1=ĥ
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ê
(24)
1=ĥ
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Now,withthehelpofeq.(8)andusingeq.(16)for
thecomputationtheindividualmultivariate(here2-form)
intersectionnumbers,wedeterminethecoefficientsciin
eq.(36).
Example.Letusillustratethedecompositionof

=

Z

C

ud
4z

z
2
1z

2
2z3z4

.(41)

OntheCut{1,3},weobtain:

=

Z

C
u1,3'1,3,'1,3='̂1,3dz2^dz4,(42)

where'̂1,3=!̂1

z2
2z4

.Onthisspecificcutwehave:

=c1+c2,(43)

with:

c1=
2X

j=1

h'1,3|h
(24)
ji

�
C�1

(24)

�
j1

=
(d�6)(d�5)

st
,(44)

c2=
2X

j=1

h'1,3|h
(24)
ji

�
C�1

(24)

�
j2

=�
4(d�5)(d�3)

s3t
.

5
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canbeperformedonunitaritycuts,wheretheintegrands
aresimpler,andtheevaluationofthemultivariatein-
tersectionsrequiresfeweriterations.Aminimalsetof
spanningcutswillbesufficienttoretrievetheinformation
onthecompletedecomposition[42],andthen,usingthe
regulatedu,themasterdecompositionformula(8)yields
thecoefficientsofthoseMIsthatsurviveonthecut.As
inthecaseofIBP-basedapproaches,additionalrelations
maybeobtainedfromthesymmetriesofthediagrams,in
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inkinematicvariables,e.g.@sJi=
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bedecomposedas,

=c1+c2+c3.(36)

6
IftheBaikovpolynomialBisanon-zeroconstantonthemaximal

cut,theintegralisfullylocalizedbythecut-conditions.Inthis

case,thecondition!=0isalwayssatisfied,andthereis⌫=1
masterintegral.

Wedeterminethesetofspanningcutsas(Cut{1,3},
Cut{2,4})toobtainthefulldecomposition.

•Cut{1,3}:Onthisspecificcut,weusetheregularized
u1,3=z

⇢2
2z

⇢4
4u(0,z2,0,z4)toobtainthecorresponding

!̂2and!̂4.Afterchoosingthez4-coordinateastheinner
space,usingeq.(11),weget⌫(24)=2,and⌫(4)=2.
Accordingly,wechoosethebasisforms,

ê
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eq.(36).
Example.Letusillustratethedecompositionof
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appearaspropagators.Thedeterminationofcoefficients
canbeperformedonunitaritycuts,wheretheintegrands
aresimpler,andtheevaluationofthemultivariatein-
tersectionsrequiresfeweriterations.Aminimalsetof
spanningcutswillbesufficienttoretrievetheinformation
onthecompletedecomposition[42],andthen,usingthe
regulatedu,themasterdecompositionformula(8)yields
thecoefficientsofthoseMIsthatsurviveonthecut.As
inthecaseofIBP-basedapproaches,additionalrelations
maybeobtainedfromthesymmetriesofthediagrams,in
ordertominimizethenumberofindependentintegrals.

Asdiscussedinrefs.[8,10]alsodifferentialequations
inkinematicvariables,e.g.@sJi=

P
jaijJj,canbe

obtainedwiththeabovetechniques.
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N{2,3}=1,amountingto3MIs.Wechoosethemtobe:

J1=,J2=,J3=,(35)
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ineq.(34),and'definedineq.(33)(withn=4),can
bedecomposedas,
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(24)
2=1,(37)

andfortheinnerspace,

ê
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(4)
1=

1

z4
,ê
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thecomputationtheindividualmultivariate(here2-form)
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eq.(36).
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appearaspropagators.Thedeterminationofcoefficients
canbeperformedonunitaritycuts,wheretheintegrands
aresimpler,andtheevaluationofthemultivariatein-
tersectionsrequiresfeweriterations.Aminimalsetof
spanningcutswillbesufficienttoretrievetheinformation
onthecompletedecomposition[42],andthen,usingthe
regulatedu,themasterdecompositionformula(8)yields
thecoefficientsofthoseMIsthatsurviveonthecut.As
inthecaseofIBP-basedapproaches,additionalrelations
maybeobtainedfromthesymmetriesofthediagrams,in
ordertominimizethenumberofindependentintegrals.

Asdiscussedinrefs.[8,10]alsodifferentialequations
inkinematicvariables,e.g.@sJi=
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MIs.Thenon-zerocasesare6:N{1,2,3,4}=1,N{1,3}=1,
N{2,3}=1,amountingto3MIs.Wechoosethemtobe:

J1=,J2=,J3=,(35)
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ineq.(34),and'definedineq.(33)(withn=4),can
bedecomposedas,
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6
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masterintegral.
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Cut{2,4})toobtainthefulldecomposition.

•Cut{1,3}:Onthisspecificcut,weusetheregularized
u1,3=z
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4u(0,z2,0,z4)toobtainthecorresponding

!̂2and!̂4.Afterchoosingthez4-coordinateastheinner
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(24)
2=1,(37)

andfortheinnerspace,

ê
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Now,withthehelpofeq.(8)andusingeq.(16)for
thecomputationtheindividualmultivariate(here2-form)
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eq.(36).
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canbeperformedonunitaritycuts,wheretheintegrands
aresimpler,andtheevaluationofthemultivariatein-
tersectionsrequiresfeweriterations.Aminimalsetof
spanningcutswillbesufficienttoretrievetheinformation
onthecompletedecomposition[42],andthen,usingthe
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thecoefficientsofthoseMIsthatsurviveonthecut.As
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Foreachofthe15(=24�1)sectors,weuseeq.(11)on
thecorrespondingcut,todeterminethenumberNsectorof
MIs.Thenon-zerocasesare6:N{1,2,3,4}=1,N{1,3}=1,
N{2,3}=1,amountingto3MIs.Wechoosethemtobe:

J1=,J2=,J3=,(35)
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ineq.(34),and'definedineq.(33)(withn=4),can
bedecomposedas,
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ê
(24)
1=ĥ
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(13)
2=1,(39)

andfortheinnerspace,

ê
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2
� 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (34)

For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,
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• Cut{2,4} : On this specific cut, we use the regularized
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3 u(z1, 0, z3, 0) to obtain the corresponding
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of
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on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
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may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
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P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2
� 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (34)

For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
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(13)
2 = 1 , (39)

and for the inner space,

ê
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
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(4)
2 = ĥ
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
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appear as propagators. The determination of coefficients
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tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
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(13)
2 = 1 , (39)

and for the inner space,

ê
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Recent Applications

2-loop 4-point integrals

1-Loop 6-point

Brunello, Chestnov, Crisanti, Frellesvig, Gasparotto, Mandal & P.M. (in progress)

2-loop 5-point integrals

1-Loop 7-point

credit Brunello

credit Brunello

credit Brunello



Intersection Numbers for n-forms :: nPDE

Chestnov, Frellesvig, Gasparotto, Mandal & P.M. (2022) 



Multivariate Intersection Numbers (II)
Chestnov, Frellesvig, Gasparotto, Mandal & P.M. (2022) 

Matsumoto (1998)

Let us remark, that the metric matrix (2.16), in general, di↵ers from the identity matrix. The
Gram-Schmidt algorithm can be employed to build orthonormal bases from generic sets of independent
elements, using the intersection numbers as scalar products. But more generally the coe�cients
appearing in the formulas (2.17, 2.18) are independent of the respective dual elements. Therefore,
exploiting this freedom in choosing the corresponding dual bases may yield striking simplifications
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h'
(n)
L | '

(n)
R i = (2⇡i)�n

Z

X
(u'(n)

L,c) ^ (u�1
'
(n)
R ) =

X

p2P!

Resz=p( '
(n)
R ) , (2.19)

where:

•  is a function (0-form), that obeys the following n-th order partial di↵erential equation (nPDE),

@
n

@z1 @z2 . . . @zn
(u ) = u '̂

(n)
L . (2.20)

• p = (p1, p2, . . . , pn) 2 P! is a pole of !, i.e. an intersection point of singular hypersurface Si

defined in eq. (2.1), at finite location or at infinity.

• The residue symbol stands for

Resz=p(f) = Reszn=pn . . .Resz1=p1(f) = (2⇡i)�n

Z

 1^...^ n

f dz1 ^ . . . ^ dzn , (2.21)

where the integral goes over a product of small circles  i , each encircling the corresponding
pole zi = pi in the zi-plane, see for example [55].

Representation (2.19) can be derived by rewriting the intersection number integral as a flux of a
certain local form ⌘:

Z

X
(u'(n)

L,c) ^ (u�1
'
(n)
R ) =

X

p2P!

Z

Dp

dz1 . . . dzn⌘ . (2.22)

Working term-by-term in the sum on the RHS, let us temporarily denote by (z1, . . . , zm) the local
coordinates centered at the intersection point p. We then may take as the integration domain the
polydisc Dp =

�
(z1, . . . , zn)

�� |z1|, . . . , |zn|  ✏
 
, and define

⌘ := h̄1 . . . h̄n

�
u 

� �
u
�1
'
(n)
R

�
, (2.23)

where h̄i := 1� hi and hi is the Heaviside step-function:

hi ⌘ h(zi) :=

(
1 for |zi| < ✏ ,

0 otherwise,
(2.24)
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so that the derivative dhi is localized on the circle |zi| = ✏ . The action of the partial derivatives in
eq. (2.22) gives:

dz1 . . . dzn⌘ =
⇣
h̄1 . . . h̄n

�
ur!1 . . .r!n 

�
+ . . .+ (�1)n

�
u 

�
dh1 ^ . . . ^ dhn

⌘
^
�
u
�1
'
(n)
R

�
. (2.25)

By choosing the auxilary 0-form  as the solution of the following nPDE:
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for the integrand in eq. (2.22) we obtain:
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where the compactly supported n-form 'L,c is defined as: (Seva: TODO: check the RHS here)

'L,c := h̄1 . . . h̄n 'L + . . .+ (�1)n  dh1 ^ . . . ^ dhn ⌘ r!1 . . .r!n

�
h̄1 . . . h̄n 

�
. (2.28)

The middle expression here is equivalent to the 'L,c introduced by Matsumoto in [2] and, therefore,
the same integration algorithm via iterated residues can be applied. Indeed, since 'R is a holomorphic
n-form, in eq. (2.25) only the last term gives a non vanishing contribution:
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(n)
L,c

�
^
�
u
�1
'
(n)
R

�
= (�1)n

X

p2P!

Z

Dp

�
u 

�
dh1 ^ . . . ^ dhn ^

�
u
�1
'
(n)
R

�

=
X

p2P!

Z

 1^...^ n

 '
(n)
R

= (2⇡i)n
X

p2P!

Resz=p( '
(n)
R ) , (2.29)

where the product of small circles  1 ^ . . .^  n (i.e. an n-dimensional torus) is the distinguished
boundary of the polydisc Dp . The last equation above2 reproduces the result shown in eq. (2.19).
For more details we refer the interested reader to the discussion in Appendix A.

Finally, let us once again highlight the crucial eq. (2.26) and write it as:

r!1r!2 . . .r!n = '
(n)
L . (2.30)

This nPDE, equivalent to eq. (2.20), is the natural extension of the equation r!1 = '
(1)
L presented in

[41] for the single variable case. Equation (2.30) constitutes the first main result of this communication,
as it o↵ers a new algorithm for the direct determination of the scalar function  , hence a simpler
strategy for the evaluation of the intersection numbers between twisted n-forms.

2.4 Solution

The solution of eqs. (2.20, 2.30) can be formally written as3:

 = u
�1

Z z

z0

u'
(n)
L . (2.31)

2In the derivation we used
R
D dh̄ ^ f(z) dz =

R
 f(z) dz to localize the integral on the boundary.

3In ref. [44], the solution  for the twisted case with regulated pole is written by considering a modified integration
contour, accounting for the contribution of monodromy. It can be shown that, around each (regulated) singular point,
it is equivalent to the one considered here.

– 7 –

nPDE



Intersection Numbers for n-forms: Pfaffian systems

Chestnov, Gasparotto, Mandal, Munch, Matsubara-Heo, Takayama & P.M. (2022)



Chestnov, Gasparotto, Mandal, Munch, Matsubara-Heo, Takayama & P.M. (2022)

So we obtain the generalized Feynman integral I 01 apart from constant prefactors c = c(d0, ⌫) defined
in (5.4). On the RHS,

f (� �A · ki) = f

⇣
� �

�
d
(i)
0 /2, ⌫(i)

�
�A · ↵

⌘
(6.33a)

= f

⇣
�
0
�

�
d
(i)
0 /2, ⌫(i)

�⌘
(6.33b)

= I
�
d
(i)
0 , ⌫

(i)
� �

c
(i)

. (6.33c)

In other words, we obtain Ii apart from �-prefactors c
(i) = c

(i)
�
d
(i)
0 , ⌫

(i)
�
. The coe�cients ui(�)

multiplied by �-prefactors give the matrix U . Thus, we conclude Statement 1. of Theorem 6.1.
Statement 2. can be proven by noting that @i induces the parameter shift and applying Statement

1.

7 Decomposition via cohomology intersection numbers

Relations between Feynman integrals, equivalent to IBP identities, and, more generally, identities
for Euler-Mellin integrals, equivalent to contiguity relations, can be derived by means of intersection
theory for twisted de Rham cohomologies [34, 35, 37, 38]. According to the mentioned algorithm, the
decomposition of any given integrals in terms of an independent basis of MIs can be obtained from
the projection of the twisted di↵erential form appearing in the integrand of the integral to decompose
into a basis of di↵erential forms that generate a de Rham twisted cohomology group, via intersection
numbers.
For the case of generalized Feynman integrals (5.7), the covariant derivative (2.20) reads

rx = dx + ✏
dxG

G
^+ ✏ �

nX

i=1

dxi

xi
^, (7.1)

and we denote the associated n-th de Rham cohomology group as H
n (see also (2.22)). We can

also introduce a dual covariant derivative r
_
x = rx

��
✏!�✏

and let H
n_ be the n-th (dual) de Rham

cohomology group associated to it. The cohomology intersection number

h•, •ich : Hn
⇥H

n_
! C(z), (7.2)

is a natural pairing between the elements of the two groups.

Let {ei}ri=1 be a basis for Hn and {hi}
r
i=1 a basis for Hn_; the decomposition of any twisted form

' 2 H
n in terms of {ei}ri=1 can be obtained via chomology intersection numbers according to the

master decomposition formula [34, 35, 37, 38],

' =
rX

i=1

ci ei , with ci :=
rX

j=1

h', hjich

�
I
�1
ch

�
ji
, and (Ich)ij := hei, hjich . (7.3)

This formula implies the decomposition of (generalized) Feynman integrals in terms of master inte-
grals, upon the identification in (5.7).

Looking at (7.3) we infer that two distinct sets of intersection numbers are required, namely {h', hiich}
r
i=1

and {(Ich)ij}
r
i,j=1. Therefore, in order to apply the decomposition formula (7.3), it is required the

determination of the matrix Ich and of the vector h', hiich.
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Multivariate Intersection Numbers (III) from Pfaffian D-module systems

Thm : Isomorphism

Euler-Mellin Integrals Differential Operators 
(w.r.t. external variables)

Pfaffian Systems: for Master Integrals (alias Master forms)

3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
numbers,

h�i| = h�i|hki
�
C�1

�
kj

hej | (3.41)

= Fik

�
C�1

�
kj
hej | (3.42)

= ⌦ijhej | , (3.43)

where summation over indices j, k is implied and we introduced the intersection matrix

Fik ⌘ h�i|hki (3.44)

as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)

then the system of differential equations for Ji reads,

@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)
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and {(Ich)ij}
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i,j=1. Therefore, in order to apply the decomposition formula (7.3), it is required the
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Euler-Mellin Integrals Differential Operators 
(w.r.t. external variables)

Pfaffian Systems: for Master Integrals (alias Master forms) & for D-operators (alias Std mon’s)

3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
numbers,

h�i| = h�i|hki
�
C�1

�
kj

hej | (3.41)

= Fik

�
C�1

�
kj
hej | (3.42)

= ⌦ijhej | , (3.43)

where summation over indices j, k is implied and we introduced the intersection matrix

Fik ⌘ h�i|hki (3.44)

as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)

then the system of differential equations for Ji reads,

@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)
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So we obtain the generalized Feynman integral I 01 apart from constant prefactors c = c(d0, ⌫) defined
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. The coe�cients ui(�)

multiplied by �-prefactors give the matrix U . Thus, we conclude Statement 1. of Theorem 6.1.
Statement 2. can be proven by noting that @i induces the parameter shift and applying Statement

1.

7 Decomposition via cohomology intersection numbers

Relations between Feynman integrals, equivalent to IBP identities, and, more generally, identities
for Euler-Mellin integrals, equivalent to contiguity relations, can be derived by means of intersection
theory for twisted de Rham cohomologies [34, 35, 37, 38]. According to the mentioned algorithm, the
decomposition of any given integrals in terms of an independent basis of MIs can be obtained from
the projection of the twisted di↵erential form appearing in the integrand of the integral to decompose
into a basis of di↵erential forms that generate a de Rham twisted cohomology group, via intersection
numbers.
For the case of generalized Feynman integrals (5.7), the covariant derivative (2.20) reads

rx = dx + ✏
dxG

G
^+ ✏ �

nX

i=1

dxi

xi
^, (7.1)

and we denote the associated n-th de Rham cohomology group as H
n (see also (2.22)). We can

also introduce a dual covariant derivative r
_
x = rx

��
✏!�✏

and let H
n_ be the n-th (dual) de Rham

cohomology group associated to it. The cohomology intersection number

h•, •ich : Hn
⇥H

n_
! C(z), (7.2)

is a natural pairing between the elements of the two groups.

Let {ei}ri=1 be a basis for Hn and {hi}
r
i=1 a basis for Hn_; the decomposition of any twisted form

' 2 H
n in terms of {ei}ri=1 can be obtained via chomology intersection numbers according to the

master decomposition formula [34, 35, 37, 38],

' =
rX

i=1

ci ei , with ci :=
rX

j=1

h', hjich

�
I
�1
ch

�
ji
, and (Ich)ij := hei, hjich . (7.3)

This formula implies the decomposition of (generalized) Feynman integrals in terms of master inte-
grals, upon the identification in (5.7).

Looking at (7.3) we infer that two distinct sets of intersection numbers are required, namely {h', hiich}
r
i=1

and {(Ich)ij}
r
i,j=1. Therefore, in order to apply the decomposition formula (7.3), it is required the

determination of the matrix Ich and of the vector h', hiich.
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PoS(MA2019)015

From Diagrammar to Diagrammalgebra

• Integral decomposition (2). By using the master decomposition formulas of contours and
dual contours, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

08 �
0
8 , and �̃ = [C! |i'i =

a’
8=1

0̃8 �̃
0
8 , (22)

respectively in terms the MIs � 08 = hi! |W8], and of the dual MIs �̃ 08 = [[8 |i'i, for 8 = 1, . . . , a.

In the above formulas, C and H are (a⇥a)-matrices of intersection numbers, which, in general,
di�er from the identity matrix. For intersections number of orthonormal elelements they turn
into unit matrices, hence simplifying the decomposition formulas. The Gram-Schmidt algorithm
can be employed to build orthonormal bases from generic sets of independent elements, using
the intersection numbers as scalar products. More generally the coe�cients appearing in the four
types of decomposition formulas for twisted cocycles and cycles and their duals given above are
independent of the respective dual elements. Therefore, by exploiting the freedom in choosing the
corresponding dual bases may yield striking simplifications [31, 102, 103].

Let me remark that the above discussion and the decomposition formulas defined above hold
also in the case of relative twisted de Rham theory, namely releasing the non-integer conditions for
the exponents U8 that appear in the definition of D [102–104].

2.1.2 Di�erential Equations

• Di�erential Forms. The identity resolution I2 can be used to derive the system of di�erential
equation obeyed by the master forms h48 |. In fact, let as assume that the D depends on an
external variables, say G, then

mG h48 | = h(mG + fG)48 | = h(mG + fG)48 | I2 = ⌦8 9 h4 9 | , (23)

where the entries of the matrix of the system are ⌦8 9 = h(mG + fG)48 |⌘:i (C�1): 9 , and
fG ⌘ mG log(D).
Following similar steps, the system of di�erential equations for the master dual forms |⌘8i
reads,

mG |⌘8i = | (mG � fG)⌘8i = I2 | (mG � fG)⌘8i = ⌦̃8 9 |⌘ 9i , (24)

where the entries of the matrix ⌦̃ are ⌦̃8 9 = (C�1) 9: h4: | (mG � fG)⌘8i .

• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices ⌦ and ⌦̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of di�erential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,

mG �8 = ⌦8 9 � 9 , mG �̃8 = ⌦8 9 �̃ 9 . (25)

• Intersection Matrices. The systems of di�erential equations for forms and dual forms can be
used to show that the intersection matrices C and its inverse C

�1 satisfy di�erential equations,
known as secondary equations [35, 36, 105],

mGC = ⌦.C + C.⌦̃ , mGC
�1 = ⌦̃.C�1 � C

�1.⌦ , (26)

7

Secondary Equations
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Thm : Isomorphism nth-Cohomology group   ~     GKZ D-module
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• Integral decomposition (2). By using the master decomposition formulas of contours and
dual contours, integrals and dual integrals can be straightforwardly written as,
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In the above formulas, C and H are (a⇥a)-matrices of intersection numbers, which, in general,
di�er from the identity matrix. For intersections number of orthonormal elelements they turn
into unit matrices, hence simplifying the decomposition formulas. The Gram-Schmidt algorithm
can be employed to build orthonormal bases from generic sets of independent elements, using
the intersection numbers as scalar products. More generally the coe�cients appearing in the four
types of decomposition formulas for twisted cocycles and cycles and their duals given above are
independent of the respective dual elements. Therefore, by exploiting the freedom in choosing the
corresponding dual bases may yield striking simplifications [31, 102, 103].

Let me remark that the above discussion and the decomposition formulas defined above hold
also in the case of relative twisted de Rham theory, namely releasing the non-integer conditions for
the exponents U8 that appear in the definition of D [102–104].

2.1.2 Di�erential Equations

• Di�erential Forms. The identity resolution I2 can be used to derive the system of di�erential
equation obeyed by the master forms h48 |. In fact, let as assume that the D depends on an
external variables, say G, then

mG h48 | = h(mG + fG)48 | = h(mG + fG)48 | I2 = ⌦8 9 h4 9 | , (23)

where the entries of the matrix of the system are ⌦8 9 = h(mG + fG)48 |⌘:i (C�1): 9 , and
fG ⌘ mG log(D).
Following similar steps, the system of di�erential equations for the master dual forms |⌘8i
reads,

mG |⌘8i = | (mG � fG)⌘8i = I2 | (mG � fG)⌘8i = ⌦̃8 9 |⌘ 9i , (24)

where the entries of the matrix ⌦̃ are ⌦̃8 9 = (C�1) 9: h4: | (mG � fG)⌘8i .

• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices ⌦ and ⌦̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of di�erential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,

mG �8 = ⌦8 9 � 9 , mG �̃8 = ⌦8 9 �̃ 9 . (25)

• Intersection Matrices. The systems of di�erential equations for forms and dual forms can be
used to show that the intersection matrices C and its inverse C

�1 satisfy di�erential equations,
known as secondary equations [35, 36, 105],

mGC = ⌦.C + C.⌦̃ , mGC
�1 = ⌦̃.C�1 � C

�1.⌦ , (26)
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So we obtain the generalized Feynman integral I 01 apart from constant prefactors c = c(d0, ⌫) defined
in (5.4). On the RHS,

f (� �A · ki) = f
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� �

�
d
(i)
0 /2, ⌫(i)

�
�A · ↵
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= f
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�
0
�

�
d
(i)
0 /2, ⌫(i)
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(6.33b)

= I
�
d
(i)
0 , ⌫

(i)
� �

c
(i)

. (6.33c)

In other words, we obtain Ii apart from �-prefactors c
(i) = c

(i)
�
d
(i)
0 , ⌫

(i)
�
. The coe�cients ui(�)

multiplied by �-prefactors give the matrix U . Thus, we conclude Statement 1. of Theorem 6.1.
Statement 2. can be proven by noting that @i induces the parameter shift and applying Statement

1.

7 Decomposition via cohomology intersection numbers

Relations between Feynman integrals, equivalent to IBP identities, and, more generally, identities
for Euler-Mellin integrals, equivalent to contiguity relations, can be derived by means of intersection
theory for twisted de Rham cohomologies [34, 35, 37, 38]. According to the mentioned algorithm, the
decomposition of any given integrals in terms of an independent basis of MIs can be obtained from
the projection of the twisted di↵erential form appearing in the integrand of the integral to decompose
into a basis of di↵erential forms that generate a de Rham twisted cohomology group, via intersection
numbers.
For the case of generalized Feynman integrals (5.7), the covariant derivative (2.20) reads

rx = dx + ✏
dxG

G
^+ ✏ �

nX

i=1

dxi

xi
^, (7.1)

and we denote the associated n-th de Rham cohomology group as H
n (see also (2.22)). We can

also introduce a dual covariant derivative r
_
x = rx

��
✏!�✏

and let H
n_ be the n-th (dual) de Rham

cohomology group associated to it. The cohomology intersection number

h•, •ich : Hn
⇥H

n_
! C(z), (7.2)

is a natural pairing between the elements of the two groups.

Let {ei}ri=1 be a basis for Hn and {hi}
r
i=1 a basis for Hn_; the decomposition of any twisted form

' 2 H
n in terms of {ei}ri=1 can be obtained via chomology intersection numbers according to the

master decomposition formula [34, 35, 37, 38],

' =
rX

i=1

ci ei , with ci :=
rX

j=1

h', hjich

�
I
�1
ch

�
ji
, and (Ich)ij := hei, hjich . (7.3)

This formula implies the decomposition of (generalized) Feynman integrals in terms of master inte-
grals, upon the identification in (5.7).

Looking at (7.3) we infer that two distinct sets of intersection numbers are required, namely {h', hiich}
r
i=1

and {(Ich)ij}
r
i,j=1. Therefore, in order to apply the decomposition formula (7.3), it is required the

determination of the matrix Ich and of the vector h', hiich.
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• Integral decomposition (2). By using the master decomposition formulas of contours and
dual contours, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

08 �
0
8 , and �̃ = [C! |i'i =

a’
8=1

0̃8 �̃
0
8 , (22)

respectively in terms the MIs � 08 = hi! |W8], and of the dual MIs �̃ 08 = [[8 |i'i, for 8 = 1, . . . , a.

In the above formulas, C and H are (a⇥a)-matrices of intersection numbers, which, in general,
di�er from the identity matrix. For intersections number of orthonormal elelements they turn
into unit matrices, hence simplifying the decomposition formulas. The Gram-Schmidt algorithm
can be employed to build orthonormal bases from generic sets of independent elements, using
the intersection numbers as scalar products. More generally the coe�cients appearing in the four
types of decomposition formulas for twisted cocycles and cycles and their duals given above are
independent of the respective dual elements. Therefore, by exploiting the freedom in choosing the
corresponding dual bases may yield striking simplifications [31, 102, 103].

Let me remark that the above discussion and the decomposition formulas defined above hold
also in the case of relative twisted de Rham theory, namely releasing the non-integer conditions for
the exponents U8 that appear in the definition of D [102–104].

2.1.2 Di�erential Equations

• Di�erential Forms. The identity resolution I2 can be used to derive the system of di�erential
equation obeyed by the master forms h48 |. In fact, let as assume that the D depends on an
external variables, say G, then

mG h48 | = h(mG + fG)48 | = h(mG + fG)48 | I2 = ⌦8 9 h4 9 | , (23)

where the entries of the matrix of the system are ⌦8 9 = h(mG + fG)48 |⌘:i (C�1): 9 , and
fG ⌘ mG log(D).
Following similar steps, the system of di�erential equations for the master dual forms |⌘8i
reads,

mG |⌘8i = | (mG � fG)⌘8i = I2 | (mG � fG)⌘8i = ⌦̃8 9 |⌘ 9i , (24)

where the entries of the matrix ⌦̃ are ⌦̃8 9 = (C�1) 9: h4: | (mG � fG)⌘8i .

• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices ⌦ and ⌦̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of di�erential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,

mG �8 = ⌦8 9 � 9 , mG �̃8 = ⌦8 9 �̃ 9 . (25)

• Intersection Matrices. The systems of di�erential equations for forms and dual forms can be
used to show that the intersection matrices C and its inverse C

�1 satisfy di�erential equations,
known as secondary equations [35, 36, 105],

mGC = ⌦.C + C.⌦̃ , mGC
�1 = ⌦̃.C�1 � C

�1.⌦ , (26)
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for integer !," ∈ Z. Inserting an Ansatz
#»

# =

∑
! $

!
2

#»

# ! , and matching the powers of $2 order by

order, we obtain the linear system (here dots · denote zeros):















−1
#»

% 1
#»

% 0
#»

%−1
#»

%−2
#»

%−3 ·

· &0 − 2 · · · · #»'−2

· &1 &0 − 1 · · · #»'−1

· &2 &1 &0 · · #»' 0

· &3 &2 &1 &0 + 1 · #»' 1

· &4 &3 &2 &1 &0 + 2 #»' 2















·
















(
#»

# −2

...
#»

# 2

−1
















= 0 . (16)

This equation has to be solved only for ( . Row reduction of this matrix can be carried out only until

the first row is filled with zeros except for the element in the last column (highlighted with grey),

which will contain the needed residue. Other poles of eq. (11) are treated in the same manner and

the sum of their residues produces the intersection number 〈' |%〉 .

3. Decomposition via the secondary equation

As was observed in [1] (see also [31]), the twisted cohomology framework provides another

method for computation of the decomposition coefficients (7). The first key idea is the so-called

secondary equation [8, 19, 32], which is a matrix differential equation satisfied by the intersection

matrix ):

{
*"! 〈+# | =

(
&!

)
#$ 〈+$ |

*"! |ℎ%〉 = |ℎ& 〉
(
&∨
!

)
& %

=⇒ *"! ) = &! · ) + ) ·
(
&∨
!

)T
, (17)

where -! are some external kinematical variables. The other key step is computation of the differen-

tial equation matrices & and &aux made available thanks to the connection of the twisted cohomology

theory, the GKZ formalism, and .-module theory. We assume that this step is completed and refer

the interested reader to [1, 31] for the full story. Once the secondary equation (17) is written down,

we employ the known algorithms for finding rational solutions of such systems, e.g. the Maple

package IntegrableConnections [33].

Finally, to determine the decomposition coefficients (7) we repeat the above procedure for an

auxiliary basis +aux := {+1, . . . , +'−1, '}, i.e. we compute an auxiliary &aux and then )aux . The FI

decomposition is then encoded in the following matrix product:











+1
...

+'−1

'











= )aux · )−1











+1
...

+'−1

+'











=⇒ )aux · )−1
=











0

id'−1
...

0

/1 · · · /'−1 /'











, (18)

where id'−1 denotes an identity matrix of size (0 − 1), and the decomposition coefficients /# are

collected in the last row highlighted with grey.
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which will be very useful in the following. The equivalence relation (2) follows from the Stokes

theorem: 0 =

∫
!C

! " =

∫
C
! ∇"" , where ∇"" := d" + # ∧ " is the covariant derivative.

Fixing the contour of integration C allows us to interpret relation (2) as an equivalence of

integrands. Namely, we collect $-forms % into equivalence classes 〈% | : % ∼ % +∇"" generated by

adding covariant derivatives of ($ − 1)-forms. Their totality forms the twisted cohomology group:

〈% | ∈ H#
" :=

{
$-forms % | ∇"% = 0

}/{
∇""

}
, (4)

which can be thought of as the space of linearly independent FIs (of a given topology).

Analogously we can introduce the dual integralsI∨, whose definition mimics (1) up to ! ↦→ !−1

and ∇" ↦→ ∇−" . Elements of the dual twisted cohomology group will be denoted by kets |&〉.

2.1 Counting the number of Master integrals

The framework of twisted cohomology unites several seemingly independent methods for

computation of the number of MIs ':

1. Number of unreduced integrals produced by the Laporta algorithm [26].

2. Number of critical points, i.e. solutions of d log !(() = 0 [27, 28].

3. Number of independent integration contours C$ [29, 30].

4. Number of independent $-forms, i.e. dim
(
H#
±"

)
[4, 8].

5. Holonomic rank of GKZ system (volumes of certain polytopes) [1, 31].

2.2 Scalar product between Feynman integrals

The twisted cohomology theory allows us to view the set of FIs (of a given topology) as a finite

dimensional vector space. A set of MIs 〈)$ | for * ∈ {1, . . . , '} then forms a basis in that space.

The dual FIs really form a dual vector space to FIs due to the existence of a scalar product:

〈% |&〉 =
1

(2+i)#

∫
,(%) ∧ & , (5)

called the intersection number. This scalar product allows to directly decompose a given integral

I in a basis of MIs J$ :=
∫
C
! )$, namely I =

∑%
$=1 -$ J$ . Linear algebra leads us to the master

decomposition formula [4, 8]:

〈% | =
%∑

$=1

-$ 〈)$ | , -$ =

%∑

&=1

〈% |ℎ&〉
(
/−1)

&$ , (6)

/$& := 〈)$ |ℎ&〉 , (7)

for any choice of the dual basis |ℎ&〉. Therefore the intersection numbers (5) completely determine

the decomposition coefficients. Let’s see now how they can be computed.

2.3 Univariate intersection numbers

In the $ = 1 case, intersection numbers (5) turn into a sum of residues [10, 11, 22]:

〈% |&〉 ≡
1

2+i

∫

'

(

% −
∑

(∈P!

∇"

(
0( ((, (̄) 1(

)
)

∧ & =

∑

(∈P!

Res
)=(

[
1( &

]
, (8)

where
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1. Identify a univariate twisted period integral of the form (1),
Z

G
µ j , (6)

with twist µ , and differential 1-form j = ĵ dz. If µ is not multivalued, replace it with the regulated twist u = u(r), by
introducing a regulator r , so that, for a suitable value r0, u(r0) = µ , and determine the dimension n of the vector space
of differential forms.

2. After choosing the bases of forms ei ⌘ êi dz and dual forms hi ⌘ ĥi dz, with ĥi = êi, such that ê1 = ĥ1 = 1, decompose j
in terms of ei, by means of (4), i.e. j = c1 e1 + c2 e2 + . . .+ cn en , (eventually, taking the r ! r0 limit, to remove the
dependence on the regulator).

3. Translate the decomposition of j to the one of the corresponding integral,
Z

G
µ j = c1 E1 + c2 E2 + . . .+ cn En , with E1 ⌘

Z

G
µ dz , and E j =

Z

G
µ e j , ( j 6= 1) , (7)

and compare the result with the literature.
Let us observe that: i. if n = 1, the result comes just from the contribution of E1; ii. if n > 1 and ci = 0 for i > 1, the
result still comes just from the contribution of E1; iii. given its definition, E1 represents the total volume of the integration
domain. Moreover, the choice of the basis ei is arbitrary, and Âi ciEi does not depend on the choice of Ei. Here we
opt for e1 = dz, for illustration purposes. Alternative choices, e.g. e1 = d ln(z), are equivalent. Intersection numbers of
twisted dlog-forms can be directly computed by means of (global) Residue theorem19 - an aspect we will elaborate on, in
the context of Quantum Mechanics, elsewhere.

Orthogonal Polynomials and Matrix Elements. We tested our algorithm by re-deriving, in a novel fashion, polynomial
orthogonality relations, of the type,

Inm ⌘
Z

G
Pn(z)Pm(z) f (z)dz ,

in the case of Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n , and Hermite Hn polynomials; as well as matrix
elements of quantum mechanical operators O , of the type,

Inm ⌘ hn|O|mi=
Z

G
y⇤

n (z)O(z)ym(z) f (z)dz ,

appearing in the quantum description of the univariate Harmonic Oscillator and of the Hydrogen Atom, where f (z)dz represents
the integration measure of the considered problem. In each case, Inm can be naturally interpreted as twisted period integrals of
type (6), upon properly redefining their integrands, in order to identify µ and j , In particular, for the considered seven cases,
the master formula (4) yields the decomposition j = c1 e1 , in terms of just one basic form, e1 = dz, finally implying,

Inm = c1 E1 ,

where c1 is computed in terms of intersection numbers. In the considered cases, given the adopted choice of the bases of forms,
it happens that only one master integrals contributes, i.e. E1, but, in general, the contributions of more master integrals has to be
expected.

Green’s Functions and Kontsevich-Witten t-Function. Partition functions play a key role in the description of dynamical
systems in Statistical Mechanics and Quantum Field Theory, as generators of correlation functions. We consider two
paradigmatic examples: the n-point Green’s functions in Field Theory, Gn, and the Kontsevich-Witten matrix integral ZKW for
t-function of integrable systems48, 49, respectively defined as,

Gn ⌘
R

Df f(x1) · · ·f(xn) exp[�SE ]R
Df exp[�SE ]

, and ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i ,

for generic fields f(x) and for any given action SE , and for generic positive Hermitian field-matrix F. Both definitions can be
read as a ratio of twisted periods integrals (6), as

c1 =

R
G µ jR
G µ e1

, equivalently rewritten as
Z

G
µ j = c1 E1 ,
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(Special) Applications of Intersection Numbers for 1-forms

Looking at a known landscapes with new eyes
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in terms of ei, by means of (4), i.e. j = c1 e1 + c2 e2 + . . .+ cn en , (eventually, taking the r ! r0 limit, to remove the
dependence on the regulator).

3. Translate the decomposition of j to the one of the corresponding integral,
Z

G
µ j = c1 E1 + c2 E2 + . . .+ cn En , with E1 ⌘

Z

G
µ dz , and E j =

Z

G
µ e j , ( j 6= 1) , (7)

and compare the result with the literature.
Let us observe that: i. if n = 1, the result comes just from the contribution of E1; ii. if n > 1 and ci = 0 for i > 1, the
result still comes just from the contribution of E1; iii. given its definition, E1 represents the total volume of the integration
domain. Moreover, the choice of the basis ei is arbitrary, and Âi ciEi does not depend on the choice of Ei. Here we
opt for e1 = dz, for illustration purposes. Alternative choices, e.g. e1 = d ln(z), are equivalent. Intersection numbers of
twisted dlog-forms can be directly computed by means of (global) Residue theorem19 - an aspect we will elaborate on, in
the context of Quantum Mechanics, elsewhere.

Orthogonal Polynomials and Matrix Elements. We tested our algorithm by re-deriving, in a novel fashion, polynomial
orthogonality relations, of the type,

Inm ⌘
Z

G
Pn(z)Pm(z) f (z)dz ,

in the case of Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n , and Hermite Hn polynomials; as well as matrix
elements of quantum mechanical operators O , of the type,

Inm ⌘ hn|O|mi=
Z

G
y⇤

n (z)O(z)ym(z) f (z)dz ,

appearing in the quantum description of the univariate Harmonic Oscillator and of the Hydrogen Atom, where f (z)dz represents
the integration measure of the considered problem. In each case, Inm can be naturally interpreted as twisted period integrals of
type (6), upon properly redefining their integrands, in order to identify µ and j , In particular, for the considered seven cases,
the master formula (4) yields the decomposition j = c1 e1 , in terms of just one basic form, e1 = dz, finally implying,

Inm = c1 E1 ,

where c1 is computed in terms of intersection numbers. In the considered cases, given the adopted choice of the bases of forms,
it happens that only one master integrals contributes, i.e. E1, but, in general, the contributions of more master integrals has to be
expected.

Green’s Functions and Kontsevich-Witten t-Function. Partition functions play a key role in the description of dynamical
systems in Statistical Mechanics and Quantum Field Theory, as generators of correlation functions. We consider two
paradigmatic examples: the n-point Green’s functions in Field Theory, Gn, and the Kontsevich-Witten matrix integral ZKW for
t-function of integrable systems48, 49, respectively defined as,

Gn ⌘
R

Df f(x1) · · ·f(xn) exp[�SE ]R
Df exp[�SE ]

, and ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i ,

for generic fields f(x) and for any given action SE , and for generic positive Hermitian field-matrix F. Both definitions can be
read as a ratio of twisted periods integrals (6), as

c1 =

R
G µ jR
G µ e1

, equivalently rewritten as
Z

G
µ j = c1 E1 ,

4/11

(Special) Applications of Intersection Numbers for 1-forms

Looking at a known landscapes with new eyes

1. Identify a univariate twisted period integral of the form (1),
Z

G
µ j , (6)
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with twist µ , and differential 1-form j = ĵ dz. If µ is not multivalued, replace it with the regulated twist u = u(r), by
introducing a regulator r , so that, for a suitable value r0, u(r0) = µ , and determine the dimension n of the vector space
of differential forms.
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expected.

Green’s Functions and Kontsevich-Witten t-Function. Partition functions play a key role in the description of dynamical
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paradigmatic examples: the n-point Green’s functions in Field Theory, Gn, and the Kontsevich-Witten matrix integral ZKW for
t-function of integrable systems48, 49, respectively defined as,

Gn ⌘
R

Df f(x1) · · ·f(xn) exp[�SE ]R
Df exp[�SE ]

, and ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i ,
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For the considered cases, we obtain:

Case i)

Case ii)

corresponding to: (one master integral)



i) Orthogonal Polynomials

4 Methods
Twisted de Rham cohomology
Twisted de Rham cohomology aims to tackle integrals of the form

Z

G
uj (8)

with j ⌘ ĵ dz1 ^ · · ·^ dzn, and G is a regulated integration contour such that u(∂G) = 0. In the cases of our interest ĵ is a
meromorphic function of the complex integration variables z1, . . . ,zn, and u ⌘ Q ’ j Pr j

j , where Pj and Q are meromorphic
with allowed singularities at infinity, and r j are generic exponents.

After introducing the connection w ⌘ d ln(u) = Ân
i=1 ŵi dzi, with ŵi ⌘ ∂i ln(u), we can define the covariant derivative

—w ⌘ d +w^= u�1 ·d ·u acting on differential forms. If Wn is the space of n-forms, then the twisted cohomology groups are
defined by

Hn
w :=

ker{—w : Wn ! Wn+1}
Im{—w : Wn�1 ! Wn} , (9)

which means that their elements are —w -closed n-forms up to additive —w -exact (n�1)-forms.
Similarly, one can define twisted homology. However, since our strategy is to work with cohomology, we defer to the

literature for a precise definition of Hw
n . We limit ourselves to saying that its elements are pairs (G,u) , called twisted cycles.

The only relevant issue is that Hn
w and Hw

n are isomorphic, hence they have the same dimensions, n = dimHw
n = dimHn

w that
generically corresponds to the number of critical points of the function ln(u), viewed as a Morse height function.

Orthogonal Polynomials
Univariate orthogonal polynomials Pn = Pn(z) over an integration interval say G, labelled by integer indices n are known to
obey orthogonality conditions generically expressed as

Z

G
µ PnPm dz = fn dnm =

Z

G
µ j = c1 E1 . (10)

which can be naturally cast in the form (6), by simply interpreting j ⌘ Pn Pm dz , as a differential 1-form. Therefore, we can
apply our evaluation algorithm to the set of orthogonal polynomials listed in Table 1, demonstrating that the orthogonality
relation (10) emerges from the decomposition formula, and amounts to c1 E1 .

We consider the following type of orthogonal polynomials: Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n ,
Hermite Hn. For each type, in Tab. 1, we provide the relevant data needed for the decomposition via intersection numbers: the
regulated twist u, the functions êi characterizing the bases of forms; the C matrix, the value of r0; the expression of E1 and of
c1, yielding agreement with the results known in the literature. Let us observe that, in the case of Hermite polynomials, given
the expression of u, the vector space dimension is n = 2, yielding j = c1 e1 + c2 e2; nevertheless, due to the adopted basis
choice, c2 = 0, therefore, j = c1 e1 holds as in the other cases having n = 1. Moreover, in the case of the Laguerre and of the
Gegenbauer polynomials, the integration measure µ and the twist u coincide, therefore the coefficients c1 and E1 are exact in r ,
and no limit on r is required.

Matrix Elements in Quantum Mechanics
The computations we have just done can be easily extended to the computation of the matrix elements of powers of operators in
position space, for instance. We illustrate some examples involving powers of the position operator, i.e. h•|zk|•i, where k may
be a positive or negative integer, for two celebrated physics cases, the harmonic oscillator and the Hydrogen atom, in Quantum
Mechanics.

Harmonic Oscillator. The eigenfunctions of the unidimensional Harmonic Oscillator in position space (x ⌘ z), with principal
quantum number n, (for unitary mass and pulsation, m = 1 = w) are defined as

hz|ni= yn(z) = e�
z2
2 Wn(z) , with Wn(z)⌘ Nn Hn(z) , (11)

in terms of Hermite polynomials, where the normalization factors are, Nn ⌘ 1/
p
(2nn!

p
p) . The matrix elements hm|zk|ni can

be cast in the form (6) as,

hm|zk|ni=
Z •

�•
dzym(z)zk yn(z) =

Z

G
µ j = c1 E1 , with µ ⌘ e�z2

, and j ⌘Wm(z)zk Wn(z)dz. (12)
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr exp(�z) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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with j ⌘ ĵ dz1 ^ · · ·^ dzn, and G is a regulated integration contour such that u(∂G) = 0. In the cases of our interest ĵ is a
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4 Methods
Twisted de Rham cohomology
Twisted de Rham cohomology aims to tackle integrals of the form

Z

G
uj (8)

with j ⌘ ĵ dz1 ^ · · ·^ dzn, and G is a regulated integration contour such that u(∂G) = 0. In the cases of our interest ĵ is a
meromorphic function of the complex integration variables z1, . . . ,zn, and u ⌘ Q ’ j Pr j

j , where Pj and Q are meromorphic
with allowed singularities at infinity, and r j are generic exponents.

After introducing the connection w ⌘ d ln(u) = Ân
i=1 ŵi dzi, with ŵi ⌘ ∂i ln(u), we can define the covariant derivative

—w ⌘ d +w^= u�1 ·d ·u acting on differential forms. If Wn is the space of n-forms, then the twisted cohomology groups are
defined by

Hn
w :=

ker{—w : Wn ! Wn+1}
Im{—w : Wn�1 ! Wn} , (9)

which means that their elements are —w -closed n-forms up to additive —w -exact (n�1)-forms.
Similarly, one can define twisted homology. However, since our strategy is to work with cohomology, we defer to the

literature for a precise definition of Hw
n . We limit ourselves to saying that its elements are pairs (G,u) , called twisted cycles.

The only relevant issue is that Hn
w and Hw

n are isomorphic, hence they have the same dimensions, n = dimHw
n = dimHn

w that
generically corresponds to the number of critical points of the function ln(u), viewed as a Morse height function.

Orthogonal Polynomials
Univariate orthogonal polynomials Pn = Pn(z) over an integration interval say G, labelled by integer indices n are known to
obey orthogonality conditions generically expressed as

Z

G
µ PnPm dz = fn dnm =

Z

G
µ j = c1 E1 . (10)

which can be naturally cast in the form (6), by simply interpreting j ⌘ Pn Pm dz , as a differential 1-form. Therefore, we can
apply our evaluation algorithm to the set of orthogonal polynomials listed in Table 1, demonstrating that the orthogonality
relation (10) emerges from the decomposition formula, and amounts to c1 E1 .

We consider the following type of orthogonal polynomials: Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n ,
Hermite Hn. For each type, in Tab. 1, we provide the relevant data needed for the decomposition via intersection numbers: the
regulated twist u, the functions êi characterizing the bases of forms; the C matrix, the value of r0; the expression of E1 and of
c1, yielding agreement with the results known in the literature. Let us observe that, in the case of Hermite polynomials, given
the expression of u, the vector space dimension is n = 2, yielding j = c1 e1 + c2 e2; nevertheless, due to the adopted basis
choice, c2 = 0, therefore, j = c1 e1 holds as in the other cases having n = 1. Moreover, in the case of the Laguerre and of the
Gegenbauer polynomials, the integration measure µ and the twist u coincide, therefore the coefficients c1 and E1 are exact in r ,
and no limit on r is required.

Matrix Elements in Quantum Mechanics
The computations we have just done can be easily extended to the computation of the matrix elements of powers of operators in
position space, for instance. We illustrate some examples involving powers of the position operator, i.e. h•|zk|•i, where k may
be a positive or negative integer, for two celebrated physics cases, the harmonic oscillator and the Hydrogen atom, in Quantum
Mechanics.

Harmonic Oscillator. The eigenfunctions of the unidimensional Harmonic Oscillator in position space (x ⌘ z), with principal
quantum number n, (for unitary mass and pulsation, m = 1 = w) are defined as

hz|ni= yn(z) = e�
z2
2 Wn(z) , with Wn(z)⌘ Nn Hn(z) , (11)

in terms of Hermite polynomials, where the normalization factors are, Nn ⌘ 1/
p
(2nn!

p
p) . The matrix elements hm|zk|ni can

be cast in the form (6) as,

hm|zk|ni=
Z •

�•
dzym(z)zk yn(z) =
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G
µ j = c1 E1 , with µ ⌘ e�z2

, and j ⌘Wm(z)zk Wn(z)dz. (12)
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meromorphic function of the complex integration variables z1, . . . ,zn, and u ⌘ Q ’ j Pr j

j , where Pj and Q are meromorphic
with allowed singularities at infinity, and r j are generic exponents.

After introducing the connection w ⌘ d ln(u) = Ân
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Similarly, one can define twisted homology. However, since our strategy is to work with cohomology, we defer to the

literature for a precise definition of Hw
n . We limit ourselves to saying that its elements are pairs (G,u) , called twisted cycles.

The only relevant issue is that Hn
w and Hw

n are isomorphic, hence they have the same dimensions, n = dimHw
n = dimHn

w that
generically corresponds to the number of critical points of the function ln(u), viewed as a Morse height function.

Orthogonal Polynomials
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meromorphic function of the complex integration variables z1, . . . ,zn, and u ⌘ Q ’ j Pr j

j , where Pj and Q are meromorphic
with allowed singularities at infinity, and r j are generic exponents.

After introducing the connection w ⌘ d ln(u) = Ân
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr exp(�z) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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The matrix elements 〈m|zk|n〉 can be cast in the form
(13) as,

〈m|zk|n〉 =
∫ ∞

−∞

dz ψm(z) zk ψn(z) =

∫

Γ
µϕ , (23)

with

µ ≡ e−z2

, (24)

ϕ = Wm(z) zk Wn(z) dz . (25)

According to our evaluation algorithm, we decompose
ϕ using the master decomposition formula (10), by fol-
lowing the same pattern previously applied to Hermite’s
polynomials (see Tab. I), yielding,

∫

Γ
µϕ = c1 E1 . (26)

In Tab. II, we summarize the relevant ingredients of the
decomposition. They can be used to test our algorithm,
and reproduce the following known cases:

〈n|m〉 = δnm , (27)

〈n|z2k+1|n〉 = 0 , (28)

〈n|z4|n〉 =
3

4
(2n2 + 2n+ 1) , (29)

〈n|z3|n− 3〉 =
√

n(n− 1)(n− 2)/8 , (30)

〈n|z3|n− 1〉 =
√

9n3/8 . (31)

The mean values of the Hamiltonian operator
〈n|H |n〉, with H in coordinate space, defined as
H ≡ (1/2)(−∇2+ z2), yield twisted period integrals with
ϕ being a linear combination of even powers of z, i.e.
ϕ =

∑n
k=0 bk z

2k, for suitable coefficients bk. We verified
that their decomposition via intersection numbers give
the expected result 〈n|H |n〉 = (n+ 1/2).

b. Hydrogen Atom. The radial eigenfunctions of the
H-atom in position space (r = z), with principal quantum
number n, and orbital quantum number $, (for unitary
Bohr radius a0 = 1) are defined as

〈z|n, $〉 = Rn,!(z) = e−
z
n Wn,!(z) , (32)

Wn,!(z) ≡ Nn!

(

2z

n

)!

L2!+1
(n−!−1)

(

2z

n

)

, (33)

in terms of Laguerre polynomials, where the normaliza-
tion factors are,

Nn! =

(

2

n

)3/2
√

(n− $− 1)!

2n (n+ $)!
, (34)

For illustration purposes, let us consider matrix ele-
ments for arbitrary principal quantum number n, and
identical orbital quantum number $, of the type,

〈n1, $|zk|n2, $〉 =
∫ ∞

0
dz z2 Rn1,!(z) z

k Rn2,!(z) , (35)

which can be cast in the form (13) as,

〈n1, $|zk|n2, $〉 =
∫

Γ
µϕ (36)

with

µ ≡ z2 e
−z

(

1

n1
+ 1

n2

)

, (37)

ϕ = Wn1,!(z) z
k Wn2,!(z) . (38)

According to our evaluation algorithm, we decompose
ϕ using the master decomposition formula (10), by fol-
lowing a pattern which is similar to the one applied to
the Laguerre polynomials, yielding,

∫

Γ
µϕ = c1 E1 . (39)

Tab. II contains the relevant ingredients of the decom-
position. They can be used to test our algorithm, and
reproduce the following known cases:

〈n1, $|n2, $〉 = δn1n2
, (40)

〈n, $|z|n, $〉 =
1

2
[3n2 − $($+ 1)] , (41)

〈n, $|z−1|n, $〉 =
1

n2
, (42)

〈n, $|z−2|n, $〉 =
2

n3(2$+ 1)
, (43)

〈n, $|z−3|n, $〉 =
2

n3$($+ 1)(2$+ 1)
. (44)
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ii) Matrix Elements in QM

Position operator

According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .
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n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .
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5

The matrix elements 〈m|zk|n〉 can be cast in the form
(13) as,

〈m|zk|n〉 =
∫ ∞

−∞

dz ψm(z) zk ψn(z) =

∫

Γ
µϕ , (23)

with

µ ≡ e−z2

, (24)

ϕ = Wm(z) zk Wn(z) dz . (25)

According to our evaluation algorithm, we decompose
ϕ using the master decomposition formula (10), by fol-
lowing the same pattern previously applied to Hermite’s
polynomials (see Tab. I), yielding,

∫

Γ
µϕ = c1 E1 . (26)

In Tab. II, we summarize the relevant ingredients of the
decomposition. They can be used to test our algorithm,
and reproduce the following known cases:

〈n|m〉 = δnm , (27)

〈n|z2k+1|n〉 = 0 , (28)

〈n|z4|n〉 =
3

4
(2n2 + 2n+ 1) , (29)

〈n|z3|n− 3〉 =
√

n(n− 1)(n− 2)/8 , (30)

〈n|z3|n− 1〉 =
√

9n3/8 . (31)

The mean values of the Hamiltonian operator
〈n|H |n〉, with H in coordinate space, defined as
H ≡ (1/2)(−∇2+ z2), yield twisted period integrals with
ϕ being a linear combination of even powers of z, i.e.
ϕ =

∑n
k=0 bk z

2k, for suitable coefficients bk. We verified
that their decomposition via intersection numbers give
the expected result 〈n|H |n〉 = (n+ 1/2).

b. Hydrogen Atom. The radial eigenfunctions of the
H-atom in position space (r = z), with principal quantum
number n, and orbital quantum number $, (for unitary
Bohr radius a0 = 1) are defined as

〈z|n, $〉 = Rn,!(z) = e−
z
n Wn,!(z) , (32)

Wn,!(z) ≡ Nn!

(

2z

n

)!

L2!+1
(n−!−1)

(

2z

n

)

, (33)

in terms of Laguerre polynomials, where the normaliza-
tion factors are,

Nn! =

(

2

n

)3/2
√

(n− $− 1)!

2n (n+ $)!
, (34)

For illustration purposes, let us consider matrix ele-
ments for arbitrary principal quantum number n, and
identical orbital quantum number $, of the type,

〈n1, $|zk|n2, $〉 =
∫ ∞

0
dz z2 Rn1,!(z) z

k Rn2,!(z) , (35)

which can be cast in the form (13) as,

〈n1, $|zk|n2, $〉 =
∫

Γ
µϕ (36)

with

µ ≡ z2 e
−z

(

1

n1
+ 1

n2

)

, (37)

ϕ = Wn1,!(z) z
k Wn2,!(z) . (38)

According to our evaluation algorithm, we decompose
ϕ using the master decomposition formula (10), by fol-
lowing a pattern which is similar to the one applied to
the Laguerre polynomials, yielding,

∫

Γ
µϕ = c1 E1 . (39)

Tab. II contains the relevant ingredients of the decom-
position. They can be used to test our algorithm, and
reproduce the following known cases:

〈n1, $|n2, $〉 = δn1n2
, (40)

〈n, $|z|n, $〉 =
1

2
[3n2 − $($+ 1)] , (41)

〈n, $|z−1|n, $〉 =
1

n2
, (42)

〈n, $|z−2|n, $〉 =
2

n3(2$+ 1)
, (43)

〈n, $|z−3|n, $〉 =
2

n3$($+ 1)(2$+ 1)
. (44)
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr+2 exp(�z(n1 +n2)/(n1n2)) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
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that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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Green’s Function and Kontsevich-Witten tau-function

Master Decomposition formula

Case i)

Case ii)

1. Identify a univariate twisted period integral of the form (1),
Z

G
µ j , (6)

with twist µ , and differential 1-form j = ĵ dz. If µ is not multivalued, replace it with the regulated twist u = u(r), by
introducing a regulator r , so that, for a suitable value r0, u(r0) = µ , and determine the dimension n of the vector space
of differential forms.

2. After choosing the bases of forms ei ⌘ êi dz and dual forms hi ⌘ ĥi dz, with ĥi = êi, such that ê1 = ĥ1 = 1, decompose j
in terms of ei, by means of (4), i.e. j = c1 e1 + c2 e2 + . . .+ cn en , (eventually, taking the r ! r0 limit, to remove the
dependence on the regulator).

3. Translate the decomposition of j to the one of the corresponding integral,
Z

G
µ j = c1 E1 + c2 E2 + . . .+ cn En , with E1 ⌘

Z

G
µ dz , and E j =

Z

G
µ e j , ( j 6= 1) , (7)

and compare the result with the literature.
Let us observe that: i. if n = 1, the result comes just from the contribution of E1; ii. if n > 1 and ci = 0 for i > 1, the
result still comes just from the contribution of E1; iii. given its definition, E1 represents the total volume of the integration
domain. Moreover, the choice of the basis ei is arbitrary, and Âi ciEi does not depend on the choice of Ei. Here we
opt for e1 = dz, for illustration purposes. Alternative choices, e.g. e1 = d ln(z), are equivalent. Intersection numbers of
twisted dlog-forms can be directly computed by means of (global) Residue theorem19 - an aspect we will elaborate on, in
the context of Quantum Mechanics, elsewhere.

Orthogonal Polynomials and Matrix Elements. We tested our algorithm by re-deriving, in a novel fashion, polynomial
orthogonality relations, of the type,

Inm ⌘
Z

G
Pn(z)Pm(z) f (z)dz ,

in the case of Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n , and Hermite Hn polynomials; as well as matrix
elements of quantum mechanical operators O , of the type,

Inm ⌘ hn|O|mi=
Z

G
y⇤

n (z)O(z)ym(z) f (z)dz ,

appearing in the quantum description of the univariate Harmonic Oscillator and of the Hydrogen Atom, where f (z)dz represents
the integration measure of the considered problem. In each case, Inm can be naturally interpreted as twisted period integrals of
type (6), upon properly redefining their integrands, in order to identify µ and j , In particular, for the considered seven cases,
the master formula (4) yields the decomposition j = c1 e1 , in terms of just one basic form, e1 = dz, finally implying,

Inm = c1 E1 ,

where c1 is computed in terms of intersection numbers. In the considered cases, given the adopted choice of the bases of forms,
it happens that only one master integrals contributes, i.e. E1, but, in general, the contributions of more master integrals has to be
expected.

Green’s Functions and Kontsevich-Witten t-Function. Partition functions play a key role in the description of dynamical
systems in Statistical Mechanics and Quantum Field Theory, as generators of correlation functions. We consider two
paradigmatic examples: the n-point Green’s functions in Field Theory, Gn, and the Kontsevich-Witten matrix integral ZKW for
t-function of integrable systems48, 49, respectively defined as,

Gn ⌘
R

Df f(x1) · · ·f(xn) exp[�SE ]R
Df exp[�SE ]

, and ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i ,

for generic fields f(x) and for any given action SE , and for generic positive Hermitian field-matrix F. Both definitions can be
read as a ratio of twisted periods integrals (6), as

c1 =

R
G µ jR
G µ e1

, equivalently rewritten as
Z

G
µ j = c1 E1 ,
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i) Green’s Function

According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr+2 exp(�z(n1 +n2)/(n1n2)) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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type u ν êi C-matrix ρ0 E1

Harmonic Oscillator Wn zρ exp
(

−z2
)

2 1, 1/z diagonal(1/2, 1/ρ) 0
√
π

H-atom Wn," zρ exp(−z) 1 1 (n1n2/(n1 + n2))
2(2 + ρ) 0 2(n1n2/(n1 + n2))

3

Table II. Functions and parameters of the decomposition involving eigenfunctions.

B. n-point Green’s functions

The Euclidean n-point Green’s functions in Field The-
ory, Gn = Gn(x1, . . . , xn) is a for generic fields φ(x), and
for any given action SE , is defined as

Gn ≡
∫

Dφφ(x1) · · ·φ(xn) e−SE

∫

Dφ e−SE
. (45)

This equation is equivalent to,
∫

Dφφ(x1) · · ·φ(xn) e
−SE = Gn

∫

Dφ e−SE , (46)

which can be read as a relation between integral of type
(13),

∫

Γ
µϕ = Gn E1 , (47)

upon defining,

µ ≡ e−SE , (48)

ϕ ≡ φ(x1) · · ·φ(xn)Dφ , (49)

E1 ≡
∫

Γ
µ e1 , with e1 = Dφ . (50)

Therefore, Gn can be interpreted as the coefficient of the
projection of the cocycle ϕ on the master form e1, i.e.
ϕ = c1 e1, with c1 = Gn, and it can be determined within
intersection theory, as observed in [48, 49].

1. Single field, φ4-theory

Let us consider a toy theory for a real scalar field φ(x),
defined by the action

SE ≡ S0 + εS1 , (51)

with S0 =
1

2
γ φ2(x) , S1 = φ4(x) , (52)

where S0 represents the free kinetic term, and S1, a quar-
tic self-interaction term, with coupling constant ε.

By replacing φ(x) with the coordinate z, i.e. φ(x) ≡ z,
the n-point Green’s function Gn for this theory can be
defined through (47), and can be determined by applying
our computation algorithm to the decomposition of the
cocycle ϕ,

ϕ = zn dz . (53)

a. Free theory. The n-point Green’s function G(0)
n in

the free theory, is defined by considering just the kinetic
term in the definition of

µ ≡ e−S0 , (54)

and it can be computed by using the master decomposi-
tion formula (10). In fact, as for the case of the Hermite
polynomials, let us consider u defined as

u ≡ zρ µ , (55)

such that limρ→0 u = µ. For this type of Gaussian inte-
grals, the dimension of the cohomology group is ν = 2,
(see the case of Hermite polynomials in Tab.I, which can
be obtained by setting γ = 2), and we take the following
basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} =
{1, 1/z}, yielding the intersection matrix,

C =

(

1
γ 0

0 1
ρ

)

. (56)

By applying the master decomposition formula (10), and
taking the ρ → 0 limit, the decomposition of ϕ in terms
of the master forms e1 and e2, reads ϕ = c1 e1 + c2 e2,
with c2 = 0, and

c1 = G(0)
n =

1

γn/2
(n− 1)! ! , for even n . (57)

This result corresponds to the application of Wick’s the-
orem in Quantum Field Theory, which in the free theory
allows to rewrite any n point functions combinatorially in
terms of products of two point functions. From the gen-
eral result of the n-point correlator, we can read the 2-
point correlation function for the free theory, correspond-
ing to the propagator of the φ field,

G(0)
2 =

1

γ
. (58)
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with c2 = 0, and

c1 = G(0)
n =
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allows to rewrite any n point functions combinatorially in
terms of products of two point functions. From the gen-
eral result of the n-point correlator, we can read the 2-
point correlation function for the free theory, correspond-
ing to the propagator of the φ field,

G(0)
2 =

1

γ
. (58)



i) Green’s Function

According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
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yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .

8/11

According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
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n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .
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According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
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L2`+1
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◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
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, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
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Df e�SE
, equivalently written as
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Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr+2 exp(�z(n1 +n2)/(n1n2)) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .
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2-point function: the propagator

Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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b. Perturbation Theory. The n-point correlation
function Gn in the full theory can be computed perturba-
tively, in the small coupling limit, ε → 0, and expressed

in terms of G(0)
n .

Let us describe the determination of the next-to-leading
order (NLO) corrections to the 2-point function,

G2 =

∫

dz z2 e−S0−εS1

∫

dz e−S0−εS1

=
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According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .
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type u ν êi C-matrix ρ0 E1

Harmonic Oscillator Wn zρ exp
(

−z2
)

2 1, 1/z diagonal(1/2, 1/ρ) 0
√
π

H-atom Wn," zρ exp(−z) 1 1 (n1n2/(n1 + n2))
2(2 + ρ) 0 2(n1n2/(n1 + n2))

3

Table II. Functions and parameters of the decomposition involving eigenfunctions.

B. n-point Green’s functions

The Euclidean n-point Green’s functions in Field The-
ory, Gn = Gn(x1, . . . , xn) is a for generic fields φ(x), and
for any given action SE , is defined as

Gn ≡
∫

Dφφ(x1) · · ·φ(xn) e−SE

∫

Dφ e−SE
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This equation is equivalent to,
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upon defining,

µ ≡ e−SE , (48)

ϕ ≡ φ(x1) · · ·φ(xn)Dφ , (49)

E1 ≡
∫

Γ
µ e1 , with e1 = Dφ . (50)

Therefore, Gn can be interpreted as the coefficient of the
projection of the cocycle ϕ on the master form e1, i.e.
ϕ = c1 e1, with c1 = Gn, and it can be determined within
intersection theory, as observed in [48, 49].

1. Single field, φ4-theory

Let us consider a toy theory for a real scalar field φ(x),
defined by the action

SE ≡ S0 + εS1 , (51)

with S0 =
1

2
γ φ2(x) , S1 = φ4(x) , (52)

where S0 represents the free kinetic term, and S1, a quar-
tic self-interaction term, with coupling constant ε.

By replacing φ(x) with the coordinate z, i.e. φ(x) ≡ z,
the n-point Green’s function Gn for this theory can be
defined through (47), and can be determined by applying
our computation algorithm to the decomposition of the
cocycle ϕ,

ϕ = zn dz . (53)

a. Free theory. The n-point Green’s function G(0)
n in

the free theory, is defined by considering just the kinetic
term in the definition of

µ ≡ e−S0 , (54)

and it can be computed by using the master decomposi-
tion formula (10). In fact, as for the case of the Hermite
polynomials, let us consider u defined as

u ≡ zρ µ , (55)

such that limρ→0 u = µ. For this type of Gaussian inte-
grals, the dimension of the cohomology group is ν = 2,
(see the case of Hermite polynomials in Tab.I, which can
be obtained by setting γ = 2), and we take the following
basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} =
{1, 1/z}, yielding the intersection matrix,

C =

(

1
γ 0

0 1
ρ

)

. (56)

By applying the master decomposition formula (10), and
taking the ρ → 0 limit, the decomposition of ϕ in terms
of the master forms e1 and e2, reads ϕ = c1 e1 + c2 e2,
with c2 = 0, and

c1 = G(0)
n =

1

γn/2
(n− 1)! ! , for even n . (57)

This result corresponds to the application of Wick’s the-
orem in Quantum Field Theory, which in the free theory
allows to rewrite any n point functions combinatorially in
terms of products of two point functions. From the gen-
eral result of the n-point correlator, we can read the 2-
point correlation function for the free theory, correspond-
ing to the propagator of the φ field,

G(0)
2 =

1

γ
. (58)
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i) Green’s Function

According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .
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p
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✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)
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p
(n� `�1)!/(2n(n+ `)!) .
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Z •

0
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Z

G
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n1
+ 1

n2

⌘
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R
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R

Df e�SE
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Z
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Z
Df e�SE . (15)
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Z

G
µ e1 , and e1 ⌘ Df . (16)
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Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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6

type u ν êi C-matrix ρ0 E1

Harmonic Oscillator Wn zρ exp
(

−z2
)

2 1, 1/z diagonal(1/2, 1/ρ) 0
√
π

H-atom Wn," zρ exp(−z) 1 1 (n1n2/(n1 + n2))
2(2 + ρ) 0 2(n1n2/(n1 + n2))

3

Table II. Functions and parameters of the decomposition involving eigenfunctions.

B. n-point Green’s functions

The Euclidean n-point Green’s functions in Field The-
ory, Gn = Gn(x1, . . . , xn) is a for generic fields φ(x), and
for any given action SE , is defined as

Gn ≡
∫

Dφφ(x1) · · ·φ(xn) e−SE

∫

Dφ e−SE
. (45)

This equation is equivalent to,
∫

Dφφ(x1) · · ·φ(xn) e
−SE = Gn

∫

Dφ e−SE , (46)

which can be read as a relation between integral of type
(13),

∫

Γ
µϕ = Gn E1 , (47)

upon defining,

µ ≡ e−SE , (48)

ϕ ≡ φ(x1) · · ·φ(xn)Dφ , (49)

E1 ≡
∫

Γ
µ e1 , with e1 = Dφ . (50)

Therefore, Gn can be interpreted as the coefficient of the
projection of the cocycle ϕ on the master form e1, i.e.
ϕ = c1 e1, with c1 = Gn, and it can be determined within
intersection theory, as observed in [48, 49].

1. Single field, φ4-theory

Let us consider a toy theory for a real scalar field φ(x),
defined by the action

SE ≡ S0 + εS1 , (51)

with S0 =
1

2
γ φ2(x) , S1 = φ4(x) , (52)

where S0 represents the free kinetic term, and S1, a quar-
tic self-interaction term, with coupling constant ε.

By replacing φ(x) with the coordinate z, i.e. φ(x) ≡ z,
the n-point Green’s function Gn for this theory can be
defined through (47), and can be determined by applying
our computation algorithm to the decomposition of the
cocycle ϕ,

ϕ = zn dz . (53)

a. Free theory. The n-point Green’s function G(0)
n in

the free theory, is defined by considering just the kinetic
term in the definition of

µ ≡ e−S0 , (54)

and it can be computed by using the master decomposi-
tion formula (10). In fact, as for the case of the Hermite
polynomials, let us consider u defined as

u ≡ zρ µ , (55)

such that limρ→0 u = µ. For this type of Gaussian inte-
grals, the dimension of the cohomology group is ν = 2,
(see the case of Hermite polynomials in Tab.I, which can
be obtained by setting γ = 2), and we take the following
basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} =
{1, 1/z}, yielding the intersection matrix,

C =

(

1
γ 0

0 1
ρ

)

. (56)

By applying the master decomposition formula (10), and
taking the ρ → 0 limit, the decomposition of ϕ in terms
of the master forms e1 and e2, reads ϕ = c1 e1 + c2 e2,
with c2 = 0, and

c1 = G(0)
n =

1

γn/2
(n− 1)! ! , for even n . (57)

This result corresponds to the application of Wick’s the-
orem in Quantum Field Theory, which in the free theory
allows to rewrite any n point functions combinatorially in
terms of products of two point functions. From the gen-
eral result of the n-point correlator, we can read the 2-
point correlation function for the free theory, correspond-
ing to the propagator of the φ field,

G(0)
2 =

1

γ
. (58)
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ing to the propagator of the φ field,
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b. Perturbation Theory. The n-point correlation
function Gn in the full theory can be computed perturba-
tively, in the small coupling limit, ε → 0, and expressed

in terms of G(0)
n .

Let us describe the determination of the next-to-leading
order (NLO) corrections to the 2-point function,

G2 =

∫

dz z2 e−S0−εS1

∫

dz e−S0−εS1

=

∫

dz z2 e−S0(1− εS1 + . . .)
∫

dz e−S0(1− εS1 + . . .)

=
(

G(0)
2 − εG(0)

6 + . . .
)(

1 + εG(0)
4 + . . .

)

= G(0)
2 + ε

(

G(0)
2 G(0)

4 −G(0)
6

)

+O(ε2)

=
1

γ

(

1− 12ε
1

γ2

)

+O(ε2) , (59)

where the term proportional to ε is the NLO correction
to the free propagator. Notice that in this result Wick’s

theorem still appears in the combinatorics of the G(0)
2j

terms.
c. Exact theory. Let us consider now the decompo-

sition of ϕ = zn dz in the exact theory, with

µ ≡ e−SE , (60)

and evaluate the intersection numbers with

u ≡ zρ µ , (61)

such that limρ→0 u = µ. In this case, ν = 4, namely, the
dimension of the twisted cohomology group is larger than
in the free theory case. We choose a basis of cocycles,
{ê1, ê2, ê3, ê4} = {1, 1/z, z, z2}, and for the dual cocycles
{ĥi}4i=1 = {êi}4i=1, yielding the intersection matrix,

C =













0 0 0 1
4γ

0 1
ρ 0 0

0 0 1
4γ 0

1
4γ 0 0 − γ

16ε2













. (62)

The master decomposition formula (10) can be used
to project the cocycle ϕ = z4 dz onto the master forms,
which, after taking the ρ→ 0 limit reads,

ϕ = c1 e1 + c2 e2 + c3 e3 + c4 e4 , (63)

with

c1 =
1

4ε
, c2 = 0 , c3 = 0 , c4 = −

γ

4ε
. (64)

The cocycles decomposition translates into the integral
relation,

∫

Γ
dz z4 e−SE = c1

∫

Γ
dz e−SE + c4

∫

Γ
dz z2 e−SE ,(65)

which, by dividing both sides by the first integral appear-
ing in the r.h.s., can be rewritten as a relation between
n-point functions in the exact theory,

G4 = c1 + c4G2 . (66)

This relation can be used to express G2 in terms of G4,
as

G2 =
1

γ

(

1− 4εG4

)

, (67)

which is an all-order result. To verify that it is compatible
with the result earlier obtained in perturbation theory, we
observe that in order to determine G2 up to the first order
in ε, it is sufficient to keep just the leading order of G4 in

the r.h.s. i.e. G4 = G(0)
4 +O(ε), implying

G2 =
1

γ

(

1− 4εG(0)
4

)

+O(ε4), (68)

which corresponds to the same result obtained in pertur-
bation theory, upon substituting

G(0)
4 =

1

γ2
3! ! =

3

γ2
, (69)

which can be read out of (57).

CONCLUSION

We showed that Intersection Theory of Twisted de
Rham Cohomolgies plays a pivotal role on the algebraic
structure of special functions that appear in Quantum
Mechanics and Quantum Field Theory.

We applied de Rham’s theory to simple, univariate in-
tegrals, built out of orthogonal polynomials, quantum me-
chanical eigenfunctions, and fields, by interpreting them
as twisted period integrals, namely as pairings of twisted
cycles and cocycles. We derived the algebraic properties
of these integral functions from the decomposition prop-
erties of cocycles, showing that the linear relations they
obey can be derived by means of intersection numbers
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ii) Kontsevich-Witten tau-function

Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,
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R
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where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,
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R
dF exp

h
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⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr
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2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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Univariate Model
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where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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4 Methods
Twisted de Rham cohomology
Twisted de Rham cohomology aims to tackle integrals of the form

Z

G
uj (8)

with j ⌘ ĵ dz1 ^ · · ·^ dzn, and G is a regulated integration contour such that u(∂G) = 0. In the cases of our interest ĵ is a
meromorphic function of the complex integration variables z1, . . . ,zn, and u ⌘ Q ’ j Pr j

j , where Pj and Q are meromorphic
with allowed singularities at infinity, and r j are generic exponents.

After introducing the connection w ⌘ d ln(u) = Ân
i=1 ŵi dzi, with ŵi ⌘ ∂i ln(u), we can define the covariant derivative

—w ⌘ d +w^= u�1 ·d ·u acting on differential forms. If Wn is the space of n-forms, then the twisted cohomology groups are
defined by

Hn
w :=

ker{—w : Wn ! Wn+1}
Im{—w : Wn�1 ! Wn} , (9)

which means that their elements are —w -closed n-forms up to additive —w -exact (n�1)-forms.
Similarly, one can define twisted homology. However, since our strategy is to work with cohomology, we defer to the

literature for a precise definition of Hw
n . We limit ourselves to saying that its elements are pairs (G,u) , called twisted cycles.

The only relevant issue is that Hn
w and Hw

n are isomorphic, hence they have the same dimensions, n = dimHw
n = dimHn

w that
generically corresponds to the number of critical points of the function ln(u), viewed as a Morse height function.

Orthogonal Polynomials
Univariate orthogonal polynomials Pn = Pn(z) over an integration interval say G, labelled by integer indices n are known to
obey orthogonality conditions generically expressed as

Z

G
µ PnPm dz = fn dnm =

Z

G
µ j = c1 E1 . (10)

which can be naturally cast in the form (6), by simply interpreting j ⌘ Pn Pm dz , as a differential 1-form. Therefore, we can
apply our evaluation algorithm to the set of orthogonal polynomials listed in Table 1, demonstrating that the orthogonality
relation (10) emerges from the decomposition formula, and amounts to c1 E1 .

We consider the following type of orthogonal polynomials: Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n ,
Hermite Hn. For each type, in Tab. 1, we provide the relevant data needed for the decomposition via intersection numbers: the
regulated twist u, the functions êi characterizing the bases of forms; the C matrix, the value of r0; the expression of E1 and of
c1, yielding agreement with the results known in the literature. Let us observe that, in the case of Hermite polynomials, given
the expression of u, the vector space dimension is n = 2, yielding j = c1 e1 + c2 e2; nevertheless, due to the adopted basis
choice, c2 = 0, therefore, j = c1 e1 holds as in the other cases having n = 1. Moreover, in the case of the Laguerre and of the
Gegenbauer polynomials, the integration measure µ and the twist u coincide, therefore the coefficients c1 and E1 are exact in r ,
and no limit on r is required.

Matrix Elements in Quantum Mechanics
The computations we have just done can be easily extended to the computation of the matrix elements of powers of operators in
position space, for instance. We illustrate some examples involving powers of the position operator, i.e. h•|zk|•i, where k may
be a positive or negative integer, for two celebrated physics cases, the harmonic oscillator and the Hydrogen atom, in Quantum
Mechanics.

Harmonic Oscillator. The eigenfunctions of the unidimensional Harmonic Oscillator in position space (x ⌘ z), with principal
quantum number n, (for unitary mass and pulsation, m = 1 = w) are defined as

hz|ni= yn(z) = e�
z2
2 Wn(z) , with Wn(z)⌘ Nn Hn(z) , (11)

in terms of Hermite polynomials, where the normalization factors are, Nn ⌘ 1/
p
(2nn!

p
p) . The matrix elements hm|zk|ni can

be cast in the form (6) as,

hm|zk|ni=
Z •

�•
dzym(z)zk yn(z) =

Z

G
µ j = c1 E1 , with µ ⌘ e�z2

, and j ⌘Wm(z)zk Wn(z)dz. (12)
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Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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Itzykson-Zuber (1992)

Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr+2 exp(�z(n1 +n2)/(n1n2)) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
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p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
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p see Methods
Wn,` zr+2 exp(�z(n1 +n2)/(n1n2)) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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1 Example: Cosmological correlators

We are interested in finding the di↵erential equation in canonical form for the following integral:

I =

Z
dz1 ^ dz2

(z1z2)✏

(z1 + y1 + 1)(z2 + y2 + 1)(z1 + z2 + y1 + y2)
(1)

using Intersection Theory. In order to do so, let us rewrite it as:

I =

Z

C
u(z1, z2)'(z1, z2) (2)

where:

• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(3)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (4)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (5)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection w as:

! = d log(u) = !1dz1 + !2dz2 (6)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 1)

(y1 + z1 + 1)(y1 + y2 + z1 + z2)
+

✏

z1
(7)

!2 =
�(y1 + 2y2 + z1 + 2z2 + 1)

(y2 + z2 + 1)(y1 + y2 + z1 + z2)
+

✏

z2
(8)
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✏
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1 Example: Cosmological correlators

We are interested in finding the di↵erential equation in canonical form for the following integral:

I =

Z
dz1 ^ dz2

(z1z2)✏

(z1 + y1 + 1)(z2 + y2 + 1)(z1 + z2 + y1 + y2)
(1)

using Intersection Theory. In order to do so, let us rewrite it as:

I =

Z
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Number of MIs = dimH and bases choice

We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(9)

we get:

⌫ = 3 (10)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2

. We choose the internal bases as:

e(2) = h(2)
=

⇢
1

D1
,

1

D2

�
, (11)

e(21) = h(21)
=

⇢
1

D1D3
,

1

D2D3
,

1

D1D2D3

�
(12)

In order to obtain the di↵erential equation with respect to a variable x, we need to compute the matrix

⌦x, defined as,and then we take the limit � ! 0 at the end of the computation:

⌦x = FC�1 , (13)

where C is the C-matrix, defined as: Cij = hei|hji, and F is defined as:

Fij = h�i|hji , �i = (@x + �)ei , � = @x log(u) . (14)

So, first we need to compute the C-matrix:

C =

0

B@

2(�+✏)2

�2(2�+✏)(3�+2✏)
1

�(3�+2✏)
1
�2

1
�(3�+2✏)

2(�+✏)2

�2(2�+✏)(3�+2✏)
1
�2

1
�2

1
�2

3
�2

1

CA (15)

and then Omega, obtaining, after the limit � ! 0:

⌦z1 =

0

B@

✏
y1+1 0 0

0
✏
y1

0

0
✏

y1(y1+1)
✏

y1+1

1

CA (16)

and

⌦z2 =

0

B@

✏
y2

0 0

0
✏

y2+1 0

✏
y2(y2+1) 0

✏
y2+1

1

CA (17)
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2 MIs in the internal layer

4 MIs in the external layer

Brunello & P.M.  

• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(2.19)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (2.20)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (2.21)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection ! as:

! = d log(u) = !1dz1 + !2dz2 (2.22)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 2)

(y1 + z1 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z1
(2.23)

!2 =
�(y1 + 2y2 + z1 + 2z2 + 2)

(y2 + z2 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z2
(2.24)

We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(2.25)

w.r.t. z1, z2 we get:

⌫ = 4 (2.26)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2 . (2.27)

We choose the internal bases as:

e
(2)

=

⇢
1

D1
,

1

D2

�
, (2.28)

e
(21)

=

⇢
1

✏D
2
3

,
1

D1D3
,

1

D2D3
,

1

D1D2D3

�
(2.29)

The metric matrix is given by:

C =

0

BBBB@

(�+✏)2

�(�2�1)✏2(3�+2✏) � �+✏
(��1)�✏(3�+2✏) � �+✏

(��1)�✏(3�+2✏)
1

�✏��2✏

� �+✏
�(�+1)✏(3�+2✏)

2(�+✏)2

�2(2�+✏)(3�+2✏)
1

3�2+2�✏
1
�2

� �+✏
�(�+1)✏(3�+2✏)

1
3�2+2�✏

2(�+✏)2

�2(2�+✏)(3�+2✏)
1
�2

� 1
�2✏+�✏

1
�2

1
�2

3
�2

1

CCCCA
(2.30)
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1 Example: Cosmological correlators

We are interested in finding the di↵erential equation in canonical form for the following integral:

I =

Z
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(z1z2)✏

(z1 + y1 + 1)(z2 + y2 + 1)(z1 + z2 + y1 + y2)
(1)
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Number of MIs = dimH and bases choice

We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(9)

we get:

⌫ = 3 (10)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2

. We choose the internal bases as:

e(2) = h(2)
=

⇢
1

D1
,

1

D2

�
, (11)

e(21) = h(21)
=

⇢
1

D1D3
,

1

D2D3
,

1

D1D2D3

�
(12)

In order to obtain the di↵erential equation with respect to a variable x, we need to compute the matrix

⌦x, defined as,and then we take the limit � ! 0 at the end of the computation:

⌦x = FC�1 , (13)

where C is the C-matrix, defined as: Cij = hei|hji, and F is defined as:

Fij = h�i|hji , �i = (@x + �)ei , � = @x log(u) . (14)

So, first we need to compute the C-matrix:

C =

0

B@

2(�+✏)2

�2(2�+✏)(3�+2✏)
1

�(3�+2✏)
1
�2

1
�(3�+2✏)

2(�+✏)2

�2(2�+✏)(3�+2✏)
1
�2

1
�2

1
�2

3
�2

1

CA (15)

and then Omega, obtaining, after the limit � ! 0:

⌦z1 =

0

B@

✏
y1+1 0 0

0
✏
y1

0

0
✏

y1(y1+1)
✏

y1+1

1

CA (16)

and

⌦z2 =

0

B@

✏
y2

0 0

0
✏

y2+1 0

✏
y2(y2+1) 0

✏
y2+1

1

CA (17)
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Intersection Matrix

2 MIs in the internal layer

4 MIs in the external layer

Brunello & P.M.  

• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(2.19)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (2.20)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (2.21)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection ! as:

! = d log(u) = !1dz1 + !2dz2 (2.22)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 2)

(y1 + z1 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z1
(2.23)

!2 =
�(y1 + 2y2 + z1 + 2z2 + 2)

(y2 + z2 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z2
(2.24)

We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(2.25)

w.r.t. z1, z2 we get:

⌫ = 4 (2.26)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2 . (2.27)

We choose the internal bases as:

e
(2)

=

⇢
1

D1
,

1

D2

�
, (2.28)

e
(21)

=

⇢
1

✏D
2
3

,
1

D1D3
,

1

D2D3
,

1

D1D2D3

�
(2.29)

The metric matrix is given by:

C =

0

BBBB@

(�+✏)2

�(�2�1)✏2(3�+2✏) � �+✏
(��1)�✏(3�+2✏) � �+✏

(��1)�✏(3�+2✏)
1

�✏��2✏

� �+✏
�(�+1)✏(3�+2✏)
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• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(2.19)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (2.20)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (2.21)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection ! as:

! = d log(u) = !1dz1 + !2dz2 (2.22)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 2)

(y1 + z1 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z1
(2.23)

!2 =
�(y1 + 2y2 + z1 + 2z2 + 2)

(y2 + z2 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z2
(2.24)

We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(2.25)

w.r.t. z1, z2 we get:

⌫ = 4 (2.26)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2 . (2.27)

We choose the internal bases as:

e
(2)
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⇢
1

D1
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D2

�
, (2.28)

e
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⇢
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2
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�
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Cosmological correlator example

April 2023

1 Example: Cosmological correlators

We are interested in finding the di↵erential equation in canonical form for the following integral:

I =

Z
dz1 ^ dz2

(z1z2)✏

(z1 + y1 + 1)(z2 + y2 + 1)(z1 + z2 + y1 + y2)
(1)

using Intersection Theory. In order to do so, let us rewrite it as:

I =

Z

C
u(z1, z2)'(z1, z2) (2)

where:

• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(3)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (4)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (5)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection w as:

! = d log(u) = !1dz1 + !2dz2 (6)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 1)

(y1 + z1 + 1)(y1 + y2 + z1 + z2)
+

✏

z1
(7)

!2 =
�(y1 + 2y2 + z1 + 2z2 + 1)

(y2 + z2 + 1)(y1 + y2 + z1 + z2)
+

✏

z2
(8)

1

System of Differential Equations

PoS(MA2019)015

From Diagrammar to Diagrammalgebra

• Integral decomposition (2). By using the master decomposition formulas of contours and
dual contours, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

08 �
0
8 , and �̃ = [C! |i'i =

a’
8=1

0̃8 �̃
0
8 , (22)

respectively in terms the MIs � 08 = hi! |W8], and of the dual MIs �̃ 08 = [[8 |i'i, for 8 = 1, . . . , a.

In the above formulas, C and H are (a⇥a)-matrices of intersection numbers, which, in general,
di�er from the identity matrix. For intersections number of orthonormal elelements they turn
into unit matrices, hence simplifying the decomposition formulas. The Gram-Schmidt algorithm
can be employed to build orthonormal bases from generic sets of independent elements, using
the intersection numbers as scalar products. More generally the coe�cients appearing in the four
types of decomposition formulas for twisted cocycles and cycles and their duals given above are
independent of the respective dual elements. Therefore, by exploiting the freedom in choosing the
corresponding dual bases may yield striking simplifications [31, 102, 103].

Let me remark that the above discussion and the decomposition formulas defined above hold
also in the case of relative twisted de Rham theory, namely releasing the non-integer conditions for
the exponents U8 that appear in the definition of D [102–104].

2.1.2 Di�erential Equations

• Di�erential Forms. The identity resolution I2 can be used to derive the system of di�erential
equation obeyed by the master forms h48 |. In fact, let as assume that the D depends on an
external variables, say G, then

mG h48 | = h(mG + fG)48 | = h(mG + fG)48 | I2 = ⌦8 9 h4 9 | , (23)

where the entries of the matrix of the system are ⌦8 9 = h(mG + fG)48 |⌘:i (C�1): 9 , and
fG ⌘ mG log(D).
Following similar steps, the system of di�erential equations for the master dual forms |⌘8i
reads,

mG |⌘8i = | (mG � fG)⌘8i = I2 | (mG � fG)⌘8i = ⌦̃8 9 |⌘ 9i , (24)

where the entries of the matrix ⌦̃ are ⌦̃8 9 = (C�1) 9: h4: | (mG � fG)⌘8i .

• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices ⌦ and ⌦̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of di�erential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,

mG �8 = ⌦8 9 � 9 , mG �̃8 = ⌦8 9 �̃ 9 . (25)

• Intersection Matrices. The systems of di�erential equations for forms and dual forms can be
used to show that the intersection matrices C and its inverse C

�1 satisfy di�erential equations,
known as secondary equations [35, 36, 105],

mGC = ⌦.C + C.⌦̃ , mGC
�1 = ⌦̃.C�1 � C

�1.⌦ , (26)
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We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(9)

we get:

⌫ = 3 (10)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2

. We choose the internal bases as:

e(2) = h(2)
=

⇢
1

D1
,

1

D2

�
, (11)

e(21) = h(21)
=

⇢
1

D1D3
,

1

D2D3
,

1

D1D2D3

�
(12)

In order to obtain the di↵erential equation with respect to a variable x, we need to compute the matrix

⌦x, defined as,and then we take the limit � ! 0 at the end of the computation:

⌦x = lim
�!0

FC�1 , (13)

where C is the C-matrix, defined as: Cij = hei|hji, and F is defined as:

Fij = h�i|hji , �i = (@x + �)ei , � = @x log(u) . (14)

So, first we need to compute the C-matrix:

C =

0

B@

2(�+✏)2

�2(2�+✏)(3�+2✏)
1

�(3�+2✏)
1
�2

1
�(3�+2✏)

2(�+✏)2

�2(2�+✏)(3�+2✏)
1
�2

1
�2

1
�2

3
�2

1

CA (15)

and then ⌦, obtaining, after taking the limit � ! 0:

⌦y1 =

0

B@

✏
y1+1 0 0

0
✏
y1

0

0
✏

y1(y1+1)
✏

y1+1

1

CA (16)

and

⌦y2 =

0

B@

✏
y2

0 0

0
✏

y2+1 0

✏
y2(y2+1) 0

✏
y2+1

1

CA (17)

2
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2

Master Decomposition Formula

Canonical system

Brunello & P.M.  

• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(2.19)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (2.20)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (2.21)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection ! as:

! = d log(u) = !1dz1 + !2dz2 (2.22)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 2)

(y1 + z1 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z1
(2.23)

!2 =
�(y1 + 2y2 + z1 + 2z2 + 2)

(y2 + z2 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z2
(2.24)

We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(2.25)
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In order to obtain the systems di↵erential equations with respect to each variable y1, y2, we need to

compute the matrices ⌦y1 ,⌦y2 ,and then to take the limit � ! 0 at the end of the computation, as:

⌦y1 = lim
�!0

hr�y1
ei|ejiC�1

kj , (2.31)

where r�y1
= (@y1 + �y1), with �y1 = @y1 log(u), and analogously for y2.
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⌦y1 =

0

BBB@

2✏
y1+y2+1 0 0 0

� ✏
y1+1

✏
y1+1 0 0

✏
y1

0
✏
y1

0

✏
y1(y1+1) 0

✏
y1(y1+1)

✏
y1+1

1

CCCA
(2.34)

and

⌦y2 =

0

BBB@

2✏
y1+y2+1 0 0 0

✏
y2

✏
y2

0 0

� ✏
y2+1 0

✏
y2+1 0

✏
y2(y2+1)

✏
y2(y2+1) 0

✏
y2+1

1

CCCA
(2.35)

which are in canonical form.
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Summary

Novel Concepts: Vector Space Structures 

Iterative method

Intersection Numbers ~ Scalar Product for Feynman (Twisted Period) Integrals

Novel Mathematical Sctructure for Quantum Field Theory Integrals came into view

Space dimensions = Dimension of co-homology group = number of independent Integrals 

New Methods for Multivariate Intersection number

key: Co-Homolgy Group Isomorphisms

Intersection Theory for Twisted de Rham co-homology

Rich theory :: Differential and Algebraic Geometry, Topology, Number Theory, Combinatorics, Statistics

Interesting implications in QM, QFT (and Cosmology): invariance and independent moments of distributions, perturbation vs non-perturbative approaches

General algorithm for Physics and Math applications

Higher-Order PDE method

Feynman Integrals, Euler-Mellin Integrals, D-Module and GKZ hypergeometric theory, Orthogonal Polynomials, QM matrix elements, Correlator functions in QFT.

Secondary equation (Pfaffians via Macaulay)

Interwintwinement between Fundamental Physics, Geometry and Statistics: fluxes ~ period integrals ~ statistical moments

Emerging Picture

Modern Multi-Loop diagrammatic techniques and Amplitudes calculus useful beyond Particle Physics

Triggering interdisciplinarity



Addressing a common math problem might be useful to make progress in different disciplines

the geometric Langlands program [6]. It is natural to think that the Langlands
program in number theory can also be analyzed by means of a corresponding
version of gauge theory.

We stressed that we want to use number theory in conventional physics.
It is possible, however, that all physical quantities are quantized (there exists
elementary length, etc). Then it is natural to believe that the theories over
integers have direct physical meaning.

To explain what we have in mind when speaking about “physics over a ring”
we start with the following:

Definition. Physics is a part of mathematics devoted to the calculation of inte-
grals of the form

∫
g(x)ef(x)dx. Different branches of physics are distinguished

by the range of the variable x and by the names used for f(x), g(x) and for
the integral. For example, in classical statistical physics x runs over a symplec-
tic manifold, f(x) is called the Hamiltonian function and the integral has the
meaning of a partition function or of a correlation function. In a d-dimensional
quantum field theory x runs over the space of functions on a d-dimensional
manifold (the space of fields) and f(x) is interpreted as an action functional.

Of course this is a joke, physics is not a part of mathematics. However,
it is true that the main mathematical problem of physics is the calculation of
integrals of the form

∫
g(x)ef(x) dx. If we work over an arbitrary ring K the

exponential function and the notion of the integral are not defined. We will
show that nevertheless one can give a suitable definition of an integral of the
form

∫
g(x)ef(x) dx.

Let us start with some simple remarks about integrals over Rn assuming that
g and f are formal power series in the variable λ with coefficients belonging to
the ring of polynomials on Rn (in other words f, g ∈ R[x1, ..., xn][[λ]]). We note
that this choice is different from R[[λ]][x1, ..., xn] and it is more convenient for
technical reasons. If f can be represented as f0 + λV where f0 is a negative
quadratic form, then the integral

∫
g(x)ef(x) dx can be calculated in the frame-

work of perturbation theory with respect to the formal parameter λ. We will
fix f and consider the integral as a functional I(g) taking values in R[[λ]]. It is
easy to derive from the relation

∫
∂a(h(x)e

f(x))dx = 0

that the functional I(g) vanishes in the case when g has the form

g = ∂ah+ (∂af)h.

One can show that this statement is sufficient to calculate I(g) up to a constant
factor. This is roughly equivalent to the observation that integration by parts
is sufficient in this case to determine the integral as a power series with respect
to λ. Later we will derive the uniqueness of I(g) from some general consider-
ations; however, one should notice that one can give an easy elementary proof
by induction with respect to degree of the polynomial g.

2
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tic manifold, f(x) is called the Hamiltonian function and the integral has the
meaning of a partition function or of a correlation function. In a d-dimensional
quantum field theory x runs over the space of functions on a d-dimensional
manifold (the space of fields) and f(x) is interpreted as an action functional.

Of course this is a joke, physics is not a part of mathematics. However,
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One can show that this statement is sufficient to calculate I(g) up to a constant
factor. This is roughly equivalent to the observation that integration by parts
is sufficient in this case to determine the integral as a power series with respect
to λ. Later we will derive the uniqueness of I(g) from some general consider-
ations; however, one should notice that one can give an easy elementary proof
by induction with respect to degree of the polynomial g.
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Schwarz, Shapiro (2018)
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the geometric Langlands program [6]. It is natural to think that the Langlands
program in number theory can also be analyzed by means of a corresponding
version of gauge theory.

We stressed that we want to use number theory in conventional physics.
It is possible, however, that all physical quantities are quantized (there exists
elementary length, etc). Then it is natural to believe that the theories over
integers have direct physical meaning.

To explain what we have in mind when speaking about “physics over a ring”
we start with the following:

Definition. Physics is a part of mathematics devoted to the calculation of inte-
grals of the form

∫
g(x)ef(x)dx. Different branches of physics are distinguished

by the range of the variable x and by the names used for f(x), g(x) and for
the integral. For example, in classical statistical physics x runs over a symplec-
tic manifold, f(x) is called the Hamiltonian function and the integral has the
meaning of a partition function or of a correlation function. In a d-dimensional
quantum field theory x runs over the space of functions on a d-dimensional
manifold (the space of fields) and f(x) is interpreted as an action functional.

Of course this is a joke, physics is not a part of mathematics. However,
it is true that the main mathematical problem of physics is the calculation of
integrals of the form

∫
g(x)ef(x) dx. If we work over an arbitrary ring K the

exponential function and the notion of the integral are not defined. We will
show that nevertheless one can give a suitable definition of an integral of the
form

∫
g(x)ef(x) dx.

Let us start with some simple remarks about integrals over Rn assuming that
g and f are formal power series in the variable λ with coefficients belonging to
the ring of polynomials on Rn (in other words f, g ∈ R[x1, ..., xn][[λ]]). We note
that this choice is different from R[[λ]][x1, ..., xn] and it is more convenient for
technical reasons. If f can be represented as f0 + λV where f0 is a negative
quadratic form, then the integral

∫
g(x)ef(x) dx can be calculated in the frame-

work of perturbation theory with respect to the formal parameter λ. We will
fix f and consider the integral as a functional I(g) taking values in R[[λ]]. It is
easy to derive from the relation

∫
∂a(h(x)e

f(x))dx = 0

that the functional I(g) vanishes in the case when g has the form

g = ∂ah+ (∂af)h.

One can show that this statement is sufficient to calculate I(g) up to a constant
factor. This is roughly equivalent to the observation that integration by parts
is sufficient in this case to determine the integral as a power series with respect
to λ. Later we will derive the uniqueness of I(g) from some general consider-
ations; however, one should notice that one can give an easy elementary proof
by induction with respect to degree of the polynomial g.
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The unreasonable effectiveness of  mathematics
E. Wigner
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of this work is what Wigner called "the 
unreasonable effectiveness of mathemat-
ics". Wigner was referring to the mys-
terious phenomenon in which areas of 
pure mathematics, originally constructed 
without regard to application. are sud-
denly discovered to be exactly what is 
required to describe the structure of the 
physical world . Thus , Riemann's general 
formulation of the geometry of curved 
spaces was essential to Einstein 's under-
standing of gravity; Heisenberg found 
that the symbolic arrays which in quan-
tum mechanics represent observable 
quantities we re the matrices that had 
been invented decades earlier ; and now 
recondite aspects of the distribution of 
prime numbers might well provide the 
link between quantum mechanics and 
newtonian chaos. 

Such connections raise many ques-
tions. Is mathematical truth inve nted by 
mathematicians. or does it already exist 
in the world , to be discovered when our 
minds become sophisticated enough? If 
discovered, where is it beforehand? 
What is its relation to the matter whose 
behaviour it describes so we ll ? Is there 
any inapplicable mathematics? 

Barrow does not answer these ques-
tions, but gives a careful and perceptive 
account of their background and the 
philosophies they have stimulated . He 
starts , appropriately enough, with an 
anthropological and historical analysis of 
counting and calculation , focusing on the 
tricky question of whether such skills are 
innate, and would inevitably develop in 
any human society , or whether they 
arose 'accidentally' in one (or several) 
societies, and diffused to the others. The 
latter is, he thinks, more plausible. Cen-
tral here are the inventions (discover-
ies?) of place values and of zero, by the 
Babylonians and Hindus 5,000 years 
ago , leading via the mediaeval Arabs to 
the decimal syste m we use today. 

Because mathematics is the most pre-
cise embodiment of systematic thought, 
it was natural to try to prove that it has a 
solid foundati on in logic and is perfectly 
consistent. The story of these attempts 
has often been told. How Frege, Russell 
and Whitehead tried to 'derive ' 
mathematics from logic almost a century 
ago, and how this attempt was compli-
cated by the irritating paradoxes of self-
referential sets ('If the barber shaves 
everyone who does not shave himself. 
wha shaves the barber?') . How Hilbert 
took up the challenge by trying to prove 
the consistency of mathematics from 
within, by formalizing its symbols and 
deductive steps. !low "all the noonday 
brightness of this confident picture of the 
fo rmalists' little mathematical wo1ld was 
suddenly extinguished" by Godel's proof 
in 1931 that the set-theory paradoxes 
make it impossible for a sufficiently 
complicated system to be proved consis-
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tent from within. These ideas are central 
to modern notions of randomness as the 
inability to compress informatio n, and 
may have implicati ons for our a ttempts 
(in my view doomed) to find a compact 
encoding of the physical universe as a 
' theory of everything'. Barrow's account 
of these matters is lucid and engaging. 

After pointing out that " formalism is 
lacking in two crucial respects" (it does 
not explain the usefulness of mathe-
matics and its relation to the minds of 
mathematicians), Barrow turns to inven-
tionism. This "amounts to the claim that 
mathematics is a branch of 
psycho logy". It makes "mathe matical 
truth dependent upon time and his-
tory" , and "one cannot help but fee l that 
humanity is not really clever enough to 
have 'invented' mathematics" . 

A chapter is devoted to Brouwer's 
programme of intuitionism. whe re the 
natural numbers are regarded as unargu-
ably "given ' , and the aim is to build the 
rest of mathematics "by step-by-step 
deductions using a finite number of 
steps" . This bro ught him into collision 
with Hilbert , who believed that such a 
philosophy, which disallowed infinite 
processes such as arguing by reductio ad 
absurdum, would fatally impoverish and 
weaken mathematics. Hilbert's attempt 
to enforce political correctness and to 
expel Brouwer from the editorial board 
of Marhematische Annalen provoked 
an absurd and bitter controversy that 
Einstein called the "war of the frogs 
and mice". 

Finally , Barrow explores the Platonic 
position that mathematical abstractions 
ex ist "in a rea lm of non-spati al, non-
mental , timeless entities" . He concludes, 
albeit somewhat uneasily: "Our ability to 
create and apprehend mathematical 
structures in the world is merely a con-
seque nce of our own oneness with the 
wo rld" . 

I admit to finding some of Barrow's 
arguments hard to follow not because of 
their content but because of his habit of 
using very long sentences unado rned by 
punctuation whose verbs are hard to find 
and whose meanings therefore hard to 
unravel. Worse, some sentences are in-
complete, and there are many spelling 
mistakes. Quota tions abound . Some are 
witty and apposite, but why propagate 
Spiro Agnew's abysmal "An intellectual 
is a man who doesn' t know how to park 
a bike ''? 

These arc, however, minor criticisms , 
and I warmly recommend Barrow's 
brave attempt to gather up the many 
loose threads of this elusive subject- a 
subject so central to our scie ntific culture 
- and to grasp the whole of it. 0 

Michael Berry is in the Department of 
Physics, University of Bristol, Bristol BSB 
1TL UK. 
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Einstein as 
lover 
Joseph Schwartz 

Albert Einstein and Mileva Marie: The 
Love Letters. Edited and with an intro-
duction by Jurgen Renn and Robert 
Schulmann. Translated by Shawn 
Smith. Princeton University Press: 
1992. Pp. 107. $14.95, £12.50. 

TillS elegantly published volume of let-
te rs between the young Einstein and the 
young Marie is a spin-off from the first 
two volumes of a planned 35 volumes 
containing some 43,000 documents lying 
in the Einstein archive. A lovely intro-
duction by Ji.irgen Renn and Ro bert 
Schulmann , coeditors of the project, 
draws our attention to the unique 
personality of Marie and her central 
contribution to the Einstein success 
sto ry. The meticulo us scholarship of the 
notes is wonderful , particularly the inclu-
sio n of the dates of virtually a ll the 
characters in this first act of the Einstein 
drama. And the letters themselves are a 
treat , a window into the early dev-
elopment of the man who became the 
most ce lebrated scientist in history. But 
what, when all is said and done , does 
this correspondence te ll us? 

The Einstein we see here is bubblingly 
optimistic, reassuring, high-spirited , con-
fident about life . For the first time we 
have an Einstein with sexuality: "Oh my! 
That Jo hnnie boy!/So crazy with desire/ 
Whil e thinking of his Dollie/His pillow 
catches fire " (letters 19); "How beautiful 
it was the last time you let me press your 
dea r little person against me in that most 
natural way" (le tter 33) . Albert is happy 
in his sexual relationship with Marie and 
the letters show it . 

There is a not entirely happy story 
here , however, about two lovers, one 
who thrives, the other who gets in-
creasingly submerged by life . We meet 
them both as students of physics. She , a 
late entrant from the distant provinces of 
undeveloped Serbi a, is three-and-a-half 
yea rs his senior. He is youthful, exuber-
ant. No obstacle is too great. She , while 
available for emotional and sexual in-
vo lvement , is unhappy, feeling that her 
provincial backgro und has irreversibly 
limited her chance in physics. While 
E instein is absorbing with great fascina-
ti on the nuts and bolts of doing physics, 
Marie is distant , o bserving wistfully the 
spectacle of he r university lecture rs: 
"human beings are so clever and 
have accomplished so much as I 
have observed once again here in the 
case of the Heidelberg professors" 
(letter 1) . 

As we journey with these lovers over a 
377 
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Multivariate Intersection Numbers (II)
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Matsumoto (1998)

Let us remark, that the metric matrix (2.16), in general, di↵ers from the identity matrix. The
Gram-Schmidt algorithm can be employed to build orthonormal bases from generic sets of independent
elements, using the intersection numbers as scalar products. But more generally the coe�cients
appearing in the formulas (2.17, 2.18) are independent of the respective dual elements. Therefore,
exploiting this freedom in choosing the corresponding dual bases may yield striking simplifications
[15, 22, 23]. The decomposition formulas hold also in the case of the relative twisted de Rham
cohomology, which allows for a relaxation of the non-integer condition for the exponents �i that
appear in eq. (2.8), see [22, 23, 44].

2.3 Partial Di↵erential Equation

By elaborating on the method proposed in [2], we hereby propose to evaluate the intersection number
for n-forms, using the multivariate Stokes’ theorem, yielding (see also Appendix A):
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where:

•  is a function (0-form), that obeys the following n-th order partial di↵erential equation (nPDE),
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L . (2.20)

• p = (p1, p2, . . . , pn) 2 P! is a pole of !, i.e. an intersection point of singular hypersurface Si

defined in eq. (2.1), at finite location or at infinity.

• The residue symbol stands for

Resz=p(f) = Reszn=pn . . .Resz1=p1(f) = (2⇡i)�n

Z

 1^...^ n

f dz1 ^ . . . ^ dzn , (2.21)

where the integral goes over a product of small circles  i , each encircling the corresponding
pole zi = pi in the zi-plane, see for example [55].

Representation (2.19) can be derived by rewriting the intersection number integral as a flux of a
certain local form ⌘:
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Working term-by-term in the sum on the RHS, let us temporarily denote by (z1, . . . , zm) the local
coordinates centered at the intersection point p. We then may take as the integration domain the
polydisc Dp =

�
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�� |z1|, . . . , |zn|  ✏
 
, and define

⌘ := h̄1 . . . h̄n

�
u 

� �
u
�1
'
(n)
R

�
, (2.23)

where h̄i := 1� hi and hi is the Heaviside step-function:

hi ⌘ h(zi) :=

(
1 for |zi| < ✏ ,

0 otherwise,
(2.24)
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so that the derivative dhi is localized on the circle |zi| = ✏ . The action of the partial derivatives in
eq. (2.22) gives:
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By choosing the auxilary 0-form  as the solution of the following nPDE:

ur!1 . . .r!n = u'L , (2.26)

for the integrand in eq. (2.22) we obtain:

dz1 . . . dzn⌘ = (u'L,c) ^ (u�1
'R) , (2.27)

where the compactly supported n-form 'L,c is defined as: (Seva: TODO: check the RHS here)
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The middle expression here is equivalent to the 'L,c introduced by Matsumoto in [2] and, therefore,
the same integration algorithm via iterated residues can be applied. Indeed, since 'R is a holomorphic
n-form, in eq. (2.25) only the last term gives a non vanishing contribution:

Z

X

�
u'

(n)
L,c

�
^
�
u
�1
'
(n)
R

�
= (�1)n

X

p2P!

Z

Dp

�
u 

�
dh1 ^ . . . ^ dhn ^

�
u
�1
'
(n)
R

�

=
X

p2P!

Z

 1^...^ n

 '
(n)
R

= (2⇡i)n
X

p2P!

Resz=p( '
(n)
R ) , (2.29)

where the product of small circles  1 ^ . . .^  n (i.e. an n-dimensional torus) is the distinguished
boundary of the polydisc Dp . The last equation above2 reproduces the result shown in eq. (2.19).
For more details we refer the interested reader to the discussion in Appendix A.

Finally, let us once again highlight the crucial eq. (2.26) and write it as:

r!1r!2 . . .r!n = '
(n)
L . (2.30)

This nPDE, equivalent to eq. (2.20), is the natural extension of the equation r!1 = '
(1)
L presented in

[41] for the single variable case. Equation (2.30) constitutes the first main result of this communication,
as it o↵ers a new algorithm for the direct determination of the scalar function  , hence a simpler
strategy for the evaluation of the intersection numbers between twisted n-forms.

2.4 Solution

The solution of eqs. (2.20, 2.30) can be formally written as3:

 = u
�1

Z z

z0

u'
(n)
L . (2.31)

2In the derivation we used
R
D dh̄ ^ f(z) dz =

R
 f(z) dz to localize the integral on the boundary.

3In ref. [44], the solution  for the twisted case with regulated pole is written by considering a modified integration
contour, accounting for the contribution of monodromy. It can be shown that, around each (regulated) singular point,
it is equivalent to the one considered here.
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⇣
h̄1 . . . h̄n

�
ur!1 . . .r!n 

�
+ . . .+ (�1)n

�
u 

�
dh1 ^ . . . ^ dhn

⌘
^
�
u
�1
'
(n)
R

�
. (2.25)

By choosing the auxilary 0-form  as the solution of the following nPDE:

ur!1 . . .r!n = u'L , (2.26)

for the integrand in eq. (2.22) we obtain:

dz1 . . . dzn⌘ = (u'L,c) ^ (u�1
'R) , (2.27)

where the compactly supported n-form 'L,c is defined as: (Seva: TODO: check the RHS here)

'L,c := h̄1 . . . h̄n 'L + . . .+ (�1)n  dh1 ^ . . . ^ dhn ⌘ r!1 . . .r!n

�
h̄1 . . . h̄n 

�
. (2.28)

The middle expression here is equivalent to the 'L,c introduced by Matsumoto in [2] and, therefore,
the same integration algorithm via iterated residues can be applied. Indeed, since 'R is a holomorphic
n-form, in eq. (2.25) only the last term gives a non vanishing contribution:

Z

X

�
u'

(n)
L,c

�
^
�
u
�1
'
(n)
R

�
= (�1)n

X

p2P!

Z

Dp

�
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�
dh1 ^ . . . ^ dhn ^

�
u
�1
'
(n)
R

�

=
X

p2P!

Z

 1^...^ n

 '
(n)
R

= (2⇡i)n
X

p2P!

Resz=p( '
(n)
R ) , (2.29)

where the product of small circles  1 ^ . . .^  n (i.e. an n-dimensional torus) is the distinguished
boundary of the polydisc Dp . The last equation above2 reproduces the result shown in eq. (2.19).
For more details we refer the interested reader to the discussion in Appendix A.

Finally, let us once again highlight the crucial eq. (2.26) and write it as:

r!1r!2 . . .r!n = '
(n)
L . (2.30)

This nPDE, equivalent to eq. (2.20), is the natural extension of the equation r!1 = '
(1)
L presented in

[41] for the single variable case. Equation (2.30) constitutes the first main result of this communication,
as it o↵ers a new algorithm for the direct determination of the scalar function  , hence a simpler
strategy for the evaluation of the intersection numbers between twisted n-forms.

2.4 Solution

The solution of eqs. (2.20, 2.30) can be formally written as3:

 = u
�1

Z z

z0

u'
(n)
L . (2.31)

2In the derivation we used
R
D dh̄ ^ f(z) dz =

R
 f(z) dz to localize the integral on the boundary.

3In ref. [44], the solution  for the twisted case with regulated pole is written by considering a modified integration
contour, accounting for the contribution of monodromy. It can be shown that, around each (regulated) singular point,
it is equivalent to the one considered here.
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The middle expression here is equivalent to the 'L,c introduced by Matsumoto in [2] and, therefore,
the same integration algorithm via iterated residues can be applied. Indeed, since 'R is a holomorphic
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where the product of small circles  1 ^ . . .^  n (i.e. an n-dimensional torus) is the distinguished
boundary of the polydisc Dp . The last equation above2 reproduces the result shown in eq. (2.19).
For more details we refer the interested reader to the discussion in Appendix A.

Finally, let us once again highlight the crucial eq. (2.26) and write it as:

r!1r!2 . . .r!n = '
(n)
L . (2.30)

This nPDE, equivalent to eq. (2.20), is the natural extension of the equation r!1 = '
(1)
L presented in

[41] for the single variable case. Equation (2.30) constitutes the first main result of this communication,
as it o↵ers a new algorithm for the direct determination of the scalar function  , hence a simpler
strategy for the evaluation of the intersection numbers between twisted n-forms.

2.4 Solution

The solution of eqs. (2.20, 2.30) can be formally written as3:
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z0
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L . (2.31)

2In the derivation we used
R
D dh̄ ^ f(z) dz =

R
 f(z) dz to localize the integral on the boundary.

3In ref. [44], the solution  for the twisted case with regulated pole is written by considering a modified integration
contour, accounting for the contribution of monodromy. It can be shown that, around each (regulated) singular point,
it is equivalent to the one considered here.
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nPDE

Proof.

Let us remark, that the metric matrix (2.16), in general, di↵ers from the identity matrix. The
Gram-Schmidt algorithm can be employed to build orthonormal bases from generic sets of independent
elements, using the intersection numbers as scalar products. But more generally the coe�cients
appearing in the formulas (2.17, 2.18) are independent of the respective dual elements. Therefore,
exploiting this freedom in choosing the corresponding dual bases may yield striking simplifications
[15, 22, 23]. The decomposition formulas hold also in the case of the relative twisted de Rham
cohomology, which allows for a relaxation of the non-integer condition for the exponents �i that
appear in eq. (2.8), see [22, 23, 44].

2.3 Partial Di↵erential Equation

By elaborating on the method proposed in [2], we hereby propose to evaluate the intersection number
for n-forms, using the multivariate Stokes’ theorem, yielding (see also Appendix A):

h'
(n)
L | '

(n)
R i = (2⇡i)�n

Z

X
(u'(n)

L,c) ^ (u�1
'
(n)
R ) =

X

p2P!

Resz=p( '
(n)
R ) , (2.19)

where:

•  is a function (0-form), that obeys the following n-th order partial di↵erential equation (nPDE),

@
n

@z1 @z2 . . . @zn
(u ) = u '̂

(n)
L . (2.20)

• p = (p1, p2, . . . , pn) 2 P! is a pole of !, i.e. an intersection point of singular hypersurface Si

defined in eq. (2.1), at finite location or at infinity.

• The residue symbol stands for

Resz=p(f) = Reszn=pn . . .Resz1=p1(f) = (2⇡i)�n

Z

 1^...^ n

f dz1 ^ . . . ^ dzn , (2.21)

where the integral goes over a product of small circles  i , each encircling the corresponding
pole zi = pi in the zi-plane, see for example [55].

Representation (2.19) can be derived by rewriting the intersection number integral as a flux of a
certain local form ⌘:

Z

X
(u'(n)

L,c) ^ (u�1
'
(n)
R ) =

X

p2P!

Z

Dp

dz1 . . . dzn⌘ . (2.22)

Working term-by-term in the sum on the RHS, let us temporarily denote by (z1, . . . , zm) the local
coordinates centered at the intersection point p. We then may take as the integration domain the
polydisc Dp =

�
(z1, . . . , zn)

�� |z1|, . . . , |zn|  ✏
 
, and define

⌘ := h̄1 . . . h̄n

�
u 

� �
u
�1
'
(n)
R

�
, (2.23)

where h̄i := 1� hi and hi is the Heaviside step-function:

hi ⌘ h(zi) :=

(
1 for |zi| < ✏ ,

0 otherwise,
(2.24)
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Let us remark, that the metric matrix (2.16), in general, di↵ers from the identity matrix. The
Gram-Schmidt algorithm can be employed to build orthonormal bases from generic sets of independent
elements, using the intersection numbers as scalar products. But more generally the coe�cients
appearing in the formulas (2.17, 2.18) are independent of the respective dual elements. Therefore,
exploiting this freedom in choosing the corresponding dual bases may yield striking simplifications
[15, 22, 23]. The decomposition formulas hold also in the case of the relative twisted de Rham
cohomology, which allows for a relaxation of the non-integer condition for the exponents �i that
appear in eq. (2.8), see [22, 23, 44].
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By elaborating on the method proposed in [2], we hereby propose to evaluate the intersection number
for n-forms, using the multivariate Stokes’ theorem, yielding (see also Appendix A):
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L . (2.20)

• p = (p1, p2, . . . , pn) 2 P! is a pole of !, i.e. an intersection point of singular hypersurface Si

defined in eq. (2.1), at finite location or at infinity.

• The residue symbol stands for

Resz=p(f) = Reszn=pn . . .Resz1=p1(f) = (2⇡i)�n
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 1^...^ n

f dz1 ^ . . . ^ dzn , (2.21)

where the integral goes over a product of small circles  i , each encircling the corresponding
pole zi = pi in the zi-plane, see for example [55].

Representation (2.19) can be derived by rewriting the intersection number integral as a flux of a
certain local form ⌘:
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(u'(n)

L,c) ^ (u�1
'
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R ) =
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dz1 . . . dzn⌘ . (2.22)

Working term-by-term in the sum on the RHS, let us temporarily denote by (z1, . . . , zm) the local
coordinates centered at the intersection point p. We then may take as the integration domain the
polydisc Dp =
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(z1, . . . , zn)

�� |z1|, . . . , |zn|  ✏
 
, and define
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�
, (2.23)

where h̄i := 1� hi and hi is the Heaviside step-function:

hi ⌘ h(zi) :=

(
1 for |zi| < ✏ ,

0 otherwise,
(2.24)
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Let us remark, that the metric matrix (2.16), in general, di↵ers from the identity matrix. The
Gram-Schmidt algorithm can be employed to build orthonormal bases from generic sets of independent
elements, using the intersection numbers as scalar products. But more generally the coe�cients
appearing in the formulas (2.17, 2.18) are independent of the respective dual elements. Therefore,
exploiting this freedom in choosing the corresponding dual bases may yield striking simplifications
[15, 22, 23]. The decomposition formulas hold also in the case of the relative twisted de Rham
cohomology, which allows for a relaxation of the non-integer condition for the exponents �i that
appear in eq. (2.8), see [22, 23, 44].

2.3 Partial Di↵erential Equation

By elaborating on the method proposed in [2], we hereby propose to evaluate the intersection number
for n-forms, using the multivariate Stokes’ theorem, yielding (see also Appendix A):
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where the integral goes over a product of small circles  i , each encircling the corresponding
pole zi = pi in the zi-plane, see for example [55].

Representation (2.19) can be derived by rewriting the intersection number integral as a flux of a
certain local form ⌘:
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polydisc Dp =
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, and define
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'
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where h̄i := 1� hi and hi is the Heaviside step-function:

hi ⌘ h(zi) :=
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1 for |zi| < ✏ ,

0 otherwise,
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so that the derivative dhi is localized on the circle |zi| = ✏ . The action of the partial derivatives in
eq. (2.22) gives:

dz1 . . . dzn⌘ =
⇣
h̄1 . . . h̄n

�
ur!1 . . .r!n 

�
+ . . .+ (�1)n

�
u 

�
dh1 ^ . . . ^ dhn

⌘
^
�
u
�1
'
(n)
R

�
. (2.25)

By choosing the auxilary 0-form  as the solution of the following nPDE:

ur!1 . . .r!n = u'L , (2.26)

for the integrand in eq. (2.22) we obtain:

dz1 . . . dzn⌘ = (u'L,c) ^ (u�1
'R) , (2.27)

where the compactly supported n-form 'L,c is defined as: (Seva: TODO: check the RHS here)

'L,c := h̄1 . . . h̄n 'L + . . .+ (�1)n  dh1 ^ . . . ^ dhn ⌘ r!1 . . .r!n

�
h̄1 . . . h̄n 

�
. (2.28)

The middle expression here is equivalent to the 'L,c introduced by Matsumoto in [2] and, therefore,
the same integration algorithm via iterated residues can be applied. Indeed, since 'R is a holomorphic
n-form, in eq. (2.25) only the last term gives a non vanishing contribution:

Z

X

�
u'

(n)
L,c

�
^
�
u
�1
'
(n)
R

�
= (�1)n

X

p2P!

Z

Dp

�
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�
dh1 ^ . . . ^ dhn ^

�
u
�1
'
(n)
R

�

=
X

p2P!

Z

 1^...^ n

 '
(n)
R

= (2⇡i)n
X

p2P!

Resz=p( '
(n)
R ) , (2.29)

where the product of small circles  1 ^ . . .^  n (i.e. an n-dimensional torus) is the distinguished
boundary of the polydisc Dp . The last equation above2 reproduces the result shown in eq. (2.19).
For more details we refer the interested reader to the discussion in Appendix A.

Finally, let us once again highlight the crucial eq. (2.26) and write it as:

r!1r!2 . . .r!n = '
(n)
L . (2.30)

This nPDE, equivalent to eq. (2.20), is the natural extension of the equation r!1 = '
(1)
L presented in

[41] for the single variable case. Equation (2.30) constitutes the first main result of this communication,
as it o↵ers a new algorithm for the direct determination of the scalar function  , hence a simpler
strategy for the evaluation of the intersection numbers between twisted n-forms.

2.4 Solution

The solution of eqs. (2.20, 2.30) can be formally written as3:

 = u
�1

Z z

z0

u'
(n)
L . (2.31)

2In the derivation we used
R
D dh̄ ^ f(z) dz =

R
 f(z) dz to localize the integral on the boundary.

3In ref. [44], the solution  for the twisted case with regulated pole is written by considering a modified integration
contour, accounting for the contribution of monodromy. It can be shown that, around each (regulated) singular point,
it is equivalent to the one considered here.
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Let us remark, that the metric matrix (2.16), in general, di↵ers from the identity matrix. The
Gram-Schmidt algorithm can be employed to build orthonormal bases from generic sets of independent
elements, using the intersection numbers as scalar products. But more generally the coe�cients
appearing in the formulas (2.17, 2.18) are independent of the respective dual elements. Therefore,
exploiting this freedom in choosing the corresponding dual bases may yield striking simplifications
[15, 22, 23]. The decomposition formulas hold also in the case of the relative twisted de Rham
cohomology, which allows for a relaxation of the non-integer condition for the exponents �i that
appear in eq. (2.8), see [22, 23, 44].

2.3 Partial Di↵erential Equation

By elaborating on the method proposed in [2], we hereby propose to evaluate the intersection number
for n-forms, using the multivariate Stokes’ theorem, yielding (see also Appendix A):
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Z

X
(u'(n)
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R ) =
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where:

•  is a function (0-form), that obeys the following n-th order partial di↵erential equation (nPDE),

@
n

@z1 @z2 . . . @zn
(u ) = u '̂

(n)
L . (2.20)

• p = (p1, p2, . . . , pn) 2 P! is a pole of !, i.e. an intersection point of singular hypersurface Si

defined in eq. (2.1), at finite location or at infinity.

• The residue symbol stands for

Resz=p(f) = Reszn=pn . . .Resz1=p1(f) = (2⇡i)�n

Z

 1^...^ n

f dz1 ^ . . . ^ dzn , (2.21)

where the integral goes over a product of small circles  i , each encircling the corresponding
pole zi = pi in the zi-plane, see for example [55].

Representation (2.19) can be derived by rewriting the intersection number integral as a flux of a
certain local form ⌘:

Z

X
(u'(n)

L,c) ^ (u�1
'
(n)
R ) =

X

p2P!

Z

Dp

dz1 . . . dzn⌘ . (2.22)

Working term-by-term in the sum on the RHS, let us temporarily denote by (z1, . . . , zm) the local
coordinates centered at the intersection point p. We then may take as the integration domain the
polydisc Dp =

�
(z1, . . . , zn)

�� |z1|, . . . , |zn|  ✏
 
, and define

⌘ := h̄1 . . . h̄n

�
u 

� �
u
�1
'
(n)
R

�
, (2.23)

where h̄i := 1� hi and hi is the Heaviside step-function:

hi ⌘ h(zi) :=

(
1 for |zi| < ✏ ,

0 otherwise,
(2.24)
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Let us remark, that the metric matrix (2.16), in general, di↵ers from the identity matrix. The
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appear in eq. (2.8), see [22, 23, 44].
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where the integral goes over a product of small circles  i , each encircling the corresponding
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appearing in the formulas (2.17, 2.18) are independent of the respective dual elements. Therefore,
exploiting this freedom in choosing the corresponding dual bases may yield striking simplifications
[15, 22, 23]. The decomposition formulas hold also in the case of the relative twisted de Rham
cohomology, which allows for a relaxation of the non-integer condition for the exponents �i that
appear in eq. (2.8), see [22, 23, 44].
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By elaborating on the method proposed in [2], we hereby propose to evaluate the intersection number
for n-forms, using the multivariate Stokes’ theorem, yielding (see also Appendix A):
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0 otherwise,
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so that the derivative dhi is localized on the circle |zi| = ✏ . The action of the partial derivatives in
eq. (2.22) gives:

dz1 . . . dzn⌘ =
⇣
h̄1 . . . h̄n

�
ur!1 . . .r!n 

�
+ . . .+ (�1)n

�
u 

�
dh1 ^ . . . ^ dhn

⌘
^
�
u
�1
'
(n)
R

�
. (2.25)

By choosing the auxilary 0-form  as the solution of the following nPDE:

ur!1 . . .r!n = u'L , (2.26)

for the integrand in eq. (2.22) we obtain:

dz1 . . . dzn⌘ = (u'L,c) ^ (u�1
'R) , (2.27)

where the compactly supported n-form 'L,c is defined as: (Seva: TODO: check the RHS here)

'L,c := h̄1 . . . h̄n 'L + . . .+ (�1)n  dh1 ^ . . . ^ dhn ⌘ r!1 . . .r!n

�
h̄1 . . . h̄n 

�
. (2.28)

The middle expression here is equivalent to the 'L,c introduced by Matsumoto in [2] and, therefore,
the same integration algorithm via iterated residues can be applied. Indeed, since 'R is a holomorphic
n-form, in eq. (2.25) only the last term gives a non vanishing contribution:

Z

X

�
u'

(n)
L,c

�
^
�
u
�1
'
(n)
R

�
= (�1)n

X

p2P!
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Dp

�
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�
dh1 ^ . . . ^ dhn ^

�
u
�1
'
(n)
R

�

=
X

p2P!

Z

 1^...^ n

 '
(n)
R

= (2⇡i)n
X

p2P!

Resz=p( '
(n)
R ) , (2.29)

where the product of small circles  1 ^ . . .^  n (i.e. an n-dimensional torus) is the distinguished
boundary of the polydisc Dp . The last equation above2 reproduces the result shown in eq. (2.19).
For more details we refer the interested reader to the discussion in Appendix A.

Finally, let us once again highlight the crucial eq. (2.26) and write it as:

r!1r!2 . . .r!n = '
(n)
L . (2.30)

This nPDE, equivalent to eq. (2.20), is the natural extension of the equation r!1 = '
(1)
L presented in

[41] for the single variable case. Equation (2.30) constitutes the first main result of this communication,
as it o↵ers a new algorithm for the direct determination of the scalar function  , hence a simpler
strategy for the evaluation of the intersection numbers between twisted n-forms.

2.4 Solution

The solution of eqs. (2.20, 2.30) can be formally written as3:

 = u
�1

Z z

z0

u'
(n)
L . (2.31)

2In the derivation we used
R
D dh̄ ^ f(z) dz =

R
 f(z) dz to localize the integral on the boundary.

3In ref. [44], the solution  for the twisted case with regulated pole is written by considering a modified integration
contour, accounting for the contribution of monodromy. It can be shown that, around each (regulated) singular point,
it is equivalent to the one considered here.
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GKZ Hypergeometric Systems

Our presentation is organized as follows. In Section 2, we review basic notions of the GKZ hyper-
geometric systems and their Euler integral representation. In Section 3, we discuss Pfa�an systems
of di↵erential equations, which are intimately related to GKZ systems. We present the Macaulay
matrix algorithm, based only on linear algebra, to compute Pfa�an matrices in Section 4. We show
its application to examples of di↵erential equations for Feynman integrals in Section 5. In Section 6,
we show how Pfa�ans can be used to derive linear relations for GKZ systems, similar to IBP identities
for Feynman integrals. Finally, in Section 7, we present the integral decomposition via intersection
numbers, using Pfa�ans to compute the required intersection matrices.

All algorithms in this paper are implemented in the computer algebra system Risa/Asir [86],
Maple [87] and Mathematica [88] with FiniteFlow [89], while the calculations involving Feynman
integrals are checked with LiteRed [90, 91]. Programs used in this paper and machine readable data
can be obtainable from [92].

2 GKZ hypergeometric systems

In this section, we briefly review some basic properties of the GKZ-hypergeometric systems to fix
our notation. Section 2.1 introduces a particular integral representation related to the GKZ systems
we work with, and Section 2.2 covers its relation to the algebraic de Rham cohomology groups. In
Section 2.3, we describe how to represent a cohomology class by an element of Weyl algebra. Finally,
in Section 2.4, we discuss the homogeneity property of GKZ systems, which allows us to reduce the
number of independent variables.

2.1 Integral representation of GKZ-hypergeometric system

In this work, we consider Euler integrals of the form

f�(z) =

Z

�
g(z;x)�0 x

��1
1 · · ·x

��n
n

dx

x
,

dx

x
:=

dx1

x1
^ · · · ^

dxn

xn
. (2.1)

Here � is a twisted cycle2, � = (�0, . . . ,�n) 2 C
n+1 are complex parameters, and g(z;x) is a Laurent

polynomial in x

g(z;x) =
NX

i=1

zi x
↵i . (2.2)

The monomials above are written in multivariate exponent notation: given an integer vector ↵i 2 Z
n

we set

x
↵i := x

↵i,1

1 · · ·x
↵i,n
n , (2.3)

where ↵i,j stands for the j-th component of the vector ↵i. Crucially, in (2.2) we regard each coe�cient
zi as an independent variable of f�(z).

Let us construct the (n+ 1)⇥N matrix

A =
�
a1 . . . aN

�
, (2.4)

2A twisted cycle is an integration contour with no boundary, along which the branch of the integrand is specified.
For details, see [27, Chapter 3]
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n+1 are complex parameters, and g(z;x) is a Laurent
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NX

i=1

zi x
↵i . (2.2)
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where ↵i,j stands for the j-th component of the vector ↵i. Crucially, in (2.2) we regard each coe�cient
zi as an independent variable of f�(z).

Let us construct the (n+ 1)⇥N matrix

A =
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a1 . . . aN

�
, (2.4)

2A twisted cycle is an integration contour with no boundary, along which the branch of the integrand is specified.
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whose columns ai are built from the monomial exponents ↵i as ai := (1,↵i), with the assumption that
Span{a1, . . . , aN} = Z

n+1. Moreover, we introduce the (left) kernel of A, defined as,

Ker(A) =
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u = (u1, . . . , uN ) 2 Z

N
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. (2.5)

Then, by using A and � as input, we build the following set of di↵erential operators:
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� �j , j = 1, . . . , n+ 1 (2.6)
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@zi

◆ui

�
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, 8u 2 Ker(A) . (2.7)

The function f�(z), defined in (2.1), satisfies the system of partial di↵erential equations (PDE)

Ej f�(z) = 0 , (2.8)

⇤u f�(z) = 0 , (2.9)

therefore it is dubbed an A-hypergeometric function [60].

2.2 GKZ D-modules and de Rham cohomology

The operators in (2.6)-(2.7) can be regarded as elements of a Weyl algebra

DN = C[z1, . . . , zN ]h@1, . . . , @N i , [@i, @j ] = 0 , [@i, zj ] = �ij . (2.10)

In multivariate exponent notation, the elements of DN take the form
P

k2K hk(z)@k for some finite
collection of sets K = {Ki 2 N

N
0 }i, where the hk(z) are polynomials in z with complex coe�cients.

The symbol @i is an alias of @
@zi

.
We introduce the GKZ system as the left DN -module DN/HA(�), where HA(�) is the left ideal

generated by Ej and ⇤u,

HA(�) =
n+1X

j=1

DN · Ej +
X

u2Ker(A)

DN ·⇤u . (2.11)

Further details on D-modules theory can be found in the Appendix B.
Let us list a few important properties of GKZ systems and their relations to de Rham cohomology

groups, which are expressed through the following theorems and propositions.

⇤ First, we recall a theorem on the number of solutions to GKZ systems. Let �A denote the convex
polytope spanned by the columns of A. We say � is non-resonant when it does not belong to any set
of the form spanC{ai | ai 2 F}+ Z

n+1 where F is a facet of �A.

For example, if we take a 2⇥ 2 matrix

A =
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Theorem 2.1 ([93]).

1. HA(�) is a holonomic ideal 3

2. When � is non-resonant, the holonomic rank r of HA(�) is given by the volume4

r = n! · vol(�A) . (2.12)

The holonomic rank equals the number of independent solutions to the system of PDEs (2.6)-(2.7) at
a generic point z 2 C

N . The first statement ensures that the rank is finite, while the second statement
gives an exact formula for computing it in terms of combinatorial data.

⇤ Next, letting Gm (resp. A) stand for the complex torus (resp. complex A�ne line) equipped with
the Zariski topology5 and

X :=
�
(z, x) 2 A

N
⇥ (Gm)n

�� g(z;x) 6= 0
 

, Y := A
N
, (2.13)

we denote by ⇡ : X ! Y the natural projection from the space of GKZ and integration variables to
the space of GKZ variables only.

Setting O(X) := C[z1, . . . , zN , x
±1
1 , . . . , x

±1
n ,

1
g ], we define an action of DN on f = f(z, x) 2 O(X)

by

@

@zi
• f =

@f

@zi
+ �0

✓
1

g(z;x)

@g(z;x)

@zi

◆
f , (2.14)

@

@xi
• f =

@f

@xi
+ �0

✓
1

g(z;x)

@g(z;x)

@xi

◆
f � �i

f

xi
. (2.15)

The symbol O(X) g�0x
��1
1 . . . x

��n
n denotes the left DN -module O(X) endowed with this action. For-

mally, we have the identities

@

@zi

⇣
g
�0 x

��1
1 . . . x

��n
n f

⌘
= g

�0 x
��1
1 . . . x

��n
n

✓
@

@zi
• f

◆
, (2.16)

@

@xi

⇣
g
�0 x

��1
1 . . . x

��n
n f

⌘
= g

�0 x
��1
1 . . . x

��n
n

✓
@

@xi
• f

◆
. (2.17)

The direct image D-module
R
⇡ O(X) g�0 x

��1
1 . . . x

��n
n is defined canonically as in Appendix B.

Theorem 2.2 ([61]). Suppose that � is non-resonant. Then there is a canonical isomorphism of left
DN -modules

DN/HA(�) '

Z

⇡
O(X) g�0 x

��1
1 . . . x

��n
n . (2.18)

Let us make this isomorphism explicit [96]. We let

⌦k
X/Y =

M

J⇢{1,...,n}, |J|=k

O(X) dxJ (2.19)

3For the definition of a holonomic ideal, see Appendix B or p. 31 of [94].
4vol stands for the Lebesgue measure and can be calculated with software such as Polymake [95]. The holonomic

rank is the number of standard monomials of RHA(�) (see Appendix B).
5As a set, the torus Gm (resp. the complex A�ne line A) is equivalent to C

⇤ := C \ {0} (resp. C).
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Standard Monomials found by Groebner basis Hibi, Nishiyama, Takayama (2017)

J
H
E
P
0
9
(
2
0
2
2
)
1
8
7

be a solution to a GKZ Pfaffian system given some monomial basis si = ∂ki , ki ∈ NN
0 , for

which si∂j = ∂jsi. The following relations hold true:

∂jF (β) = Pj(β)F (β) , (3.17)
∂jF (β) = F (β − aj) . (3.18)

Differentiating (3.17) w.r.t. zi, we get

∂i∂jF =
(
∂iPj

)
F + Pj

(
∂iF

)
(3.19)

=
(
∂iPj

)
F + PjPiF , (3.20)

where we omitted the argument β for clarity. On the other hand, differentiating (3.18)
we get

∂i∂jF (β) = ∂iF (β − aj) (3.21)
= F (β − aj − ai) (3.22)
= Pj(β − ai)Pi(β)F (β) , (3.23)

where we applied the identity Pk(β)F (β) = F (β−ak) twice in the last step. The proposition
follows upon equating (3.20) and (3.23) and isolating

(
∂iPj

)
(β).

Pfaffian systems introduced above are systems of linear partial differential equations
(SPDE), satisfied by the solutions of a given GKZ system. As we will see later on, these
equations are extremely useful in physical applications. Next we present an efficient way to
calculate the Pfaffian systems, essentially via linear algebra.

4 Constructing Pfaffian systems from Macaulay matrices

In this section we describe a method for building the Pfaffian systems defined in eq. (3.3).
The method amounts to first building an auxiliary matrix M called the Macaulay matrix,
and then solving a special system of linear equations. In section 4.1 we derive the Macaulay
matrix (4.5) and the linear system (4.12), (4.13) that it satisfies. In section 4.2 we then
present Algorithm 1 for calculation of Pfaffian systems. In section 4.3 we give several
remarks about the algorithm and its efficiency. We close this section with several examples
in section 4.4, showcasing the steps and runtime statistics of the algorithm in practice.

4.1 From Pfaffian to Macaulay matrix

We present how the Macaulay matrix arises from a Pfaffian system in the basis of standard
monomials. Since we will focus our discussion on the case of GKZ systems later on, based
on the comments at the end of section 3.1 we may safely assume that

a set of standard monomials Std := {∂k} is given,

and that its size equals the holonomic rank |Std| = r, defined in (2.12). We remind that ∂k

denotes a monomial in derivatives, while ∂i denotes a single derivative w.r.t. zi.
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Isomorphism
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1
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7

We then obtain a chain complex

· · · ∇x−→ Ωk
X/Y

∇x−→ Ωk+1
X/Y

∇x−→ · · · . (2.21)

The k-th relative de Rham cohomology group is defined as follows:

Hk := Ker
(
∇x : Ωk

X/Y −→ Ωk+1
X/Y

) /
Im
(
∇x : Ωk−1

X/Y −→ Ωk
X/Y

)
. (2.22)

It can be shown that the direct image D-module
∫

π O(X) gβ0 x−β1
1 . . . x−βn

n is isomorphic
to the n-th relative de Rham cohomology group Hn, for which reason the latter is a left
DN -module by theorem 2.2. In fact, theorem 2.2 can be rephrased as

Proposition 2.3. Suppose that β is non-resonant. Then there is a unique isomorphism of
DN -modules

DN/HA(β) $ Hn (2.23)

such that [1] ∈ DN/HA(β) is sent to
[
dx
x

]
∈ Hn .

A consequence of Proposition 2.3, which will be essential for our application of DN -
module theory to Feynman integrals, is the following: given a cohomology class [ω(z)] ∈ Hn,
there exists a differential operator P ∈ DN , which is unique modulo HA(β), such that

P
[dx
x

]
= [ω(z)] . (2.24)

The partial differential operators ∂i in P act on a cohomology class [ω(z)] ∈ Hn via

∂i • [ω(z)] =
[
∂i ω(z) + β0

xαi

g(z;x)ω(z)
]
. (2.25)

The action (2.25) comes from differentiation under the integral sign:

∂

∂zi

∫

Γ
g(z;x)β0 x−β1

1 · · ·x−βn
n ω(z) =

∫

Γ
g(z;x)β0 x−β1

1 · · ·x−βn
n ∂i • ω(z) . (2.26)

Since a Feynman integral can be represented by a cohomology class [34], we may equally
well consider the operator P as representing that integral. An algorithm for computing P

was developed in [62] and will be outlined in the following section. Moreover, in the view of
the relation of GKZ-systems and Feynman integrals (to be elaborated on in section 5), we
observe that the finiteness of the rank, established by the first statement of Theorem 2.1,
can be related to the finiteness of the number of master integrals [59]. The formula for
its evaluation, given in the second statement of Theorem 2.1, offers an alternative way of
determining dim(Hn), which is ordinarily computed in terms of Betti numbers, by counting
the number of certain critical points, or by Euler characteristics — all of which are related
to the number of master integrals.
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Example 4.4. Consider the matrix

A6 =

0

BBBBBBBBB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 1 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 1 1

1

CCCCCCCCCA

,

whose solution rank is r = 33. Our choice of standard basis is

Std =
�
@
3
15, @

3
5 , @5@6@11, @

2
6@11, @3@

2
6 , @4@

2
6 , @

3
6 , @11@15, @14@15, @

2
15, @

2
4 ,

@5@11, @2@5, @3@5, @4@5, @
2
5 , @6@11, @2@6, @6@14, @3@6, @6@15,

@4@6, @5@6, @
2
6 , @11, @2, @14, @3, @15, @4, @5, @6, 1

�T
.

Using the homogeneity propery discussed in Section 2.4, we may fix the following variables: z1 = z7 =
z8 = z9 = z10 = z12 = z13 = 1. The block MExt of the Macaulay matrix of degree D = 2 turns out
to be a sparse 945⇥ 958 matrix, whose rank is 534 by the probabilistic method. Therefore, there are
many rows that are not needed for solving the system (4.12). Again, using the probabilistic method
over the finite field Z/65537Z, we determine a maximal set of independent rows of the matrix MExt.
We find that a 534⇥958 matrix NExt is enough to solve a smaller version of the system (4.12), namely
C

0
Ext = C ·NExt. As was mentioned in the Smaller Macaulay Matrix paragraph of Section 4.3, we can

further reduce this new system as follows: since there are exactly 27 independent row vectors in C
0
Ext,

we may choose only a subset of the row vectors in NExt, whose span includes the independent row
vectors of C 0

Ext.
The Macaulay matrix is then obtained in 15.549 sec. It took 0.66 sec to calculate the Pfa�an
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and we set ai := (1,↵i) 2 N
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0 as usual.

Using the notation of equations (2.27) and (2.28), we can equally well define the generalized
Feynman integral as a pairing between a twisted cycle � and a twisted form

!d0/2, ⌫ := c(d0, ⌫)⇥ G(z;x)�d0/2x
⌫ dx
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. (5.6)

In particular, we have
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The generalized Feynman integral reduces to the Lee-Pomeransky (LP) representation [54] of an
L-loop integral in d = d0 � 2✏ dimensions, with propagator powers ⌫i when:

� = (0,+1)n , � ! 0 , (5.8)

and

zi 2 N _ zi 2 kinematic variables (m2
i , p
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i , pi · pj) , (5.9)

where mi and pi stand for masses and external momenta, so that the polynomial G becomes the LP
polynomial built from Symanzik (or graph) polynomials U ,F , as G = U + F . Let us observe that
within the LP polynomial G(z;x), each zi may not necessarily be independent from each other. This
is di↵erent from the polynomial g(z;x) appearing in the Euler integral f�(z), for which each zi is
considered independent. Their independence ensures a non-degenerate correspondence between the
monomials in xi variables and the partial di↵erential operators in the zi variables - a crucial property
to establish the isomorphism between twisted de Rham cohomology group and D-modules. This
observation implies that Feynman integrals are restrictions of GKZ integrals, obtained from the latter
by choosing suitable values of the variables zi [70, 74, 81–84].

5.1 Massless one-loop diagrams

Let us consider a massless one-loop diagram G with n external legs and n internal edges. We use the
symbol pi for each external momentum and xi for the Schwinger parameter of the i-th edge. The first
and the second Symanzik polynomials read

UG = x1 + · · ·+ xn , (5.10)

FG =
X
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(i,j) 6=(1,2),...,(n�1,n),(1,n)

�ij xixj , (5.11)
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Pfaffian Systems: for Master Integrals (alias Master forms)

3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
numbers,

h�i| = h�i|hki
�
C�1

�
kj

hej | (3.41)

= Fik

�
C�1

�
kj
hej | (3.42)

= ⌦ijhej | , (3.43)

where summation over indices j, k is implied and we introduced the intersection matrix

Fik ⌘ h�i|hki (3.44)

as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)

then the system of differential equations for Ji reads,

@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)
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Generalised Feynman Integrals

Example 4.4. Consider the matrix

A6 =

0

BBBBBBBBB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 1 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 1 1

1

CCCCCCCCCA

,

whose solution rank is r = 33. Our choice of standard basis is

Std =
�
@
3
15, @

3
5 , @5@6@11, @

2
6@11, @3@

2
6 , @4@

2
6 , @

3
6 , @11@15, @14@15, @

2
15, @

2
4 ,

@5@11, @2@5, @3@5, @4@5, @
2
5 , @6@11, @2@6, @6@14, @3@6, @6@15,

@4@6, @5@6, @
2
6 , @11, @2, @14, @3, @15, @4, @5, @6, 1

�T
.

Using the homogeneity propery discussed in Section 2.4, we may fix the following variables: z1 = z7 =
z8 = z9 = z10 = z12 = z13 = 1. The block MExt of the Macaulay matrix of degree D = 2 turns out
to be a sparse 945⇥ 958 matrix, whose rank is 534 by the probabilistic method. Therefore, there are
many rows that are not needed for solving the system (4.12). Again, using the probabilistic method
over the finite field Z/65537Z, we determine a maximal set of independent rows of the matrix MExt.
We find that a 534⇥958 matrix NExt is enough to solve a smaller version of the system (4.12), namely
C

0
Ext = C ·NExt. As was mentioned in the Smaller Macaulay Matrix paragraph of Section 4.3, we can

further reduce this new system as follows: since there are exactly 27 independent row vectors in C
0
Ext,

we may choose only a subset of the row vectors in NExt, whose span includes the independent row
vectors of C 0

Ext.
The Macaulay matrix is then obtained in 15.549 sec. It took 0.66 sec to calculate the Pfa�an

matrix in the z6 direction for fixed numerical values of variables z and parameters �. We leave the
problem of full functional reconstruction of the Pfa�an matrices of this example for future work.

⌅

We have proposed an e�cient Macaulay matrix method to construct Pfa�an systems. It can be
applied to relatively large systems which are not feasible by Gröbner basis methods in the ring of
di↵erential operators. The latter methods are usually feasible for systems of up to, approximately,
rank 10.

5 Macaulay matrix method and generalized Feynman integrals

The relation between Feynman integrals and GKZ-hypergeometric functions has been studied in [63,
68, 84, 99, 100]. Here, we show applications of GKZ systems combined with Macaulay matrices to
Feynman integrals.

Let 0 < ✏, � ⌧ 1, d0 2 2 ·N, L 2 N and ⌫ := (⌫1, . . . , ⌫n) 2 Z
n. Moreover, fix the exponents of the

Euler integral (2.1) to

� = (✏,�✏�, . . . ,�✏�)� (d0/2, ⌫1, . . . , ⌫n) . (5.1)

We define a generalized Feynman integral as

I(d0, ⌫; z) := c(d0, ⌫)f�(�) , (5.2)
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where

f�(�) :=

Z

�
G(z;x)✏�d0/2 x

⌫1+✏�
1 · · · x

⌫n+✏�
n

dx

x
, (5.3)

c(d0, ⌫) :=
�(d0/2� ✏)

�
�
(L+ 1)(d0/2� ✏)� |⌫|� n✏�

�Qn
i=1 �(⌫i + ✏�)

, |⌫| := ⌫1 + . . .+ ⌫n . (5.4)

The polynomial G takes the form

G(z;x) =
NX

i=1

zi x
↵i , ↵i 2 N

n
0 , (5.5)

and we set ai := (1,↵i) 2 N
n+1
0 as usual.

Using the notation of equations (2.27) and (2.28), we can equally well define the generalized
Feynman integral as a pairing between a twisted cycle � and a twisted form

!d0/2, ⌫ := c(d0, ⌫)⇥ G(z;x)�d0/2x
⌫ dx

x
. (5.6)

In particular, we have

I(d0, ⌫; z) = h!d0/2, ⌫i� . (5.7)

The generalized Feynman integral reduces to the Lee-Pomeransky (LP) representation [54] of an
L-loop integral in d = d0 � 2✏ dimensions, with propagator powers ⌫i when:

� = (0,+1)n , � ! 0 , (5.8)

and

zi 2 N _ zi 2 kinematic variables (m2
i , p

2
i , pi · pj) , (5.9)

where mi and pi stand for masses and external momenta, so that the polynomial G becomes the LP
polynomial built from Symanzik (or graph) polynomials U ,F , as G = U + F . Let us observe that
within the LP polynomial G(z;x), each zi may not necessarily be independent from each other. This
is di↵erent from the polynomial g(z;x) appearing in the Euler integral f�(z), for which each zi is
considered independent. Their independence ensures a non-degenerate correspondence between the
monomials in xi variables and the partial di↵erential operators in the zi variables - a crucial property
to establish the isomorphism between twisted de Rham cohomology group and D-modules. This
observation implies that Feynman integrals are restrictions of GKZ integrals, obtained from the latter
by choosing suitable values of the variables zi [70, 74, 81–84].

5.1 Massless one-loop diagrams

Let us consider a massless one-loop diagram G with n external legs and n internal edges. We use the
symbol pi for each external momentum and xi for the Schwinger parameter of the i-th edge. The first
and the second Symanzik polynomials read

UG = x1 + · · ·+ xn , (5.10)

FG =
X

1i<jn
(i,j) 6=(1,2),...,(n�1,n),(1,n)

�ij xixj , (5.11)
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Pfaffian Systems: for Master Integrals (alias Master forms) & for D-operators (alias Std mon’s)

3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
numbers,

h�i| = h�i|hki
�
C�1

�
kj

hej | (3.41)

= Fik

�
C�1

�
kj
hej | (3.42)

= ⌦ijhej | , (3.43)

where summation over indices j, k is implied and we introduced the intersection matrix

Fik ⌘ h�i|hki (3.44)

as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)

then the system of differential equations for Ji reads,

@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)
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Master Decomposition Formula & Pfaffian

So we obtain the generalized Feynman integral I 01 apart from constant prefactors c = c(d0, ⌫) defined
in (5.4). On the RHS,

f (� �A · ki) = f

⇣
� �

�
d
(i)
0 /2, ⌫(i)

�
�A · ↵

⌘
(6.33a)

= f

⇣
�
0
�

�
d
(i)
0 /2, ⌫(i)

�⌘
(6.33b)

= I
�
d
(i)
0 , ⌫

(i)
� �

c
(i)

. (6.33c)

In other words, we obtain Ii apart from �-prefactors c
(i) = c

(i)
�
d
(i)
0 , ⌫

(i)
�
. The coe�cients ui(�)

multiplied by �-prefactors give the matrix U . Thus, we conclude Statement 1. of Theorem 6.1.
Statement 2. can be proven by noting that @i induces the parameter shift and applying Statement

1.

7 Decomposition via cohomology intersection numbers

Relations between Feynman integrals, equivalent to IBP identities, and, more generally, identities
for Euler-Mellin integrals, equivalent to contiguity relations, can be derived by means of intersection
theory for twisted de Rham cohomologies [34, 35, 37, 38]. According to the mentioned algorithm, the
decomposition of any given integrals in terms of an independent basis of MIs can be obtained from
the projection of the twisted di↵erential form appearing in the integrand of the integral to decompose
into a basis of di↵erential forms that generate a de Rham twisted cohomology group, via intersection
numbers.
For the case of generalized Feynman integrals (5.7), the covariant derivative (2.20) reads

rx = dx + ✏
dxG

G
^+ ✏ �

nX

i=1

dxi

xi
^, (7.1)

and we denote the associated n-th de Rham cohomology group as H
n (see also (2.22)). We can

also introduce a dual covariant derivative r
_
x = rx

��
✏!�✏

and let H
n_ be the n-th (dual) de Rham

cohomology group associated to it. The cohomology intersection number

h•, •ich : Hn
⇥H

n_
! C(z), (7.2)

is a natural pairing between the elements of the two groups.

Let {ei}ri=1 be a basis for Hn and {hi}
r
i=1 a basis for Hn_; the decomposition of any twisted form

' 2 H
n in terms of {ei}ri=1 can be obtained via chomology intersection numbers according to the

master decomposition formula [34, 35, 37, 38],

' =
rX

i=1

ci ei , with ci :=
rX

j=1

h', hjich

�
I
�1
ch

�
ji
, and (Ich)ij := hei, hjich . (7.3)

This formula implies the decomposition of (generalized) Feynman integrals in terms of master inte-
grals, upon the identification in (5.7).

Looking at (7.3) we infer that two distinct sets of intersection numbers are required, namely {h', hiich}
r
i=1

and {(Ich)ij}
r
i,j=1. Therefore, in order to apply the decomposition formula (7.3), it is required the

determination of the matrix Ich and of the vector h', hiich.
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for integer !," ∈ Z. Inserting an Ansatz
#»

# =

∑
! $

!
2

#»

# ! , and matching the powers of $2 order by

order, we obtain the linear system (here dots · denote zeros):















−1
#»

% 1
#»

% 0
#»

%−1
#»

%−2
#»

%−3 ·

· &0 − 2 · · · · #»'−2

· &1 &0 − 1 · · · #»'−1

· &2 &1 &0 · · #»' 0

· &3 &2 &1 &0 + 1 · #»' 1

· &4 &3 &2 &1 &0 + 2 #»' 2















·
















(
#»

# −2

...
#»

# 2

−1
















= 0 . (16)

This equation has to be solved only for ( . Row reduction of this matrix can be carried out only until

the first row is filled with zeros except for the element in the last column (highlighted with grey),

which will contain the needed residue. Other poles of eq. (11) are treated in the same manner and

the sum of their residues produces the intersection number 〈' |%〉 .

3. Decomposition via the secondary equation

As was observed in [1] (see also [31]), the twisted cohomology framework provides another

method for computation of the decomposition coefficients (7). The first key idea is the so-called

secondary equation [8, 19, 32], which is a matrix differential equation satisfied by the intersection

matrix ):

{
*"! 〈+# | =

(
&!

)
#$ 〈+$ |

*"! |ℎ%〉 = |ℎ& 〉
(
&∨
!

)
& %

=⇒ *"! ) = &! · ) + ) ·
(
&∨
!

)T
, (17)

where -! are some external kinematical variables. The other key step is computation of the differen-

tial equation matrices & and &aux made available thanks to the connection of the twisted cohomology

theory, the GKZ formalism, and .-module theory. We assume that this step is completed and refer

the interested reader to [1, 31] for the full story. Once the secondary equation (17) is written down,

we employ the known algorithms for finding rational solutions of such systems, e.g. the Maple

package IntegrableConnections [33].

Finally, to determine the decomposition coefficients (7) we repeat the above procedure for an

auxiliary basis +aux := {+1, . . . , +'−1, '}, i.e. we compute an auxiliary &aux and then )aux . The FI

decomposition is then encoded in the following matrix product:











+1
...

+'−1

'











= )aux · )−1











+1
...

+'−1

+'











=⇒ )aux · )−1
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where id'−1 denotes an identity matrix of size (0 − 1), and the decomposition coefficients /# are

collected in the last row highlighted with grey.
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which will be very useful in the following. The equivalence relation (2) follows from the Stokes

theorem: 0 =

∫
!C

! " =

∫
C
! ∇"" , where ∇"" := d" + # ∧ " is the covariant derivative.

Fixing the contour of integration C allows us to interpret relation (2) as an equivalence of

integrands. Namely, we collect $-forms % into equivalence classes 〈% | : % ∼ % +∇"" generated by

adding covariant derivatives of ($ − 1)-forms. Their totality forms the twisted cohomology group:

〈% | ∈ H#
" :=

{
$-forms % | ∇"% = 0

}/{
∇""

}
, (4)

which can be thought of as the space of linearly independent FIs (of a given topology).

Analogously we can introduce the dual integralsI∨, whose definition mimics (1) up to ! ↦→ !−1

and ∇" ↦→ ∇−" . Elements of the dual twisted cohomology group will be denoted by kets |&〉.

2.1 Counting the number of Master integrals

The framework of twisted cohomology unites several seemingly independent methods for

computation of the number of MIs ':

1. Number of unreduced integrals produced by the Laporta algorithm [26].

2. Number of critical points, i.e. solutions of d log !(() = 0 [27, 28].

3. Number of independent integration contours C$ [29, 30].

4. Number of independent $-forms, i.e. dim
(
H#
±"

)
[4, 8].

5. Holonomic rank of GKZ system (volumes of certain polytopes) [1, 31].

2.2 Scalar product between Feynman integrals

The twisted cohomology theory allows us to view the set of FIs (of a given topology) as a finite

dimensional vector space. A set of MIs 〈)$ | for * ∈ {1, . . . , '} then forms a basis in that space.

The dual FIs really form a dual vector space to FIs due to the existence of a scalar product:

〈% |&〉 =
1

(2+i)#

∫
,(%) ∧ & , (5)

called the intersection number. This scalar product allows to directly decompose a given integral

I in a basis of MIs J$ :=
∫
C
! )$, namely I =

∑%
$=1 -$ J$ . Linear algebra leads us to the master

decomposition formula [4, 8]:

〈% | =
%∑

$=1

-$ 〈)$ | , -$ =

%∑

&=1

〈% |ℎ&〉
(
/−1)

&$ , (6)

/$& := 〈)$ |ℎ&〉 , (7)

for any choice of the dual basis |ℎ&〉. Therefore the intersection numbers (5) completely determine

the decomposition coefficients. Let’s see now how they can be computed.

2.3 Univariate intersection numbers

In the $ = 1 case, intersection numbers (5) turn into a sum of residues [10, 11, 22]:

〈% |&〉 ≡
1

2+i

∫

'

(

% −
∑

(∈P!

∇"

(
0( ((, (̄) 1(

)
)

∧ & =

∑

(∈P!

Res
)=(

[
1( &

]
, (8)

where
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Master Decomposition Formula & Pfaffian

So we obtain the generalized Feynman integral I 01 apart from constant prefactors c = c(d0, ⌫) defined
in (5.4). On the RHS,

f (� �A · ki) = f

⇣
� �

�
d
(i)
0 /2, ⌫(i)

�
�A · ↵

⌘
(6.33a)

= f

⇣
�
0
�

�
d
(i)
0 /2, ⌫(i)

�⌘
(6.33b)

= I
�
d
(i)
0 , ⌫

(i)
� �

c
(i)

. (6.33c)

In other words, we obtain Ii apart from �-prefactors c
(i) = c

(i)
�
d
(i)
0 , ⌫

(i)
�
. The coe�cients ui(�)

multiplied by �-prefactors give the matrix U . Thus, we conclude Statement 1. of Theorem 6.1.
Statement 2. can be proven by noting that @i induces the parameter shift and applying Statement

1.

7 Decomposition via cohomology intersection numbers

Relations between Feynman integrals, equivalent to IBP identities, and, more generally, identities
for Euler-Mellin integrals, equivalent to contiguity relations, can be derived by means of intersection
theory for twisted de Rham cohomologies [34, 35, 37, 38]. According to the mentioned algorithm, the
decomposition of any given integrals in terms of an independent basis of MIs can be obtained from
the projection of the twisted di↵erential form appearing in the integrand of the integral to decompose
into a basis of di↵erential forms that generate a de Rham twisted cohomology group, via intersection
numbers.
For the case of generalized Feynman integrals (5.7), the covariant derivative (2.20) reads

rx = dx + ✏
dxG

G
^+ ✏ �

nX

i=1

dxi

xi
^, (7.1)

and we denote the associated n-th de Rham cohomology group as H
n (see also (2.22)). We can

also introduce a dual covariant derivative r
_
x = rx

��
✏!�✏

and let H
n_ be the n-th (dual) de Rham

cohomology group associated to it. The cohomology intersection number

h•, •ich : Hn
⇥H

n_
! C(z), (7.2)

is a natural pairing between the elements of the two groups.

Let {ei}ri=1 be a basis for Hn and {hi}
r
i=1 a basis for Hn_; the decomposition of any twisted form

' 2 H
n in terms of {ei}ri=1 can be obtained via chomology intersection numbers according to the

master decomposition formula [34, 35, 37, 38],

' =
rX

i=1

ci ei , with ci :=
rX

j=1

h', hjich

�
I
�1
ch

�
ji
, and (Ich)ij := hei, hjich . (7.3)

This formula implies the decomposition of (generalized) Feynman integrals in terms of master inte-
grals, upon the identification in (5.7).

Looking at (7.3) we infer that two distinct sets of intersection numbers are required, namely {h', hiich}
r
i=1

and {(Ich)ij}
r
i,j=1. Therefore, in order to apply the decomposition formula (7.3), it is required the

determination of the matrix Ich and of the vector h', hiich.
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for integer !," ∈ Z. Inserting an Ansatz
#»

# =

∑
! $

!
2

#»

# ! , and matching the powers of $2 order by

order, we obtain the linear system (here dots · denote zeros):















−1
#»

% 1
#»

% 0
#»

%−1
#»

%−2
#»

%−3 ·

· &0 − 2 · · · · #»'−2

· &1 &0 − 1 · · · #»'−1

· &2 &1 &0 · · #»' 0

· &3 &2 &1 &0 + 1 · #»' 1

· &4 &3 &2 &1 &0 + 2 #»' 2















·
















(
#»

# −2

...
#»

# 2

−1
















= 0 . (16)

This equation has to be solved only for ( . Row reduction of this matrix can be carried out only until

the first row is filled with zeros except for the element in the last column (highlighted with grey),

which will contain the needed residue. Other poles of eq. (11) are treated in the same manner and

the sum of their residues produces the intersection number 〈' |%〉 .

3. Decomposition via the secondary equation

As was observed in [1] (see also [31]), the twisted cohomology framework provides another

method for computation of the decomposition coefficients (7). The first key idea is the so-called

secondary equation [8, 19, 32], which is a matrix differential equation satisfied by the intersection

matrix ):

{
*"! 〈+# | =

(
&!

)
#$ 〈+$ |

*"! |ℎ%〉 = |ℎ& 〉
(
&∨
!

)
& %

=⇒ *"! ) = &! · ) + ) ·
(
&∨
!

)T
, (17)

where -! are some external kinematical variables. The other key step is computation of the differen-

tial equation matrices & and &aux made available thanks to the connection of the twisted cohomology

theory, the GKZ formalism, and .-module theory. We assume that this step is completed and refer

the interested reader to [1, 31] for the full story. Once the secondary equation (17) is written down,

we employ the known algorithms for finding rational solutions of such systems, e.g. the Maple

package IntegrableConnections [33].

Finally, to determine the decomposition coefficients (7) we repeat the above procedure for an

auxiliary basis +aux := {+1, . . . , +'−1, '}, i.e. we compute an auxiliary &aux and then )aux . The FI

decomposition is then encoded in the following matrix product:











+1
...

+'−1

'











= )aux · )−1











+1
...

+'−1

+'











=⇒ )aux · )−1
=











0

id'−1
...

0

/1 · · · /'−1 /'











, (18)

where id'−1 denotes an identity matrix of size (0 − 1), and the decomposition coefficients /# are

collected in the last row highlighted with grey.
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which will be very useful in the following. The equivalence relation (2) follows from the Stokes

theorem: 0 =

∫
!C

! " =

∫
C
! ∇"" , where ∇"" := d" + # ∧ " is the covariant derivative.

Fixing the contour of integration C allows us to interpret relation (2) as an equivalence of

integrands. Namely, we collect $-forms % into equivalence classes 〈% | : % ∼ % +∇"" generated by

adding covariant derivatives of ($ − 1)-forms. Their totality forms the twisted cohomology group:

〈% | ∈ H#
" :=

{
$-forms % | ∇"% = 0

}/{
∇""

}
, (4)

which can be thought of as the space of linearly independent FIs (of a given topology).

Analogously we can introduce the dual integralsI∨, whose definition mimics (1) up to ! ↦→ !−1

and ∇" ↦→ ∇−" . Elements of the dual twisted cohomology group will be denoted by kets |&〉.

2.1 Counting the number of Master integrals

The framework of twisted cohomology unites several seemingly independent methods for

computation of the number of MIs ':

1. Number of unreduced integrals produced by the Laporta algorithm [26].

2. Number of critical points, i.e. solutions of d log !(() = 0 [27, 28].

3. Number of independent integration contours C$ [29, 30].

4. Number of independent $-forms, i.e. dim
(
H#
±"

)
[4, 8].

5. Holonomic rank of GKZ system (volumes of certain polytopes) [1, 31].

2.2 Scalar product between Feynman integrals

The twisted cohomology theory allows us to view the set of FIs (of a given topology) as a finite

dimensional vector space. A set of MIs 〈)$ | for * ∈ {1, . . . , '} then forms a basis in that space.

The dual FIs really form a dual vector space to FIs due to the existence of a scalar product:

〈% |&〉 =
1

(2+i)#

∫
,(%) ∧ & , (5)

called the intersection number. This scalar product allows to directly decompose a given integral

I in a basis of MIs J$ :=
∫
C
! )$, namely I =

∑%
$=1 -$ J$ . Linear algebra leads us to the master

decomposition formula [4, 8]:

〈% | =
%∑

$=1

-$ 〈)$ | , -$ =

%∑

&=1

〈% |ℎ&〉
(
/−1)

&$ , (6)

/$& := 〈)$ |ℎ&〉 , (7)

for any choice of the dual basis |ℎ&〉. Therefore the intersection numbers (5) completely determine

the decomposition coefficients. Let’s see now how they can be computed.

2.3 Univariate intersection numbers

In the $ = 1 case, intersection numbers (5) turn into a sum of residues [10, 11, 22]:

〈% |&〉 ≡
1

2+i

∫

'

(

% −
∑

(∈P!

∇"

(
0( ((, (̄) 1(

)
)

∧ & =

∑

(∈P!

Res
)=(

[
1( &

]
, (8)

where
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for integer !," ∈ Z. Inserting an Ansatz
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# =
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# ! , and matching the powers of $2 order by

order, we obtain the linear system (here dots · denote zeros):
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This equation has to be solved only for ( . Row reduction of this matrix can be carried out only until

the first row is filled with zeros except for the element in the last column (highlighted with grey),

which will contain the needed residue. Other poles of eq. (11) are treated in the same manner and

the sum of their residues produces the intersection number 〈' |%〉 .

3. Decomposition via the secondary equation

As was observed in [1] (see also [31]), the twisted cohomology framework provides another

method for computation of the decomposition coefficients (7). The first key idea is the so-called

secondary equation [8, 19, 32], which is a matrix differential equation satisfied by the intersection

matrix ):

{
*"! 〈+# | =

(
&!

)
#$ 〈+$ |

*"! |ℎ%〉 = |ℎ& 〉
(
&∨
!

)
& %

=⇒ *"! ) = &! · ) + ) ·
(
&∨
!

)T
, (17)

where -! are some external kinematical variables. The other key step is computation of the differen-

tial equation matrices & and &aux made available thanks to the connection of the twisted cohomology

theory, the GKZ formalism, and .-module theory. We assume that this step is completed and refer

the interested reader to [1, 31] for the full story. Once the secondary equation (17) is written down,

we employ the known algorithms for finding rational solutions of such systems, e.g. the Maple

package IntegrableConnections [33].

Finally, to determine the decomposition coefficients (7) we repeat the above procedure for an

auxiliary basis +aux := {+1, . . . , +'−1, '}, i.e. we compute an auxiliary &aux and then )aux . The FI

decomposition is then encoded in the following matrix product:
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where id'−1 denotes an identity matrix of size (0 − 1), and the decomposition coefficients /# are
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which will be very useful in the following. The equivalence relation (2) follows from the Stokes

theorem: 0 =

∫
!C

! " =

∫
C
! ∇"" , where ∇"" := d" + # ∧ " is the covariant derivative.

Fixing the contour of integration C allows us to interpret relation (2) as an equivalence of

integrands. Namely, we collect $-forms % into equivalence classes 〈% | : % ∼ % +∇"" generated by

adding covariant derivatives of ($ − 1)-forms. Their totality forms the twisted cohomology group:

〈% | ∈ H#
" :=

{
$-forms % | ∇"% = 0

}/{
∇""

}
, (4)

which can be thought of as the space of linearly independent FIs (of a given topology).

Analogously we can introduce the dual integralsI∨, whose definition mimics (1) up to ! ↦→ !−1

and ∇" ↦→ ∇−" . Elements of the dual twisted cohomology group will be denoted by kets |&〉.

2.1 Counting the number of Master integrals

The framework of twisted cohomology unites several seemingly independent methods for

computation of the number of MIs ':

1. Number of unreduced integrals produced by the Laporta algorithm [26].

2. Number of critical points, i.e. solutions of d log !(() = 0 [27, 28].

3. Number of independent integration contours C$ [29, 30].

4. Number of independent $-forms, i.e. dim
(
H#
±"

)
[4, 8].

5. Holonomic rank of GKZ system (volumes of certain polytopes) [1, 31].

2.2 Scalar product between Feynman integrals

The twisted cohomology theory allows us to view the set of FIs (of a given topology) as a finite

dimensional vector space. A set of MIs 〈)$ | for * ∈ {1, . . . , '} then forms a basis in that space.

The dual FIs really form a dual vector space to FIs due to the existence of a scalar product:

〈% |&〉 =
1

(2+i)#

∫
,(%) ∧ & , (5)

called the intersection number. This scalar product allows to directly decompose a given integral

I in a basis of MIs J$ :=
∫
C
! )$, namely I =

∑%
$=1 -$ J$ . Linear algebra leads us to the master

decomposition formula [4, 8]:

〈% | =
%∑

$=1

-$ 〈)$ | , -$ =

%∑

&=1

〈% |ℎ&〉
(
/−1)

&$ , (6)

/$& := 〈)$ |ℎ&〉 , (7)

for any choice of the dual basis |ℎ&〉. Therefore the intersection numbers (5) completely determine

the decomposition coefficients. Let’s see now how they can be computed.

2.3 Univariate intersection numbers

In the $ = 1 case, intersection numbers (5) turn into a sum of residues [10, 11, 22]:

〈% |&〉 ≡
1

2+i

∫

'

(

% −
∑

(∈P!

∇"

(
0( ((, (̄) 1(

)
)

∧ & =

∑

(∈P!

Res
)=(

[
1( &

]
, (8)

where
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where -! are some external kinematical variables. The other key step is computation of the differen-

tial equation matrices & and &aux made available thanks to the connection of the twisted cohomology

theory, the GKZ formalism, and .-module theory. We assume that this step is completed and refer

the interested reader to [1, 31] for the full story. Once the secondary equation (17) is written down,

we employ the known algorithms for finding rational solutions of such systems, e.g. the Maple

package IntegrableConnections [33].

Finally, to determine the decomposition coefficients (7) we repeat the above procedure for an

auxiliary basis +aux := {+1, . . . , +'−1, '}, i.e. we compute an auxiliary &aux and then )aux . The FI
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Master Decomposition Formula & Pfaffian

So we obtain the generalized Feynman integral I 01 apart from constant prefactors c = c(d0, ⌫) defined
in (5.4). On the RHS,

f (� �A · ki) = f
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� �

�
d
(i)
0 /2, ⌫(i)

�
�A · ↵

⌘
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= I
�
d
(i)
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(i)
� �

c
(i)

. (6.33c)

In other words, we obtain Ii apart from �-prefactors c
(i) = c

(i)
�
d
(i)
0 , ⌫

(i)
�
. The coe�cients ui(�)

multiplied by �-prefactors give the matrix U . Thus, we conclude Statement 1. of Theorem 6.1.
Statement 2. can be proven by noting that @i induces the parameter shift and applying Statement

1.

7 Decomposition via cohomology intersection numbers

Relations between Feynman integrals, equivalent to IBP identities, and, more generally, identities
for Euler-Mellin integrals, equivalent to contiguity relations, can be derived by means of intersection
theory for twisted de Rham cohomologies [34, 35, 37, 38]. According to the mentioned algorithm, the
decomposition of any given integrals in terms of an independent basis of MIs can be obtained from
the projection of the twisted di↵erential form appearing in the integrand of the integral to decompose
into a basis of di↵erential forms that generate a de Rham twisted cohomology group, via intersection
numbers.
For the case of generalized Feynman integrals (5.7), the covariant derivative (2.20) reads

rx = dx + ✏
dxG

G
^+ ✏ �

nX

i=1

dxi

xi
^, (7.1)

and we denote the associated n-th de Rham cohomology group as H
n (see also (2.22)). We can

also introduce a dual covariant derivative r
_
x = rx

��
✏!�✏

and let H
n_ be the n-th (dual) de Rham

cohomology group associated to it. The cohomology intersection number

h•, •ich : Hn
⇥H

n_
! C(z), (7.2)

is a natural pairing between the elements of the two groups.

Let {ei}ri=1 be a basis for Hn and {hi}
r
i=1 a basis for Hn_; the decomposition of any twisted form

' 2 H
n in terms of {ei}ri=1 can be obtained via chomology intersection numbers according to the

master decomposition formula [34, 35, 37, 38],

' =
rX

i=1

ci ei , with ci :=
rX

j=1

h', hjich

�
I
�1
ch

�
ji
, and (Ich)ij := hei, hjich . (7.3)

This formula implies the decomposition of (generalized) Feynman integrals in terms of master inte-
grals, upon the identification in (5.7).

Looking at (7.3) we infer that two distinct sets of intersection numbers are required, namely {h', hiich}
r
i=1

and {(Ich)ij}
r
i,j=1. Therefore, in order to apply the decomposition formula (7.3), it is required the

determination of the matrix Ich and of the vector h', hiich.
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for integer !," ∈ Z. Inserting an Ansatz
#»

# =
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· &4 &3 &2 &1 &0 + 2 #»' 2















·
















(
#»

# −2

...
#»

# 2

−1
















= 0 . (16)

This equation has to be solved only for ( . Row reduction of this matrix can be carried out only until

the first row is filled with zeros except for the element in the last column (highlighted with grey),

which will contain the needed residue. Other poles of eq. (11) are treated in the same manner and

the sum of their residues produces the intersection number 〈' |%〉 .

3. Decomposition via the secondary equation

As was observed in [1] (see also [31]), the twisted cohomology framework provides another

method for computation of the decomposition coefficients (7). The first key idea is the so-called

secondary equation [8, 19, 32], which is a matrix differential equation satisfied by the intersection

matrix ):

{
*"! 〈+# | =

(
&!

)
#$ 〈+$ |

*"! |ℎ%〉 = |ℎ& 〉
(
&∨
!

)
& %

=⇒ *"! ) = &! · ) + ) ·
(
&∨
!

)T
, (17)

where -! are some external kinematical variables. The other key step is computation of the differen-

tial equation matrices & and &aux made available thanks to the connection of the twisted cohomology

theory, the GKZ formalism, and .-module theory. We assume that this step is completed and refer

the interested reader to [1, 31] for the full story. Once the secondary equation (17) is written down,

we employ the known algorithms for finding rational solutions of such systems, e.g. the Maple

package IntegrableConnections [33].

Finally, to determine the decomposition coefficients (7) we repeat the above procedure for an

auxiliary basis +aux := {+1, . . . , +'−1, '}, i.e. we compute an auxiliary &aux and then )aux . The FI

decomposition is then encoded in the following matrix product:











+1
...
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= )aux · )−1
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...
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=⇒ )aux · )−1
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0

id'−1
...

0

/1 · · · /'−1 /'











, (18)

where id'−1 denotes an identity matrix of size (0 − 1), and the decomposition coefficients /# are

collected in the last row highlighted with grey.
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which will be very useful in the following. The equivalence relation (2) follows from the Stokes

theorem: 0 =

∫
!C

! " =

∫
C
! ∇"" , where ∇"" := d" + # ∧ " is the covariant derivative.

Fixing the contour of integration C allows us to interpret relation (2) as an equivalence of

integrands. Namely, we collect $-forms % into equivalence classes 〈% | : % ∼ % +∇"" generated by

adding covariant derivatives of ($ − 1)-forms. Their totality forms the twisted cohomology group:

〈% | ∈ H#
" :=

{
$-forms % | ∇"% = 0

}/{
∇""

}
, (4)

which can be thought of as the space of linearly independent FIs (of a given topology).

Analogously we can introduce the dual integralsI∨, whose definition mimics (1) up to ! ↦→ !−1

and ∇" ↦→ ∇−" . Elements of the dual twisted cohomology group will be denoted by kets |&〉.

2.1 Counting the number of Master integrals

The framework of twisted cohomology unites several seemingly independent methods for

computation of the number of MIs ':

1. Number of unreduced integrals produced by the Laporta algorithm [26].

2. Number of critical points, i.e. solutions of d log !(() = 0 [27, 28].

3. Number of independent integration contours C$ [29, 30].

4. Number of independent $-forms, i.e. dim
(
H#
±"

)
[4, 8].

5. Holonomic rank of GKZ system (volumes of certain polytopes) [1, 31].

2.2 Scalar product between Feynman integrals

The twisted cohomology theory allows us to view the set of FIs (of a given topology) as a finite

dimensional vector space. A set of MIs 〈)$ | for * ∈ {1, . . . , '} then forms a basis in that space.

The dual FIs really form a dual vector space to FIs due to the existence of a scalar product:

〈% |&〉 =
1

(2+i)#

∫
,(%) ∧ & , (5)

called the intersection number. This scalar product allows to directly decompose a given integral

I in a basis of MIs J$ :=
∫
C
! )$, namely I =

∑%
$=1 -$ J$ . Linear algebra leads us to the master

decomposition formula [4, 8]:

〈% | =
%∑

$=1

-$ 〈)$ | , -$ =

%∑

&=1

〈% |ℎ&〉
(
/−1)

&$ , (6)

/$& := 〈)$ |ℎ&〉 , (7)

for any choice of the dual basis |ℎ&〉. Therefore the intersection numbers (5) completely determine

the decomposition coefficients. Let’s see now how they can be computed.

2.3 Univariate intersection numbers

In the $ = 1 case, intersection numbers (5) turn into a sum of residues [10, 11, 22]:

〈% |&〉 ≡
1

2+i

∫

'

(

% −
∑

(∈P!

∇"

(
0( ((, (̄) 1(

)
)

∧ & =

∑

(∈P!

Res
)=(

[
1( &

]
, (8)

where
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for integer !," ∈ Z. Inserting an Ansatz
#»

# =

∑
! $

!
2

#»

# ! , and matching the powers of $2 order by

order, we obtain the linear system (here dots · denote zeros):















−1
#»

% 1
#»

% 0
#»

%−1
#»

%−2
#»

%−3 ·

· &0 − 2 · · · · #»'−2

· &1 &0 − 1 · · · #»'−1

· &2 &1 &0 · · #»' 0

· &3 &2 &1 &0 + 1 · #»' 1

· &4 &3 &2 &1 &0 + 2 #»' 2















·
















(
#»

# −2

...
#»

# 2

−1
















= 0 . (16)

This equation has to be solved only for ( . Row reduction of this matrix can be carried out only until

the first row is filled with zeros except for the element in the last column (highlighted with grey),

which will contain the needed residue. Other poles of eq. (11) are treated in the same manner and

the sum of their residues produces the intersection number 〈' |%〉 .

3. Decomposition via the secondary equation

As was observed in [1] (see also [31]), the twisted cohomology framework provides another

method for computation of the decomposition coefficients (7). The first key idea is the so-called

secondary equation [8, 19, 32], which is a matrix differential equation satisfied by the intersection

matrix ):

{
*"! 〈+# | =

(
&!

)
#$ 〈+$ |

*"! |ℎ%〉 = |ℎ& 〉
(
&∨
!

)
& %

=⇒ *"! ) = &! · ) + ) ·
(
&∨
!

)T
, (17)

where -! are some external kinematical variables. The other key step is computation of the differen-

tial equation matrices & and &aux made available thanks to the connection of the twisted cohomology

theory, the GKZ formalism, and .-module theory. We assume that this step is completed and refer

the interested reader to [1, 31] for the full story. Once the secondary equation (17) is written down,

we employ the known algorithms for finding rational solutions of such systems, e.g. the Maple

package IntegrableConnections [33].

Finally, to determine the decomposition coefficients (7) we repeat the above procedure for an

auxiliary basis +aux := {+1, . . . , +'−1, '}, i.e. we compute an auxiliary &aux and then )aux . The FI

decomposition is then encoded in the following matrix product:











+1
...

+'−1

'











= )aux · )−1











+1
...

+'−1

+'











=⇒ )aux · )−1
=











0

id'−1
...

0

/1 · · · /'−1 /'











, (18)

where id'−1 denotes an identity matrix of size (0 − 1), and the decomposition coefficients /# are

collected in the last row highlighted with grey.
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3. Decomposition via the secondary equation

As was observed in [1] (see also [31]), the twisted cohomology framework provides another

method for computation of the decomposition coefficients (7). The first key idea is the so-called

secondary equation [8, 19, 32], which is a matrix differential equation satisfied by the intersection
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(
&∨
!

)
& %
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where -! are some external kinematical variables. The other key step is computation of the differen-

tial equation matrices & and &aux made available thanks to the connection of the twisted cohomology

theory, the GKZ formalism, and .-module theory. We assume that this step is completed and refer

the interested reader to [1, 31] for the full story. Once the secondary equation (17) is written down,

we employ the known algorithms for finding rational solutions of such systems, e.g. the Maple
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which will be very useful in the following. The equivalence relation (2) follows from the Stokes

theorem: 0 =

∫
!C

! " =

∫
C
! ∇"" , where ∇"" := d" + # ∧ " is the covariant derivative.

Fixing the contour of integration C allows us to interpret relation (2) as an equivalence of

integrands. Namely, we collect $-forms % into equivalence classes 〈% | : % ∼ % +∇"" generated by

adding covariant derivatives of ($ − 1)-forms. Their totality forms the twisted cohomology group:

〈% | ∈ H#
" :=

{
$-forms % | ∇"% = 0

}/{
∇""

}
, (4)

which can be thought of as the space of linearly independent FIs (of a given topology).

Analogously we can introduce the dual integralsI∨, whose definition mimics (1) up to ! ↦→ !−1

and ∇" ↦→ ∇−" . Elements of the dual twisted cohomology group will be denoted by kets |&〉.

2.1 Counting the number of Master integrals

The framework of twisted cohomology unites several seemingly independent methods for

computation of the number of MIs ':

1. Number of unreduced integrals produced by the Laporta algorithm [26].

2. Number of critical points, i.e. solutions of d log !(() = 0 [27, 28].

3. Number of independent integration contours C$ [29, 30].

4. Number of independent $-forms, i.e. dim
(
H#
±"

)
[4, 8].

5. Holonomic rank of GKZ system (volumes of certain polytopes) [1, 31].

2.2 Scalar product between Feynman integrals

The twisted cohomology theory allows us to view the set of FIs (of a given topology) as a finite

dimensional vector space. A set of MIs 〈)$ | for * ∈ {1, . . . , '} then forms a basis in that space.

The dual FIs really form a dual vector space to FIs due to the existence of a scalar product:

〈% |&〉 =
1

(2+i)#

∫
,(%) ∧ & , (5)

called the intersection number. This scalar product allows to directly decompose a given integral

I in a basis of MIs J$ :=
∫
C
! )$, namely I =

∑%
$=1 -$ J$ . Linear algebra leads us to the master

decomposition formula [4, 8]:

〈% | =
%∑

$=1

-$ 〈)$ | , -$ =

%∑

&=1

〈% |ℎ&〉
(
/−1)

&$ , (6)

/$& := 〈)$ |ℎ&〉 , (7)

for any choice of the dual basis |ℎ&〉. Therefore the intersection numbers (5) completely determine

the decomposition coefficients. Let’s see now how they can be computed.

2.3 Univariate intersection numbers

In the $ = 1 case, intersection numbers (5) turn into a sum of residues [10, 11, 22]:

〈% |&〉 ≡
1

2+i

∫

'

(

% −
∑

(∈P!

∇"

(
0( ((, (̄) 1(

)
)

∧ & =

∑

(∈P!

Res
)=(

[
1( &

]
, (8)

where

3

Recent progress in intersection theory for Feynman integrals decomposition Vsevolod Chestnov

for integer !," ∈ Z. Inserting an Ansatz
#»

# =
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−1
#»

% 1
#»

% 0
#»

%−1
#»

%−2
#»

%−3 ·

· &0 − 2 · · · · #»'−2

· &1 &0 − 1 · · · #»'−1

· &2 &1 &0 · · #»' 0

· &3 &2 &1 &0 + 1 · #»' 1

· &4 &3 &2 &1 &0 + 2 #»' 2















·
















(
#»

# −2

...
#»

# 2

−1
















= 0 . (16)
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As was observed in [1] (see also [31]), the twisted cohomology framework provides another
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secondary equation [8, 19, 32], which is a matrix differential equation satisfied by the intersection
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where -! are some external kinematical variables. The other key step is computation of the differen-

tial equation matrices & and &aux made available thanks to the connection of the twisted cohomology

theory, the GKZ formalism, and .-module theory. We assume that this step is completed and refer

the interested reader to [1, 31] for the full story. Once the secondary equation (17) is written down,

we employ the known algorithms for finding rational solutions of such systems, e.g. the Maple

package IntegrableConnections [33].

Finally, to determine the decomposition coefficients (7) we repeat the above procedure for an

auxiliary basis +aux := {+1, . . . , +'−1, '}, i.e. we compute an auxiliary &aux and then )aux . The FI

decomposition is then encoded in the following matrix product:
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where id'−1 denotes an identity matrix of size (0 − 1), and the decomposition coefficients /# are
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the first row is filled with zeros except for the element in the last column (highlighted with grey),

which will contain the needed residue. Other poles of eq. (11) are treated in the same manner and

the sum of their residues produces the intersection number 〈' |%〉 .

3. Decomposition via the secondary equation

As was observed in [1] (see also [31]), the twisted cohomology framework provides another

method for computation of the decomposition coefficients (7). The first key idea is the so-called

secondary equation [8, 19, 32], which is a matrix differential equation satisfied by the intersection

matrix ):

{
*"! 〈+# | =

(
&!

)
#$ 〈+$ |

*"! |ℎ%〉 = |ℎ& 〉
(
&∨
!

)
& %

=⇒ *"! ) = &! · ) + ) ·
(
&∨
!

)T
, (17)

where -! are some external kinematical variables. The other key step is computation of the differen-

tial equation matrices & and &aux made available thanks to the connection of the twisted cohomology

theory, the GKZ formalism, and .-module theory. We assume that this step is completed and refer

the interested reader to [1, 31] for the full story. Once the secondary equation (17) is written down,

we employ the known algorithms for finding rational solutions of such systems, e.g. the Maple

package IntegrableConnections [33].

Finally, to determine the decomposition coefficients (7) we repeat the above procedure for an

auxiliary basis +aux := {+1, . . . , +'−1, '}, i.e. we compute an auxiliary &aux and then )aux . The FI

decomposition is then encoded in the following matrix product:











+1
...

+'−1

'











= )aux · )−1











+1
...

+'−1

+'











=⇒ )aux · )−1
=











0

id'−1
...

0

/1 · · · /'−1 /'











, (18)

where id'−1 denotes an identity matrix of size (0 − 1), and the decomposition coefficients /# are

collected in the last row highlighted with grey.
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which will be very useful in the following. The equivalence relation (2) follows from the Stokes

theorem: 0 =

∫
!C

! " =

∫
C
! ∇"" , where ∇"" := d" + # ∧ " is the covariant derivative.

Fixing the contour of integration C allows us to interpret relation (2) as an equivalence of

integrands. Namely, we collect $-forms % into equivalence classes 〈% | : % ∼ % +∇"" generated by

adding covariant derivatives of ($ − 1)-forms. Their totality forms the twisted cohomology group:

〈% | ∈ H#
" :=

{
$-forms % | ∇"% = 0

}/{
∇""

}
, (4)

which can be thought of as the space of linearly independent FIs (of a given topology).

Analogously we can introduce the dual integralsI∨, whose definition mimics (1) up to ! ↦→ !−1

and ∇" ↦→ ∇−" . Elements of the dual twisted cohomology group will be denoted by kets |&〉.

2.1 Counting the number of Master integrals

The framework of twisted cohomology unites several seemingly independent methods for

computation of the number of MIs ':

1. Number of unreduced integrals produced by the Laporta algorithm [26].

2. Number of critical points, i.e. solutions of d log !(() = 0 [27, 28].

3. Number of independent integration contours C$ [29, 30].

4. Number of independent $-forms, i.e. dim
(
H#
±"

)
[4, 8].

5. Holonomic rank of GKZ system (volumes of certain polytopes) [1, 31].

2.2 Scalar product between Feynman integrals

The twisted cohomology theory allows us to view the set of FIs (of a given topology) as a finite

dimensional vector space. A set of MIs 〈)$ | for * ∈ {1, . . . , '} then forms a basis in that space.

The dual FIs really form a dual vector space to FIs due to the existence of a scalar product:

〈% |&〉 =
1

(2+i)#

∫
,(%) ∧ & , (5)

called the intersection number. This scalar product allows to directly decompose a given integral

I in a basis of MIs J$ :=
∫
C
! )$, namely I =

∑%
$=1 -$ J$ . Linear algebra leads us to the master

decomposition formula [4, 8]:

〈% | =
%∑

$=1

-$ 〈)$ | , -$ =

%∑

&=1

〈% |ℎ&〉
(
/−1)

&$ , (6)

/$& := 〈)$ |ℎ&〉 , (7)

for any choice of the dual basis |ℎ&〉. Therefore the intersection numbers (5) completely determine

the decomposition coefficients. Let’s see now how they can be computed.

2.3 Univariate intersection numbers

In the $ = 1 case, intersection numbers (5) turn into a sum of residues [10, 11, 22]:

〈% |&〉 ≡
1

2+i

∫

'

(

% −
∑

(∈P!

∇"

(
0( ((, (̄) 1(

)
)

∧ & =

∑

(∈P!

Res
)=(

[
1( &

]
, (8)

where
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So we obtain the generalized Feynman integral I 01 apart from constant prefactors c = c(d0, ⌫) defined
in (5.4). On the RHS,

f (� �A · ki) = f

⇣
� �

�
d
(i)
0 /2, ⌫(i)

�
�A · ↵

⌘
(6.33a)

= f

⇣
�
0
�

�
d
(i)
0 /2, ⌫(i)

�⌘
(6.33b)

= I
�
d
(i)
0 , ⌫

(i)
� �

c
(i)

. (6.33c)

In other words, we obtain Ii apart from �-prefactors c
(i) = c

(i)
�
d
(i)
0 , ⌫

(i)
�
. The coe�cients ui(�)

multiplied by �-prefactors give the matrix U . Thus, we conclude Statement 1. of Theorem 6.1.
Statement 2. can be proven by noting that @i induces the parameter shift and applying Statement

1.

7 Decomposition via cohomology intersection numbers

Relations between Feynman integrals, equivalent to IBP identities, and, more generally, identities
for Euler-Mellin integrals, equivalent to contiguity relations, can be derived by means of intersection
theory for twisted de Rham cohomologies [34, 35, 37, 38]. According to the mentioned algorithm, the
decomposition of any given integrals in terms of an independent basis of MIs can be obtained from
the projection of the twisted di↵erential form appearing in the integrand of the integral to decompose
into a basis of di↵erential forms that generate a de Rham twisted cohomology group, via intersection
numbers.
For the case of generalized Feynman integrals (5.7), the covariant derivative (2.20) reads

rx = dx + ✏
dxG

G
^+ ✏ �

nX

i=1

dxi

xi
^, (7.1)

and we denote the associated n-th de Rham cohomology group as H
n (see also (2.22)). We can

also introduce a dual covariant derivative r
_
x = rx

��
✏!�✏

and let H
n_ be the n-th (dual) de Rham

cohomology group associated to it. The cohomology intersection number

h•, •ich : Hn
⇥H

n_
! C(z), (7.2)

is a natural pairing between the elements of the two groups.

Let {ei}ri=1 be a basis for Hn and {hi}
r
i=1 a basis for Hn_; the decomposition of any twisted form

' 2 H
n in terms of {ei}ri=1 can be obtained via chomology intersection numbers according to the

master decomposition formula [34, 35, 37, 38],

' =
rX

i=1

ci ei , with ci :=
rX

j=1

h', hjich

�
I
�1
ch

�
ji
, and (Ich)ij := hei, hjich . (7.3)

This formula implies the decomposition of (generalized) Feynman integrals in terms of master inte-
grals, upon the identification in (5.7).

Looking at (7.3) we infer that two distinct sets of intersection numbers are required, namely {h', hiich}
r
i=1

and {(Ich)ij}
r
i,j=1. Therefore, in order to apply the decomposition formula (7.3), it is required the

determination of the matrix Ich and of the vector h', hiich.
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Twisted Riemann Periods Relations (TRPR)

Riemann Twisted Period Relations

Completeness for forms

Completeness for contours

⌫ = number of independent forms (twisted cocycles)

⌫ = number of independent integration contours (twisted cycles)

(coming from the zeroes of B)

⌫ = number of independent master integrals

h'| =
⌫X

i,j=1

h'|eji (C
�1)ij hei| (2.50)

⌫X

i,j=1

|eji (C
�1)ij hei| = Ic (2.51)

Cij ⌘ hei|eji (2.52)

⌫X

i,j=1

|Cj ] (H
�1)ij [Ci| = Ih (2.53)

Hij ⌘ [Ci|Cj ] (2.54)
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|CR] ⌘

Z

CR
u(z) (2.55)

[CL| ⌘

Z

CL
u(z)�1 (2.56)

h'L| ⌘ 'L(z) 2 H
m
! (2.57)

|'Ri ⌘ 'R(z) 2 H
m
�! (2.58)

! ⌘ d log(u) (2.59)

h 'L | CR ] ⌘

Z

CR
u(z) 'L(z) = I (2.60)

[ CL | 'R i ⌘

Z

CL
u(z)�1

'R(z) = Ĩ (2.61)

h 'L | 'R i ⌘

Z

C
◆('L) ^ 'R (2.62)

⇥
CL | CR

⇤
⌘ intersection number (2.63)

h 'L | 'R i =
X

i,j

h 'L | CR,j
⇤ ⇥

CL,j | CR,i
⇤�1 ⇥

CL,i | 'R i (2.64)

⇥
CL | CR

⇤
=

X

i,j

⇥
CL | 'R,j i h 'L,j | 'R,i i

�1
h 'L | CR

⇤
(2.65)

X

i,j

| CR,j
⇤ ⇥

CL,j | CR,i
⇤�1 ⇥

CL,i | = Ih (2.66)
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φ] e Γ(P\  Ω\ logD))/ C ω, φj e Γ(P\  Ωι(\ogD))/ C (  ω ) , l < j < n  l ,

where <p; and φj are the images of φ ; by the natural projections from Γ(P ,
Ω (logZ))). Our first main theorem gives explicitly the bilinear form, which turns
out to be symmetric and will be called the intersection form:

'V+ l7

2πi

<<Pn Ψ~k> = 0 if I ;   A: I > 2 .

Our second main theorem states the relation between the three pairings: the
intersection form for twisted cohomologies, that for twisted homologies, and the
pairing of twisted homologies and twisted cohomologies, i.e. integrals. Let

be any bases of twisted cycles (the notation is slightly different from that in
[KYI]) and

ξf e Γ(P\  Ωι(logD))/ C ω, j = l , . . . , n  l ,

ηJelϊP1, ΩHlogDV/ C i ω), j= l,...,n~ 1,

be any bases of twisted cocycles; let Ik and Ich be the intersection matrices:

The intersection matrix 7Λ can be explicitly computed [KYI]; take for instance
bases γ* and δj ' = φ~ as follows: let us assume for simplicity that the x/ s are all
real and are arranged as x0 < xx < < xn, and u0 a branch of the multi valued
function u = H(t — x,) i defined on the lower half ί plane. We define special cy 
cles by

rt = <Pj> ?i+i) ® uo + ̂ prjSj®u0  Cj+i_1sj+1®u0,

ϊi = (Pjf QJ+ι) ® w^1   J . 1 S; ® Wo"1 +  ; t ! i 5 ; + 1 ®  u~\  Cj = exp 2τrzαy,
cj λ 6 ;+ l  1

where Sk is a positively oriented circle with center xk and with starting point pk

8 2 KOJI CHO AND KEIJI MATSUMOTO

θcφ =  Σ θkiηk
c.

k

The intersection numbers for twisted cycles are computed as follows:

f
δ~k a

= Σθajfηa + Vvha + Vvfa = Σθajf η~,
a Jδ~k a Jδ'k

a Jδ'k

that is

ih = 'βp .

The (/c, j) components θkj of Θ are computed as follows:

f C =  /  θcφ Λ?; =  / Σ θkiηk
c A ξa

= Σθkif(η
v
k+µk+Vvfk)Λξa

k J

that is

p+ =  hβ
Eliminating Θ from the two equalities above, we get the relation.

§4. Examples

EXAMPLE 1. Quadric relations for the G auss hypergeometric functions.
For

n = 3, xQ = xA = °°, xλ = 0, x2 = 1, x3 = 1/ x (0 < x < 1),

aλ = a, a2 = γ   a, a3 =   β, a0 = β   γ,

put

u = taa   tv~aa   xtr\
=  ί__dl dt_\  _ dt _ / _d[ dt_\  _   xdt

Ψι~\ t χι t   xj ~ til   t)' ψ3 ~ \ t   x3 t xj ~ 1  xV

Ti> h e H^U, Lv) and ft", γ3 ^ H^U, L), (see Figure), then we have
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Cho, Matsumoto (1995)
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P+ =
J uφx j uφΛ I \  uιφx \  u ι

I uφ3 I uφ3 \  ί u~ ιφ3 j u~ ι

_(d12/ d1d2 0 \  ./ l/α +  lΛr α)
\  0 d30/ d3dJ' ck πi\  0

By the help of the well known formulae

/  uφ1 = B(a, γ   a)F(a, β, γ\ x),

ΓuΨl=   (   ΐ)r~a'Bχι~rBiβ  7 + 1 ,  0 +  1)
J\ / τ.

the identity

P+tΓltP~  =  ί
Γ 1h Γ Ich*

leads quadratic identities for hypergeometric functions in [SY]: the (1,2) 
component yields the formula presented in Introduction

 α , 1  J 8 , 2  7 ; * )

7, i8+  1   7, 2   7 ; j? ) F ( 7  a , 7 ~ & r ; *) ,

and the (1, l) component yields

F (α , i8, γ;x)F(  a,   β,   7;*)   1

7 ( 7 +

EXAMPLE 2. Quadric relations for Lauricella's hypergeometric function.
Lauricella's hypergeometric function FD of m variable is defined by

where

z = (zv...,zm), β= ( 0 l t . . . , 0 J ;

the series admits the integral representation

INTERSECTION THEORY AND PERIOD RELATIONS 8 3

P+ =
J uφx j uφΛ I \  uιφx \  u ι

I uφ3 I uφ3 \  ί u~ ιφ3 j u~ ι

_(d12/ d1d2 0 \  ./ l/α +  lΛr α)
\  0 d30/ d3dJ' ck πi\  0

By the help of the well known formulae

/  uφ1 = B(a, γ   a)F(a, β, γ\ x),

ΓuΨl=   (   ΐ)r~a'Bχι~rBiβ  7 + 1 ,  0 +  1)
J\ / τ.

the identity

P+tΓltP~  =  ί
Γ 1h Γ Ich*

leads quadratic identities for hypergeometric functions in [SY]: the (1,2) 
component yields the formula presented in Introduction

 α , 1  J 8 , 2  7 ; * )

7, i8+  1   7, 2   7 ; j? ) F ( 7  a , 7 ~ & r ; *) ,

and the (1, l) component yields

F (α , i8, γ;x)F(  a,   β,   7;*)   1

7 ( 7 +

EXAMPLE 2. Quadric relations for Lauricella's hypergeometric function.
Lauricella's hypergeometric function FD of m variable is defined by

where

z = (zv...,zm), β= ( 0 l t . . . , 0 J ;

the series admits the integral representation

INTERSECTION THEORY AND PERIOD RELATIONS 8 3

P+ =
J uφx j uφΛ I \  uιφx \  u ι

I uφ3 I uφ3 \  ί u~ ιφ3 j u~ ι

_(d12/ d1d2 0 \  ./ l/α +  lΛr α)
\  0 d30/ d3dJ' ck πi\  0

By the help of the well known formulae

/  uφ1 = B(a, γ   a)F(a, β, γ\ x),

ΓuΨl=   (   ΐ)r~a'Bχι~rBiβ  7 + 1 ,  0 +  1)
J\ / τ.

the identity

P+tΓltP~  =  ί
Γ 1h Γ Ich*

leads quadratic identities for hypergeometric functions in [SY]: the (1,2) 
component yields the formula presented in Introduction

 α , 1  J 8 , 2  7 ; * )

7, i8+  1   7, 2   7 ; j? ) F ( 7  a , 7 ~ & r ; *) ,

and the (1, l) component yields

F (α , i8, γ;x)F(  a,   β,   7;*)   1

7 ( 7 +

EXAMPLE 2. Quadric relations for Lauricella's hypergeometric function.
Lauricella's hypergeometric function FD of m variable is defined by

where

z = (zv...,zm), β= ( 0 l t . . . , 0 J ;

the series admits the integral representation

70 KOJI CHO AND KEIJI MATSUMOTO

or qk see F igure.

P,

F igure

Then the intersection matrix for these special bases turns out to be

 dX2/ dxd2 1/ d, 0 —
c2/ d2 ~ d23/ d2d3 • • •

o

o
o

o
o

o

\
0
0

0
0 ••••  0 c* i/ d, ,  i   dn_ltn/ dn_xdn

where dj =  c ; — 1, dj fc =  c ;cΛ — 1. I t is easy to see th at

ldxd2...n d^d  ̂ dγclzd n̂ — dxc .̂n_xdn

1^3• »» ^ 1 2 ^ 3  Λ ^12^3^4 • « **' ^12^3 n~l^n

 d^n dud4...n d123d4...n — d123c4...n_1dn

dγdn dί2dn d123dn — d^_ydn

where cyA... =  c; cfc , dyA... =  cycA — 1. Let us arrange the integrals (periods)
as follows:

Here the integral I ξ+ (resp. I ry~) of a twisted cocycle f+ (resp. η~) over a

twisted cycle γ+ ^ HX{U9 L v) (resp. δ~ ^ HX(Uy D) is defined as follows: for a
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F(a, b; c; z) := 2F1(a, b; c; z)=
∞
∑

n=0

(a,n)(b,n)

(c, n)(1, n)
zn, (1.1)

where a, b, c ∈ C and c /∈ −N0 := {0,−1,−2, . . .}. In (1.1), (a,0) = 1 for a $= 0
and the rising factorial notation

(a,n) = a(a + 1) . . . (a + n − 1) = Γ (a + n)

Γ (a)
, n ! 1,

is used. It is important to note the symmetry propertyF(a, b; c; z) = F(b, a; c; z).
Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are

special cases of the hypergeometric function, a topic studied recently in [2,7,12].
The complete elliptic integrals K and E of the first and second kind, respectively,
are defined for r ∈ (0,1) by
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We also use the notation K′ and E ′, for their complements defined by K′(r) =
K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that

EK′ + E ′K −KK′ = π

2
,

and generalizations of this identity were explored in [2,7,12].
Elliott [11] (see also [5, Theorem 3.2.8]) proved the following identity:
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special cases of the hypergeometric function, a topic studied recently in [2,7,12].
The complete elliptic integrals K and E of the first and second kind, respectively,
are defined for r ∈ (0,1) by

K(r) = π

2
F

(

1
2
,
1
2
;1; r2

)

=
π/2
∫

0

dφ
√

1− r2 sin2 φ

and

E(r) = π

2
F

(

−1
2
,
1
2
;1; r2

)

=
π/2
∫

0

√

1− r2 sin2 φ dφ.

We also use the notation K′ and E ′, for their complements defined by K′(r) =
K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that

EK′ + E ′K −KK′ = π

2
,

and generalizations of this identity were explored in [2,7,12].
Elliott [11] (see also [5, Theorem 3.2.8]) proved the following identity:

F

(

1
2

+ λ,−1
2

− ν;1+ λ + µ; r

)

F

(

1
2

− λ,
1
2

+ ν;1+ ν + µ;1− r

)

+ F

(

1
2

+ λ,
1
2

− ν;1+ λ + µ; r

)

× F

(

−1
2

− λ,
1
2

+ ν;1+ ν + µ;1− r

)

R. Balasubramanian et al. / J. Math. Anal. Appl. 271 (2002) 232–256 233

F(a, b; c; z) := 2F1(a, b; c; z)=
∞
∑

n=0

(a,n)(b,n)

(c, n)(1, n)
zn, (1.1)

where a, b, c ∈ C and c /∈ −N0 := {0,−1,−2, . . .}. In (1.1), (a,0) = 1 for a $= 0
and the rising factorial notation

(a,n) = a(a + 1) . . . (a + n − 1) = Γ (a + n)

Γ (a)
, n ! 1,

is used. It is important to note the symmetry propertyF(a, b; c; z) = F(b, a; c; z).
Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are

special cases of the hypergeometric function, a topic studied recently in [2,7,12].
The complete elliptic integrals K and E of the first and second kind, respectively,
are defined for r ∈ (0,1) by

K(r) = π

2
F

(

1
2
,
1
2
;1; r2

)

=
π/2
∫

0

dφ
√

1− r2 sin2 φ

and

E(r) = π

2
F

(

−1
2
,
1
2
;1; r2

)

=
π/2
∫

0

√

1− r2 sin2 φ dφ.

We also use the notation K′ and E ′, for their complements defined by K′(r) =
K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that

EK′ + E ′K −KK′ = π

2
,

and generalizations of this identity were explored in [2,7,12].
Elliott [11] (see also [5, Theorem 3.2.8]) proved the following identity:

F

(

1
2

+ λ,−1
2

− ν;1+ λ + µ; r

)

F

(

1
2

− λ,
1
2

+ ν;1+ ν + µ;1− r

)

+ F

(

1
2

+ λ,
1
2

− ν;1+ λ + µ; r

)

× F

(

−1
2

− λ,
1
2

+ ν;1+ ν + µ;1− r

)

R. Balasubramanian et al. / J. Math. Anal. Appl. 271 (2002) 232–256 233

F(a, b; c; z) := 2F1(a, b; c; z)=
∞
∑

n=0

(a,n)(b,n)

(c, n)(1, n)
zn, (1.1)

where a, b, c ∈ C and c /∈ −N0 := {0,−1,−2, . . .}. In (1.1), (a,0) = 1 for a $= 0
and the rising factorial notation

(a,n) = a(a + 1) . . . (a + n − 1) = Γ (a + n)

Γ (a)
, n ! 1,

is used. It is important to note the symmetry propertyF(a, b; c; z) = F(b, a; c; z).
Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are

special cases of the hypergeometric function, a topic studied recently in [2,7,12].
The complete elliptic integrals K and E of the first and second kind, respectively,
are defined for r ∈ (0,1) by

K(r) = π

2
F

(

1
2
,
1
2
;1; r2

)

=
π/2
∫

0

dφ
√

1− r2 sin2 φ

and

E(r) = π

2
F

(

−1
2
,
1
2
;1; r2

)

=
π/2
∫

0

√

1− r2 sin2 φ dφ.

We also use the notation K′ and E ′, for their complements defined by K′(r) =
K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that

EK′ + E ′K −KK′ = π

2
,

and generalizations of this identity were explored in [2,7,12].
Elliott [11] (see also [5, Theorem 3.2.8]) proved the following identity:

F

(

1
2

+ λ,−1
2

− ν;1+ λ + µ; r

)

F

(

1
2

− λ,
1
2

+ ν;1+ ν + µ;1− r

)

+ F

(

1
2

+ λ,
1
2

− ν;1+ λ + µ; r

)

× F

(

−1
2

− λ,
1
2

+ ν;1+ ν + µ;1− r

)

R. Balasubramanian et al. / J. Math. Anal. Appl. 271 (2002) 232–256 233

F(a, b; c; z) := 2F1(a, b; c; z)=
∞
∑

n=0

(a,n)(b,n)

(c, n)(1, n)
zn, (1.1)

where a, b, c ∈ C and c /∈ −N0 := {0,−1,−2, . . .}. In (1.1), (a,0) = 1 for a $= 0
and the rising factorial notation

(a,n) = a(a + 1) . . . (a + n − 1) = Γ (a + n)

Γ (a)
, n ! 1,

is used. It is important to note the symmetry propertyF(a, b; c; z) = F(b, a; c; z).
Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
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Elliot’s Identity and Hypergeometric Functions

DERIVATION OF ELLIOTT’S IDENTITY FROM A
TWISTED PERIOD RELATION

KEIJI MATSUMOTO

1. Integral representations

Elliott’s identity is given in [BNPV] as

F (
1

2
+ λ,−1

2
− ν, 1 + λ+ µ; r)F (

1

2
− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

+F (
1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)F (−1

2
− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

−F (
1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)F (

1

2
− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

=
Γ (1 + λ+ µ)Γ (1 + µ+ ν)

Γ (λ+ µ+ ν + 3
2)Γ (µ+ 1

2)
. (1)

Note that

F (
1

2
+ λ,−1

2
− ν, 1 + λ+ µ; r)

=
Γ (λ+ µ+ 1)

Γ (λ+ 1
2)Γ (µ+ 1

2)

∫ 1

0

tλ−1/2(1− t)µ−1/2(1− rt)ν+1/2dt,

F (
1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)

=
Γ (λ+ µ+ 1)

Γ (λ+ 1
2)Γ (µ+ 1

2)

∫ 1

0

tλ−1/2(1− t)µ−1/2(1− rt)ν−1/2dt,

1
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− F

(

1
2

+ λ,
1
2

− ν;1+ λ + µ; r

)

F

(

1
2

− λ,
1
2

+ ν;1+ ν + µ;1− r

)

= Γ (1+ λ + µ)Γ (1+ ν + µ)

Γ
(

λ + µ + ν + 3
2
)

Γ
( 1
2 + µ

) , r ∈ (0,1).

Clearly, the choice λ = µ = ν = 0 gives the Legendre relation. In [2, Corol-
lary 3.13 (5)], a new generalization of the Legendre relation was obtained in the
form

L(a,1− a, c, r) = Γ 2(c)

Γ (c + a − 1)Γ (c − a + 1) , r ∈ (0,1), (1.2)

which was shown to be valid for a ∈ (0,1) and c > 0. Here

L(a, b, c, r) = u(r)v(1− r) + u(1− r)v(r) − v(r)v(1− r),

r ∈ (0,1), (1.3)
with a, b, c > 0, u(r) = F(a − 1, b; c; r) and v(r) = F(a, b; c; r). Unfortunately,
the generalization (1.2) does not include Elliott’s identity as a special case.
However, it should be mentioned that the relation (1.2) agrees with Elliott’s
identity at least for the case λ = ν = 1/2 − a and µ = c + a − 3/2. The aim
of this paper is to fill this gap by proving a general result which includes the result
(1.2) as well as the result of Elliott. Our main results are partly motivated by the
following conjecture from [2, Conjecture 3.16]:

Conjecture 1.1. For a, b ∈ (0,1), a + b ! 1 (" 1), L(a, b, c, r) is concave
(convex) as a function of r on (0,1).

Several properties of L(a, b, c, r) are discussed in [7,12]. Very recently, the
Elliott identity and some related results were discussed in [4]. Conjecture 1.1 does
not cover the Elliott relation in full form, and hence, it will be also of interest to
study the analog of this conjecture through a more general function that includes
the above mentioned result of Elliott. Because of this reason we introduce the
following function.

Definition 1.2. For a, b, c, d ∈ C, with c, d /∈ −N0, let u(z) = F(d − a − 1, d −
b;d; z), v1(z) = F(c − a, c − b; c; z), u1(z) = F(c − a − 1, c − b; c; z), v(z) =
F(d − a, d − b;d; z), and

S(a, b, c, d, z) = u1(z)v(1− z) + u(1− z)v1(z) − v1(z)v(1− z),

z ∈ ∆\{0}. (1.4)

Unless otherwise stated, throughout this paper S(z) denotes the function S(a,
b, c, d, z) defined by (1.4). Further, we call S the Elliott function (see Corol-
lary 1.8). Clearly,

S(a, b, c, c, z) = L(c − a, c − b, c, z)
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F (
1

2
− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

=
Γ (µ+ν+1)

Γ (−λ+ 1
2)Γ (λ+µ+ν+ 1

2)

∫ 1

0

s−λ−1/2(1−s)λ+µ+ν−1/2(1−(1−r)s)−ν−1/2ds,

=
Γ (µ+ν+1)

Γ (−λ+ 1
2)Γ (λ+µ+ν+ 1

2)

∫ 0

−∞
(−t)−λ−1/2(1−t)−µ−1/2(1−rt)−ν−1/2dt,
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− λ,
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+ ν, 1 + µ+ ν; 1− r)

=
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Γ (−λ− 1
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s−λ−3/2(1−s)λ+µ+ν+1/2(1−(1−r)s)−ν−1/2ds,
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Γ (µ+ ν + 1)

Γ (−λ− 1
2)Γ (λ+µ+ν+ 3

2)

∫ 0

−∞
(−t)−λ−3/2(1−t)−µ−1/2(1−rt)−ν−1/2dt,

where a variable change s = t/(t− 1) is used.

2. Setting of a local system

We set

u(t) = t1/2+λ(1− t)−1/2+µ(1− rt)1/2+ν ,

ϕ1 =
dt

t
, ϕ2 =

dt

t(1− rt)
=
(1
t
− 1

t− 1/r

)
dt,

ψ1 =
dt

1− t
=

−dt

t− 1
, ψ2 =

dt

t(1− t)
=
(1
t
− 1

t− 1

)
dt.

Then we have

1/u(t) = t−1/2−λ(1− t)1/2−µ(1− rt)−1/2−ν ,
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∫ 1
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Twisted Riemann Period Relation

4 KEIJI MATSUMOTO

and we have

tH−1
c =

1

2π
√
−1

(
1
2 + λ+ µ+ ν 0

−(12 + λ+ µ+ ν) 1
2 + λ

)
.

We take a basis of twisted homology group for u(t) and that for
1/u(t) by extending γ = (0, 1)⊗u(t) and δ = (−∞, 0)⊗1/u(t), respec-

tively. The intersection number of these twisted cycle is
1

−e2π
√
−1λ − 1

by [M, Theorem 3]. We use
tΠ−ωH

−1
c Πω = tHh.

in [M, Corollary 1]. Consider the (1, 1)-entry of the transpose of this
identity:

tΠω
tH−1

c Π−ω = Hh.

Then it yields

(∫ 1

0

u(t)ϕ1,

∫ 1

0

u(t)ϕ2

)
tH−1

c





∫ 0

−∞
1

u(t)
ψ1

∫ 0

−∞
1

u(t)
ψ2



 =
−1

e2π
√
−1λ + 1

. (4)

3. Transformation of a twisted period relation into
Elliott’s identity

Rewrite the integrals in the equality (4) in terms of hypergeometric
series by (2) and (3). Then its exp and Gamma factors reduce to

Γ (λ+ 1
2)Γ (µ+ 1

2)

Γ (λ+ µ+ 1)
·
Γ (−λ+ 1

2)Γ (λ+ µ+ ν + 3
2)√

−1eπ
√
−1λΓ (µ+ ν + 1)

=
Γ (λ+ 1

2)Γ (1− (λ+ 1
2))√

−1eπ
√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
π

sin(π(λ+ 1
2))

· 1√
−1eπ

√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
−2π

√
−1

e2π
√
−1λ + 1

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)
,

the product of tH−1
c and the 2× 2-matrix in (3) reduces to

1

2π
√
−1

(
1
2+λ+µ+ν 0

−(12+λ+µ+ν) 1
2+λ

)( 1
1/2+λ+µ+ν 0

0 1
1/2+λ

)

=
1

2π
√
−1

(
1 0
−1 1

)
.
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Elliott’s identity

Rewrite the integrals in the equality (4) in terms of hypergeometric
series by (2) and (3). Then its exp and Gamma factors reduce to

Γ (λ+ 1
2)Γ (µ+ 1

2)

Γ (λ+ µ+ 1)
·
Γ (−λ+ 1

2)Γ (λ+ µ+ ν + 3
2)√

−1eπ
√
−1λΓ (µ+ ν + 1)

=
Γ (λ+ 1

2)Γ (1− (λ+ 1
2))√

−1eπ
√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
π

sin(π(λ+ 1
2))

· 1√
−1eπ

√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
−2π

√
−1

e2π
√
−1λ + 1

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)
,

the product of tH−1
c and the 2× 2-matrix in (3) reduces to

1

2π
√
−1

(
1
2+λ+µ+ν 0

−(12+λ+µ+ν) 1
2+λ

)( 1
1/2+λ+µ+ν 0

0 1
1/2+λ

)

=
1

2π
√
−1

(
1 0
−1 1

)
.
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Hence the equality (4) is transformed into
(
F (

1

2
+ λ,−1

2
− ν, 1 + λ+ µ; r), F (

1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)

)

·
(

1 0
−1 1

)
·
(

F (12 − λ, 12 + ν, 1 + µ+ ν; 1− r)
F (−1

2 − λ, 12 + ν, 1 + µ+ ν; 1− r)

)

=
Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

Γ (λ+ µ+ ν + 3
2)Γ (µ+ 1

2)
,

which is equivalent to Elliott’s identity (1).
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and we have

tH−1
c =

1

2π
√
−1

(
1
2 + λ+ µ+ ν 0

−(12 + λ+ µ+ ν) 1
2 + λ

)
.

We take a basis of twisted homology group for u(t) and that for
1/u(t) by extending γ = (0, 1)⊗u(t) and δ = (−∞, 0)⊗1/u(t), respec-

tively. The intersection number of these twisted cycle is
1

−e2π
√
−1λ − 1

by [M, Theorem 3]. We use
tΠ−ωH

−1
c Πω = tHh.

in [M, Corollary 1]. Consider the (1, 1)-entry of the transpose of this
identity:

tΠω
tH−1

c Π−ω = Hh.

Then it yields

(∫ 1

0

u(t)ϕ1,

∫ 1

0

u(t)ϕ2

)
tH−1

c





∫ 0

−∞
1

u(t)
ψ1

∫ 0

−∞
1

u(t)
ψ2



 =
−1

e2π
√
−1λ + 1

. (4)

3. Transformation of a twisted period relation into
Elliott’s identity

Rewrite the integrals in the equality (4) in terms of hypergeometric
series by (2) and (3). Then its exp and Gamma factors reduce to

Γ (λ+ 1
2)Γ (µ+ 1

2)

Γ (λ+ µ+ 1)
·
Γ (−λ+ 1

2)Γ (λ+ µ+ ν + 3
2)√

−1eπ
√
−1λΓ (µ+ ν + 1)

=
Γ (λ+ 1

2)Γ (1− (λ+ 1
2))√

−1eπ
√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
π

sin(π(λ+ 1
2))

· 1√
−1eπ

√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
−2π

√
−1

e2π
√
−1λ + 1

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)
,

the product of tH−1
c and the 2× 2-matrix in (3) reduces to

1

2π
√
−1

(
1
2+λ+µ+ν 0

−(12+λ+µ+ν) 1
2+λ

)( 1
1/2+λ+µ+ν 0

0 1
1/2+λ

)

=
1

2π
√
−1

(
1 0
−1 1

)
.

Hypothesys: too close to RTPR to be accidental 

Matsumoto & P.M.



Elliot’s Identity from Intersections

Proof

u(t) = t1/2+λ(1− t)−1/2+µ(1− rt)1/2+ν ,

ϕ1 =
dt

t
, ϕ2 =

dt

t(1− rt)
=
(1
t
− 1

t− 1/r

)
dt,

ψ1 =
dt

1− t
=

−dt

t− 1
, ψ2 =

dt

t(1− t)
=
(1
t
− 1

t− 1

)
dt.
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√
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−
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Quadratic relations for Feynman Integrals Broadhurst, Roberts (2018)

Lee, Pomeranski (2019)
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QUADRATIC RELATIONS BETWEEN BESSEL MOMENTS 3

Besides, we shall prove that the dual of the Betti realization of Mk is isomorphic to the middle
twisted homology of Symk Kl2, which is defined as the image

Hmid
1 (Gm, Sym

k Kl2) = im
⇥
Hrd

1 (Gm, Sym
k Kl2) �! Hmod

1 (Gm, Sym
k Kl2)

⇤

of rapid decay homology under the natural map to moderate growth homology. Elements of these
homology groups are represented by linear combinations of twisted chains c⌦ e, where c is a path
and e is a horizontal section of Symk Kl2 that decays rapidly (resp. has moderate growth) on a
neighborhood of c. These conditions ensure that de Rham (resp. compactly supported de Rham)
cohomology classes can be integrated along them, thus giving rise to a period pairing

Pmid
k : Hmid

1 (Gm, Sym
k Kl2)⌦H1

dR,mid(Gm, Sym
k Kl2) �! C.

This middle homology comes with a natural Q-structure and, likewise to middle de Rham cohomol-
ogy, a perfect intersection pairing Bmid

k realizing (1.3). In Section 4, by exploring the asymptotic
behaviors of products of modified Bessel functions, we exhibit rapid decay homology classes ↵i

for 0 6 i 6 k0 whose images in middle homology are non-zero for i > 1.
Relying on the general results from the companion paper [9], in particular the compatibility

of the Betti and de Rham intersection pairings with the period pairing, we prove the following
theorem. For simplicity, we only state it here when k is not a multiple of 4, postponing the full
statements to Theorem 3.24, Proposition 4.6, Theorem 4.7, Corollary 5.7, and Theorem 5.3.

Theorem 1.4. Assume k is not a multiple of 4.

(1) With respect to the basis {!i}16i6k0 , the matrix of the de Rham intersection pairing Smid
k

is a lower-right triangular matrix with (i, j) anti-diagonal entries

8
>><

>>:

(�2)k
0 k0!

k!!
if k is odd,

(�1)k
0+1

2k0(j � i)
· (k � 1)!!

(k0 + 1)!
if k is even.

(2) The middle homology classes {↵i}16i6k0 form a basis and the matrix of the Betti inter-

section pairing Bmid
k is given by

Bmid
k =

✓
(�1)k�i (k � i)!(k � j)!

k!

Bk�i�j+1

(k � i� j + 1)!

◆

16i,j6k0
,

where Bn denotes the n-th Bernoulli number.

(3) With respect to the bases {↵i}16i6k0 and {!j}16j6k0 , the matrix of the period pairing Pmid
k

consists of the Bessel moments

Pmid
k =

✓
(�1)k�i 2k+1�2j(⇡i)i

Z 1

0
I0(t)

iK0(t)
k�it2j�1 dt

◆

16i,j6k0
.

(4) The following quadratic relations hold:

Pmid
k · (Smid

k )�1 · tPmid
k = (�2⇡i)k+1 Bmid

k .

Quadratic relations of the shape PBR
k · DBR

k · tPBR
k = BBR

k were conjectured by Broadhurst and
Roberts in [5]. As we explain in Section 5.c, their matrices PBR

k and BBR
k coincide with ours up to

different normalizations, but we were unfortunately unable to prove that, again up to normaliza-
tion, the inverse of Smid

k satisfies the recursive formulas defining their matrix DBR
k . Nevertheless,

we checked numerically that both matrices agree for k 6 22, which is the limit for reasonable
computation time with Maple.

Grothendieck’s period conjecture predicts that the transcendence degree of the field of periods
of Mk agrees with the dimension of its motivic Galois group. Since the Betti intersection pairing
is motivic, this is a subgroup of the general orthogonal group GOk0 if k is odd and of the general
symplectic group GSpk0 (resp. GSpk0�1) if k is even and not a multiple of 4 (resp. if k is a multiple

Twisted Riemann Period Relation

(

−

) (

− −

=
Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

Γ (λ+ µ+ ν + 3
2)Γ (µ+ 1

2)
,

String-Theory Amplitudes: KLT relations = TRPR Mizera (2016/17)

Section 1

Introduction

Recent years have seen a vast improvement in our understanding of quantum field theories through
the study of scattering amplitudes [3]. Such advancements were often made possible by considering a
generalization of ordinary field theories into string theories. The main advantage of this approach is
that strings—as extended objects—provide a way of smoothing out interactions between the scattering
states. More precisely, the moduli space of a string worldsheet continuously connects its di↵erent
factorization channels. As a result, a sum over discrete objects—such as Feynman [4] or on-shell [5]
diagrams—in field theory is replaced by an integral over a continuous worldsheet in string theory. In
the infinite tension limit, where strings become point-like, this integral localizes to disconnected corners
of the moduli space, which give rise to the field theory amplitudes. In this way, thinking of field theory
amplitudes as a limit of the string theory ones provides a way of unifying all factorization channels
under a single object.

The prime example of usefulness of string theory in the study of field theory amplitudes are the
Kawai–Lewellen–Tye (KLT) relations discovered in 1985 [6]. They give a way of writing the amplitudes
for scattering of closed strings entirely in terms of a quadratic combination of open string amplitudes.
In the field theory limit, where closed strings reduce to gravitons—particle excitations of General
Relativity—and open strings reduce to gluons—excitations of the Yang–Mills theory—KLT relations
give a connection between graviton and gluon scattering amplitudes. Such a relationship not only hints
at a fundamental interplay between the two types of theories, but also provides enormous simplifications
for practical calculations, both in string and field theory.

KLT relations have been most thoroughly studied in the field theory limit. In its modern form
found by Cachazo, He, and Yuan (CHY) they read [7]:

AGR =
X

�,�

AYM(�) m�1(�|�) AYM(�). (1.1)

Here, AGR is an n-point graviton amplitude, while AYM(�) is an n-point gluon partial amplitude with
ordering �. The sum proceeds over two sets of (n� 3)! permutations � and � forming a basis for the
Yang–Mills amplitudes. The object m(�|�) is a double-partial amplitude of a bi-adjoint scalar theory
[7, 8]. It is convenient to think of the relation (1.1) as a matrix product of a transposed vector, inverse
of a matrix, and another vector, where rows and columns are labelled by permutations.

It was not always clear that coe�cients of the KLT expansion can be written in the form (1.1) as
the inverse of a matrix. In their original work, Kawai, Lewellen, and Tye used contour deformation
arguments to arrive at these coe�cients as coming from monodromy factors around vertex operators on
the boundary of a worldsheet [6]. They evaluated explicit form of the quadratic relations for low-point
examples. A closed-form expression for the KLT relations to arbitrary number of particles in field
theory was later given in Appendix A of [9] by Bern, Dixon, Perelstein, and Rozowsky. Properties of
this expansion were systematically studied and proven in a series of papers [10–13] by Bjerrum-Bohr,
Damgaard, Feng, Søndergaard, and Vanhove, who also generalized the allowed bases of permutations
to a larger set. They introduced the matrix S[�|�] called a KLT kernel, which allows to write the KLT
relations as a matrix product. Finally, Cachazo, He, and Yuan recognized [7] that the KLT kernel can
be understood as the inverse matrix of bi-adjoint scalar amplitudes, i.e., S[�|�] = m

�1(�|�), ultimately
leading to the form given in (1.1). This also allowed to construct the kernel from the most general sets
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of permutations labelling the columns and rows of m(�|�), so that coe�cients of the KLT expansion
are not necessarily polynomials in the kinematic invariants.

At this point one could ask: Where do KLT relations come from? It turns out that a fruitful
path to consider is to go back to the string theory case, where these relations were first conceived. It
was proposed by the author [1] that the full string theory KLT relations can be rewritten in a form
analogous to (1.1) as follows:

Aclosed =
X

�,�

Aopen(�) m�1
↵0 (�|�) Aopen(�). (1.2)

Here, Aclosed and Aopen(�) are the n-point closed and open string amplitudes respectively. The role
of the string theory KLT kernel is played by the inverse of a matrix m↵0(�|�), which is constructed
out of the bi-adjoint scalar amplitudes with ↵

0 corrections. Recall that ↵
0 is a parameter inversely

proportional to the string tension, such that ↵
0 ! 0 corresponds to the field theory limit. In this

way, (1.2) is a direct analogue of (1.1), where every piece of the puzzle receives string corrections. By
evaluating explicit examples of m↵0(�|�), which from now on we will refer to as the inverse KLT kernel,
we found that they have a surprisingly simple structure, giving rise to compact expressions in terms of
trigonometric functions. Moreover, they can be calculated using Feynman-like diagrammatic rules [1],
hinting at an underlying combinatorial underpinnings. In this work we show that string theory KLT
relations in the form (1.2) are in fact a result of a deep connection between string theory amplitudes,
algebraic topology, and combinatorics.

Practically at the same time as the initial work on the KLT relations, on the other side of the
globe, mathematicians Aomoto, Cho, Kita, Matsumoto, Mimachi, Yoshida, and collaborators were
developing a seemingly unrelated theory of hypergeometric functions [14, 15]. It eventually led to the
formulation of twisted de Rham theory, which is a generalization of the conventional de Rham theory
to integrals of multi-valued functions [14]. Let us first intuitively explain its key ingredients, leaving
precise definitions for later sections. A twisted homology group Hm(X,L!) on some manifold X is a
space of twisted cycles, which are regions of X together with an additional information about branches
of a multi-valued function. Similarly, a twisted cohomology group H

m(X,r!) is a space of twisted
cocycles, which are di↵erential forms on X satisfying certain conditions. A pairing between a twisted
cycle and a cocycle is then simply an integral of a di↵erential form over a given region of X which is
sensitive to the branch structure of the integrand. Twist measures multi-valuedness of the integrand.

One can also define a natural set of a dual twisted homology Hm(X,L_
!
) and a dual twisted

cohomology H
m(X,r_

!
). For the purpose of this work, the duality is roughly speaking given by

complex conjugation. One can define a pairing between these two dual spaces too, giving rise to
another integral of a multi-valued function. Having defined two di↵erent pairs of twisted homologies
and cohomologies, we would like to calculate invariants between them as well. As it turns out, it is
possible to pair two twisted cycles belong to a twisted homology and its dual. The resulting object is
called an intersection number of twisted cycles [16–20]. It is computed from the information of how
these cycles intersect one another in X, as well as their associated branch structure. Similarly, one can
also define an intersection number of twisted cocycles [21]. What is more, in 1994 Cho and Matsumoto
found identities—known as the twisted period relations—between pairings computed from di↵erent
twisted homologies and cohomologies described above [21].

In this work we show that Kawai–Lewellen–Tye relations are a consequence of twisted period
relations. In order to do so, we first formulate string theory tree-level amplitudes in the language of
twisted de Rham theory. Open string partial amplitudes Aopen(�) are given as pairings between twisted
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