Collinear fragmentation at NNLL: generating functionals, groomed correlators and angularities

P. Monni (CERN)

based on work with
M. van Beekveld, M. Dasgupta, B. El-Menoufi, J. Helliwell, G. Salam $\underline{2307.15734}$ + ongoing work

Galileo Galilei Institute - September 2023

Motivation

- Broad classes of resummations do not admit a closed analytic solution (or very hard to derive): nonlinearity of evolution equations (e.g. NGLs, micro jets, ...) or lack of analytic form in multi-particle limit (e.g. complex event shapes or jet rates). Numerical methods are effective in these problems
- Large ongoing efforts to improve parton shower's perturbative (logarithmic) accuracy. Solutions at NLL now exist for rIRC safe global and classes of non-global observables: based on constraints inferred from QCD (multi-parton squared amplitudes, consistency with QCD resummations)
- Higher orders (e.g. NNLL) present additional subtleties, e.g. treatment of virtual corrections in dimensional regularisation and cancellation of IR singularities

GOAL: work towards a solid framework to bridge between resummations and parton showers. Crucial to study features of shower evolution (e.g. IR cutoffs) and develop algorithmic solutions beyond NLL

Outline of the talk

- Focus on collinear fragmentation

$$
\begin{aligned}
& \ln \Sigma(v) \sim \alpha_{s} L+\alpha_{s}^{2} L^{2}+\ldots \rightarrow \mathrm{SL}(\text { NLL in DL obs.) } \\
& \quad+\alpha_{s}+\alpha_{s}^{2} L+\alpha_{s}^{3} L^{2}+\ldots \rightarrow \mathrm{NSL} \text { (NNLL in DL obs.) } \\
& \quad+\ldots
\end{aligned}
$$

- Generating functional method
- Application to fractional moments of EEC ($\mathrm{FC} \mathrm{C}_{\mathrm{x}}$) and angularities $\left(\lambda_{x}\right)$ measured on mMDT/SD groomed jets
- analytic solution at SL \& Markov chain algorithm
- Formulation at NSL: application to FC_{x} and λ_{x}
- Outlook

SL fragmentation

Generating functionals: definitions

see e. g. [Konishi, Ukawa, Veneziano '79; Dokshitzer, Khoze, Mueller, Troyan '91]

- GFs method postulates the existence of $2 n_{f}+1$ generating functionals $G_{f}(x, t)$, which describe the (timelike) fragmentation of a parton of flavour f, carrying a fraction x of the initial energy E, and starting at an initial evolution "time" t, function of the emission's kinematics (e.g. angle)

$$
t_{i}=\int_{\theta_{i}^{2}}^{1} \frac{d \theta^{2}}{\theta^{2}} \frac{\alpha_{s}\left(E^{2} g^{2}(z) \theta^{2}\right)}{2 \pi}=\frac{\alpha_{s}}{2 \pi} \ln \frac{1}{\theta_{i}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

- The cross section for the production of a final state with exactly m final state partons originating from the above fragmentation reads

$$
\int d P_{m}^{(f)}=\left.\frac{1}{m!} \frac{\delta^{m}}{\delta u^{m}} G_{f}(x, t)\right|_{\{u\}=0}
$$

- Physical observables then computed as
probing function (source) $u=u(x, t ; f)$

$$
d \sigma^{(f)}=\sigma_{0} C\left(\alpha_{s}\right) \otimes J^{(f)}\left(\alpha_{s}, v\right)
$$

perturbative matching

$$
J^{(f)}\left(\alpha_{s}, v\right)=\sum_{m=1}^{\infty} \int d P_{m}^{(f)} \delta\left(v-V\left(\{k\}_{m}\right)\right)
$$

coefficient

- Evolution of GFs with time t is governed by a system of equations (anti-quark GF by charge conjugation)

$$
\begin{aligned}
G_{q}(x, t) & =u \Delta_{q}(t)+\int_{t}^{t_{0}} d t^{\prime} \int_{z_{0}}^{1-z_{0}} d z P_{q q}(z) G_{q}\left(x z, t^{\prime}\right) G_{g}\left(x(1-z), t^{\prime}\right) \frac{\Delta_{q}(t)}{\Delta_{q}\left(t^{\prime}\right)} \\
G_{g}(x, t) & =u \Delta_{g}(t)+\int_{t}^{t_{0}} d t^{\prime} \int_{z_{0}}^{1-z_{0}} d z\left[P_{g g}(z) G_{g}\left(x z, t^{\prime}\right) G_{g}\left(x(1-z), t^{\prime}\right)\right. \\
& \left.+P_{q g}(z) G_{q}\left(x z, t^{\prime}\right) G_{q}\left(x(1-z), t^{\prime}\right)\right] \frac{\Delta_{g}(t)}{\Delta_{g}\left(t^{\prime}\right)}, \quad \text { see e.g. [Dasgupta, Dreyer, Salam, Soyez '14] }
\end{aligned}
$$

- Or in graphic form

$$
\begin{aligned}
& G_{q}(x, t)=\stackrel{\Delta_{q}(t)}{\longrightarrow}+\stackrel{\Delta_{g}(t)}{\Delta_{q}\left(t^{\prime}\right)} G^{G_{g}\left(x(1-z), t^{\prime}\right)}
\end{aligned}
$$

Remarks

- Sudakov form factor: defined by requiring unitarity of GFs (i.e. total XS unaffected by inclusive collinear radiation)

$$
\begin{aligned}
& \ln \Delta_{q}(t)=-\int_{t}^{t_{0}} d t^{\prime} \int_{z_{0}}^{1-z_{0}} d z P_{q q}(z) \\
& \ln \Delta_{g}(t)=-\int_{t}^{t_{0}} d t^{\prime} \int_{z_{0}}^{1-z_{0}} d z\left(P_{g g}(z)+P_{q g}(z)\right)
\end{aligned}
$$

- Regularisation scheme: IRC singularities could be consistently regulated in dim. reg., but the use of IR cutoffs allows for algorithmic solution in a computer (Monte Carlo). Important for connection with PS. Physical results are always obtained in the limit $t_{0} \rightarrow \infty, z_{0} \rightarrow 0$ (modulo Landau pole regularisation)
- Ordering: choice of ordering (definition of t) such that multi-parton squared amplitudes are reconstructed recursively order by order. Options in the collinear limit (angle, transverse momentum, ...). Crucially, physical results not affected by this choice

An example: fractional moments of EEC and angularities

Moments of EEC and angularities on groomed jets

- Consider a simple observables that admit an analytic solution
- Consider a mMDT/SD $(\beta=0)$ groomed jet, and measure

These observables are naturally double logarithmic, though grooming makes them single logarithmic by eliminating soft logs

$$
\begin{aligned}
F C_{x}^{\mathcal{H}} & =\frac{2^{-x}}{E^{2}} \sum_{i \neq j} E_{i} E_{j}\left|\sin \theta_{i j}\right|^{x}\left(1-\left|\cos \theta_{i j}\right|\right)^{1-x} \\
\lambda_{x}^{\mathcal{H}} & =\frac{2^{1-x}}{E} \sum_{i} E_{i}\left|\sin \theta_{i}\right|^{x}\left(1-\left|\cos \theta_{i}\right|\right)^{1-x}
\end{aligned}
$$

- This class of event shapes is insensitive to the full non-linear structure of the fragmentation. At SL we can ignore the (secondary) fragmentation of primary radiation, e.g. for quark jets $G_{g}(x, t) \simeq u$

$$
G_{q}(x, t)=u \Delta_{q}(t)+\int_{t}^{t_{0}} d t^{\prime} \int_{z_{0}}^{1-z_{0}} d z P_{q q}(z) G_{q}\left(x z, t^{\prime}\right) G_{g(\approx(1)}^{u} \underset{\left.\approx), t^{\prime}\right)}{\Delta_{q}(t)} \Delta_{q}\left(t^{\prime}\right)
$$

Analytic solution

- Resummation can be worked out analytically

$$
J^{(f)}\left(\alpha_{s}, v\right)=\sum_{m=1}^{\infty} \int d P_{m}^{(f)} \delta\left(v-V\left(\{k\}_{m}\right)\right)
$$

- Weigh each probability with measurement function, e.g. for $\mathrm{FC}_{x}\left(\right.$ using $\left.\Theta_{z_{\text {cut }}}(z) \equiv \Theta\left(z-z_{\text {cut }}\right) \Theta\left(1-z-z_{\text {cut }}\right)\right)$

$$
\int d P_{1}^{(q)}=\Delta_{q}(t)
$$

$$
\times \delta\left(F C_{x}\right)
$$

$$
\int d P_{2}^{(q)}=\Delta_{q}(t) \int_{t}^{t_{0}} d t_{1} \int_{z_{0}}^{1-z_{0}} d z_{1} P_{q q}\left(z_{1}\right)
$$

$$
\int d P_{3}^{(q)}=\Delta_{q}(t) \int_{t}^{t_{0}} d t_{1} \int_{t_{1}}^{t_{0}} d t_{2} \int_{z_{0}}^{1-z_{0}} d z_{1} d z_{2} P_{q q}\left(z_{1}\right) P_{q q}\left(z_{2}\right) \times\left[\delta\left(F C_{x}-z_{1}\left(1-z_{1}\right) \theta_{g_{1} q}^{2-x}\right) \Theta_{z_{\mathrm{cut}}}\left(z_{1}\right)+\delta\left(F C_{x}\right)\left(1-\Theta_{z_{\mathrm{cut}}}\left(z_{1}\right)\right)\left(1-\Theta_{z_{\mathrm{cut}}}\left(z_{2}\right)\right)\right.
$$

$$
\left.+\delta\left(F C_{x}-z_{2}\left(1-z_{2}\right) \theta_{g_{2} q}^{2-x}\right) \Theta_{z_{\mathrm{cut}}}\left(z_{2}\right)\left(1-\Theta_{z_{\mathrm{cut}}}\left(z_{1}\right)\right)\right]
$$

$$
\longrightarrow \Sigma\left(F C_{x}\right)=\frac{1}{\sigma_{0}} \int_{0}^{F C_{x}} \frac{d \sigma}{d O_{x}} d O_{x}=\exp \left\{-\int d t^{\prime} \int_{z_{\mathrm{cut}}}^{1-z_{\mathrm{cut}}} d z P_{q q}(z) \Theta\left(z(1-z) \theta^{2-x}-F C_{x}\right)\right\}
$$

- Generate m-particles states with a Markov chain MC
- Measure observable only at the end of the evolution (PS like)

$$
\begin{array}{ll}
\int d P_{1}^{(q)} & =\Delta_{q}(t)=\frac{\Delta_{q}(t)}{\Delta_{q}\left(t_{0}\right)} \\
\int d P_{2}^{(q)}=\Delta_{q}(t) \int_{t}^{t_{0}} d t_{1} \int_{z_{0}}^{1-z_{0}} d z_{1} P_{q q}\left(z_{1}\right)=\int_{t}^{t_{0}} d t_{1} \int_{z_{0}}^{1-z_{0}} d z_{1} \frac{\Delta_{q}(t)}{\Delta_{q}\left(t_{1}\right)} P_{q q}\left(z_{1}\right) \frac{\Delta_{q}\left(t_{1}\right)}{\Delta_{q}\left(t_{0}\right)} \\
\int d P_{3}^{(q)}=\Delta_{q}(t) \int_{t}^{t_{0}} d t_{1} \int_{t_{1}}^{t_{0}} d t_{2} \int_{z_{0}}^{1-z_{0}} d z_{1} d z_{2} P_{q q}\left(z_{1}\right) P_{q q}\left(z_{2}\right)=\int_{t}^{t_{0}} d t_{1} \int_{t_{1}}^{t_{0}} d t_{2} \int_{z_{0}}^{1-z_{0}} d z_{1} d z_{2} \frac{\Delta_{q}(t)}{\Delta_{q}\left(t_{1}\right)} P_{q q}\left(z_{1}\right) \frac{\Delta_{q}\left(t_{1}\right)}{\Delta_{q}\left(t_{2}\right)} P_{q q}\left(z_{1}\right) \frac{\Delta_{q}\left(t_{2}\right)}{\Delta_{q}\left(t_{0}\right)} \\
\ldots & =\ldots \\
& \frac{\Delta_{q}\left(t_{i}\right)}{\Delta_{q}\left(t_{i+1}\right)}=\chi \in[0,1] \quad \text { recursively solve for next evolution time } \\
\text { until } t_{i+1}>t_{0}
\end{array}
$$

NSL fragmentation

Anatomy of NSL formulation

$$
d \sigma^{(f)}=\sigma_{0} C\left(\alpha_{s}\right) \otimes J^{(f)}\left(\alpha_{s}, v\right)
$$

Matching coefficient at one loop $\quad \square \quad \longrightarrow$ GFs evolution with two loop kernels (coupling at the hard scale for IRC safe obs.)

$$
d \sigma^{(f)}=\sigma_{0} C\left(\alpha_{s}\right) \otimes J^{(f)}\left(\alpha_{s}, v\right)
$$

Matching coefficient at one loop

GFs evolution with two loop kernels (coupling at the hard scale for IRC safe obs.)

- Two loop corrections to evolution equation (e.g. quark fragmentation in NS channel)

Virtual corrections (for free from unitarity)

$$
\begin{aligned}
G_{q}(x, t)=u \Delta_{q}(t)+ & \int_{t}^{t_{0}} d t^{\prime} \int_{z_{0}}^{1-z_{0}} d z G_{q}\left(x z, t^{\prime}\right) G_{g}\left(x(1-z), t^{\prime}\right) \frac{\Delta_{q}(t)}{\Delta_{q}\left(t^{\prime}\right)} \mathcal{P}_{q}(z, \theta) \\
& +\mathbb{K}_{q}^{\text {finite }}\left[G_{q}, G_{g}\right]
\end{aligned}
$$

$$
d \sigma^{(f)}=\sigma_{0} C\left(\alpha_{s}\right) \otimes J^{(f)}\left(\alpha_{s}, v\right)
$$

Matching coefficient at one loop

GFs evolution with two loop kernels (coupling at the hard scale for IRC safe obs.)

- Two loop corrections to evolution equation (e.g. quark fragmentation in NS channel)

Virtual corrections (for free from unitarity)

$$
+\mathbb{K}_{q}^{\text {finite }}\left[G_{q}, G_{g}\right]
$$

$$
d \sigma^{(f)}=\sigma_{0} C\left(\alpha_{s}\right) \otimes J^{(f)}\left(\alpha_{s}, v\right)
$$

Matching coefficient at one loop

GFs evolution with two loop kernels (coupling at the hard scale for IRC safe obs.)

- Two loop corrections to evolution equation (e.g. quark fragmentation in NS channel)

Virtual corrections (for free from unitarity)

$$
\begin{aligned}
G_{q}(x, t)=u \Delta_{q}(t)+ & \int_{t}^{t_{0}} d t^{\prime} \int_{z_{0}}^{1-z_{0}} d z G_{q}\left(x z, t^{\prime}\right) G_{g}\left(x(1-z), t^{\prime}\right) \frac{\Delta_{q}(t)}{\Delta_{q}\left(t^{\prime}\right)} \mathcal{P}_{q}(z, \theta) \\
& +\mathbb{K}_{q}^{\text {finite }}\left[G_{q}, G_{g}\right]
\end{aligned}
$$

Subtract iteration of one-loop evolution operator

$$
\supset G_{g}\left(x_{1}, t_{1,23}\right) G_{g}\left(x_{2}, t_{2,3}\right) G_{q}\left(x_{3}, t_{2,3}\right)
$$

Cancellation of IRC divergences

- Local counter-term to make cancellation manifest and evaluate numerically (e.g. quark NS C_{F}^{2} channel)

$$
\int d \Phi_{3} \frac{(8 \pi)^{2}}{s_{123}^{2}}\langle\hat{P}\rangle_{C F^{2}} G_{g}\left(x(1-z), t_{1,23}\right) G_{g}\left(x z\left(1-z_{p}\right), t_{2,3}\right) G_{q}\left(x z z_{p}, t_{2,3}\right) \quad \int d \Phi_{2} \mathscr{V}_{C F^{2}}^{(1)}(z, \epsilon) G_{g}\left(x(1-z), t_{1,2}\right) G_{q}\left(x z, t_{1,2}\right)
$$

$$
-\int d \Phi_{3} \frac{(8 \pi)^{2}}{s_{123}^{2}}\langle\hat{P}\rangle_{C F^{2}} G_{g}\left(x(1-z), t_{1,23}\right) G_{q}\left(x z, t_{1,23}\right)
$$

$$
+\int d \Phi_{3} \frac{(8 \pi)^{2}}{s_{123}^{2}}\langle\hat{P}\rangle_{C F^{2}} G_{g}\left(x(1-z), t_{1,23}\right) G_{q}\left(x z, t_{1,23}\right)
$$

Cancellation of IRC divergences

- Local counter-term to make cancellation manifest and evaluate numerically (e.g. quark NS C_{F}^{2} channel)

$$
\int d \Phi_{3} \frac{(8 \pi)^{2}}{s_{123}^{2}}\langle\hat{P}\rangle_{C F^{2}} G_{g}\left(x(1-z), t_{1,23}\right) G_{g}\left(x z\left(1-z_{p}\right), t_{2,3}\right) G_{q}\left(x z z_{p}, t_{2,3}\right)
$$

$-\int d \Phi_{3} \frac{(8 \pi)^{2}}{s_{123}^{2}}\langle\hat{P}\rangle_{C F^{2}} G_{g}\left(x(1-z), t_{1,23}\right) G_{q}\left(x z, t_{1,23}\right)$

$$
\int d \Phi_{2} \mathscr{V}_{C F^{2}}^{(1)}(z, \epsilon) G_{g}\left(x(1-z), t_{1,2}\right) G_{q}\left(x z, t_{1,2}\right)
$$

$$
+\int d \Phi_{3} \frac{(8 \pi)^{2}}{s_{123}^{2}}\langle\hat{P}\rangle_{C F^{2}} G_{g}\left(x(1-z), t_{1,23}\right) G_{q}\left(x z, t_{1,23}\right)
$$

calculate in $\mathrm{D}=4-2 \epsilon$
analytically at fixed Φ_{2}

- Map $\mathscr{M}: \Phi_{3} \rightarrow \Phi_{2}$ obtained in general following a Cambridge-Aachen like clustering sequence:
\checkmark Easy to map out the collinear singularities in each of the colour/flavour channels
区 Phase space angular constraints lead to complicated integrals (especially for gluon fragmentation)
- Result leads to finite integral operator in $\mathrm{D}=4$. Sudakov form factor defined via unitarity i.e. $\left.G_{q}(x, t)\right|_{u=1}=1$

$$
\begin{aligned}
\ln \Delta_{q}(t)=-\int_{t}^{t_{0}} d t^{\prime} \int_{z_{0}}^{1-z_{0}} d z \mathcal{P}_{q}(z, \theta) \longrightarrow
\end{aligned} \quad \mathcal{P}_{q}(z, \theta) \equiv \frac{2 C_{F}}{1-z}\left(1+\frac{\alpha_{s}\left(E^{2} g^{2}(z) \theta^{2}\right)}{2 \pi} K^{(1)}\right) \text { Two loop cusp AD }
$$

An application: FC_{x} and λ_{x} on groomed jets at NSL

for λ_{x} in quark jets see also [Dasgupta, El-Menoufi, Helliwell '22]

- One readily gets analytic results for $F C_{x}$ and λ_{x} at NSL for quark and gluon jets, usable at hadron colliders
e.g. $F C_{x}$

$$
\begin{aligned}
& \text { Radiator originating from NSL Sudakov FFs } \quad R_{F C_{x}}^{q}\left(v, z_{\mathrm{cut}}\right)=\int d t^{\prime} \int_{z_{\mathrm{cut}}}^{1-z_{\mathrm{cut}}} d z \mathscr{P}_{q}(z, \theta) \Theta\left(z(1-z) \theta^{2-x}-F C_{x}\right) \\
& R_{F C_{x}}^{g}\left(v, z_{\mathrm{cut}}\right)=\int d t^{\prime} \int_{z_{\mathrm{cut}}}^{1-z_{\mathrm{cut}}} d z\left(\mathscr{P}_{q g}(z, \theta)+\mathscr{P}_{g g}(z, \theta)\right) \Theta\left(z(1-z) \theta^{2-x}-F C_{x}\right) \\
& \Sigma^{q}(v)=\sigma_{0}^{Z \rightarrow q \bar{q}}\left(1+\frac{\alpha_{s}\left(E^{2}\right)}{2 \pi} C_{v}^{q(1)}\left(z_{\mathrm{cut}}\right)\right) e^{-2 R_{v}^{q}\left(v, z_{\mathrm{cut}}\right)}\left(1+\frac{\alpha_{s}^{2}\left(E^{2}\right)}{(2 \pi)^{2}} 2 \mathcal{F}_{\mathrm{clust}}^{q}(v)\right) \\
& \Sigma^{g}(v)=\sigma_{0}^{H \rightarrow g g}\left(1+\frac{\alpha_{s}\left(E^{2}\right)}{2 \pi} C_{v}^{g(1)}\left(z_{\mathrm{cut}}\right)\right) e^{-2 R_{v}^{g}\left(v, z_{\mathrm{cut}}\right)}\left(1+\frac{\alpha_{s}^{2}\left(E^{2}\right)}{(2 \pi)^{2}} 2 \mathcal{F}_{\mathrm{clust}}^{g}(v)\right)
\end{aligned}
$$

One-loop matching coefficients for $Z \rightarrow q \bar{q}$ and $H \rightarrow g g$ (only process dependent piece)
$C_{v}^{q(1)}\left(z_{\mathrm{cut}}\right)=H^{q(1)}-2 X_{v}^{q}+C_{F}\left(8 \ln 2 \ln z_{\mathrm{cut}}+6 \ln 2-\frac{\pi^{2}}{3}\right)$,
$C_{v}^{g(1)}\left(z_{\mathrm{cut}}\right)=H^{g(1)}-2 X_{v}^{g}+C_{A}\left(8 \ln 2 \ln z_{\mathrm{cut}}-\frac{\pi^{2}}{3}\right)$,
Clustering corrections originating from soft limit of $\mathbb{K}_{q}^{\text {finite }}\left[G_{q}, G_{g}\right]$

$$
\begin{aligned}
& \mathcal{F}_{\text {clust. }}^{q}(v)=C_{F}\left(C_{F} \frac{4 \pi}{3} \mathrm{Cl}_{2}\left(\frac{\pi}{3}\right)+C_{A} h_{\text {clust. }}^{C_{A}}+T_{R} n_{f} h_{\text {clust. }}^{T_{R} n_{f}}\right) \frac{\ln v}{2-x-2 \lambda_{v}} \\
& \mathcal{F}_{\text {clust. }}^{g}(v)=C_{A} T_{R} n_{f} h_{\text {clust. }}^{T_{R} n_{f}} \frac{\ln v}{2-x-2 \lambda_{v}},
\end{aligned}
$$

Conclusions \& outlook

- Formulation of jet calculus to NSL for collinear fragmentation
- New angle on resummation of collinear sensitive observables (e.g. micro jets fragmentation, groomed event shapes, correlators)
- Direct link to parton shower algorithms. Essential insight on inclusion of higher order corrections, treatment of IR cutoffs, ...
- Next steps:
- Numerical algorithm for collinear fragmentation (many subtleties) \& applications
- Consistent simultaneous description of soft evolution at wide angles (at least in planar limit)
- Explore implications for building NNLL parton shower algorithms

Backup

Gluon jets: structure of NLL evolution equation

$$
\begin{aligned}
\mathcal{P}_{g g}(z, \theta) & \equiv \frac{C_{A}}{1-z}\left(1+\frac{\alpha_{s}\left(E^{2}(1-z)^{2} \theta^{2}\right)}{2 \pi} K^{(1)}\right) \\
& +\frac{\alpha_{s}\left(E^{2} z^{2} \theta^{2}\right)}{\alpha_{s}\left(E^{2}(1-z)^{2} \theta^{2}\right)} \frac{C_{A}}{z}\left(1+\frac{\alpha_{s}\left(E^{2} z^{2} \theta^{2}\right)}{2 \pi} K^{(1)}\right) \\
& +\mathcal{B}_{1}^{g g}(z)+\frac{\alpha_{s}\left(E^{2}(1-z)^{2} \theta^{2}\right)}{2 \pi}\left(\mathcal{B}_{2}^{g g}(z)+\mathcal{B}_{1}^{g g}(z) b_{0} \ln (1-z)^{2}\right) \\
\mathcal{P}_{q g}(z, \theta) & \equiv \mathcal{B}_{1}^{q g}(z)+\frac{\alpha_{s}\left(E^{2}(1-z)^{2} \theta^{2}\right)}{2 \pi}\left(\mathcal{B}_{2}^{q g}(z)+\mathcal{B}_{1}^{q g}(z) b_{0} \ln (1-z)^{2}\right)
\end{aligned}
$$

$\ln \Delta_{g}(t)=-\int_{t}^{t_{0}} d t^{\prime} \int_{z_{0}}^{1-z_{0}} d z\left(\mathcal{P}_{g g}(z, \theta)+\mathcal{P}_{q g}(z, \theta)\right)$

$$
\mathbb{K}_{g}^{\mathrm{R}}\left[G_{q}, G_{g}\right]=\mathbb{K}_{g}^{\mathrm{R}, \mathrm{C}_{\mathrm{A}} \mathrm{~T}_{\mathrm{R}}}\left[G_{q}, G_{g}\right]+\mathbb{K}_{g}^{\mathrm{R}, \mathrm{C}_{\mathrm{F}} \mathrm{~T}_{\mathrm{R}}}\left[G_{q}, G_{g}\right]+\mathbb{K}_{g}^{\mathrm{R}, \mathrm{C}_{\mathrm{A}}^{2}}\left[G_{q}, G_{g}\right]
$$

$$
\mathbb{K}_{g}^{\mathrm{DC}}\left[G_{q}, G_{g}\right]=\mathbb{K}_{g}^{\mathrm{DC}, \mathrm{C}_{\mathrm{A}} \mathrm{~T}_{\mathrm{R}}}\left[G_{q}, G_{g}\right]+\mathbb{K}_{g}^{\mathrm{DC}, \mathrm{C}_{\mathrm{F}} \mathrm{~T}_{\mathrm{R}}}\left[G_{q}, G_{g}\right]+\mathbb{K}_{g}^{\mathrm{DC}, \mathrm{C}_{\mathrm{A}}^{2}}\left[G_{q}, G_{g}\right]
$$

Quark jets: double real corrections

$$
\mathbb{K}_{q}^{\text {finite }}\left[G_{q}, G_{g}\right] \equiv \mathbb{K}_{q}^{\mathrm{R}}\left[G_{q}, G_{g}\right]-\mathbb{K}_{q}^{\mathrm{DC}}\left[G_{q}, G_{g}\right]
$$

$$
\mathbb{K}_{q}^{\mathrm{R}}\left[G_{q}, G_{g}\right]=\sum_{(A)} \frac{1}{S_{2}} \int d \Phi_{3}^{(A)} P_{1 \rightarrow 3}^{(A)}\left\{G_{f_{1}}\left(x z_{p}(1-z), t_{1,2}\right) G_{f_{2}}\left(x\left(1-z_{p}\right)(1-z), t_{1,2}\right)\right.
$$

$$
\left.\times G_{q}\left(x z, t_{12,3}\right)-G_{f_{12}}\left(x(1-z), t_{12,3}\right) G_{q}\left(x z, t_{12,3}\right)\right\} \frac{\Delta_{q}(t)}{\Delta_{q}\left(t_{1,2}\right)}
$$

$$
+\int d \Phi_{3}^{(B)} P_{1 \rightarrow 3}^{(B)}\left\{G_{g}\left(x(1-z), t_{1,23}\right) G_{g}\left(x z\left(1-z_{p}\right), t_{2,3}\right)\right.
$$

$$
\left.\left.\times G_{q}\left(x z z_{p}, t_{2,3}\right)-G_{g}\left(x(1-z), t_{1,23}\right) G_{q}\left(x z, t_{1,23}\right)\right\} \frac{\Delta_{q}(t)}{\Delta_{q}\left(t_{2,3}\right)} \Theta\left(t_{2,3}-t_{1,3}\right), \quad \text { C. } 2\right)
$$

$$
\begin{aligned}
& \mathbb{K}_{q}^{\mathrm{DC}}\left[G_{q}, G_{g}\right]=\sum_{g \rightarrow f \bar{f}} \int_{t}^{t_{0}} d t_{12,3} d t_{1,2} \int_{z_{0}}^{1-z_{0}} d z d z_{p} P_{q q}(z) P_{f g}\left(z_{p}\right)\left\{G_{f}\left(x z_{p}(1-z), t_{1,2}\right)\right. \\
& \left.\quad \times G_{f}\left(x\left(1-z_{p}\right)(1-z), t_{1,2}\right) G_{q}\left(x z, t_{12,3}\right)-G_{g}\left(x(1-z), t_{12,3}\right) G_{q}\left(x z, t_{12,3}\right)\right\} \\
& \quad \times \frac{\Delta_{q}(t)}{\Delta_{q}\left(t_{1,2}\right)} \Theta\left(t_{1,2}-t_{12,3}\right) \\
& \quad+\int_{t}^{t_{0}} d t_{1,23} d t_{2,3} \int_{z_{0}}^{1-z_{0}} d z d z_{p} P_{q q}(z) P_{q q}\left(z_{p}\right)\left\{G_{g}\left(x(1-z), t_{1,23}\right) G_{g}\left(x z\left(1-z_{p}\right), t_{2,3}\right)\right. \\
& \left.\quad \times G_{q}\left(x z z_{p}, t_{2,3}\right)-G_{g}\left(x(1-z), t_{1,23}\right) G_{q}\left(x z, t_{1,23}\right)\right\} \frac{\Delta_{q}(t)}{\Delta_{q}\left(t_{2,3}\right)} \Theta\left(t_{2,3}-t_{1,23}\right),
\end{aligned}
$$

Soft gluons on the celestial sphere \& NGLs

- Similar formalism (albeit for colour dipoles in planar limit) was used for first NSL calculation of NGLs (not considered further in this talk)
- e.g. GFs evolution at SL

$$
\begin{aligned}
Z_{12}[Q ;\{u\}]=\Delta_{12}(Q) & +\int\left[d k_{a}\right] \bar{\alpha}\left(k_{t a}\right) w_{12}^{(0)}\left(k_{a}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
& \times Z_{1 a}\left[k_{t a} ;\{u\}\right] Z_{a 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) \Theta\left(Q-k_{t a}\right)
\end{aligned}
$$

defined by

$$
Z_{12}[Q ;\{u=1\}]=1
$$

$$
\mathbf{T}_{i} \cdot \mathbf{T}_{j} \sim N_{c} \delta_{j, i \pm 1}
$$

Fraction of events passing the veto is affected by large logarithms $L=\ln (Q / \omega)$, All order resummation requires distribution of soft gluons on the sphere

