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๏  Broad classes of resummations do not admit a closed analytic solution (or very hard to derive): non-
linearity of evolution equations (e.g. NGLs, micro jets, …) or lack of analytic form in multi-particle limit 
(e.g. complex event shapes or jet rates). Numerical methods are effective in these problems 

๏  Large ongoing efforts to improve parton shower’s perturbative (logarithmic) accuracy. Solutions at NLL 
now exist for rIRC safe global and classes of non-global observables: based on constraints inferred from 
QCD (multi-parton squared amplitudes, consistency with QCD resummations) 

➡ Higher orders (e.g. NNLL) present additional subtleties, e.g. treatment of virtual corrections in 
dimensional regularisation and cancellation of IR singularities 
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  Motivation

GOAL: work towards a solid framework to bridge between resummations and parton 
showers. Crucial to study features of shower evolution (e.g. IR cutoffs) and develop 

algorithmic solutions beyond NLL



๏  Focus on collinear fragmentation 

๏  Generating functional method 

๏  Application to fractional moments of EEC (FCx) and angularities (λx) measured on mMDT/SD groomed jets 

➡  analytic solution at SL & Markov chain algorithm 

๏  Formulation at NSL: application to FCx and λx  

๏  Outlook 
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  Outline of the talk

ln Σ(v)
+ αs + α2

s L + α3
s L2 + … → NSL (NNLL in DL obs.)

∼ αsL + α2
s L2 + … → SL (NLL in DL obs.)

+ …

Disclaimer: slides mainly prepared on a train ride from Geneva to Florence, 
apologies for the poor quality and the omission of some references



SL fragmentation
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๏  GFs method postulates the existence of  generating functionals , which describe the (time-
like) fragmentation of a parton of flavour , carrying a fraction  of the initial energy , and starting at an 
initial evolution “time” , function of the emission’s kinematics (e.g. angle) 

๏  The cross section for the production of a final state with exactly  final state partons originating from the 
above fragmentation reads  

๏  Physical observables then computed as

2 nf + 1 Gf(x, t)
f x E

t

m
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  Generating functionals: definitions

L = � ln ✓ of the form ↵
n
sL

n. At this order, the fragmentation can be formulated as a

branching process in which emissions are strongly ordered in angle.3 At NNLL we aim at

resumming corrections of order ↵n
sL

n�1, where now emissions can be unordered and have

commensurate angles. To start, we therefore define an angular resolution scale t (evolution

time) as

ti =

Z 1

✓
2
i

d✓
2

✓2

↵s(E2
g
2(z) ✓2)

2⇡
, (2.1)

where ↵s is the MS coupling, and g(z) is a function of the longitudinal momentum fraction

1 � z carried by the i-th emission. At NLL the precise form of g(z) is irrelevant and one

can set g(z) = 1 (see for example Ref. [7]). In what follows, the use of the �(↵s) function

that drives the running of ↵s at either one-loop or two-loop order, depending on whether

the target accuracy is NLL or NNLL is understood.

We introduce the GF Gf (x, t), which encodes the probability of resolving a fixed num-

ber of emissions in the time-like fragmentation of an initial parton of flavour f 2 {q, g}
and momentum fraction x below a resolution angle set by an initial evolution time t. The

GFs are defined in such a way that the probability of exclusively resolving m partons in

the collinear fragmentation of a parton of flavour f 2 {q, g} and momentum fraction x

starting at an evolution time t is given by [2, 4]

Z
dP

(f)
m =

1

m!

�
m

�um
Gf (x, t)

����
{u}=0

. (2.2)

The quantity u ⌘ u(x, t; f) is the probing function and has the role of tagging a real

emission in the functional derivative of Gf . Eq. (2.2) can be taken as the definition of the

generating functional Gf . The evolution of the GFs with the resolution scale t is described,

at NLL, by the coupled system of integral equations [7]4

Gq(x, t) = u�q(t) +

Z
t0

t

dt
0

Z 1�z0

z0

dz Pqq(z)Gq(x z, t
0)Gg(x (1� z), t0)

�q(t)

�q(t0)
,

Gg(x, t) = u�g(t) +

Z
t0

t

dt
0

Z 1�z0

z0

dz


Pgg(z)Gg(x z, t

0)Gg(x (1� z), t0)

+ Pqg(z)Gq(x z, t
0)Gq(x (1� z), t0)

�
�g(t)

�g(t0)
, (2.3)

where t0 is a collinear cuto↵ at which the evolution stops, while z0 is an infrared cuto↵

on the energy fraction of each emission, which must be taken to zero in the calculation of

an IRC safe observable (unlike for z0, the value of t0 is bounded by the presence of the

3Angular ordering ensures the full coverage of the relevant phase space at NLL. Beyond NLL, emissions

can have commensurate angles and therefore the precise definition of angular ordering (i.e. with respect to

a specific reference direction) has to be specified in order to guarantee the coverage of the full phase space.
4An equivalent di↵erential form can be easily obtained by dividing Gf by �f and subsequently taking

the t derivative. Note that Ref. [7] adopts a slightly di↵erent definition of the GFs which in this reference

describe the fragmentation of a parton from a starting time t = 0 down to a resolution angle set by the time

t. This convention is complementary to the one adopted in this paper, but their di↵erence is irrelevant at

the level of physical results.
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Landau pole). The standard leading-order splitting functions are given in Appendix A.

The above set of equations can be used to derive collinear resummations with NLL (single

logarithmic) accuracy for final state radiation.

The Sudakov form factors �f describe the no-emission probability and can be derived

by imposing the unitarity condition

Gf (x, t)|u=1 = 1 , (2.4)

from which one obtains

ln�q(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz Pqq(z) , (2.5)

ln�g(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz (Pgg(z) + Pqg(z)) . (2.6)

An obvious boundary condition is then Gf (x, t0) = u, indicating a 100% probability of

finding a parton f with momentum x. With the above definition of the GFs, the resummed

distribution (or equivalently cumulative distribution) d�
(f) for a given observable v =

V ({ki}) (with {ki} denoting the final state momenta produced in the fragmentation of a

jet of initial flavour f) has the general form

d�
(f) = �0C(↵s)⌦ J

(f)(↵s, v) , (2.7)

where �0 is the Born cross section for the hard process under consideration. The jet

distribution J
(f) is simply obtained by integrating Eq. (2.2) with the measurement function

of the observable for any final-state multiplicity m, that is

J
(f)(↵s, v) =

1X

m=1

Z
dP

(f)
m �(v � V ({k}m)) . (2.8)

The ⌦ operation is observable dependent. It is usually a regular product, but for some

specific observables (e.g. fragmentation functions) it can take the form of a convolution

over the longitudinal momentum fraction. The process- and observable-dependent match-

ing coe�cient C(↵s) admits a fixed-order perturbative expansion in powers of the strong

coupling constant C(↵s) = 1 + O(↵s), and it accounts for constant terms stemming from

the matching of the jet distribution (defined by the GFs evolution equation) to the fixed

order QCD calculation in the limit v ! 0. Specifically, at NNLL C(↵s) is required at the

one-loop order, which entails the di↵erence between the full O(↵s) QCD calculation in the

logarithmic limit (i.e. v ! 0) for the observable v and the expansion of the jet function at

the same order.

2.2 Extension to the NNLL case

The extension of the above formulation to NNLL order requires the generalisation of the

r.h.s. of the evolution equations (2.3) to O(↵2
s). To understand what the calculation entails,

we observe that Eqs. (2.3) describe the fragmentation by a sequence of angular ordered

branchings. The resulting emission probability is the iteration of 1 ! 2 splitting kernels, an
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perturbative matching  
coefficient

probing function (source) u = u(x, t; f )

see e.g. [Konishi, Ukawa, Veneziano ’79; Dokshitzer, Khoze, Mueller, Troyan ’91]
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๏  Evolution of GFs with time  is governed by a system of equations (anti-quark GF by charge conjugation) 

๏  Or in graphic form

t
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  Generating functionals: evolution equations








































































































At these scales the farrow's fuel side
is to be convoluted with a NP model
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see e.g. [Dasgupta, Dreyer, Salam, Soyez ’14]



๏  Sudakov form factor: defined by requiring unitarity of GFs (i.e. total XS unaffected by inclusive collinear 
radiation) 

๏  Regularisation scheme: IRC singularities could be consistently regulated in dim. reg., but the use of IR 
cutoffs allows for algorithmic solution in a computer (Monte Carlo). Important for connection with PS. 
Physical results are always obtained in the limit  (modulo Landau pole regularisation) 

๏  Ordering: choice of ordering (definition of ) such that multi-parton squared amplitudes are reconstructed 
recursively order by order. Options in the collinear limit (angle, transverse momentum, …). Crucially, 
physical results not affected by this choice

t0 → ∞ , z0 → 0

t
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  Remarks
Landau pole). The standard leading-order splitting functions are given in Appendix A.

The above set of equations can be used to derive collinear resummations with NLL (single

logarithmic) accuracy for final state radiation.

The Sudakov form factors �f describe the no-emission probability and can be derived

by imposing the unitarity condition

Gf (x, t)|u=1 = 1 , (2.4)

from which one obtains

ln�q(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz Pqq(z) , (2.5)

ln�g(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz (Pgg(z) + Pqg(z)) . (2.6)

An obvious boundary condition is then Gf (x, t0) = u, indicating a 100% probability of

finding a parton f with momentum x. With the above definition of the GFs, the resummed

distribution (or equivalently cumulative distribution) d�
(f) for a given observable v =

V ({ki}) (with {ki} denoting the final state momenta produced in the fragmentation of a

jet of initial flavour f) has the general form

d�
(f) = �0C(↵s)⌦ J

(f)(↵s, v) , (2.7)

where �0 is the Born cross section for the hard process under consideration. The jet

distribution J
(f) is simply obtained by integrating Eq. (2.2) with the measurement function

of the observable for any final-state multiplicity m, that is

J
(f)(↵s, v) =

1X

m=1

Z
dP

(f)
m �(v � V ({k}m)) . (2.8)

The ⌦ operation is observable dependent. It is usually a regular product, but for some

specific observables (e.g. fragmentation functions) it can take the form of a convolution

over the longitudinal momentum fraction. The process- and observable-dependent match-

ing coe�cient C(↵s) admits a fixed-order perturbative expansion in powers of the strong

coupling constant C(↵s) = 1 + O(↵s), and it accounts for constant terms stemming from

the matching of the jet distribution (defined by the GFs evolution equation) to the fixed

order QCD calculation in the limit v ! 0. Specifically, at NNLL C(↵s) is required at the

one-loop order, which entails the di↵erence between the full O(↵s) QCD calculation in the

logarithmic limit (i.e. v ! 0) for the observable v and the expansion of the jet function at

the same order.

2.2 Extension to the NNLL case

The extension of the above formulation to NNLL order requires the generalisation of the

r.h.s. of the evolution equations (2.3) to O(↵2
s). To understand what the calculation entails,

we observe that Eqs. (2.3) describe the fragmentation by a sequence of angular ordered

branchings. The resulting emission probability is the iteration of 1 ! 2 splitting kernels, an
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An example: 
fractional moments of EEC and angularities
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๏  Consider a simple observables that admit an analytic solution 

➡ Consider a mMDT/SD ( ) groomed jet, and measure  

๏   This class of event shapes is insensitive to the full non-linear structure of the fragmentation. At SL we 
can ignore the (secondary) fragmentation of primary radiation, e.g. for quark jets 

β = 0

Gg(x, t) ≃ u

9

 Moments of EEC and angularities on groomed jets

As a cross check of the above result we can compare to the expected integral in

Eq. (4.2), where X
g

✓2
is given in Eq. (7.12). For this check we still have to determine the

function FC
2
A

clust.. For the C
2
A

channel our procedure for the extraction of Bg,C
2
A

2 (z) agrees

exactly with the mMDT/Soft drop grooming with the Cambridge/Aachen algorithm, for

which FC
2
A

clust. is known to stem from the double-soft limit (within the triple-collinear approx-

imation). Therefore, due to Casimir scaling it is simple to relate the clustering correction

FC
2
A

clust. to the known result for quark jets (see e.g. [66]) (cf. also the discussion in Ap-

pendix E). Replacing CF ! CA in the quark jet result we get the following result the C
2
A

component reads:

FC
2
A

clust. =
1

2
C

2
A

✓
4⇡

3
Cl2

⇣
⇡

3

⌘
+ h

CA
clust.

◆
, (7.18)

where

h
CA
clust. ' �1.16363257(4) , (7.19)

and Cl2 denotes the Clausen function. The overall factor of 1/2 is multiplied to obtain the

result for a single leg. This gives

(��
(2)
g + b0X

g

✓2
+ Fclust.)C2

A
' �6.31426325(8)C2

A, (7.20)

in good agreement with our result.

We conclude this section with a remark on the endpoint contribution Bendpoint
2 (z) given

in Eq. (7.16). As discussed above, this originates from double-soft configurations and is

a consequence of the scheme used here to define z and ✓. We observe that such endpoint

terms mark an important di↵erence to the case of quark jets (cf. Appendix B), where

separate definitions of z and ✓ can be adopted for correlated and independent emission

contributions. In the quark case these are separated by colour factors, while in the gluon

case they are mixed together in the C
2
A

channel. The same double-soft origin is shared

by the clustering correction (7.18). Terms of double-soft origin are discussed further in

Appendix E.

8 Moments of EEC and angularities in groomed jets at NNLL

In this section we use the calculations presented in this article to derive NNLL results

for the moments of energy-energy correlation (EEC) and angularities measured on jets

groomed according to the mMDT/Soft drop (� = 0) procedure [60, 61]. These classes

of jet substructure observables have received widespread attention in the literature, with

several applications both at hadron and lepton colliders [73–86]. As a concrete example

we consider the processes Z ! qq̄ and H ! gg to analyse both quark and gluon jets.

Specifically, we calculate, for the first time, the groomed fractional moments of EEC,

which are defined as [58]

FC
H

x =
2�x

E2

X

i 6=j

EiEj | sin ✓ij |x(1� | cos ✓ij |)1�x
, (8.1)
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where the sum runs over all particles within a given hemisphere, H ⌘ HR or H ⌘ HL, and

E denotes the total energy in the hemisphere. We also consider the angularities [59] (the

corresponding NNLL resummation in the ungroomed case is given in Refs. [55, 87–90])

defined w.r.t. the Winner-Take-All (WTA) axis as

�
H

x =
21�x

E

X

i

Ei | sin ✓i|x(1� | cos ✓i|)1�x
, (8.2)

where once again the sum involves all particles in a given hemisphere. For both observables

the parameter x is constrained by IR safety to be x < 2. Finally, we define the observables

as follows:

FCx ⌘ max
�
FC

HR
x , FC

HL
x

 
, �x ⌘ max

�
�
HR
x ,�

HL
x

 
. (8.3)

A NNLL calculation for WTA angularities for quark jets has been recently presented in

Ref. [67],12 and below we present new results for fractional moments of EEC for quark

and gluon jets as well as for angularities measured on gluon jets. These results allow for a

complete phenomenological analysis of moments of EEC and angularities on groomed jets

at hadron and lepton colliders.

The master formula for the NNLL cumulative cross section ⌃(v) for a groomed observ-

able v (that here denotes either a moment of EEC or an angularity) in the two processes

considered here can be easily derived by applying the GFs method to Eq. (2.7). In the

following we work in the limit v ⌧ zcut ⌧ 1, that is commonly considered for these types of

groomed observables. This regime has the advantage that one can neglect power corrections

in zcut and hence the evolution equations for the GFs can be solved analytically. Specif-

ically, in this limit we can restrict ourselves to taking the soft limit of the Kfinite
q [Gq, Gg]

and Kfinite
g [Gq, Gg] functions (cf. Eqs. (2.9), (7.1) and Appendix C). With a little abuse of

notation we have used the same parameter zcut for the definition of groomed observables

and in the calculation of Bg

2(z). However, we stress that (cf. Sec. 4) Bg

2(z) is defined strictly

by taking the limit zcut ! 0 while in the observables considered here one can opt to retain

finite zcut e↵ects to improve the accuracy of the calculation. The quantity Bg

2(z) we have

derived applies to both cases with and without finite zcut e↵ects, since these would be

captured by the full (numerical) solution of the GFs equations (or equivalently by a NNLL

accurate parton shower algorithm).

Using the evolution equation in Eqs. (2.9), (7.1), and following similar steps to those

outlined in Appendix D, we obtain the following NNLL results for quark and gluon jets,

respectively

⌃q(v) = �
Z!qq̄

0

✓
1 +

↵s(E2)

2⇡
C

q(1)
v (zcut)

◆
e
�2Rq

v(v,zcut)

✓
1 +

↵
2
s(E

2)

(2⇡)2
2Fq

clust(v)

◆
,

⌃g(v) = �
H!gg

0

✓
1 +

↵s(E2)

2⇡
C

g(1)
v (zcut)

◆
e
�2Rg

v(v,zcut)

✓
1 +

↵
2
s(E

2)

(2⇡)2
2Fg

clust(v)

◆
. (8.4)

12Notice that here we adopt a di↵erent normalisation of the observable, compared to Ref. [67], in order

to match the corresponding hadron collider jet definitions.
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L = � ln ✓ of the form ↵
n
sL

n. At this order, the fragmentation can be formulated as a

branching process in which emissions are strongly ordered in angle.3 At NNLL we aim at

resumming corrections of order ↵n
sL

n�1, where now emissions can be unordered and have

commensurate angles. To start, we therefore define an angular resolution scale t (evolution

time) as

ti =

Z 1

✓
2
i

d✓
2

✓2

↵s(E2
g
2(z) ✓2)

2⇡
, (2.1)

where ↵s is the MS coupling, and g(z) is a function of the longitudinal momentum fraction

1 � z carried by the i-th emission. At NLL the precise form of g(z) is irrelevant and one

can set g(z) = 1 (see for example Ref. [7]). In what follows, the use of the �(↵s) function

that drives the running of ↵s at either one-loop or two-loop order, depending on whether

the target accuracy is NLL or NNLL is understood.

We introduce the GF Gf (x, t), which encodes the probability of resolving a fixed num-

ber of emissions in the time-like fragmentation of an initial parton of flavour f 2 {q, g}
and momentum fraction x below a resolution angle set by an initial evolution time t. The

GFs are defined in such a way that the probability of exclusively resolving m partons in

the collinear fragmentation of a parton of flavour f 2 {q, g} and momentum fraction x

starting at an evolution time t is given by [2, 4]

Z
dP

(f)
m =

1

m!

�
m

�um
Gf (x, t)

����
{u}=0

. (2.2)

The quantity u ⌘ u(x, t; f) is the probing function and has the role of tagging a real

emission in the functional derivative of Gf . Eq. (2.2) can be taken as the definition of the

generating functional Gf . The evolution of the GFs with the resolution scale t is described,

at NLL, by the coupled system of integral equations [7]4

Gq(x, t) = u�q(t) +

Z
t0

t

dt
0

Z 1�z0

z0

dz Pqq(z)Gq(x z, t
0)Gg(x (1� z), t0)

�q(t)

�q(t0)
,

Gg(x, t) = u�g(t) +

Z
t0

t

dt
0

Z 1�z0

z0

dz


Pgg(z)Gg(x z, t

0)Gg(x (1� z), t0)

+ Pqg(z)Gq(x z, t
0)Gq(x (1� z), t0)

�
�g(t)

�g(t0)
, (2.3)

where t0 is a collinear cuto↵ at which the evolution stops, while z0 is an infrared cuto↵

on the energy fraction of each emission, which must be taken to zero in the calculation of

an IRC safe observable (unlike for z0, the value of t0 is bounded by the presence of the

3Angular ordering ensures the full coverage of the relevant phase space at NLL. Beyond NLL, emissions

can have commensurate angles and therefore the precise definition of angular ordering (i.e. with respect to

a specific reference direction) has to be specified in order to guarantee the coverage of the full phase space.
4An equivalent di↵erential form can be easily obtained by dividing Gf by �f and subsequently taking

the t derivative. Note that Ref. [7] adopts a slightly di↵erent definition of the GFs which in this reference

describe the fragmentation of a parton from a starting time t = 0 down to a resolution angle set by the time

t. This convention is complementary to the one adopted in this paper, but their di↵erence is irrelevant at

the level of physical results.
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u

Sensitive to angular-ordered  
primary declusterings

These observables are naturally double 
logarithmic, though grooming makes them 
single logarithmic by eliminating soft logs



๏  Resummation can be worked out analytically  

➡ Weigh each probability with measurement function, e.g. for FCx (using )Θzcut
(z) ≡ Θ(z − zcut) Θ(1 − z − zcut)

10

 Analytic solution

Landau pole). The standard leading-order splitting functions are given in Appendix A.

The above set of equations can be used to derive collinear resummations with NLL (single

logarithmic) accuracy for final state radiation.

The Sudakov form factors �f describe the no-emission probability and can be derived

by imposing the unitarity condition

Gf (x, t)|u=1 = 1 , (2.4)

from which one obtains

ln�q(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz Pqq(z) , (2.5)

ln�g(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz (Pgg(z) + Pqg(z)) . (2.6)

An obvious boundary condition is then Gf (x, t0) = u, indicating a 100% probability of

finding a parton f with momentum x. With the above definition of the GFs, the resummed

distribution (or equivalently cumulative distribution) d�
(f) for a given observable v =

V ({ki}) (with {ki} denoting the final state momenta produced in the fragmentation of a

jet of initial flavour f) has the general form

d�
(f) = �0C(↵s)⌦ J

(f)(↵s, v) , (2.7)

where �0 is the Born cross section for the hard process under consideration. The jet

distribution J
(f) is simply obtained by integrating Eq. (2.2) with the measurement function

of the observable for any final-state multiplicity m, that is

J
(f)(↵s, v) =

1X

m=1

Z
dP

(f)
m �(v � V ({k}m)) . (2.8)

The ⌦ operation is observable dependent. It is usually a regular product, but for some

specific observables (e.g. fragmentation functions) it can take the form of a convolution

over the longitudinal momentum fraction. The process- and observable-dependent match-

ing coe�cient C(↵s) admits a fixed-order perturbative expansion in powers of the strong

coupling constant C(↵s) = 1 + O(↵s), and it accounts for constant terms stemming from

the matching of the jet distribution (defined by the GFs evolution equation) to the fixed

order QCD calculation in the limit v ! 0. Specifically, at NNLL C(↵s) is required at the

one-loop order, which entails the di↵erence between the full O(↵s) QCD calculation in the

logarithmic limit (i.e. v ! 0) for the observable v and the expansion of the jet function at

the same order.

2.2 Extension to the NNLL case

The extension of the above formulation to NNLL order requires the generalisation of the

r.h.s. of the evolution equations (2.3) to O(↵2
s). To understand what the calculation entails,

we observe that Eqs. (2.3) describe the fragmentation by a sequence of angular ordered

branchings. The resulting emission probability is the iteration of 1 ! 2 splitting kernels, an

– 5 –

Σ(FCx) =
1
σ0 ∫

FCx

0

dσ
dOx

dOx = exp {−∫ dt′ ∫
1−zcut

zcut

dz Pqq(z)Θ(z(1 − z)θ2−x − FCx)}

∫ dP(q)
1 = Δq(t)

∫ dP(q)
2 = Δq(t) ∫

t0

t
dt1 ∫

1−z0

z0

dz1 Pqq(z1)

∫ dP(q)
3 = Δq(t) ∫

t0

t
dt1 ∫

t0

t1

dt2 ∫
1−z0

z0

dz1dz2 Pqq(z1) Pqq(z2)

. . . = . . .

× [δ(FCx − z1(1 − z1)θ2−x
g1q ) Θzcut

(z1) + δ(FCx) (1 − Θzcut
(z1))]

+ δ(FCx − z2(1 − z2)θ2−x
g2q ) Θzcut

(z2) (1 − Θzcut
(z1))]

× [δ(FCx − z1(1 − z1)θ2−x
g1q ) Θzcut

(z1) + δ(FCx) (1 − Θzcut
(z1)) (1 − Θzcut

(z2))

× δ(FCx)



๏  Generate -particles states with a Markov chain MC 

➡ Measure observable only at the end of the evolution (PS like)

m

11

 Monte Carlo solution

∫ dP(q)
1 = Δq(t) =

Δq(t)
Δq(t0)

∫ dP(q)
2 = Δq(t) ∫

t0

t
dt1 ∫

1−z0

z0

dz1 Pqq(z1) = ∫
t0

t
dt1 ∫

1−z0

z0

dz1
Δq(t)
Δq(t1)

Pqq(z1)
Δq(t1)
Δq(t0)

∫ dP(q)
3 = Δq(t) ∫

t0

t
dt1 ∫

t0

t1

dt2 ∫
1−z0

z0

dz1dz2 Pqq(z1) Pqq(z2) = ∫
t0

t
dt1 ∫

t0

t1

dt2 ∫
1−z0

z0

dz1dz2
Δq(t)
Δq(t1)

Pqq(z1)
Δq(t1)
Δq(t2)

Pqq(z1)
Δq(t2)
Δq(t0)

. . . = . . .

recursively solve for next evolution time  
until  ti+1 > t0

Δq(ti)
Δq(ti+1)

= χ ∈ [0,1]

−d (Δq(t)/Δq(t1))
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 Anatomy of NSL formulation

Landau pole). The standard leading-order splitting functions are given in Appendix A.

The above set of equations can be used to derive collinear resummations with NLL (single

logarithmic) accuracy for final state radiation.

The Sudakov form factors �f describe the no-emission probability and can be derived

by imposing the unitarity condition

Gf (x, t)|u=1 = 1 , (2.4)

from which one obtains

ln�q(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz Pqq(z) , (2.5)

ln�g(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz (Pgg(z) + Pqg(z)) . (2.6)

An obvious boundary condition is then Gf (x, t0) = u, indicating a 100% probability of

finding a parton f with momentum x. With the above definition of the GFs, the resummed

distribution (or equivalently cumulative distribution) d�
(f) for a given observable v =

V ({ki}) (with {ki} denoting the final state momenta produced in the fragmentation of a

jet of initial flavour f) has the general form

d�
(f) = �0C(↵s)⌦ J

(f)(↵s, v) , (2.7)

where �0 is the Born cross section for the hard process under consideration. The jet

distribution J
(f) is simply obtained by integrating Eq. (2.2) with the measurement function

of the observable for any final-state multiplicity m, that is

J
(f)(↵s, v) =

1X

m=1

Z
dP

(f)
m �(v � V ({k}m)) . (2.8)

The ⌦ operation is observable dependent. It is usually a regular product, but for some

specific observables (e.g. fragmentation functions) it can take the form of a convolution

over the longitudinal momentum fraction. The process- and observable-dependent match-

ing coe�cient C(↵s) admits a fixed-order perturbative expansion in powers of the strong

coupling constant C(↵s) = 1 + O(↵s), and it accounts for constant terms stemming from

the matching of the jet distribution (defined by the GFs evolution equation) to the fixed

order QCD calculation in the limit v ! 0. Specifically, at NNLL C(↵s) is required at the

one-loop order, which entails the di↵erence between the full O(↵s) QCD calculation in the

logarithmic limit (i.e. v ! 0) for the observable v and the expansion of the jet function at

the same order.

2.2 Extension to the NNLL case

The extension of the above formulation to NNLL order requires the generalisation of the

r.h.s. of the evolution equations (2.3) to O(↵2
s). To understand what the calculation entails,

we observe that Eqs. (2.3) describe the fragmentation by a sequence of angular ordered

branchings. The resulting emission probability is the iteration of 1 ! 2 splitting kernels, an

– 5 –

Matching coefficient at one loop 
(coupling at the hard scale for IRC safe obs.)

GFs evolution with two loop kernels
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Landau pole). The standard leading-order splitting functions are given in Appendix A.

The above set of equations can be used to derive collinear resummations with NLL (single

logarithmic) accuracy for final state radiation.

The Sudakov form factors �f describe the no-emission probability and can be derived

by imposing the unitarity condition

Gf (x, t)|u=1 = 1 , (2.4)

from which one obtains

ln�q(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz Pqq(z) , (2.5)

ln�g(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz (Pgg(z) + Pqg(z)) . (2.6)

An obvious boundary condition is then Gf (x, t0) = u, indicating a 100% probability of

finding a parton f with momentum x. With the above definition of the GFs, the resummed

distribution (or equivalently cumulative distribution) d�
(f) for a given observable v =

V ({ki}) (with {ki} denoting the final state momenta produced in the fragmentation of a

jet of initial flavour f) has the general form

d�
(f) = �0C(↵s)⌦ J

(f)(↵s, v) , (2.7)

where �0 is the Born cross section for the hard process under consideration. The jet

distribution J
(f) is simply obtained by integrating Eq. (2.2) with the measurement function

of the observable for any final-state multiplicity m, that is

J
(f)(↵s, v) =

1X

m=1

Z
dP

(f)
m �(v � V ({k}m)) . (2.8)

The ⌦ operation is observable dependent. It is usually a regular product, but for some

specific observables (e.g. fragmentation functions) it can take the form of a convolution

over the longitudinal momentum fraction. The process- and observable-dependent match-

ing coe�cient C(↵s) admits a fixed-order perturbative expansion in powers of the strong

coupling constant C(↵s) = 1 + O(↵s), and it accounts for constant terms stemming from

the matching of the jet distribution (defined by the GFs evolution equation) to the fixed

order QCD calculation in the limit v ! 0. Specifically, at NNLL C(↵s) is required at the

one-loop order, which entails the di↵erence between the full O(↵s) QCD calculation in the

logarithmic limit (i.e. v ! 0) for the observable v and the expansion of the jet function at

the same order.

2.2 Extension to the NNLL case

The extension of the above formulation to NNLL order requires the generalisation of the

r.h.s. of the evolution equations (2.3) to O(↵2
s). To understand what the calculation entails,

we observe that Eqs. (2.3) describe the fragmentation by a sequence of angular ordered

branchings. The resulting emission probability is the iteration of 1 ! 2 splitting kernels, an
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Matching coefficient at one loop 
(coupling at the hard scale for IRC safe obs.)

GFs evolution with two loop kernels

independent emission pattern, which correctly describes the NLL strongly ordered regime,

i.e. ti ⌧ ti+1. At NNLL one needs to account for unordered corrections, i.e. ti ⇠ ti+1,

which are described by the full set of 1 ! 3 splitting kernels [62–64]. Such a correction

will generate an extra term in Eqs. (2.3) which contains a product of three GFs (e.g. the

splitting q ! qgg will be proportional to Gq Gg Gg). At the same time one has to consider

the virtual one-loop corrections to the 1 ! 2 splitting kernels [65], which will have the same

GFs structure as the NLL kernel (2.3). Finally, to avoid double counting with the O(↵2
s)

iteration of the NLL evolution, we must subtract the latter from the r.h.s. of Eqs. (2.3).

The aforementioned calculation can be consistently performed in the dimensional reg-

ularisation scheme in d = 4 � 2✏ dimensions. However, in order to exploit the flexibility

of Monte Carlo integration, we need to bring the integral equations into a form that is

manifestly finite so that we can take ✏ ! 0 at the integrand level. In order to make the

cancellation of ✏ divergences manifest, we include a local subtraction term with the goal

of regularising both the 1 ! 3 real and 1 ! 2 virtual corrections. The subtraction can be

built directly from the 1 ! 3 real corrections, by integrating them with the same 1 ! 2

GFs structure present in the NLL kernel (2.3). In the reals, this e↵ectively plays the role

of a virtual correction obtained by unitarity. This procedure results in evolution equations

that are manifestly finite in four space time dimensions. In the case of quark jets, the

NNLL evolution equation takes the form

Gq(x, t) = u�q(t)+

Z
t0

t

dt
0

Z 1�z0

z0

dz Gq(x z, t
0)Gg(x (1� z), t0)

�q(t)

�q(t0)
Pq(z, ✓) (2.9)

+Kfinite
q [Gq, Gg] .

In the above equation we defined the inclusive emission probability Pq(z, ✓) as 5

Pq(z, ✓) ⌘
2CF

1� z

✓
1 +

↵s(E2
g
2(z)✓2)

2⇡
K

(1)

◆

+ Bq

1(z) +
↵s(E2

g
2(z)✓2)

2⇡

�
Bq

2(z) + Bq

1(z)b0 ln g
2(z)

�
, (2.10)

where ✓ is the angle between the final state quark and gluon (set by the evolution time

t
0). The inclusive emission probability Pq(z) (and its gluonic counterpart) will be also

central to the construction of an algorithmic solution to the NNLL problem, as we shall

demonstrate in forthcoming work [1]. The quantity K
(1) is the ratio of the two-loop to the

one-loop cusp anomalous dimension

K
(1) =

✓
67

18
� ⇡

2

6

◆
CA � 10

9
TR nf ⌘ K

(1),CA CA +K
(1),nf TR nf , (2.11)

and b0 is the first coe�cient of the QCD beta function

b0 =
11

6
CA � 2

3
TR nf ⌘ b

(CA)
0 CA + b

(nf )
0 TR nf . (2.12)

5The precise form of g(z) in the coe�cient of Bq
2(z) is not relevant at NNLL, but we keep it in for

simplicity.

– 6 –
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Landau pole). The standard leading-order splitting functions are given in Appendix A.

The above set of equations can be used to derive collinear resummations with NLL (single

logarithmic) accuracy for final state radiation.

The Sudakov form factors �f describe the no-emission probability and can be derived

by imposing the unitarity condition

Gf (x, t)|u=1 = 1 , (2.4)

from which one obtains

ln�q(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz Pqq(z) , (2.5)

ln�g(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz (Pgg(z) + Pqg(z)) . (2.6)

An obvious boundary condition is then Gf (x, t0) = u, indicating a 100% probability of

finding a parton f with momentum x. With the above definition of the GFs, the resummed

distribution (or equivalently cumulative distribution) d�
(f) for a given observable v =

V ({ki}) (with {ki} denoting the final state momenta produced in the fragmentation of a

jet of initial flavour f) has the general form

d�
(f) = �0C(↵s)⌦ J

(f)(↵s, v) , (2.7)

where �0 is the Born cross section for the hard process under consideration. The jet

distribution J
(f) is simply obtained by integrating Eq. (2.2) with the measurement function

of the observable for any final-state multiplicity m, that is

J
(f)(↵s, v) =

1X

m=1

Z
dP

(f)
m �(v � V ({k}m)) . (2.8)

The ⌦ operation is observable dependent. It is usually a regular product, but for some

specific observables (e.g. fragmentation functions) it can take the form of a convolution

over the longitudinal momentum fraction. The process- and observable-dependent match-

ing coe�cient C(↵s) admits a fixed-order perturbative expansion in powers of the strong

coupling constant C(↵s) = 1 + O(↵s), and it accounts for constant terms stemming from

the matching of the jet distribution (defined by the GFs evolution equation) to the fixed

order QCD calculation in the limit v ! 0. Specifically, at NNLL C(↵s) is required at the

one-loop order, which entails the di↵erence between the full O(↵s) QCD calculation in the

logarithmic limit (i.e. v ! 0) for the observable v and the expansion of the jet function at

the same order.

2.2 Extension to the NNLL case

The extension of the above formulation to NNLL order requires the generalisation of the

r.h.s. of the evolution equations (2.3) to O(↵2
s). To understand what the calculation entails,

we observe that Eqs. (2.3) describe the fragmentation by a sequence of angular ordered

branchings. The resulting emission probability is the iteration of 1 ! 2 splitting kernels, an
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(coupling at the hard scale for IRC safe obs.)

GFs evolution with two loop kernels

independent emission pattern, which correctly describes the NLL strongly ordered regime,

i.e. ti ⌧ ti+1. At NNLL one needs to account for unordered corrections, i.e. ti ⇠ ti+1,

which are described by the full set of 1 ! 3 splitting kernels [62–64]. Such a correction

will generate an extra term in Eqs. (2.3) which contains a product of three GFs (e.g. the

splitting q ! qgg will be proportional to Gq Gg Gg). At the same time one has to consider

the virtual one-loop corrections to the 1 ! 2 splitting kernels [65], which will have the same

GFs structure as the NLL kernel (2.3). Finally, to avoid double counting with the O(↵2
s)

iteration of the NLL evolution, we must subtract the latter from the r.h.s. of Eqs. (2.3).

The aforementioned calculation can be consistently performed in the dimensional reg-

ularisation scheme in d = 4 � 2✏ dimensions. However, in order to exploit the flexibility

of Monte Carlo integration, we need to bring the integral equations into a form that is

manifestly finite so that we can take ✏ ! 0 at the integrand level. In order to make the

cancellation of ✏ divergences manifest, we include a local subtraction term with the goal

of regularising both the 1 ! 3 real and 1 ! 2 virtual corrections. The subtraction can be

built directly from the 1 ! 3 real corrections, by integrating them with the same 1 ! 2

GFs structure present in the NLL kernel (2.3). In the reals, this e↵ectively plays the role

of a virtual correction obtained by unitarity. This procedure results in evolution equations

that are manifestly finite in four space time dimensions. In the case of quark jets, the

NNLL evolution equation takes the form

Gq(x, t) = u�q(t)+

Z
t0

t

dt
0

Z 1�z0

z0

dz Gq(x z, t
0)Gg(x (1� z), t0)

�q(t)

�q(t0)
Pq(z, ✓) (2.9)

+Kfinite
q [Gq, Gg] .

In the above equation we defined the inclusive emission probability Pq(z, ✓) as 5

Pq(z, ✓) ⌘
2CF

1� z

✓
1 +

↵s(E2
g
2(z)✓2)

2⇡
K

(1)

◆

+ Bq

1(z) +
↵s(E2

g
2(z)✓2)

2⇡

�
Bq

2(z) + Bq

1(z)b0 ln g
2(z)

�
, (2.10)

where ✓ is the angle between the final state quark and gluon (set by the evolution time

t
0). The inclusive emission probability Pq(z) (and its gluonic counterpart) will be also

central to the construction of an algorithmic solution to the NNLL problem, as we shall

demonstrate in forthcoming work [1]. The quantity K
(1) is the ratio of the two-loop to the

one-loop cusp anomalous dimension

K
(1) =

✓
67

18
� ⇡

2

6

◆
CA � 10

9
TR nf ⌘ K

(1),CA CA +K
(1),nf TR nf , (2.11)

and b0 is the first coe�cient of the QCD beta function

b0 =
11

6
CA � 2

3
TR nf ⌘ b

(CA)
0 CA + b

(nf )
0 TR nf . (2.12)

5The precise form of g(z) in the coe�cient of Bq
2(z) is not relevant at NNLL, but we keep it in for

simplicity.

– 6 –

Virtual corrections 
(for free from unitarity)










































































































cel whoring the 965 connections to the

evolution equation eureils some delicate

points Let's consoles or en exemper
the q q transition in the abelian channel f

with twin imith
G Luz t Gg x a 21 til

y

O

oirrels obtained

1
s iteration of one Coop

kernel finite to

remove oben ble

countingin
I A glxli zl.tl Gglxzll t't

t lGy1 27 t

The extension can be performed consistently
in Dimensional Reflorizerion Each

tem is however livenger bowing
e serious

obstacle if we want to solve these equations
in a computer

๏  Two loop corrections to evolution equation (e.g. quark fragmentation in NS channel)

 Anatomy of NSL formulation



๏  Two loop corrections to evolution equation (e.g. quark fragmentation in NS channel)

16

Landau pole). The standard leading-order splitting functions are given in Appendix A.

The above set of equations can be used to derive collinear resummations with NLL (single

logarithmic) accuracy for final state radiation.

The Sudakov form factors �f describe the no-emission probability and can be derived

by imposing the unitarity condition

Gf (x, t)|u=1 = 1 , (2.4)

from which one obtains

ln�q(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz Pqq(z) , (2.5)

ln�g(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz (Pgg(z) + Pqg(z)) . (2.6)

An obvious boundary condition is then Gf (x, t0) = u, indicating a 100% probability of

finding a parton f with momentum x. With the above definition of the GFs, the resummed

distribution (or equivalently cumulative distribution) d�
(f) for a given observable v =

V ({ki}) (with {ki} denoting the final state momenta produced in the fragmentation of a

jet of initial flavour f) has the general form

d�
(f) = �0C(↵s)⌦ J

(f)(↵s, v) , (2.7)

where �0 is the Born cross section for the hard process under consideration. The jet

distribution J
(f) is simply obtained by integrating Eq. (2.2) with the measurement function

of the observable for any final-state multiplicity m, that is

J
(f)(↵s, v) =

1X

m=1

Z
dP

(f)
m �(v � V ({k}m)) . (2.8)

The ⌦ operation is observable dependent. It is usually a regular product, but for some

specific observables (e.g. fragmentation functions) it can take the form of a convolution

over the longitudinal momentum fraction. The process- and observable-dependent match-

ing coe�cient C(↵s) admits a fixed-order perturbative expansion in powers of the strong

coupling constant C(↵s) = 1 + O(↵s), and it accounts for constant terms stemming from

the matching of the jet distribution (defined by the GFs evolution equation) to the fixed

order QCD calculation in the limit v ! 0. Specifically, at NNLL C(↵s) is required at the

one-loop order, which entails the di↵erence between the full O(↵s) QCD calculation in the

logarithmic limit (i.e. v ! 0) for the observable v and the expansion of the jet function at

the same order.

2.2 Extension to the NNLL case

The extension of the above formulation to NNLL order requires the generalisation of the

r.h.s. of the evolution equations (2.3) to O(↵2
s). To understand what the calculation entails,

we observe that Eqs. (2.3) describe the fragmentation by a sequence of angular ordered

branchings. The resulting emission probability is the iteration of 1 ! 2 splitting kernels, an
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independent emission pattern, which correctly describes the NLL strongly ordered regime,

i.e. ti ⌧ ti+1. At NNLL one needs to account for unordered corrections, i.e. ti ⇠ ti+1,

which are described by the full set of 1 ! 3 splitting kernels [62–64]. Such a correction

will generate an extra term in Eqs. (2.3) which contains a product of three GFs (e.g. the

splitting q ! qgg will be proportional to Gq Gg Gg). At the same time one has to consider

the virtual one-loop corrections to the 1 ! 2 splitting kernels [65], which will have the same

GFs structure as the NLL kernel (2.3). Finally, to avoid double counting with the O(↵2
s)

iteration of the NLL evolution, we must subtract the latter from the r.h.s. of Eqs. (2.3).

The aforementioned calculation can be consistently performed in the dimensional reg-

ularisation scheme in d = 4 � 2✏ dimensions. However, in order to exploit the flexibility

of Monte Carlo integration, we need to bring the integral equations into a form that is

manifestly finite so that we can take ✏ ! 0 at the integrand level. In order to make the

cancellation of ✏ divergences manifest, we include a local subtraction term with the goal

of regularising both the 1 ! 3 real and 1 ! 2 virtual corrections. The subtraction can be

built directly from the 1 ! 3 real corrections, by integrating them with the same 1 ! 2

GFs structure present in the NLL kernel (2.3). In the reals, this e↵ectively plays the role

of a virtual correction obtained by unitarity. This procedure results in evolution equations

that are manifestly finite in four space time dimensions. In the case of quark jets, the

NNLL evolution equation takes the form

Gq(x, t) = u�q(t)+

Z
t0

t

dt
0

Z 1�z0

z0

dz Gq(x z, t
0)Gg(x (1� z), t0)

�q(t)

�q(t0)
Pq(z, ✓) (2.9)

+Kfinite
q [Gq, Gg] .

In the above equation we defined the inclusive emission probability Pq(z, ✓) as 5

Pq(z, ✓) ⌘
2CF

1� z

✓
1 +

↵s(E2
g
2(z)✓2)

2⇡
K

(1)

◆

+ Bq

1(z) +
↵s(E2

g
2(z)✓2)

2⇡

�
Bq

2(z) + Bq

1(z)b0 ln g
2(z)

�
, (2.10)

where ✓ is the angle between the final state quark and gluon (set by the evolution time

t
0). The inclusive emission probability Pq(z) (and its gluonic counterpart) will be also

central to the construction of an algorithmic solution to the NNLL problem, as we shall

demonstrate in forthcoming work [1]. The quantity K
(1) is the ratio of the two-loop to the

one-loop cusp anomalous dimension

K
(1) =

✓
67

18
� ⇡

2

6

◆
CA � 10

9
TR nf ⌘ K

(1),CA CA +K
(1),nf TR nf , (2.11)

and b0 is the first coe�cient of the QCD beta function

b0 =
11

6
CA � 2

3
TR nf ⌘ b

(CA)
0 CA + b

(nf )
0 TR nf . (2.12)

5The precise form of g(z) in the coe�cient of Bq
2(z) is not relevant at NNLL, but we keep it in for

simplicity.
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B Expression of B2(z) for quark fragmentation

The expression of Bq

2(z) can be organised as follows:14

Bq

2(z) = C
2
F Bq,C

2
F

2 (z) + CFCA Bq, CFCA
2 (z) + CFTRnf Bq, CFTR

2 (z) + CF

✓
CF � CA

2

◆
Bq, id.
2 (z) .

(B.1)

The above functions read

Bq, id.
2 (z) = 4z � 7

2
+

5z2 � 2

2(1� z)
ln z +

1 + z
2

1� z

✓
⇡
2

6
� ln z ln(1� z)� Li2(z)

◆
, (B.2)

Bq, CFTR
2 (z) = �b

(nf )
0 pqq(z) ln z + b

(nf )
0 (1� z)�K

(1),nf (1 + z) + 2 b
(nf )
0 (1 + z) ln(1� z) ,

(B.3)

Bq, CFCA
2 (z) = �b

(CA)
0 pqq(z) ln z + b

(CA)
0 (1� z) +

3

2

z
2 ln z

1� z
+

1

2
(2z � 1) (B.4)

+ 2 b(CA)
0 (1 + z) ln(1� z) + pqq(z)

✓
ln2 z + Li2

✓
z � 1

z

◆
+ 2Li2(1� z)

◆
�K

(1),CA(1 + z) ,

Bq,C
2
F

2 (z) = pqq(z)

✓
�3 ln z � 2 ln z ln(1� z) + 2Li2

✓
z � 1

z

◆◆
� 1 +H

fin.(z) , (B.5)

where H
fin.(z) is given by a 1-fold integral (cf. Figure 4 of ref. [57]), that is provided

in Mathematica format as an ancillary file with the arXiv preprint of this article. The

function Bq

2(z) is regular in the soft limit z ! 1 and is thus fully integrable over z 2 [0, 1].

C The NNLL Kfinite
kernel

In this appendix we report the functions Kfinite
f

(with f 2 {q, g}) entering the NNLL

evolution equation for the quark generating functionals given in Eqs. (2.9), (7.1). We will

start by presenting the result for quark jets due to its simpler structure, and later give the

gluon counterpart.

C.1 Quark fragmentation

We can express Kfinite
q as a di↵erence between two terms which encode the (subtracted)

real corrections to the first of Eqs. (2.3) and its double counting with the iteration of the

NLL kernel, respectively. That is:

Kfinite
q [Gq, Gg] ⌘ KR

q [Gq, Gg]�KDC
q [Gq, Gg] . (C.1)

The di↵erence of KR
q and KDC

q ensures that the quantity Kfinite
q is infrared finite and purely

NNLL.

14The function Bq
2(z) computed in Ref. [57] is defined as the Bq

2(z) used here multiplied by (↵s/(2⇡))
2.
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 Cancellation of IRC divergences

∫ dΦ3
(8π)2

s2
123

⟨ ̂P⟩CF2 Gg(x(1 − z), t1,23) Gg(x z(1 − zp), t2,3) Gq(x z zp, t2,3) ∫ dΦ2𝒱(1)
CF2(z, ϵ) Gg(x(1 − z), t1,2) Gq(x z, t1,2)

−∫ dΦ3
(8π)2

s2
123

⟨ ̂P⟩CF2 Gg(x(1 − z), t1,23) Gq(x z, t1,23) +∫ dΦ3
(8π)2

s2
123

⟨ ̂P⟩CF2 Gg(x(1 − z), t1,23) Gq(x z, t1,23)

from the integration over z, and specifically from integrating the Sudakov (2.14) with the

single-emission measurement function parameterised in terms of z and ✓, i.e.7

⇥(V (z, ✓)� v) . (3.5)

This o↵ers a natural path to incorporate this information in Monte Carlo parton show-

ers, and it constitutes a crucial step towards the development of NNLL algorithms. Re-

cently, Ref. [57] presented a two loop calculation of the quantity Bq

2(z) in Eq. (2.14) for

the quark case, where the corresponding 1 ! 3 splitting kernels are integrated by fixing

z and ✓ to the momentum fraction and angle of either the first emission, i.e. the one at

larger angles for the C
2
F

channel, or that of the radiated pair (for the CFCA, TRnf and

CF (CF � CA/2) channels).8 Its expression is given in Appendix B.

The di↵erential anomalous dimension Bq

2(z) is su�cient to derive B2 for any rIRC safe

global observable defined on quark jets (see also the related discussions in Section 3 of

Ref. [57]). Specifically, for the definition of z and ✓ adopted in Ref. [57] (and reported in

Appendix B) one obtains

Z 1

0
dz Bq

2(z) ⌘ B
q

2,✓2 = ��
(2)
q + b0X

q

✓2
, (3.6)

where

X
q

✓2
= CF

✓
2⇡2

3
� 13

2

◆
. (3.7)

An analogous integration taking into account the observable constraint (3.5) would produce

the observable-specific constant X. Explicit examples of this will be considered in Sec. 8.

4 Bg

2 in the gluon case: definitions and computational strategy

To calculate Bg

2(z), one needs an IRC safe definition of z and ✓ such that it projects the

1 ! 3 phase space �3 onto the underlying 1 ! 2 kinematics �2. The definition of Bg

2(z) is

then uniquely specified by a kinematical map

M : �3 ! �2 , (4.1)

that provides a definition of the longitudinal momentum fraction z and the angle ✓ of the

first branching in the �2 phase space. This also defines in a unique manner the inclusive

emission probability P(z, ✓), where one integrates over a second emission while keeping

the variables z and ✓ fixed. A property of the definition of z and ✓ is that this projection

reproducesK(1) in the soft limit. The generalisation of the calculation of the quark case [57]

to the gluonic case is non-trivial and it entails two conceptual subtleties:

7We note that some definitions of the Bq
2 coe�cient (and thus of z and ✓) in the literature contain an

extra contribution arising from single-logarithmic soft physics (see e.g. Ref. [55]). These terms do not

contribute to Bq
2 in our scheme for quark jets, and they emerge from the integration of the Kfinite

q [Gq, Gg]

contribution. We will return to this point when discussing the case of gluon jets.
8The definition of the radiated pair is ambiguous in the CF (CF � CA/2) colour channel due to the

symmetry of the splitting kernel, however this ambiguity does not a↵ect the form of Bq
2(z).

– 9 –

✓12,3

z1 = (1� z)zp
✓12 z2 = (1� z)(1� zp)

z3 = z

Figure 7: The diagram representing gluon decay to a qq̄ pair, where the quark from the

gluon decay is either identical or non-identical to the initiating quark.

z1 = 1� z

✓1,23

z2 = z(1� zp)

✓23
z3 = zzp

Figure 8: The diagram representing the gluon emission C
2
F
channel.

Following the definition of the inclusive emission probability (2.10) we obtain:

KR
q [Gq, Gg] =

X

(A)

1

S2

Z
d�(A)

3 P
(A)
1!3

⇢
Gf1(x zp (1� z), t1,2)Gf2(x (1� zp) (1� z), t1,2)

⇥Gq(x z, t12,3)�Gf12(x (1� z), t12,3)Gq(x z, t12,3)

�
�q(t)

�q(t1,2)

+

Z
d�(B)

3 P
(B)
1!3

⇢
Gg(x (1� z), t1,23)Gg(x z (1� zp), t2,3)

⇥Gq(x z zp, t2,3)�Gg(x (1� z), t1,23)Gq(x z, t1,23)

�
�q(t)

�q(t2,3)
⇥(t2,3 � t1,3) , (C.2)

where we have used the notation ti,j to indicate the value of the evolution time (2.1)

corresponding to the angle ✓i,j . Moreover, we have parameterised the integrands as 15

P
(A)
1!3 ⌘

(8⇡)2

s
2
123

↵
2
s(E

2
g
2(z) ✓212,3)hP̂ iCFCA ,CFTRnf ,CF (CF�CA/2) , (C.3)

P
(B)
1!3 ⌘

(8⇡)2

s
2
123

↵
2
s(E

2
g
2(z) ✓21,3)hP̂ i

C
2
F
. (C.4)

Here, P (A)
1!3 is parameterised according to the phase space depicted in Fig. 7, while P (B)

1!3 is

parameterised according to Fig. 8. The corresponding phase space measures, denoted by

d�(A,B)
3 in (C.2) are obtained from Eq. (6.1) by setting ✏ = 0 and performing the change of

variable (with the corresponding Jacobian) of Figs. 7, 8. The sum in Eq. (C.2) runs over

all the (A) colour channels of the type q ! f1f2q(q̄) defined in Eq. (C.3), and fi denotes

15We notice that the production of a qq̄q final state with identical flavours contributing to the CF (CF �
CA/2) is finite, and therefore does not factorise into the product of two splitting functions in the strong

angular ordered limit.
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Following the definition of the inclusive emission probability (2.10) we obtain:
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where we have used the notation ti,j to indicate the value of the evolution time (2.1)

corresponding to the angle ✓i,j . Moreover, we have parameterised the integrands as 15
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Here, P (A)
1!3 is parameterised according to the phase space depicted in Fig. 7, while P (B)

1!3 is

parameterised according to Fig. 8. The corresponding phase space measures, denoted by

d�(A,B)
3 in (C.2) are obtained from Eq. (6.1) by setting ✏ = 0 and performing the change of

variable (with the corresponding Jacobian) of Figs. 7, 8. The sum in Eq. (C.2) runs over

all the (A) colour channels of the type q ! f1f2q(q̄) defined in Eq. (C.3), and fi denotes

15We notice that the production of a qq̄q final state with identical flavours contributing to the CF (CF �
CA/2) is finite, and therefore does not factorise into the product of two splitting functions in the strong

angular ordered limit.
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Figure 8: The diagram representing the gluon emission C
2
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channel.

Following the definition of the inclusive emission probability (2.10) we obtain:

KR
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⇢
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where we have used the notation ti,j to indicate the value of the evolution time (2.1)

corresponding to the angle ✓i,j . Moreover, we have parameterised the integrands as 15
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Here, P (A)
1!3 is parameterised according to the phase space depicted in Fig. 7, while P (B)

1!3 is

parameterised according to Fig. 8. The corresponding phase space measures, denoted by

d�(A,B)
3 in (C.2) are obtained from Eq. (6.1) by setting ✏ = 0 and performing the change of

variable (with the corresponding Jacobian) of Figs. 7, 8. The sum in Eq. (C.2) runs over

all the (A) colour channels of the type q ! f1f2q(q̄) defined in Eq. (C.3), and fi denotes

15We notice that the production of a qq̄q final state with identical flavours contributing to the CF (CF �
CA/2) is finite, and therefore does not factorise into the product of two splitting functions in the strong

angular ordered limit.
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+∫ dΦ3
(8π)2

s2
123

⟨ ̂P⟩CF2 Gg(x(1 − z), t1,23) Gq(x z, t1,23)

✓12,3

z1 = (1� z)zp
✓12 z2 = (1� z)(1� zp)

z3 = z

Figure 7: The diagram representing gluon decay to a qq̄ pair, where the quark from the

gluon decay is either identical or non-identical to the initiating quark.

z1 = 1� z

✓1,23

z2 = z(1� zp)

✓23
z3 = zzp

Figure 8: The diagram representing the gluon emission C
2
F
channel.

Following the definition of the inclusive emission probability (2.10) we obtain:

KR
q [Gq, Gg] =

X

(A)

1

S2

Z
d�(A)

3 P
(A)
1!3

⇢
Gf1(x zp (1� z), t1,2)Gf2(x (1� zp) (1� z), t1,2)

⇥Gq(x z, t12,3)�Gf12(x (1� z), t12,3)Gq(x z, t12,3)

�
�q(t)
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Z
d�(B)

3 P
(B)
1!3

⇢
Gg(x (1� z), t1,23)Gg(x z (1� zp), t2,3)

⇥Gq(x z zp, t2,3)�Gg(x (1� z), t1,23)Gq(x z, t1,23)

�
�q(t)

�q(t2,3)
⇥(t2,3 � t1,3) , (C.2)

where we have used the notation ti,j to indicate the value of the evolution time (2.1)

corresponding to the angle ✓i,j . Moreover, we have parameterised the integrands as 15
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Here, P (A)
1!3 is parameterised according to the phase space depicted in Fig. 7, while P (B)

1!3 is

parameterised according to Fig. 8. The corresponding phase space measures, denoted by

d�(A,B)
3 in (C.2) are obtained from Eq. (6.1) by setting ✏ = 0 and performing the change of

variable (with the corresponding Jacobian) of Figs. 7, 8. The sum in Eq. (C.2) runs over

all the (A) colour channels of the type q ! f1f2q(q̄) defined in Eq. (C.3), and fi denotes

15We notice that the production of a qq̄q final state with identical flavours contributing to the CF (CF �
CA/2) is finite, and therefore does not factorise into the product of two splitting functions in the strong

angular ordered limit.
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calculate in D=4 
(e.g. via MC)

calculate in D=4-2  
analytically at fixed  

ϵ
Φ2



☐𐄂

๏  Map  obtained in general following a Cambridge-Aachen like clustering sequence: 

 Easy to map out the collinear singularities in each of the colour/flavour channels 

 Phase space angular constraints lead to complicated integrals (especially for gluon fragmentation) 

๏  Result leads to finite integral operator in D=4. Sudakov form factor defined via unitarity i.e. 

ℳ : Φ3 → Φ2

Gq(x, t)
u=1

= 1

19

 Kinematic map and ℬf
2(z)

☑

independent emission pattern, which correctly describes the NLL strongly ordered regime,

i.e. ti ⌧ ti+1. At NNLL one needs to account for unordered corrections, i.e. ti ⇠ ti+1,

which are described by the full set of 1 ! 3 splitting kernels [62–64]. Such a correction

will generate an extra term in Eqs. (2.3) which contains a product of three GFs (e.g. the

splitting q ! qgg will be proportional to Gq Gg Gg). At the same time one has to consider

the virtual one-loop corrections to the 1 ! 2 splitting kernels [65], which will have the same

GFs structure as the NLL kernel (2.3). Finally, to avoid double counting with the O(↵2
s)

iteration of the NLL evolution, we must subtract the latter from the r.h.s. of Eqs. (2.3).

The aforementioned calculation can be consistently performed in the dimensional reg-

ularisation scheme in d = 4 � 2✏ dimensions. However, in order to exploit the flexibility

of Monte Carlo integration, we need to bring the integral equations into a form that is

manifestly finite so that we can take ✏ ! 0 at the integrand level. In order to make the

cancellation of ✏ divergences manifest, we include a local subtraction term with the goal

of regularising both the 1 ! 3 real and 1 ! 2 virtual corrections. The subtraction can be

built directly from the 1 ! 3 real corrections, by integrating them with the same 1 ! 2

GFs structure present in the NLL kernel (2.3). In the reals, this e↵ectively plays the role

of a virtual correction obtained by unitarity. This procedure results in evolution equations

that are manifestly finite in four space time dimensions. In the case of quark jets, the

NNLL evolution equation takes the form

Gq(x, t) = u�q(t)+

Z
t0

t

dt
0

Z 1�z0

z0

dz Gq(x z, t
0)Gg(x (1� z), t0)

�q(t)

�q(t0)
Pq(z, ✓) (2.9)

+Kfinite
q [Gq, Gg] .

In the above equation we defined the inclusive emission probability Pq(z, ✓) as 5

Pq(z, ✓) ⌘
2CF

1� z

✓
1 +

↵s(E2
g
2(z)✓2)

2⇡
K

(1)

◆

+ Bq

1(z) +
↵s(E2

g
2(z)✓2)

2⇡

�
Bq

2(z) + Bq

1(z)b0 ln g
2(z)

�
, (2.10)

where ✓ is the angle between the final state quark and gluon (set by the evolution time

t
0). The inclusive emission probability Pq(z) (and its gluonic counterpart) will be also

central to the construction of an algorithmic solution to the NNLL problem, as we shall

demonstrate in forthcoming work [1]. The quantity K
(1) is the ratio of the two-loop to the

one-loop cusp anomalous dimension

K
(1) =

✓
67

18
� ⇡

2

6

◆
CA � 10

9
TR nf ⌘ K

(1),CA CA +K
(1),nf TR nf , (2.11)

and b0 is the first coe�cient of the QCD beta function

b0 =
11

6
CA � 2

3
TR nf ⌘ b

(CA)
0 CA + b

(nf )
0 TR nf . (2.12)

5The precise form of g(z) in the coe�cient of Bq
2(z) is not relevant at NNLL, but we keep it in for

simplicity.
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Two loop cusp AD

New anomalous dimension. Note: 
 is momentum fraction after the first splitting!z

We have further decomposed the splitting function Pqq(z) into its soft part (z ' 1) and

the hard-collinear left over, where the latter is given by

Bq

1(z) ⌘ �CF (1 + z) . (2.13)

The term proportional to b0 ln2 g(z) balances the g(z) dependence of the argument of the

overall coupling encoded in dt
0 in Eq. (2.14), such that the quantity Bq

2(z) is independent

of the choice of g(z) and matches the definition and calculation given in Ref. [57]. The

definition of Pq(z, ✓) implicitly relies upon a scheme to define the variables z and ✓ while

integrating over a second emission (and adding the corresponding virtual corrections). This

scheme must be IRC safe and e↵ectively Pq(z, ✓) can be thought of as a next-to-leading-

order correction to a 1 ! 2 collinear splitting.

The functional Kfinite
q contains 4-dimensional terms which can be handled e�ciently

with Monte Carlo methods.6 These terms satisfy a unitarity condition Kfinite
q

��
u=1

= 0, they

are at most NNLL (↵n
sL

n�1) and contain structures of the GiGj Gk type. Although in the

most general case they enter in NNLL resummations, for event shapes and jet rates they

only enter in the soft limit and are responsible for correlated and clustering corrections

in the language of Refs. [32, 33, 55, 66, 67]. On the other hand, for purely collinear

problems, such as the dynamics of small-R jets [7], Kfinite
q contributes as a whole. The

precise definition of Kfinite
q [Gq, Gg] goes hand-in-hand with the definition of the function

Bq

2, of which it specifies the scheme. Nevertheless, any physical prediction is independent

of such a scheme, and for any IRC safe observables the scheme change can be performed

directly in d = 4 dimensions. We report the expressions of such terms for quark and gluon

jets in Appendix C, while in the body of this article we focus on the first line of Eq. (2.9)

and its gluonic counterpart.

The function Bq

2(z) was calculated recently in Ref. [57] and will be reviewed in the

next section. One can now define the Sudakov �q(t) at NNLL from Eq. (2.9). We can set

u = 1 and obtain

ln�q(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz Pq(z, ✓) . (2.14)

The goal of this article is to define and calculate the analogous quantity for gluon jets

Bg

2(z), which paves the way to obtain the Sudakov for the gluon fragmentation and the

complete set of integral equations which generalises jet calculus in the collinear limit to

NNLL.

Finally, the function g(z) fixes the precise scale of the coupling that becomes relevant

at NNLL. An important constraint on g(z) is that in the soft limit (z ' 1) it is fixed to [54]

lim
z!1

g(z)

1� z
= 1 , (2.15)

so that the coupling is evaluated at the relative transverse momentum of the branching.

Beyond the soft limit, the form of g(z) and B2(z) are linked and emerge from an O(↵2
s)

6The application of this formalism to collinear unsafe quantities, such as fragmentation functions, entails

considerable conceptual subtleties [1].
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for quark jets obtained in [Dasgupta, El-Menoufi ’21] 
for gluon jets obtained in [v.Beekveld, Dasgupta, El-Menoufi, Helliwell, PM ’23]



๏  One readily gets analytic results for  and  at NSL for quark and gluon jets, usable at hadron collidersFCx λx

20

 An application: FCx and λx on groomed jets at NSL

where the sum runs over all particles within a given hemisphere, H ⌘ HR or H ⌘ HL, and

E denotes the total energy in the hemisphere. We also consider the angularities [59] (the

corresponding NNLL resummation in the ungroomed case is given in Refs. [55, 87–90])

defined w.r.t. the Winner-Take-All (WTA) axis as

�
H

x =
21�x

E

X

i

Ei | sin ✓i|x(1� | cos ✓i|)1�x
, (8.2)

where once again the sum involves all particles in a given hemisphere. For both observables

the parameter x is constrained by IR safety to be x < 2. Finally, we define the observables

as follows:

FCx ⌘ max
�
FC

HR
x , FC

HL
x

 
, �x ⌘ max

�
�
HR
x ,�

HL
x

 
. (8.3)

A NNLL calculation for WTA angularities for quark jets has been recently presented in

Ref. [67],12 and below we present new results for fractional moments of EEC for quark

and gluon jets as well as for angularities measured on gluon jets. These results allow for a

complete phenomenological analysis of moments of EEC and angularities on groomed jets

at hadron and lepton colliders.

The master formula for the NNLL cumulative cross section ⌃(v) for a groomed observ-

able v (that here denotes either a moment of EEC or an angularity) in the two processes

considered here can be easily derived by applying the GFs method to Eq. (2.7). In the

following we work in the limit v ⌧ zcut ⌧ 1, that is commonly considered for these types of

groomed observables. This regime has the advantage that one can neglect power corrections

in zcut and hence the evolution equations for the GFs can be solved analytically. Specif-

ically, in this limit we can restrict ourselves to taking the soft limit of the Kfinite
q [Gq, Gg]

and Kfinite
g [Gq, Gg] functions (cf. Eqs. (2.9), (7.1) and Appendix C). With a little abuse of

notation we have used the same parameter zcut for the definition of groomed observables

and in the calculation of Bg

2(z). However, we stress that (cf. Sec. 4) B
g

2(z) is defined strictly

by taking the limit zcut ! 0 while in the observables considered here one can opt to retain

finite zcut e↵ects to improve the accuracy of the calculation. The quantity Bg

2(z) we have

derived applies to both cases with and without finite zcut e↵ects, since these would be

captured by the full (numerical) solution of the GFs equations (or equivalently by a NNLL

accurate parton shower algorithm).

Using the evolution equation in Eqs. (2.9), (7.1), and following similar steps to those

outlined in Appendix D, we obtain the following NNLL results for quark and gluon jets,

respectively

⌃q(v) = �
Z!qq̄

0

✓
1 +

↵s(E2)

2⇡
C

q(1)
v (zcut)

◆
e
�2Rq

v(v,zcut)

✓
1 +

↵
2
s(E

2)

(2⇡)2
2Fq

clust(v)

◆
,

⌃g(v) = �
H!gg

0

✓
1 +

↵s(E2)

2⇡
C

g(1)
v (zcut)

◆
e
�2Rg

v(v,zcut)

✓
1 +

↵
2
s(E

2)

(2⇡)2
2Fg

clust(v)

◆
. (8.4)

12Notice that here we adopt a di↵erent normalisation of the observable, compared to Ref. [67], in order

to match the corresponding hadron collider jet definitions.
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Rq
FCx

(v, zcut) = ∫ dt′ ∫
1−zcut

zcut

dz 𝒫q(z, θ)Θ(z(1 − z)θ2−x − FCx)

functionals and the full O(↵s) calculation in the limit v ⌧ zcut ⌧ 1. For the processes and

observables considered here they have the general structure [55]

C
q(1)
v (zcut) = H

q(1) � 2Xq

v + CF

✓
8 ln 2 ln zcut + 6 ln 2� ⇡

2

3

◆
,

C
g(1)
v (zcut) = H

g(1) � 2Xg

v + CA

✓
8 ln 2 ln zcut �

⇡
2

3

◆
, (8.23)

whereXf
v are the observable dependent constants of hard-collinear origin given in Eqs. (8.19),

(8.20), and the remaining constants are the the (only) process-dependent ingredients of the

calculation. Specifically, Hf(1) accounts for the hard-virtual corrections at one loop order

H
q(1) = ⇡

2 � 8 ,

H
g(1) = ⇡

2
. (8.24)

The presence of Xf
v both in Eqs. (8.23) and in Eqs. (8.15), (8.17) indicates that the GF

solution is defined in a resummation scheme in which the running of ↵s multiplying the

constants of collinear origin is absorbed into the anomalous dimensions which define the

inclusive emission probability. In alternative approaches to this class of resummations

(e.g. that of Refs. [32, 55, 67]) the coupling multiplying these constants is evaluated at the

observable-dependent collinear (low) scale, which would removeXf
v from Eqs. (8.15), (8.17).

The physical result at a given logarithmic order is of course resummation-scheme invariant

(cf. also footnote 17 in Appendix D).

As a check of our results, we compare the resummed predictions for FCx and �x against

the formalism of Refs. [32, 55] adapted to groomed observables in Refs. [66, 67]. Specifically,

as observed in Ref. [67], in the case of groomed quark jets the integrated quantitiesBq

2,�x
and

B
q

2,FCx
can be extracted from Sec. 3 of Ref. [55], by combining the endpoint of the two loop

DGLAP anomalous dimension �
(2)
f

with the running of the one-loop hard-collinear constant

C
(1)
hc and the recoil correction �Frec,13 which agrees with our findings in Eqs. (8.15), (8.17).

Similarly, an independent calculation of the clustering corrections for quark angularities

can be found in Ref. [67]. We also carried out analogous checks for the gluonic results,

based on a straightforward extension of the above formalism to H ! gg. We reiterate that,

due to the process-independence of the collinear limit, our results can be used for hadron-

collider jets after supplying the appropriate process-dependent analogues of the constants

in Eqs. (8.23).

9 Conclusions and Outlook

In this paper we have presented a generating functional formulation of the NNLL resum-

mation of collinear logarithms produced by multiple timelike collinear parton splittings. In

particular, we have addressed one of the key elements of the generating functionals method,

13The hard-collinear correction �Fhc would also contribute for ungroomed angularities and fractional

moments of EEC.
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e.g. FCx

Rg
FCx

(v, zcut) = ∫ dt′ ∫
1−zcut

zcut

dz (𝒫qg(z, θ) + 𝒫gg(z, θ)) Θ(z(1 − z)θ2−x − FCx)

for the fractional moments of EEC, and

B
q

2,�x
= B

q

2,✓2 + CF b0
(9� ⇡

2 + 9 ln 2)

3(2� x)
= ��

(2)
q + b0X

q

�x
, (8.17)

B
g

2,�x
= B

g

2,✓2 +
b0

2� x

✓
CA

✓
137

36
� ⇡

2

3
+

44 ln 2

12

◆
� TRnf

✓
29

18
+

4 ln 2

3

◆◆

= ��
(2)
g + b0X

g

�x
+

1

2
C

2
A

✓
4

3
⇡Cl2

⇣
⇡

3

⌘
+ h

CA
clust.

◆
, (8.18)

for the WTA angularities. The quantities Bq

2,✓2 and B
g

2,✓2 are defined in Eqs. (3.6) and (4.2)

while X
f
v denotes the observable dependent constants for which we obtain

X
q

FCx
= CF

2

2� x

✓
3� ⇡

2

3

◆
+X

q

✓2
,

X
g

FCx
=

1

2� x

✓
CA

✓
67

9
� 2⇡2

3

◆
� 26

9
TRnf

◆
+X

g

✓2
, (8.19)

and

X
q

�x
= CF

(9� ⇡
2 + 9 ln 2)

3(2� x)
+X

q

✓2
,

X
g

�x
=

1

2� x

✓
CA

✓
137

36
� ⇡

2

3
+

44 ln 2

12

◆
� TRnf

✓
29

18
+

4 ln 2

3

◆◆
+X

g

✓2
, (8.20)

where the constants Xq

✓2
and X

g

✓2
are given in Eqs. (3.7), (7.12). Finally, hCA

clust. is given in

Eq. (7.19). We note that the result for Bq

2,�x
has been previously obtained in Ref. [67].

The clustering corrections Fclust.(v) in Eq. (8.4) arise from the finite termsKfinite
q [Gq, Gg]

and Kfinite
g [Gq, Gg] in the GF Eqs. (2.9), (7.1) (cf. Appendix C), which give rise to a cor-

rection to the Sudakov in Eq. (8.4) and are given by (see also Ref. [67])

Fq

clust.(v) = CF

✓
CF

4⇡

3
Cl2

⇣
⇡

3

⌘
+ CA h

CA
clust. + TRnf h

TRnf

clust.

◆
ln v

2� x� 2�v

,

Fg

clust.(v) = CATRnf h
TRnf

clust.

ln v

2� x� 2�v

, (8.21)

where

h
TRnf

clust. ' �1.75559363(5) . (8.22)

A comment on the di↵erence between quark and gluon jets is in order. This di↵erence

can be traced back to the projection (4.1) used in the definition of the inclusive emission

probability and hence of Bf

2 (z). As we discussed extensively in the paper, we adopt a

di↵erent projection for quark and gluon jets due to the more involved structure of collinear

singularities in the latter case. This translates into the final anomalous dimensions B
f

2,v

given in Eqs. (8.15), (8.17). Here we can see that the gluon jet result B
g

2,v, unlike B
q

2,v,

includes a part of the clustering correction, specifically in the C
2
A
channel (see discussion

in Sec. 7.4).

Finally, we comment on the coe�cient functions Cf(1)
v (zcut) (f = {q, g}) in Eq. (8.4).

These are matching coe�cients between the collinear approximation of the generating
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Radiator originating from NSL Sudakov FFs

One-loop matching coefficients for  and  
(only process dependent piece)

Z → qq̄ H → gg Clustering corrections originating from soft limit of 𝕂finite
q [Gq, Gg]

for λx  in quark jets see also [Dasgupta, El-Menoufi, Helliwell ’22]



๏ Formulation of jet calculus to NSL for collinear fragmentation 
➡ New angle on resummation of collinear sensitive observables (e.g. micro jets 
fragmentation, groomed event shapes, correlators) 

➡ Direct link to parton shower algorithms. Essential insight on inclusion of higher order 
corrections, treatment of IR cutoffs, … 

๏ Next steps: 

➡ Numerical algorithm for collinear fragmentation (many subtleties) & applications 

➡ Consistent simultaneous description of soft evolution at wide angles (at least in planar limit) 

➡ Explore implications for building NNLL parton shower algorithms
21

 Conclusions & outlook
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tribution. This is evaluated numerically and obtain

 
✓
2

�0

d
2
�
(2)
R

d✓2 dz

!C
2
A, (B)

z3<zcut

= h
pgg

fail pgg(z)⇥(z � zcut)⇥(1� zcut � z) + h
�

fail �(z) , (6.20)

where

h
pgg

fail ' 0.731081807(5) , h
�

fail ' �8.42858916(9) . (6.21)

7 Extraction of Bg

2(z)

Now we use the results obtained in the previous two sections to extract the function Bg

2(z).

As we stressed before Bg

2(z) reflects the NNLL dynamics that does not arise from strongly-

ordered physics. We follow the procedure outlined in Sec. 4 to extract Bg

2(z), and after

adding real and virtual corrections for each colour channel we need to remove pieces per-

taining to NLL physics. In analogy with Eq. (2.10) for quark jets we write down our

defining equation for Bg

2(z) starting from the NNLL evolution equation for Gg(x, t)

Gg(x, t) = u�g(t) +

Z
t0

t

dt
0

Z 1�z0

z0

dz


Pgg(z, ✓)Gg(x z, t

0)Gg(x (1� z), t0)

+ Pqg(z, ✓)Gq(x z, t
0)Gq(x (1� z), t0)

�
�g(t)

�g(t0)
+Kfinite

g [Gq, Gg] , (7.1)

where Kfinite
g [Gq, Gg] is given in Appendix C and the inclusive emission probabilities for

gluon jets are given by

Pgg(z, ✓) ⌘
CA

1� z

✓
1 +

↵s(E2(1� z)2✓2)

2⇡
K

(1)

◆

+
↵s(E2

z
2
✓
2)

↵s(E2(1� z)2✓2)

CA

z

✓
1 +

↵s(E2
z
2
✓
2)

2⇡
K

(1)

◆

+ Bgg

1 (z) +
↵s(E2(1� z)2✓2)

2⇡

�
Bgg

2 (z) + Bgg

1 (z)b0 ln(1� z)2
�
,

Pqg(z, ✓) ⌘ Bqg

1 (z) +
↵s(E2(1� z)2✓2)

2⇡

�
Bqg

2 (z) + Bqg

1 (z)b0 ln(1� z)2
�
, (7.2)

where the LO anomalous dimensions read

Bgg

1 (z) = CA (z(1� z)� 2) , Bqg

1 (z) = TRnf

�
z
2 + (1� z)2

�
. (7.3)

The ratio of strong couplings in the second line of Pgg(z, ✓) has the role of restoring the

correct scale of the coupling corresponding to the soft singularity as z ! 0 as opposed to

the one at z ! 1 that is encoded in the evolution time (2.1). This feature is of course

present exclusively for gluon jets, and it is absent in the quark case (2.10). The quan-

tity Bg

2(z) is then simply the sum of Bgg

2 (z) and Bqg

2 (z). A subtle aspect of the above

decomposition between terms that are interpreted as corrections to either the g ! gg or

the g ! qq̄ channel is that they both receive a contribution from the CATR colour factor.

The separation between such contributions to Bg

2(z) is not unique and the ambiguity is
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tribution. This is evaluated numerically and obtain
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2
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R
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2
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z3<zcut

= h
pgg
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�

fail �(z) , (6.20)

where

h
pgg

fail ' 0.731081807(5) , h
�

fail ' �8.42858916(9) . (6.21)

7 Extraction of Bg

2(z)

Now we use the results obtained in the previous two sections to extract the function Bg

2(z).

As we stressed before Bg

2(z) reflects the NNLL dynamics that does not arise from strongly-

ordered physics. We follow the procedure outlined in Sec. 4 to extract Bg

2(z), and after

adding real and virtual corrections for each colour channel we need to remove pieces per-

taining to NLL physics. In analogy with Eq. (2.10) for quark jets we write down our

defining equation for Bg

2(z) starting from the NNLL evolution equation for Gg(x, t)
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g [Gq, Gg] , (7.1)

where Kfinite
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z and ✓ used in the calculation of KR[Gq, Gg]. The latter now reads:

KR
g [Gq, Gg] = KR,CA TR

g [Gq, Gg] +KR,CF TR
g [Gq, Gg] +KR,C2

A
g [Gq, Gg] , (C.6)

where (using the parameterisation of Figs. 1 and 3)

KR,CA TR
g [Gq, Gg] =

Z
d�(A)

3 P
CA TR
1!3

⇢
Gq(x zp (1� z), t2,3)Gq(x (1� zp) (1� z), t2,3)

⇥Gg(x z, t1,23)�Gg(x (1� z), t1,23)Gg(x z, t1,23)

�
�g(t)

�g(t2,3)
, (C.7)

KR,CF TR
g [Gq, Gg] =

Z
d�(B)

3 P
CF TR
1!3

"⇢
Gq(x (1� z), t2,13)Gg(x z (1� zp), t1,3)

⇥Gq(x z zp, t1,3)�Gq(x (1� z), t2,13)Gq(x z, t2,13)

�
�g(t)

�g(t1,3)
⇥(t1,3 � t1,2)

+ {2 $ 3, z $ 1� z}
�
. (C.8)

Finally, for the C
2
A

channel we must distinguish between the case in which z > zcut and

z < zcut, following the scheme used to define Bg

2(z). However, since the latter is defined

in the zcut ! 0 limit, we can entirely neglect the region z < zcut in the calculation of

KR,C2
A

g [Gq, Gg]. Using the phase space parameterisation of Fig. 4 we then find

KR,C2
A

g [Gq, Gg] = KR,C2
A

g,{12,3}[Gq, Gg] + {2 cyclic permutations} , (C.9)

where we defined

KR,C2
A

g,{12,3}[Gq, Gg] =
1

2!

Z
d�(A)

3 P
C

2
A

1!3

⇢
Gg(x zp (1� z), t1,2)Gg(x (1� zp) (1� z), t1,2)

⇥Gg(x z, t12,3)�Gg(x (1� z), t12,3)Gg(x z, t12,3)

�
�g(t)

�g(t1,2)
⇥(t1,2 �max{t1,3, t2,3}) .

(C.10)

The additional combinatorial factor 1/2! accounts for the remaining two-fold symmetry in

the g ! ggg splitting function.

The second important di↵erence between the gluon and quark cases concerns the double

counting term KDC[Gq, Gg], which in the gluonic case is more involved due to the fact

that two di↵erent splitting channels contribute to the NLL evolution equation for Gg (cf.

Eq. (2.3)). We write it as

KDC
g [Gq, Gg] = KDC,CA TR

g [Gq, Gg] +KDC,CF TR
g [Gq, Gg] +KDC,C2

A
g [Gq, Gg] , (C.11)
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the g ! ggg splitting function.

The second important di↵erence between the gluon and quark cases concerns the double

counting term KDC[Gq, Gg], which in the gluonic case is more involved due to the fact

that two di↵erent splitting channels contribute to the NLL evolution equation for Gg (cf.

Eq. (2.3)). We write it as

KDC
g [Gq, Gg] = KDC,CA TR

g [Gq, Gg] +KDC,CF TR
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A
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immaterial as one can decide to assign the whole correction to either of the two flavour

channels. Conventionally we include it as a correction to g ! gg. We thus write:

Bgg

2 (z) ⌘ CA TR nf Bg, CATR
2 (z) + C

2
A Bg, C

2
A

2 (z) ,

Bqg

2 (z) ⌘ T
2
Rn

2
f
Bg, T

2
R

2 (z) + CF TR nf Bg, CF TR
2 (z) . (7.4)

The Sudakov form factor for gluon jets, given at NLL in Eq. (2.5), at NNLL then reads

ln�g(t) = �
Z

t0

t

dt
0

Z 1�z0

z0

dz (Pgg(z, ✓) + Pqg(z, ✓)) . (7.5)

In the following we carry out the calculation of Bg

2(z) in each of the above colour channels.

7.1 The T
2
R
n
2
f
channel

This channel is distinct in that it has no double real contribution. From Eqs. (5.4), (5.5), (5.11)

and after subtracting the NLL contribution that emerges from Eq. (D.13) we obtain

Bg,T
2
R

2 (z) = pqg(z)

✓
1

3
+

4

3
ln(z(1� z))

◆
, (7.6)

which integrates to

Z 1

0
dz Bg,T

2
R

2 (z) = �46

27
. (7.7)

7.2 The CFTRnf channel

The extraction of Bg

2(z) in this channel is very simple since it starts at NNLL and hence

there is no need to subtract NLL contributions from the total result. Thus we add real,

Eq. (6.5) and its mirror symmetric obtained by the swap z $ 1� z, and virtual, Eq. (5.5),

corrections to find

Bg,CFTR
2 (z) = pqg(z)

✓
ln2

✓
z

1� z

◆
� ⇡

2

3
+ 5

◆
+H

CFTR
fin. (z) , (7.8)

whose integral reads

Z 1

0
dz Bg,CFTR

2 (z) = 1 . (7.9)

7.3 The CATRnf channel

We combine the real and virtual terms Eqs. (6.10), (6.11), (5.4), (5.5), (5.9) and (5.11) and

then subtract the NLL contribution that emerges from Eq. (D.13), to obtain

Bg,CATR
2 (z) = �pqg(z)

�
ln2 z + ln2(1� z)

�
+

1

9
(28� 41z + 41z2)

+ ln z

✓
4

3(1� z)
� 26

3
z
2 + 8z � 7

◆
+ ln(1� z)

✓
4

3z
� 26

3
(1� z)2 + 8(1� z)� 7

◆
,

(7.10)

– 21 –



24

 Quark jets: double real corrections✓12,3

z1 = (1� z)zp
✓12 z2 = (1� z)(1� zp)

z3 = z

Figure 7: The diagram representing gluon decay to a qq̄ pair, where the quark from the

gluon decay is either identical or non-identical to the initiating quark.

z1 = 1� z

✓1,23

z2 = z(1� zp)

✓23
z3 = zzp

Figure 8: The diagram representing the gluon emission C
2
F
channel.

Following the definition of the inclusive emission probability (2.10) we obtain:

KR
q [Gq, Gg] =

X

(A)

1

S2

Z
d�(A)

3 P
(A)
1!3

⇢
Gf1(x zp (1� z), t1,2)Gf2(x (1� zp) (1� z), t1,2)

⇥Gq(x z, t12,3)�Gf12(x (1� z), t12,3)Gq(x z, t12,3)

�
�q(t)

�q(t1,2)

+

Z
d�(B)

3 P
(B)
1!3

⇢
Gg(x (1� z), t1,23)Gg(x z (1� zp), t2,3)

⇥Gq(x z zp, t2,3)�Gg(x (1� z), t1,23)Gq(x z, t1,23)

�
�q(t)

�q(t2,3)
⇥(t2,3 � t1,3) , (C.2)

where we have used the notation ti,j to indicate the value of the evolution time (2.1)

corresponding to the angle ✓i,j . Moreover, we have parameterised the integrands as 15

P
(A)
1!3 ⌘

(8⇡)2

s
2
123

↵
2
s(E

2
g
2(z) ✓212,3)hP̂ iCFCA ,CFTRnf ,CF (CF�CA/2) , (C.3)

P
(B)
1!3 ⌘

(8⇡)2

s
2
123

↵
2
s(E

2
g
2(z) ✓21,3)hP̂ i

C
2
F
. (C.4)

Here, P (A)
1!3 is parameterised according to the phase space depicted in Fig. 7, while P (B)

1!3 is

parameterised according to Fig. 8. The corresponding phase space measures, denoted by

d�(A,B)
3 in (C.2) are obtained from Eq. (6.1) by setting ✏ = 0 and performing the change of

variable (with the corresponding Jacobian) of Figs. 7, 8. The sum in Eq. (C.2) runs over

all the (A) colour channels of the type q ! f1f2q(q̄) defined in Eq. (C.3), and fi denotes

15We notice that the production of a qq̄q final state with identical flavours contributing to the CF (CF �
CA/2) is finite, and therefore does not factorise into the product of two splitting functions in the strong

angular ordered limit.
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the flavour of parton i. The factor 1/S2 is the symmetry factor to be applied in the case

of identical particles (notably S2 = 2! in the CFCA and in the CF (CF � CA/2) channels).

The phase space integrals are now intended to be regulated by the usual cuto↵ proce-

dure used so far, that implies an upper cut t0 on evolution time (i.e. a lower cut on angles)

and a cut on the energy fractions 1�z0 � {z, zp} � z0. All the calculations are then meant

to be performed by taking the limit of t0 ! 1 and z0 ! 0 after combining KR
q and KDC

q .

We observe that each term in curly brackets in KR
q is obtained by subtracting from each

real configuration a di↵erential counterterm defined by projecting the real kinematics into a

given underlying Born phase space point. Crucially, this requires an infrared-and-collinear-

safe definition of the branching variables ✓ and z, that uniquely specifies the definition of

Bq

2(z). Therefore, the scheme that defines Bq

2(z) is tightly connected to the specific form of

Kfinite
q [Gq, Gg] in Eq. (2.9), which specifically adopts the definition of z and ✓ of Ref. [57]

outlined in Sec. 3. An alternative scheme will modify the expression of both Bq

2(z) and

Kfinite
q [Gq, Gg] by modifying the precise definition of ✓ and z, but the prediction of the

evolution equation is clearly invariant under any scheme change of this type. Following

similar considerations for the double-counting term we find

KDC
q [Gq, Gg] =

X

g!ff̄

Z
t0

t

dt12,3 dt1,2

Z 1�z0

z0

dz dzpPqq(z)Pfg(zp)

⇢
Gf (x zp (1� z), t1,2)

⇥Gf (x (1� zp) (1� z), t1,2)Gq(x z, t12,3)�Gg(x (1� z), t12,3)Gq(x z, t12,3)

�

⇥ �q(t)

�q(t1,2)
⇥(t1,2 � t12,3)

+

Z
t0

t

dt1,23 dt2,3

Z 1�z0

z0

dz dzpPqq(z)Pqq(zp)

⇢
Gg(x (1� z), t1,23)Gg(x z (1� zp), t2,3)

⇥Gq(x z zp, t2,3)�Gg(x (1� z), t1,23)Gq(x z, t1,23)

�
�q(t)

�q(t2,3)
⇥(t2,3 � t1,23) , (C.5)

where the sum runs over the g ! gg and g ! qq̄ splitting channels. Eq. (C.5) is obtained by

calculating the contribution to Eq. (C.2) due to the iteration of the NLL kernel in Eq. (2.3).

We notice that the di↵erence between Eqs. (C.2) and (C.5) (i.e. Kfinite
q [Gq, Gg]) only

contributes in the regime where all angles are commensurate t2,3 ' t1,23 ' t1,3. Conversely,

Kfinite
q [Gq, Gg] vanishes in the strongly ordered limit. This implies that one can always

approximate the angles in the Sudakov and in the GFs according to t2,3 ' t1,23 ' t12,3 ' t1,3

neglecting higher-order, N3LL terms.

C.2 Gluon fragmentation

We now extend the result of the previous section to the case of gluon jets. The derivation

proceeds through analogous arguments to the quark case, with two main di↵erences. The

first di↵erence is related to the scheme for the anomalous dimension Bg

2(z) used in the main

text for its computation. As we discussed at length in Sec. 4, the definition of Bg

2(z) relies

on a specific projection (4.1) from the three-particle to the two-particle phase space, which

is reflected in definition of the inclusive emission probability as well as in the definition of

– 32 –

B Expression of B2(z) for quark fragmentation

The expression of Bq

2(z) can be organised as follows:14

Bq

2(z) = C
2
F Bq,C

2
F

2 (z) + CFCA Bq, CFCA
2 (z) + CFTRnf Bq, CFTR

2 (z) + CF

✓
CF � CA

2

◆
Bq, id.
2 (z) .

(B.1)

The above functions read

Bq, id.
2 (z) = 4z � 7

2
+

5z2 � 2

2(1� z)
ln z +

1 + z
2

1� z

✓
⇡
2

6
� ln z ln(1� z)� Li2(z)

◆
, (B.2)

Bq, CFTR
2 (z) = �b

(nf )
0 pqq(z) ln z + b

(nf )
0 (1� z)�K

(1),nf (1 + z) + 2 b
(nf )
0 (1 + z) ln(1� z) ,

(B.3)

Bq, CFCA
2 (z) = �b

(CA)
0 pqq(z) ln z + b

(CA)
0 (1� z) +

3

2

z
2 ln z

1� z
+

1

2
(2z � 1) (B.4)

+ 2 b(CA)
0 (1 + z) ln(1� z) + pqq(z)

✓
ln2 z + Li2

✓
z � 1

z

◆
+ 2Li2(1� z)

◆
�K

(1),CA(1 + z) ,

Bq,C
2
F

2 (z) = pqq(z)

✓
�3 ln z � 2 ln z ln(1� z) + 2Li2

✓
z � 1

z

◆◆
� 1 +H

fin.(z) , (B.5)

where H
fin.(z) is given by a 1-fold integral (cf. Figure 4 of ref. [57]), that is provided

in Mathematica format as an ancillary file with the arXiv preprint of this article. The

function Bq

2(z) is regular in the soft limit z ! 1 and is thus fully integrable over z 2 [0, 1].

C The NNLL Kfinite
kernel

In this appendix we report the functions Kfinite
f

(with f 2 {q, g}) entering the NNLL

evolution equation for the quark generating functionals given in Eqs. (2.9), (7.1). We will

start by presenting the result for quark jets due to its simpler structure, and later give the

gluon counterpart.

C.1 Quark fragmentation

We can express Kfinite
q as a di↵erence between two terms which encode the (subtracted)

real corrections to the first of Eqs. (2.3) and its double counting with the iteration of the

NLL kernel, respectively. That is:

Kfinite
q [Gq, Gg] ⌘ KR

q [Gq, Gg]�KDC
q [Gq, Gg] . (C.1)

The di↵erence of KR
q and KDC

q ensures that the quantity Kfinite
q is infrared finite and purely

NNLL.

14The function Bq
2(z) computed in Ref. [57] is defined as the Bq

2(z) used here multiplied by (↵s/(2⇡))
2.
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๏  Similar formalism (albeit for colour dipoles in planar limit) 
 was used for first NSL calculation of NGLs  
 (not considered further in this talk) 

๏  e.g. GFs evolution at SL

25

  Soft gluons on the celestial sphere & NGLs

Veto ω ≪ Q

Fraction of events passing the veto is 
affected by large logarithms L=ln(Q/ω), All 
order resummation requires distribution of 

soft gluons on the sphere

n̂T

X

X

g2

g1

✓jet

defined by  
Z12[Q;{u=1}] = 1

⇒
[’t Hooft ’73]

Ti ·Tj ⇠ Nc �j,i±1


