Numerical Integration of Loop Amplitudes in Momentum Space

Dario Kermanschah

Theory Challenges in the Precision Era of the Large Hadron Collider

GGI Workshop, 14.9.23, Florence

QGGI TIM ETHzürich

Predictions for hadron collisions

$$\sigma \sim \sum_{ab} \int dx_1 dx_2 f_a(x_1) f_b(x_2) d\Pi O(\Pi) |\mathcal{A}|^2 \qquad \mathcal{A}^{(l)} \sim \int_{arclytical}^{numerical!} dk_1 \dots dk_l \mathcal{A}^{(l)} \mathcal{A}^{(l)} \mathcal{A}^{(l)} \sim \int_{arclytical}^{numerical!} dk_1 \dots dk_l \mathcal{A}^{(l)} \mathcal{A}^{(l$$

two-loop amplitude:

many two-loop integrals

- IBP reduction to master integrals ¹/₄ large systems of equations
- solve master integrals (in dimensional regularisation)
 - analytically: solving differential equations using knowledge about • function space: class of multiple polylogs (MPLs) な new (elliptic) classes at two loops
 - numerically: solving differential equations using power series Monte Carlo integration over Feynman parameters ⁴ automatable / efficient enough?

 \rightarrow sidestep using direct numerical integration?

Monte Carlo integration of loop integrals in momentum space?

go to d = 4 dimensions

remove UV and IR singularities

- causal prescription
- implement causal prescription for numerical integration?

al UV counterterms:		[Chetyrkin, T	[Bogoliubov, Parasiuk, Hepp, Zimm kachov, Smirnov] [Herzog, Ruijl: 1703
al IR counterterms:	one loop:	[[Nagy, Soper: hep-ph/0 Assadsolimani, Becker, Weinzierl: 09 ⁻
	two loop:	[Anastasio	u, Haindl, Sterman, Yang, Zeng: 2008 [Anastasiou, Sterman: 2212
al IR cancellations between real & virtual:			[Soper: hep-ph/9804454, hep-ph/9 [Capatti, Hirschi, Pelloni, Ruijl: 2010

4 poles in the integration domain

ermann] 3.03776] 308127] 12.1680] 8.12293] 2.12162] 910292] 0.01068]

Loop-Tree Duality (residue theorem for loop energies)

$$\frac{1}{2 + i\epsilon} \frac{(k - p_2)^2 - m^2 + i\epsilon}{(k - p_2)^2 - m^2 + i\epsilon}$$
$$\frac{1}{(k^0 - p_2^0) - E_2} \frac{1}{(k^0 - p_2^0) + E_2}$$
$$E_1 = \sqrt{(\vec{k} + \vec{p}_1)^2 + m^2 - i\epsilon}$$

$$E_2 = \sqrt{\left(\vec{k} - \vec{p}_2\right)^2 + m^2 - \mathrm{i}\epsilon}$$

$$E_3 = \sqrt{\vec{k}^2 + m^2 - i\epsilon}$$

Loop-Tree Duality beyond one loop [Aguilera-Verdugo, Driencourt-Mangin, Hernandez-Pinto, Plenter, Ramirez-Uribe, Renteria-Olivo, Rodrigo, Sborlini, Bobadilla, Tracz: 2001.03564]

cut into a single tree

🛆 no loops 🛆

▲ no forest ▲

Loop-Tree Duality beyond one loop [Aguilera-Verdugo, Driencourt-Mangin, Hernandez-Pinto, Plenter, Ramirez-Uribe, Renteria-Olivo, Rodrigo, Sborlini, Bobadilla, Tracz: 2001.03564]

Loop-Tree Duality beyond one loop

Loop integral
$$I = \int \prod_{j=1}^{n} \frac{\mathrm{d}^{d} k_{j}}{(2\pi)^{d}} \frac{N}{\prod_{i \in \mathbf{e}} D_{i}}$$

$$\begin{array}{l} \mathsf{LTD} \\ I = (-\mathbf{i})^n \int \prod_{j=1}^n \frac{\mathrm{d}^{d-1}\vec{k}_j}{(2\pi)^{d-1}} \sum_{\mathbf{b} \in \mathscr{B}} \mathrm{Res}_{\mathbf{b}}[\mathscr{F}] \\ \mathrm{Ioop\ momentum\ basis} \end{array} \\ \begin{array}{l} \mathsf{Dual\ integrand\ (residue)} \\ \mathsf{Res}_{\mathbf{b}}[\mathscr{F}] = \frac{1}{\prod_{i \in \mathbf{b}} 2E_i} \frac{N}{\prod_{i \in \mathbf{e} \setminus \mathbf{b}} D_i} \bigg|_{\substack{\mathsf{sign\ of\ on-shell\ energy\ (cut\ structure)}} \\ \{q_j^0 = \sigma_j^{\mathbf{b}} E_j\}_{j \in \mathbf{b}} \end{array} \right|$$

Feynman propagator

$$D_i = q_i^2 - m_i^2 + \mathbf{i}\epsilon$$

causal prescription

Dual integrands depend on integration order, contour closure, momentum routing but their sum (i.e. the LTD expression) is independent

Monte Carlo integration of LTD? ! Remaining singularities!

Monte Carlo numerical integratio

on with poles
$$\lim_{\epsilon \to 0} \int_0^1 \frac{6x^3 dx}{x - \frac{1}{2} + i\epsilon} = 5 - \frac{3}{4}i\pi$$

$$\frac{1}{\epsilon} = PV \frac{1}{x - x_0} - i\pi \delta(x_0)$$
 & evaluate Cauchy Principal V

$$f_{\rm ct}(x) = \frac{3}{4} \frac{1}{x - \frac{1}{2}}$$
 $PV \int_0^1 f_{\rm ct}(x) \, \mathrm{d}x$

Contour deformation in the spatial momenta

in 4 dim: one loop: [Gong, Nagy, Soper: 0812.3686] [Becker, Weinzierl: 1211.0509] multi-loop: one loop: [Buchta, Chachamis, Draggiotis, Rodrigo: 1510.00187] in 3 dim: [Kromin, Schwanemann, Weinzierl: 2208.01060] [Capatti, Hirschi, DK, Pelloni, Ruijl: 1912.09291] multi-loop:

$$\begin{aligned} \mathscr{C}_{i} - i\epsilon \text{ where } \epsilon > 0 \\ \vec{k} \to \vec{k} - i\vec{\kappa}(\vec{k}) \text{ where } \vec{\kappa}(\vec{k}) \cdot \vec{\nabla} \mathscr{C}_{i} > \\ \vec{\kappa} = \lambda(\vec{k}) \Big(\begin{array}{c} (\vec{k} - \vec{s}_{1}) & T(\mathscr{C}_{4}) \\ + (\vec{k} - \vec{s}_{2}) & T(\mathscr{C}_{1})T(\mathscr{C}_{4}) \end{array} \Big) \end{aligned}$$

 $\lambda(k)$ such that deformation does not cross x branch cuts (from square roots) × other poles in the complex plane

- solution relies on identification of **all overlaps** of ellipsoids \rightarrow computationally expensive, efficiency depends on PS point
- generalised to arbitrary multi-loop configurations
- difficult to determine **optimal** direction and magnitude

Integrand along deformed contour

threshold singularities of a box diagram

integrand along line segment using contour deformation

2.09291]	
— Re	
— Im	

Subtraction of threshold singularities

$$\mathcal{F}_{\text{LTD}}(\vec{k}) = \frac{F(\vec{k})}{\mathscr{C}} \qquad \vec{k} = r\hat{u}$$

Idea
$$r^{2}\mathcal{F}_{\text{LTD}}(r\hat{u}) = \frac{R_{\mathscr{C}}(\hat{u})}{r - r^{*}(\hat{u})} + \mathcal{O}\left((r - r^{*}(\hat{u}))\right)$$
$$\underbrace{\sim \text{CT}_{\mathscr{C}}(r,\hat{u})}$$

$$\frac{1}{x - x_0 + i\epsilon} = PV \frac{1}{x - x_0} - i\pi\delta(x_0) \qquad \Rightarrow \qquad \int dr \operatorname{CT}_{\mathscr{C}}(r, \hat{u}) = -i\pi\delta(x_0)$$

$$\operatorname{Re} I = -\int_{S^{3n-1}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n}} \int_0^\infty \mathrm{d} r \left(r^{3n-1} \mathscr{I}_{\mathrm{LTD}}(r\hat{u}) - \sum_{\mathscr{C} \in E_0} \mathcal{I}_{\mathcal{C}}(r\hat{u}) \right)$$

$$\operatorname{Im} I = -\frac{1}{2} \int_{S^{3n-1}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n-1}} \sum_{\mathscr{C} \in E_O} R_{\mathscr{C}}(\hat{u}) \qquad \text{! residue } \Leftrightarrow$$

[**DK**: 2110.06869]

Subtraction of threshold singularities

 \rightarrow Optical theorem but IR- and threshold singularities cancel *locally* among the summands!

$$\operatorname{Re} I = -\int_{S^{3n-1}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n}} \int_{0}^{\infty} \mathrm{d}r \left(r^{3n-1} \mathscr{F}_{\mathrm{LTD}}(r\hat{u}) - \sum_{\mathscr{E} \in E_{O}} \operatorname{CT}_{\mathscr{E}}(r, \hat{u}) \right) \qquad 2 \operatorname{Im} A(i \to f) = \sum_{x} \int \mathrm{d}\Pi_{x} A(i \to x) A^{*}(f \to x)$$

$$locally finite representation of generalised optical theorem including local IR cancellations) \qquad \text{similor} I$$

$$\operatorname{Im} I = -\frac{1}{2} \int_{S^{3n-1}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n-1}} \sum_{\mathscr{E} \in E_{O}} R_{\mathscr{E}}(\hat{u}) \qquad \text{A residue } \Leftrightarrow \text{ cut propagator} \qquad 2 \operatorname{Im} \qquad 2 \operatorname{Im} \sum_{x} \left(\sum_{n=1}^{\infty} e^{-\frac{1}{2} \int_{S^{3n-1}} e^{-\frac{1}{2} \int_{S^{3n-1}$$

12

$$\operatorname{Re} I = -\int_{S^{3n-1}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n}} \int_{0}^{\infty} \mathrm{d}r \left(r^{3n-1} \mathscr{F}_{\mathrm{LTD}}(r\hat{u}) - \sum_{\mathscr{C} \in E_{O}} \operatorname{CT}_{\mathscr{C}}(r, \hat{u}) \right) \qquad 2 \operatorname{Im} A(i \to f) = \sum_{x} \int \mathrm{d}\Pi_{x} A(i \to x) A^{*}(f \to x) + O(x) \operatorname{Im} I = -\frac{1}{2} \int_{S^{3n-1}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n-1}} \sum_{\mathscr{C} \in E_{O}} R_{\mathscr{C}}(\hat{u}) \qquad \text{A residue } \Leftrightarrow \text{ cut propagator} \qquad 2 \operatorname{Im} \sum_{x} \int \mathrm{Im} I = -\frac{1}{2} \int_{S^{3n-1}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n-1}} \sum_{\mathscr{C} \in E_{O}} R_{\mathscr{C}}(\hat{u}) \qquad \text{A residue } \Leftrightarrow \text{ cut propagator} \qquad 2 \operatorname{Im} \sum_{x} \int \mathrm{Im} I = -\frac{1}{2} \int_{S^{3n-1}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n-1}} \sum_{\mathscr{C} \in E_{O}} R_{\mathscr{C}}(\hat{u}) \qquad \text{A residue } \Leftrightarrow \text{ cut propagator} \qquad 2 \operatorname{Im} \sum_{x} \int \mathrm{Im} I = -\frac{1}{2} \int_{S^{3n-1}} \mathrm{Im} I = -\frac{1}{2} \int_{S^{3n-1}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n-1}} \sum_{\mathscr{C} \in E_{O}} R_{\mathscr{C}}(\hat{u}) \qquad \text{A residue } \Leftrightarrow \text{ cut propagator} \qquad 2 \operatorname{Im} I = -\frac{1}{2} \int_{S^{3n-1}} \mathrm{Im} I = -\frac{1}{2} \int_{S^{3n-1}} \mathrm{Im} I = -\frac{1}{2} \int_{S^{3n-1}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n-1}} \sum_{\mathscr{C} \in E_{O}} R_{\mathscr{C}}(\hat{u}) \qquad \text{A residue } \Leftrightarrow \text{ cut propagator} \qquad 2 \operatorname{Im} I = -\frac{1}{2} \int_{S^{3n-1}} \mathrm{Im} I = -\frac{1$$

Subtraction of threshold singularities

→ Optical theorem but IR- and threshold singularities cancel *locally* among the summands!

$$\operatorname{Re} I = -\int_{S^{3n-1}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n}} \int_{0}^{\infty} \mathrm{d}r \left(r^{3n-1} \mathscr{F}_{\mathrm{LTD}}(r\hat{u}) - \sum_{\mathscr{C} \in E_{O}} \operatorname{CT}_{\mathscr{C}}(r, \hat{u}) \right) \qquad 2 \operatorname{Im} A(i \to f) = \sum_{x} \int \mathrm{d}\Pi_{x} A(i \to x) A^{*}(f \to x)$$

$$\operatorname{Ically finite representation of generalised optical theorem in the initial control of the second secon$$

$$\operatorname{Re} I = -\int_{S^{3n-1}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n}} \int_{0}^{\infty} \mathrm{d}r \left(r^{3n-1} \mathscr{F}_{\mathrm{LTD}}(r\hat{u}) - \sum_{\mathscr{C} \in E_{O}} \operatorname{CT}_{\mathscr{C}}(r, \hat{u}) \right) \qquad 2 \operatorname{Im} A(i \to f) = \sum_{x} \int \mathrm{d}\Pi_{x} A(i \to x) A^{*}(f \to x)$$

$$locally finite representation of generalised optical theorem including local IR cancellations) \qquad \text{simil} \\ \text{[Soper: hep-ph/9804454, hep-ph/9910]} \\ \text{Local Unitarity [Capatti, Hirschi, Pellon, Ruij]: 2010.01}$$

$$\operatorname{Im} I = -\frac{1}{2} \int_{S^{3n-1}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n-1}} \sum_{\mathscr{C} \in E_{O}} R_{\mathscr{C}}(\hat{u}) \qquad \mathbf{A} \text{ residue} \Leftrightarrow \text{cut propagator} \qquad 2 \operatorname{Im} \qquad \sum_{i=1}^{n} \sum_{(n+1) \operatorname{cuts}} \sum_{i=1}^{n} \sum_{(n+1) \operatorname{cuts}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n-1}} \sum_{\mathscr{C} \in E_{O}} R_{\mathscr{C}}(\hat{u}) \qquad \mathbf{A} \text{ residue} \Leftrightarrow \text{cut propagator} \qquad 2 \operatorname{Im} \qquad \sum_{i=1}^{n} \sum_{(n+1) \operatorname{cuts}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(2\pi)^{3n-1}} \sum_{\mathscr{C} \in E_{O}} R_{\mathscr{C}}(\hat{u}) \qquad \mathbf{A} \text{ residue} \Leftrightarrow \operatorname{cut propagator} \qquad 2 \operatorname{Im} \xrightarrow{i=1}^{n} \sum_{(n+1) \operatorname{cuts}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(n+1) \operatorname{cuts}} \xrightarrow{i=1}^{n} \sum_{(n+1) \operatorname{cuts}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(n+1) \operatorname{cuts}} \xrightarrow{i=1}^{n} \sum_{i=1}^{n} \frac{\mathrm{d}^{3n-1}\hat{u}}{(n+1) \operatorname{cuts}} \xrightarrow{i=1}^{n} \sum_{i=1}^{n} \frac{\mathrm{d}^{3n-1}\hat{u}}{(n+1) \operatorname{cuts}} \xrightarrow{i=1}^{n} \sum_{(n+1) \operatorname{cuts}} \frac{\mathrm{d}^{3n-1}\hat{u}}{(n+1) \operatorname{cuts}} \xrightarrow{i=1}^{n} \sum_{i=1}^{n} \frac{\mathrm{d}^{3n-1}\hat{u}}{(n+1) \operatorname{cuts}} \xrightarrow{i=1}^{n} \underbrace{i=1}^{n} \underbrace{i=1}^{n} \frac{\mathrm{d}^{3n-1}\hat{u}}{(n+1) \operatorname{cuts}} \xrightarrow{i=1}^{n} \underbrace{i=1}^{n} \underbrace{i=$$

[**DK**: 2110.06869]

representation depends on parameterisation

only valid if poles **never pinch** the *r*-contour

in particular if origin of spherical coordinates inside all ellipsoids

Overlaps of threshold singularities

Construct a counterterm for each threshold

$$CT_{0} \propto \frac{\operatorname{Res}_{0}[\mathscr{I}]}{r - r_{0}^{*}} \quad CT_{0} \propto \frac{\operatorname{Res}_{0}[\mathscr{I}]}{r - r_{0}^{*}}$$

Real Part (Cauchy Principal Value)

Imaginary Part (integrated couterterms)

no locally pinched poles

locally pinched poles

What to do if there is no single overlap?

centre outside overlap \Rightarrow pinched poles but inconvenient integrable singularities

Observations

- not all intersections are double poles
 - \rightarrow group thresholds accordingly (only E-surfaces that share a LMB)
- using partial fractioning, TOPT, CFF to separate groups

Comparison of threshold subtraction & contour deformation

different maximal deformation magnitude 16

Threshold subtraction is stable for high multiplicities of external legs	Topology	Kin.	N_{E}	N_{G}	N_{G}^{\max}	N_{P}	Phase	Exp.	Reference	Numerical	Δ $[\sigma]$	Δ [%]
	Triacontagon	1L30P.I	5	1	1	10 ⁹	Re	-02	-1.007398	-1.007449 +/- 0.001467	0.035	0.005
						10 ⁹	Im		3.175180	3.175183 +/- 0.000085	0.030	8e-05
		1L30P.II	6	1	1	10 ⁹	Re	-12	-4.166377	-4.165527 +/- 0.006697	0.127	0.020
						10 ⁹	Im		3.413930	3.413917 +/- 0.000075	0.182	4e-04
		1L30P.III	408	15	354	10 ⁹	Re	-09	-2.991654	-2.984733 +/- 0.026977	0.257	0.231
						10 ⁹	Im		-0.000000	-0.000001 +/- 0.003831	3e-04	
		1L30P.IV	408	10	254	10 ⁹	Re	Re Im -07	-1.757748	-1.757913 +/- 0.002169	0.076	0.009
				15	354	10 ⁹	Im		-0.000000	0.000001 +/- 0.000199	0.007	

Numerical integration of scattering amplitudes

Numerical integration of finite amplitudes in D = 4

- Exploit local factorisation of IR singularities
 [Anastasiou, Haindl, Sterman, Yang, Zeng: 2008.12293]
 [Anastasiou, Sterman: 2212.12162]
- Local UV counterterms with BPHZ / R* operation [Bogoliubov, Parasiuk, Hepp, Zimmermann] [Chetyrkin, Tkachov, Smirnov] [Herzog, Ruijl: 1703.03776]

Example:
$$e^+e^- \rightarrow \gamma^{(*)} \gamma^{(*)} (\gamma^{(*)})$$

[Anastasiou, Haindl, Sterman, Yang, Zeng: 2008.12293]

One loop

Numerical integration of scattering amplitudes

Numerical integration of finite amplitudes in D = 4

- Exploit local factorisation of IR singularities [Anastasiou, Haindl, Sterman, Yang, Zeng: 2008.12293] [Anastasiou, Sterman: 2212.12162]
- Local UV counterterms with BPHZ / R* operation [Bogoliubov, Parasiuk, Hepp, Zimmermann] [Chetyrkin, Tkachov, Smirnov] [Herzog, Ruijl: 1703.03776]

Example:
$$e^+e^- \rightarrow \gamma^{(*)} \gamma^{(*)} (\gamma^{(*)})$$

[Anastasiou, Haindl, Sterman, Yang, Zeng: 2008.12293]

One loop

Two loop N_f

Conclusion

Gained understanding of threshold singularity structure and cancellation mechanisms in loop integrals at \mathscr{A} -level and cross sections at $|\mathscr{A}|^2$ -level

Presented tools to tackle challenging multi-loop integrals, amplitudes (and fully inclusive) cross sections) with Monte Carlo numerical integration

- (causal) Loop-Tree Duality, TOPT, CFF ullet \rightarrow convenient threshold structure
- Threshold subtraction
 - \rightarrow flat integrand and efficient integration
- \rightarrow improvements & extensions necessary for differential cross sections
- \rightarrow ready for uncharted territory of two-loop amplitudes

 \rightarrow locally finite optical theorem (access to direct numerical integration of cross sections)

Thank you!