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The muon collider
Cost and Sustainability
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And low CO2 footprint for construction

Increasing luminosity per beam power promises 
power efficiency
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Staging is possible
Synergies exist (neutrino/higgs)
Unique opportunity for a high-energy, high-luminosity lepton collider
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A muon collider is both a precision and discovery machine: 
Elementary particles like electrons, interacting at very high 
energies like protons. 

It is a technological challenge: muons decay! 

  

 

Standard scenarios:

Energy: 3 TeV, Luminosity: 1 ab-1 

Energy: 10 TeV, Luminosity: 10 ab-1 

 



Why NLO EW corrections at muon colliders?
NLO EW corrections at muon colliders are typically as large as (or 
even more than) NLO QCD corrections at the LHC. 

EW corrections should be considered not only for precision 
physics, since they give  effects. This includes 
also BSM scenarios. 

 

𝒪(10 − 100%)

µ
+

µ
≠

æ X,
Ô

s = 3 TeV ‡
incl

LO
[fb] ‡

incl

NLO
[fb] ”EW [%]

W
+

W
≠ 4.6591(2) · 102 4.847(7) · 102 +4.0(2)

ZZ 2.5988(1) · 101 2.656(2) · 101 +2.19(6)
HZ 1.3719(1) · 100 1.3512(5) · 100

≠1.51(4)
HH 1.60216(7) · 10≠7 5.66(1) · 10≠7 ú

W
+

W
≠

Z 3.330(2) · 101 2.568(8) · 101
≠22.9(2)

W
+

W
≠

H 1.1253(5) · 100 0.895(2) · 100
≠20.5(2)

ZZZ 3.598(2) · 10≠1 2.68(1) · 10≠1
≠25.5(3)

HZZ 8.199(4) · 10≠2 6.60(3) · 10≠2
≠19.6(3)

HHZ 3.277(1) · 10≠2 2.451(5) · 10≠2
≠25.2(1)

HHH 2.9699(6) · 10≠8 0.86(7) · 10≠8 ú

W
+

W
≠

W
+

W
≠ 1.484(1) · 100 0.993(6) · 100

≠33.1(4)
W

+
W

≠
ZZ 1.209(1) · 100 0.699(7) · 100

≠42.2(6)
W

+
W

≠
HZ 8.754(8) · 10≠2 6.05(4) · 10≠2

≠30.9(5)
W

+
W

≠
HH 1.058(1) · 10≠2 0.655(5) · 10≠2

≠38.1(4)
ZZZZ 3.114(2) · 10≠3 1.799(7) · 10≠3

≠42.2(2)
HZZZ 2.693(2) · 10≠3 1.766(6) · 10≠3

≠34.4(2)
HHZZ 9.828(7) · 10≠4 6.24(2) · 10≠4

≠36.5(2)
HHHZ 1.568(1) · 10≠4 1.165(4) · 10≠4

≠25.7(2)

Table 1: Total inclusive cross sections at LO and NLO EW with corresponding relative
corrections ”EW, for two-, three- and four-boson production at

Ô
s = 3 TeV. For (*), with

dominant loop-induced contributions, we refer to the discussion in the text.

µ
+

µ
≠

æ X,
Ô

s = 10 TeV ‡
incl

LO
[fb] ‡

incl

NLO
[fb] ”EW [%]

W
+

W
≠ 5.8820(2) · 101 6.11(1) · 101 +3.9(2)

ZZ 3.2730(4) · 100 3.401(4) · 100 +3.9(1)
HZ 1.22929(8) · 10≠1 1.0557(8) · 10≠1

≠14.12(7)
HH 1.31569(5) · 10≠9 42.9(4) · 10≠9 ú

W
+

W
≠

Z 9.609(5) · 100 5.86(4) · 100
≠39.0(2)

W
+

W
≠

H 2.1263(9) · 10≠1 1.31(1) · 10≠1
≠38.4(5)

ZZZ 8.565(4) · 10≠2 5.27(8) · 10≠2
≠38.5(9)

HZZ 1.4631(6) · 10≠2 0.952(6) · 10≠2
≠34.9(4)

HHZ 6.083(2) · 10≠3 2.95(3) · 10≠3
≠51.6(5)

HHH 2.3202(4) · 10≠9
≠1.0(2) · 10≠9 ú

Table 2: Total inclusive cross sections at LO and NLO with corresponding relative cor-
rection ”EW for di- and tri-boson production at

Ô
s = 10 TeV. For (*), with dominant

loop-induced contributions, we refer to remarks in the text.
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Bredt, Kilian, Reuter, Stienemeier ‘22
WHIZARD



NLO EW: some open questions/issues
Resummation?
When is it necessary to resum EW (Sudakov) corrections?

BSM?
What features of NLO EW corrections are universal and 
can be extended to the BSM case?

EW jets?
What should I do with Z,W radiation? What is 
experimentally sensible impacts the calculation set up. 

PDFs or VBF with matrix elements?
If PDF involves weak effects, weak counter terms in NLO 
EW corrections should be included. Resum logs or keep 
power corrections? Both?

4



MadGraph5_aMC@NLO: what can be done?

NLO EW hadron colliders: Frederix, Frixione, Hirshi, DP, Shao, Zaro ‘18

NLO EW  colliders: Bertone, Cacciari, Frixione, Stagnitto, Zaro, Zhao ’22 e+e−

NLO EW Sudakov: DP, Zaro ‘21

The path is clear: extend NLO EW to muon collisions (muon 
PDFs), identify Sudakov corrections and therefore non-Sudakov 
effects.

one-loop EW virtual corrections 
 =

 [Sudakov Logs  +
 constant term  +

mass-suppressed terms ]

𝒪(α)

α 𝒪(−logk(s/m2
W), k = 1,2)

𝒪(1)
𝒪(m2

W /s)
5



What are EW Sudakov logarithms?
QCD: virtual and real terms are separately IR divergent (  poles). In 
physical cross sections the contributions are combined and poles cancel. 

QED: same story, but I can also regularise IR divergencies via a photon-
mass . So  poles  , where  is a generic scale. 

EW: with weak interactions  and W and Z radiation are 
typically not taken into account, which is anyway IR-safe. 

Therefore, at high energies EW loops induce corrections of order 

 

where k is the number of loops and . These logs are physical. Even 
including the real radiation of W and Z, there is not the full cancellation of 
this kind of logarithms. 

1/ϵ

λ 1/ϵ → log(Q2/λ2) Q

λ → mW, mZ

−αk logn(s/m2
W)

n ≤ 2k
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What is the hierarchy?
,    Single Log 

Double Log 

𝒪(1) →
α

4πs2
w

∼ 0.3 % →
α

4πs2
w

log(s/m2
W),

→
α

4πs2
w

log2(s/m2
W)

lκσ

l̄κσ

qλρ

q̄λρ

A,Z

lκσ

q̄λρ

A,Z

lκσ

q̄λρ

Figure 2: Lowest-order diagrams for l̄κσl
κ
σ → q̄λρq

λ
ρ and q̄λρ l

κ
σ → q̄λρ l

κ
σ

The collinear or soft SL contributions (4.6) give

δCl̄κσ lκσqλρ q̄λρ =
∑

f
µ
τ =lκσ ,q

λ
ρ

[

3Cew
fµ lC −

1

4s2w

(

(1 + δµR)
m2

fτ

M2
W

+ δµL
m2

f−τ

M2
W

)

lYuk

+ 2Q2
fτ
lem(m2

fτ
)
]

, (6.12)

and the Yukawa contribution depends on the chiralities µ and on the masses of the
fermions fµ

τ and their isospin partners fµ
−τ .

The PR logarithms for NC processes are obtained from the renormalization of the
electric charge and the weak mixing angle in the Born amplitude (6.4). Using (5.6) and
(5.7) this gives the relative correction

δPRl̄κσ l
κ
σq

λ
ρ q̄

λ
ρ
=
[

sw
cw

bewAZ∆lκσq
λ
ρ
− bewAA

]

lPR + 2δZem
e , (6.13)

where

∆φiφk
:=

− 1
4c2w

Yφi
Yφk

+ c2w
s4w
T 3
φi
T 3
φk

Rφiφk

(6.14)

gives a chirality-dependent contribution owing to mixing-angle renormalization of (6.5),
and bewAA represents the universal contribution of electric charge renormalization.

In order to give an impression of the size of the genuine electroweak part of the
corrections, we consider the relative corrections δ

κeκf ,ew

e+e−→f̄f
to NC processes e+e− → f̄ f

with chiralities κe, κf = R or L, and give the numerical coefficients of the electroweak
logarithms for the cases f = µ, t, b. For muon-pair production we have

δRR,ew
e+e−→µ+µ− = −2.58L(s)− 5.15

(

log
t

u

)

l(s) + 0.29 lZ + 7.73 lC + 8.80 lPR,

δRL,ew
e+e−→µ+µ− = −4.96L(s)− 2.58

(

log
t

u

)

l(s) + 0.37 lZ + 14.9 lC + 8.80 lPR,

δLL,ewe+e−→µ+µ− = −7.35L(s)−
(

5.76 log
t

u
+ 13.9 log

|t|
s

)

l(s) + 0.45 lZ

+ 22.1 lC − 9.03 lPR, (6.15)

and δLR,ew
e+e−→µ+µ− = δRL,ew

e+e−→µ+µ−. For top-quark-pair production we find

δRR,ew
e+e−→t̄t = −1.86L(s) + 3.43

(

log
t

u

)

l(s) + 0.21 lZ + 5.58 lC − 10.6 lYuk + 8.80 lPR,

19

Denner Pozzorini ‘01

The estimate done via the variation 
of a factor of 10 is actually 
conservative.

Just a representative example  of a process

1000 5000 104
s [GeV]

0.5
1

5
10

50
100

%
Relative corrections in NLO EW

order 1

order 1 (times 10)
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Single Log (times 10)

Double Log

Double Log (times 10)
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What is the hierarchy?
,    Single Log 

Double Log 

𝒪(1) →
α

4πs2
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α

4πs2
w

log(s/m2
W),

→
α
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w
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The estimate done via the variation 
of a factor of 10 is actually 
conservative.

Definitely at 3 but also at 10 TeV both Single and Double logs 
should be taken into account, and obviously finite term for % acc. 

Logs may often need to be resummed.
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Master formula (Denner&Pozzorini)

• �i: the scalar doublet containing the Higgs particle H and the neutral and charged

Goldstone bosons �,�±.

An important technical point of the DP algorithm is that, since high-energy limit is as-

sumed, the Goldstone-boson equivalence theorem can be used. In fact, with this algorithm,

contributions from longitudinal gauge-bosons are always evaluated via the Goldstone-boson

equivalence theorem. We will return to this point in Sec. 5.1.

Following the same notation of Ref. [39], the couplings of each external field 'ik to the

gauge bosons Va is denoted by ieIVa('), namely, ieIVa
'i'i0

(') is the coupling corresponding

to the Va'̄i'i0 vertex, with all fields that are incoming. For simplicity, in the formulas

the components 'ik are replaced by their indices ik, namely, Ia
iki

0
k
(k). All the values and

formulas for the quantities Ia
iki

0
k
(k), as many other terms appearing in the next sections are

reported in detail in the appendices of Ref. [39]. We do not repeat them here, but we want

to warn the reader that the same exact conventions for Feynman rules have to be used in

order obtain consistent results.

For any process denoted as in (2.9), the Born matrix element reads

M
i1...in
0 (p1, . . . , pn). (2.10)

The O(↵) corrections to M0 in LA, �M, has the form

�M
i1...in(p1, . . . , pn) = M

i
0
1...i

0
n

0 (p1, . . . , pn)�i01i1...i0nin . (2.11)

Equation (2.11) means that the result can be written in a factorised form, but that involves

Born amplitudes for di↵erent processes. The contributions to �M have di↵erent origins:

� = �
LSC + �

SSC + �
C + �

PR
. (2.12)

The quantities �
LSC and �

SSC are respectively the leading and subleading soft-collinear

logarithms. They both emerge from the DL, which in turn originate from the eikonal ap-

proximation of one-loop diagrams where gauge bosons are exchanged between external legs

and are soft-collinear. The former represents the symmetric and solely energy-dependent

class of logarithms, while the latter involves mass ratios and ratios of invariants. The

quantity �
C consists of the collinear logarithms, originating from virtual collinear gauge

bosons from external lines and field renormalisation constants. The logarithms resulting

from parameter renormalisation, which can be determined by the running of the couplings,

corresponds to the term �
PR. In the case of longitudinally polarised bosons the equivalences

M
...W

±
L ...

0 = M
...�

±
...

0 ,

M
...ZL...

0 = iM...�...

0 , (2.13)

are used and can be applied also for what concerns the di↵erent terms entering the definition

of �.

In the following subsections we provide the formulas entering the implementation in

MadGraph5 aMC@NLO, which is described in Sec. 5. We will discuss in details only the

aspects concerning the di↵erences w.r.t. Ref. [39].
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One-loop EW 
Sudakov corrections:

the logsother tree-level 
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eikonal approximation of  
soft EW boson exchange 

Leading  
Soft-Collinear

Subleading  
Soft-Collinear Collinear

Parameter 
renormalis.

It depends only on 
s and it is the only 
t e r m i n v o l v i n g 
double logarithms.

configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.
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configurations. Rather, the process without decays should be first considered and the
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masses. In other words, if k and l are two generic external particles with momenta pk and

pl respectively, then

rkl ⌘ (pk + pl)
2
' 2pkpl � M

2
W ' M

2
H ,m

2
t ,M

2
W ,M

2
Z . (2.2)

It is interesting to note that the condition (2.2) still allows for kinematic configurations

with rkl � rk0l0 � M
2
W
, where the quantities rkl and rk0l0 represent a generic pair of the

many possible invariants that one can build with two external momenta. However, since

the required formal accuracy consists of the DL and SL in (2.1), although logarithms of

the form
↵

4⇡
log2

rkl

rk0l0
and

↵

4⇡
log

rkl

rk0l0
, (2.3)

are present at O(↵) and can be non-negligible for configurations with rkl � rk0l0 � M
2
W
,

they are not taken into account. In other words, the algorithm assummes the regime (2.2),

but large logarithms may be anyway not captured unless the condition

rkl/rk0l0 ' 1 (2.4)

is satisfied for any possible pair of rkl and rk0l0 invariants.

In fact, condition (2.4) is quite unrealistic for actual calculations in collider physics,

since cross sections are dominated precisely by regions where one or more rkl invariants tend

to be much smaller than s ⌘ r12 � M
2
W
. Indeed, the rkl are related with the invariants

entering the propagators. Even if cuts are devised in order to maximise any possible value

of rkl for a given s, the fulfilment of condition (2.4) is strictly impossible. For instance,

if (2.2) is valid, one has that min(rkl/s) < 0.5 for a 2 ! 2 process. This bound is even

tighter and tighter for a generic 2 ! n process with n growing.1

It is worth to remind the reader an important limitation of the DP algorithm. For a

given process, at least one helicity configuration of the matrix element must not be mass

suppressed, i.e., it must not vanish in the limit M2
W
/s ! 0.2 Indeed, such an assumption is

one of the hypotheses under which the algorithm has been derived. On the other hand, most

of the processes do satisfy this hypothesis, having at least one helicity configuration that is

not mass suppressed3. Moreover, thanks to the condition (2.2), helicity configurations that

are notmass suppressed are by definition also dominant in the kinematic regime considered.

The condition (2.2) also implies that processes including unstable particles and their decays

cannot be treated in this approximation if physical observables are dominated by resonant

1Finding the configuration where all invariants are large in a 2 ! n process requires the determination

of the largest possible value for the minimum angle between any two of the n final-state momenta. This is

the typical example of a mathematical problem that it is easy to define and with a solution that is far from

trivial. See for example http://neilsloane.com/packings/index.html#I.
2An equivalent formulation of this condition is that the scaling of the matrix element M with the centre-

of-mass energy
p
s must coincide with what one expects from dimensional analysis: a non mass-suppressed

helicity configuration of a matrix elements with n external legs should scale as
p
s4�n. See footnote 3 for

a counterexample.
3 Exceptions are possible, an important one is Higgs production via vector-boson fusion. Dimensional

analysis for a 2 ! 3 matrix element requires [M] = GeV�1, and for this specific process the matrix element

scales with the energy as M / MW
s .
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Derivation of LSC and SSC

the logarithms l(M2
W,M2

Z), l(m
2
t ,M

2
W), and l(M2

H,M
2
W) are neglected. Furthermore, in the

limit (2.6), the pure angular-dependent contributions log (rkl/s) and log2 (rkl/s) can be
neglected.

The lowest-order matrix element for (2.1) is denoted by

Mi1...in
0 (p1, . . . , pn). (2.10)

In LA the corrections assume the form

δMi1...in(p1, . . . , pn) = Mi′1...i
′
n

0 (p1, . . . , pn)δi′1i1...i′nin , (2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their
origin:

δ = δLSC + δSSC + δC + δPR. (2.12)

The leading and subleading soft–collinear logarithms are denoted by δLSC and δSSC, re-
spectively, the collinear logarithms by δC, and the logarithms resulting from parameter
renormalization, which can be determined by the running of the couplings, by δPR.

3 Soft–collinear contributions

The DL corrections originate from loop diagrams where virtual gauge bosons Va =
A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms

n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

Va

k

l

Figure 1: Feynman diagrams leading to DL corrections

arise from the integration region where the gauge-boson momenta are soft and collinear
to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
imation, where in the numerator of the loop integral the gauge-boson momentum is set
to zero and all mass terms are neglected. In this approximation the one-loop corrections
give

δMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

∫ d4q

(2π)4
−4ie2pkplI

Va

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k ...i

′
l...in

0

(q2 −M2
Va
)[(pk + q)2 −m2

k′][(pl − q)2 −m2
l′ ]
, (3.1)

and in LA, using the high-energy expansion of the scalar three-point function [ 21], one
obtains

δMi1...in =
1

2

n
∑

k=1

∑

l !=k

∑

Va=A,Z,W±

IVa

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k...i

′
l
...in

0 [L(|rkl|,M2
Va
)− δVaAL(m

2
k,λ

2)].

(3.2)
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2.2 Logarithm splittings

As already mentioned, the DL corrections come from loop diagrams with virtual gauge

bosons Va = A,Z,W
± connecting two external legs. In particular, they originate from

regions where the gauge boson is soft and collinear to one of the external legs. Their

expressions can be derived by evaluating them in the eikonal approximation.

In Ref. [39], DL have been in general identified as

L(|rkl|,M
2) = L(s,M2) + 2l(s,M2) log

|rkl|

s
+ L(|rkl|, s)

= L(s) + 2l(s) log
M

2
W

M2
+ 2l(s) log

|rkl|

s
+ · · · (2.14)

where the invariant rkl depends on the angle between the momenta pk and pl. Equation

(2.14) precisely represents the first of the logarithm splittings that has been mentioned

before. In the first line of (2.14) the quantity L(|rkl|,M2) is split into L(s,M2), which

is symmetric and energy dependent, and other two terms, of which the second can be

neglected in the approximation (2.4). Moving to the second line, the remaining terms are

further rearranged such that if M 6= MW , the mass-ratio logarithm log
M

2
W

M2 is kept only

when multiplying l(s). The dots at the end stand for the terms that are dropped in the

splitting of the logarithms. In Ref. [39], the first two terms in the second line of eq. (2.14)

are identified as the leading soft-collinear (LSC) contribution, which as already mentioned

is angular-independent and involves only the s/M2
W

ratio in the logarithms. The remaining

term leads to the angular-dependent subleading soft-collinear (SSC) contribution.

When loop diagrams with virtual gauge bosons Va = A,Z,W
± connecting two external

legs are evaluated in the eikonal approximation, the logarithmic dependence can be derived

by the expansion of the C0 function in the high-energy limit, namely condition (2.2). The

expression can be found in Ref. [96]. If the gauge boson V with mass M is exchanged

between the external particles �k and �l, the relevant quantity is, following the conventions

of Ref. [96],

C0(pk, pl,M,Mk,Ml) /
1

rkl

✓
log2

|rkl|

M2
� 2i⇡⇥(rkl) log

|rkl|

M2

◆
, (2.15)

where ⇥ is the Heaviside step function. It is then clear that rather than starting from

L(|rkl|,M2) as in eq. (2.14) the correct quantity to be taken into account is

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) . (2.16)

The di↵erence is an imaginary component that involves a term proportional to l(s). For

2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !

2 tree-level amplitudes are always real (as a consequence of the optical theorem), the

imaginary part of the one-loop (or Sudakov-approximated) amplitude drops out when the

real part of the loop-tree interference is considered. However, this is no longer the case

starting from 2 ! 3 processes, and indeed we do find that this imaginary part is not
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log
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where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.
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to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
imation, where in the numerator of the loop integral the gauge-boson momentum is set
to zero and all mass terms are neglected. In this approximation the one-loop corrections
give
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and in LA, using the high-energy expansion of the scalar three-point function [ 21], one
obtains
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2.2 Logarithm splittings

As already mentioned, the DL corrections come from loop diagrams with virtual gauge

bosons Va = A,Z,W
± connecting two external legs. In particular, they originate from

regions where the gauge boson is soft and collinear to one of the external legs. Their

expressions can be derived by evaluating them in the eikonal approximation.

In Ref. [39], DL have been in general identified as

L(|rkl|,M
2) = L(s,M2) + 2l(s,M2) log

|rkl|

s
+ L(|rkl|, s)

= L(s) + 2l(s) log
M

2
W

M2
+ 2l(s) log

|rkl|

s
+ · · · (2.14)

where the invariant rkl depends on the angle between the momenta pk and pl. Equation

(2.14) precisely represents the first of the logarithm splittings that has been mentioned

before. In the first line of (2.14) the quantity L(|rkl|,M2) is split into L(s,M2), which

is symmetric and energy dependent, and other two terms, of which the second can be

neglected in the approximation (2.4). Moving to the second line, the remaining terms are

further rearranged such that if M 6= MW , the mass-ratio logarithm log
M

2
W

M2 is kept only

when multiplying l(s). The dots at the end stand for the terms that are dropped in the

splitting of the logarithms. In Ref. [39], the first two terms in the second line of eq. (2.14)

are identified as the leading soft-collinear (LSC) contribution, which as already mentioned

is angular-independent and involves only the s/M2
W

ratio in the logarithms. The remaining

term leads to the angular-dependent subleading soft-collinear (SSC) contribution.

When loop diagrams with virtual gauge bosons Va = A,Z,W
± connecting two external

legs are evaluated in the eikonal approximation, the logarithmic dependence can be derived

by the expansion of the C0 function in the high-energy limit, namely condition (2.2). The

expression can be found in Ref. [96]. If the gauge boson V with mass M is exchanged

between the external particles �k and �l, the relevant quantity is, following the conventions

of Ref. [96],

C0(pk, pl,M,Mk,Ml) /
1

rkl

✓
log2

|rkl|

M2
� 2i⇡⇥(rkl) log

|rkl|

M2

◆
, (2.15)

where ⇥ is the Heaviside step function. It is then clear that rather than starting from

L(|rkl|,M2) as in eq. (2.14) the correct quantity to be taken into account is

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) . (2.16)

The di↵erence is an imaginary component that involves a term proportional to l(s). For

2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !

2 tree-level amplitudes are always real (as a consequence of the optical theorem), the

imaginary part of the one-loop (or Sudakov-approximated) amplitude drops out when the

real part of the loop-tree interference is considered. However, this is no longer the case

starting from 2 ! 3 processes, and indeed we do find that this imaginary part is not
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configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.
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The relation  is used in all logs, unless they multiply .rkl = rk′ l′ = s l(s)

the logarithms l(M2
W,M2

Z), l(m
2
t ,M

2
W), and l(M2

H,M
2
W) are neglected. Furthermore, in the

limit (2.6), the pure angular-dependent contributions log (rkl/s) and log2 (rkl/s) can be
neglected.

The lowest-order matrix element for (2.1) is denoted by

Mi1...in
0 (p1, . . . , pn). (2.10)

In LA the corrections assume the form

δMi1...in(p1, . . . , pn) = Mi′1...i
′
n

0 (p1, . . . , pn)δi′1i1...i′nin , (2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their
origin:

δ = δLSC + δSSC + δC + δPR. (2.12)

The leading and subleading soft–collinear logarithms are denoted by δLSC and δSSC, re-
spectively, the collinear logarithms by δC, and the logarithms resulting from parameter
renormalization, which can be determined by the running of the couplings, by δPR.

3 Soft–collinear contributions

The DL corrections originate from loop diagrams where virtual gauge bosons Va =
A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms
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Va
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l

Figure 1: Feynman diagrams leading to DL corrections

arise from the integration region where the gauge-boson momenta are soft and collinear
to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
imation, where in the numerator of the loop integral the gauge-boson momentum is set
to zero and all mass terms are neglected. In this approximation the one-loop corrections
give

δMi1...in =
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Va
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ik
(k)I V̄a
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(l)Mi1...i′k ...i

′
l...in
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(q2 −M2
Va
)[(pk + q)2 −m2

k′][(pl − q)2 −m2
l′ ]
, (3.1)

and in LA, using the high-energy expansion of the scalar three-point function [ 21], one
obtains

δMi1...in =
1

2

n
∑

k=1

∑

l !=k

∑

Va=A,Z,W±

IVa

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k...i

′
l
...in

0 [L(|rkl|,M2
Va
)− δVaAL(m

2
k,λ

2)].
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2.2 Logarithm splittings

As already mentioned, the DL corrections come from loop diagrams with virtual gauge

bosons Va = A,Z,W
± connecting two external legs. In particular, they originate from

regions where the gauge boson is soft and collinear to one of the external legs. Their

expressions can be derived by evaluating them in the eikonal approximation.

In Ref. [39], DL have been in general identified as

L(|rkl|,M
2) = L(s,M2) + 2l(s,M2) log

|rkl|

s
+ L(|rkl|, s)

= L(s) + 2l(s) log
M

2
W

M2
+ 2l(s) log

|rkl|

s
+ · · · (2.14)

where the invariant rkl depends on the angle between the momenta pk and pl. Equation

(2.14) precisely represents the first of the logarithm splittings that has been mentioned

before. In the first line of (2.14) the quantity L(|rkl|,M2) is split into L(s,M2), which

is symmetric and energy dependent, and other two terms, of which the second can be

neglected in the approximation (2.4). Moving to the second line, the remaining terms are

further rearranged such that if M 6= MW , the mass-ratio logarithm log
M

2
W

M2 is kept only

when multiplying l(s). The dots at the end stand for the terms that are dropped in the

splitting of the logarithms. In Ref. [39], the first two terms in the second line of eq. (2.14)

are identified as the leading soft-collinear (LSC) contribution, which as already mentioned

is angular-independent and involves only the s/M2
W

ratio in the logarithms. The remaining

term leads to the angular-dependent subleading soft-collinear (SSC) contribution.

When loop diagrams with virtual gauge bosons Va = A,Z,W
± connecting two external

legs are evaluated in the eikonal approximation, the logarithmic dependence can be derived

by the expansion of the C0 function in the high-energy limit, namely condition (2.2). The

expression can be found in Ref. [96]. If the gauge boson V with mass M is exchanged

between the external particles �k and �l, the relevant quantity is, following the conventions

of Ref. [96],

C0(pk, pl,M,Mk,Ml) /
1

rkl

✓
log2

|rkl|

M2
� 2i⇡⇥(rkl) log

|rkl|

M2

◆
, (2.15)

where ⇥ is the Heaviside step function. It is then clear that rather than starting from

L(|rkl|,M2) as in eq. (2.14) the correct quantity to be taken into account is

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) . (2.16)

The di↵erence is an imaginary component that involves a term proportional to l(s). For

2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !

2 tree-level amplitudes are always real (as a consequence of the optical theorem), the

imaginary part of the one-loop (or Sudakov-approximated) amplitude drops out when the

real part of the loop-tree interference is considered. However, this is no longer the case

starting from 2 ! 3 processes, and indeed we do find that this imaginary part is not
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Our approach:    
irrelevant. We therefore repeat the procedure of eq. (2.14) in order to identify how the

impact of the term 2i⇡⇥(rkl) translates into the DP algorithm. Moreover we keep track of

the terms that would be otherwise discarded assuming condition (2.4).

Starting from (2.16) we obtain

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) =

= L(s,M2) + 2l(s,M2)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s) =

= L(s) + 2l(s) log
M

2
W

M2
| {z }

LSC

+2l(s)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆

| {z }
SSC

+ (2.17)

2l(M2
W ,M

2) log
|rkl|

s
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s)

| {z }
SSCs!rkl

+ · · ·

where we have dropped in the splitting of the logarithms only terms involving neither s

nor rkl.5 In the third line of eq. (2.17) there are terms that are relevant for the formal

expansion in LA, i.e., the correct expression to be used instead of (2.14). The first two

terms in the sum give the LSC logarithms, while the third one contributes to the SSC

ones. On the contrary in the fourth line there are further terms that become relevant when

s � rkl � M , i.e., departing from condition (2.4). Formally, they do not enter the LA so

cannot be identified neither as LSC nor as SSC. On the other hand, since they depend on

rkl, we will take into account their contribution in the expression of the SSC logarithms

(Sec. 2.4). For this reason we have denoted them in eq. (2.17) as SSCs!rkl .

2.3 LSC: Leading soft-collinear contributions

The LSC logarithms can be rearranged as a single sum over the external legs,

�
LSC

M
i1...in =

nX

k=1

�
LSC
i
0
kik

(k)M
i1...i

0
k...in

0 , (2.18)

where �
LSC
i
0
kik

(k) reads

�
LSC
i
0
kik

(k) = �
1

2


C

ew
i
0
kik

(k)L(s)� 2(IZ(k))2
i
0
kik

log
M

2
Z

M
2
W

l(s) + �i0kik
Q

2
k
L
em(s,Q2

,m
2
k
)

�
.

(2.19)

In this case, besides the term L
em(s,Q2

,m
2
k
), the expression is the same of Ref. [39].

The expressions for the electroweak Casimir operator Cew, the squared Z-boson coupling

(IZ(k))2
i
0
kik

and charge Q
2
k
for a generic particle k and a specific polarisation can be found

in Ref. [39]. It is important to note that the first two quantities have indexes and can

5These terms are L(M2
W ,M2) and �i⇡⇥(rkl)l(M

2
W ,M2), which are indeed neglected unless the vector

boson is the photon and M2 ! Q2. In that case these contributions are retained. The former, together

with the term 2l(s) log
M2

W
M2 from the LSC, is entering the definition of Lem(s,Q2,m2

k) in eq. (2.20). The

latter, again only for the photons, enters directly eq. (2.23) together with the term 2l(M2
W ,M2) log |rkl|

s

from the SSCs!rkl .
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          in the expressionsrkl = rk′ l′ = s

T h e c o n c e p t u a l 
derivation relies on the 
assumption , but 
is not actually used in the 
expressions. 
Therefore, further angular 
dependencies are taken 
into account.

s = rkl

Previously omitted
imaginary term

  
New angular 

dependences via 
ratios among 

invariants

LSC SSC
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ZZZ production at 100 TeV hadron

Orange: NLO EW, (dotted: NLO EW no  PDF) 
Green = , Red =  
Dashed: standard approach for amplitudes. 
Solid: our formulation (more angular information) 
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 and  explained afterwards 
(irrelevant for neutral final state).

Only the solid lines, having more angular 
information, correctly capture NLO EW.

SDKweak SDK0

All the results have been obtained by applying the following cuts:

pT (Zi) > 1 TeV , |⌘(Zi)| < 2.5 , m(Zi, Zj) > 1 TeV , �R(Zi, Zj) > 0.5 .

(7.3)

Similarly to (7.2), these cuts resemble realistic experimental cuts for high-energy objects,

but they also avoid additional logarithmic enhancements from collinear splittings appearing

in the real-radiation processes or even at the Born.

First of all, it is important to notice the size of the EW corrections. For most of

the spectrum of all distributions, they are negative and larger than the LO in absolute

value, reaching ⇠ �200% of it in the tail. Since they are negative, this means that fixed-

order NLO EW corrections are also negative in this regime and therefore non-physical.

These distributions are a clear example of how large Sudakov logarithms, and in turn NLO

EW corrections, can be at high energy. Also they clearly point to the necessity of resum

them for obtaining sensible predictions. Here, on the other hand, we are not providing

phenomenological predictions but rather showing the accuracy of the LA and testing its

implementation in MadGraph5 aMC@NLO.

As expected, for all distributions, the di↵erence between green and red lines (SDK0 and

SDKweak) amounts to only few percents of the LO, with no clear logarithmic enhancement

in the high-energy limit. Also as expected, the impact of the SSCs!rkl terms (solid versus

dashed lines) is much larger for this process than for Drell-Yan production. In the upper

plots of Fig. 5, the pT (Zi) distributions, the dashed lines are di↵ering from the solid ones

by 5-10% of the LO for the full spectra, with the latter in turn di↵ering only by a very

few percents from the exact NLO EW prediction. The di↵erence between dashed and solid

lines is even larger in the lower plots, the m(Zi, Zj) distributions, and especially a clear

logarithmic trend can be observed. It is worth to stress that for all these distributions,

with the exception of the far tail in the m(Zi, Zj) ones, the inclusion of the SSCs!rkl terms

leads to an accuracy of very few percents for corrections spanning from ⇠-80% to ⇠-200%.

This is not the case for the pure LA without the SSCs!rkl terms.

7.3 WZ

We now move to the case of a couple of processes where both the inclusion of the SSCs!rkl

terms and the use of SDKweak is relevant. We start by showing di↵erential distributions

for the process pp ! W
+
Z, where results have been obtained by using the following cuts

pT (Vi) > 1 TeV , |⌘(Vi)| < 2.5 , m(W+
, Z) > 1 TeV , �R(W+

, Z) > 0.5 .

(7.4)

Again, these cuts resemble realistic experimental cuts for high-energy objects, but they also

avoid (part of the) additional logarithmic enhancements from collinear splittings appearing

in the real-radiation processes or even at the Born.

In Fig. 7 we show the transverse momentum of the hardest (pT (V1)) and softest

(pT (V2)) recombined vector-bosons and their invariant mass (m(W+
, Z)). Similarly to

the case of leptons (7.1), the recombination is performed by recombining any charged vec-

tor boson Vi with photons that satisfy the condition �R(Vi, �) < 0.4. We also show the

– 42 –
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Cross-sections: our approach.
FOR WHAT EW SUDAKOV ARE USEFUL?
For providing a very good approximation of NLO EW in the high-energy limit.  

HOW SHOULD ONE PERFORM THE CALCULATION IN THE HIGH-ENERGY LIMIT?
Photons have to be always clustered with massless charged particle for IR-safety reasons. But from 
an experimental point of view, at high energy also clustering tops and W bosons with photons is 
very reasonable, either if you imagine to tag heavy object directly or via their massless decay products.

The QED Logs, involving  and  (or ), cancel against their real-emission 
counterparts and PDF counterterms. The only one surviving are those from tops in 
vacuum polarisation for external (not tagged) photons, both in the initial and final state:

s λ2 Q2

SDKweak
Almost all the contributions of QED are removed 

(e.g. , ), 
but NOT in the parameter renormalisation .

CEW(k) → CEW(k) − Q2
k Q2

k = 0
δPR
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 production at 100 TeV hadrone+e−

Orange: NLO EW, (dotted: NLO EW no  PDF) 
Green = , Red =  
Dashed: standard approach for amplitudes. 
Solid: our formulation (more angular information) 
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We use the PDF set NNPDF3.1 [132, 133] in particular the NNPDF31_nlo_as_0118_luxqed

distributions, which include NLO QED evolution and especially a photon density following

the LUXqed parameterisation [134, 135]. The renormalisation (µR) and factorisation (µF )

scales are both set equal to the partonic center-of-mass energy
p
s. This set-up is common

with all the other processes discussed in this section.

In the Drell-Yan simulation the following cuts are imposed on the dressed leptons:

pT (`
±) > 200 GeV , |⌘(`±)| < 2.5 , m(`+, `�) > 400 GeV , �R(`+, `�) > 0.5 .

(7.2)

On the one hand, these cuts are imposed in order to resemble realistic experimental cuts for

high-energy objects. On the other hand, they avoid additional logarithmic enhancements

from collinear splittings appearing in the real radiation processes or even at the Born.

In Fig. 5 we show di↵erential distributions for the transverse momentum of the electron,

pT (`�), for the transverse momentum of the leading (trailing) lepton, pT (`1) (pT (`2)), and

for the dilepton invariant mass m(`+, `�).

The layout of each plot in Fig. 5, and in general of each plot in this section21, is

the following. In the main panel we show the di↵erential distribution at LO (solid blue

line) and NLO EW (solid orange line) accuracy, where the exact O(↵) corrections are

taken into account. If the NLO EW prediction turns negative, meaning that NLO EW

corrections are negative and larger than the LO in absolute value, the curve corresponds

to its absolute value and is drawn as dashed. In the first inset we show the relative

impact of EW corrections, �X ⌘ X/LO� 1, in di↵erent approximations. The solid orange

line corresponds to the one in the main panel with the same style, i.e. the exact O(↵)

corrections (NLO EW), and the dotted orange line corresponds to the same case where the

photon PDF has been set equal to zero (NLO EW, no �). The other curves correspond

to results in LA, with di↵erent assumptions. First, the solid curves include the SSCs!rkl

contribution (SDKX , s ! rkl), while the dashed ones do not (SDKX). Second, the green

lines are obtained by simply omitting the QED and IR-sensitive terms, which are dubbed

as “em” in the DP algorithm. This is analogous to the approach of e.g. Refs. [79, 91]

and dubbed here as SDK0. The red lines are instead obtained by completely removing

the QED contribution, namely, following the procedure described in Sec. 4.1, the SDKweak

approach. Both the SDK0 and SDKweak predictions, similarly to the NLO EW ones in

this section, include also the LO contribution. Needless to say, the closest a line is to

the solid orange one, the better is the approximation of the exact NLO EW corrections.

Therefore, in order to better judge this characteristic, in the second inset we zoom on the

lines by simply plotting for each line in the first inset the di↵erence with the solid orange

one. Clearly, the reference prediction in LA is the solid red line, which both includes the

SSCs!rkl contribution and is obtained via the SDKweak approach.

dressed lepton pair can originate from a configuration where the bare leptons have m(`+bare, `
�
bare) ' MZ and

one of them is recombined with a hard photon, leading to m(`+, `�) � MZ and therefore passing the cuts.

This configuration is not associated to any enhancement and therefore very rare, but in the on-shell scheme

it leads to the evaluation of a resonant Z propagator with zero width and therefore it is inconsistent.
21An important di↵erence is present for Figs. 7 and 8 and explained later in the text.
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Figure 2. Parton luminosities dLij/d⌧ for (a) an e+e� collider at
p
s = 3 TeV, (b) a µ+µ� collider

at
p
s = 3 TeV, (c) an e+e� collider at

p
s = 10 TeV, and (d) a µ+µ� collider at

p
s = 10 TeV. The

factorization scale is chosen as Q =
p
ŝ/2 (solid curves) and

p
ŝ (dashed curves).

3 The standard processes and jet production

3.1 EW processes

In high-energy e+e� collisions, one would expect that the leading reactions are of the QED
and electroweak nature, including Bhabha scattering e+e� ! e+e�, Compton scattering
�e ! �e, and the s-channel annihilation processes for pair production e+e� ! µ+µ�, qq̄ and
W+W� once above the threshold. While the cross sections for the annihilation processes fall
with the c.m. energy as � ⇠ ↵2/s, the t-channel processes receive the collinear enhancement.
Nevertheless, with a detector angular acceptance ✓min, the cross sections for the 2 ! 2 t-
channel processes still fall as � ⇠ ↵2/(s ✓2

min
). Going beyond the fixed-order calculations, the

potentially large collinear logarithms (log ✓2) need to be resummed, leading to the appropriate
description of the parton distribution functions (PDFs), as presented in the previous section.
As such, there will be substantial contributions coming from partonic scattering processes
initiated by those in Eq. (2.23), far below the collider c.m. energy. Throughout this work,
the partonic cross sections are calculated at the leading order with the general purpose event
generatorMadGraph5 v2.6.7 [66]. The annihilation processes with the initial-state radiation
(ISR) are calculated with Whizard v2.8.5 [67].

We first present some leading order production cross sections of typical electroweak pro-
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Calculation set up for showcasing some results

, where  is a generic final state involving  
. Thus direct production, no VBF considered.

μ+μ− ⟶ X X
W, Z, t, H, ℓ

We require , so that neither 
VBF nor PDFs other than  are relevant.

m(X) > 0.8 s
μ

We apply further experimentally motivated 
cuts for each  particle in : 

, ,  

i, j X

pT(i) > 100 GeV |η(i) | < 2.44 ΔR(i, j) > 0.4

Han, Ma, Xie ’20, ‘21

And we recombine photons with charged 
(also massive) particles. 
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Calculation set up for showcasing some results

, where  is a generic final state involving  
. Thus direct production, no VBF considered.

μ+μ− ⟶ X X
W, Z, t, H, ℓ

ISR Treatment: we use the LL PDF for the muon only
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there. Equation (A.12) is then solved for K (we denote the solution by KLO), leading to:

KLO = �[1]

LO
� �(K=0)[1] . (A.13)

When this function is used in eq. (A.7) (i.e. by setting K = KLO there), d[1] plays the

role of the compensating contribution to the partonic cross sections (eq. (A.6)) which has

been introduced in the discussion at the beginning of this appendix. We point out that

the choice of the MS factorisation scheme in the second term on the r.h.s. of eq. (A.13) is

dictated by simplicity. Still, another scheme could be chosen, but this would entail using

it in the first term on the r.h.s. of eq. (A.6), since the property of scheme independence of

the final result must be preserved.

Lest eq. (A.13) generate some misunderstanding, we stress that with LO PDFs the

definition of a factorisation scheme does not make sense. However, the framework provided

by the scheme-change functions K in the context of the FKS subtraction is very convenient

for computing the compensating contribution that allows one to obtain NLO-accurate
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For precision physics the scheme adopted and the NLL 
accuracy (Frixione, Stagnitto ’23) are mandatory. But it is not the 
focus of this talk.
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Figure 3: As in fig. 2, for tt̄ production in the full SM (left panel) and in QED (right

panel).

There are a couple of immediate conclusions that can be drawn from the inspection of

the figures. Firstly, the relative impact of the NLL contributions can be much larger than

the typical precision targets at future e+e� colliders, and depends on both the process

and the kinematical region one considers (since the histograms are not flat); and, secondly,

the dependence on the renormalisation scheme is significant (conversely, we shall show in

sect. 6.3 that the one stemming from the factorisation scheme is much smaller, which is the

reason why we could concentrate here on �-scheme results). As far as the former aspect

is concerned, it is representative of a process- and observable-dependent pattern27 that

renders it impossible to account for NLL PDF e↵ects in some “universal” manner (e.g., with

the multiplication of LL-accurate results by an overall factor). Thus, the key conclusion

is the following: while the assessment of the relevance of NLL PDF e↵ects depends on

the specific applications one pursues (in particular, the observable one considers and the

accuracy with which this is expected to be determined experimentally), one should expect

them to be phenomenologically important in high-energy e+e� collisions, and thus regard

NLL-accurate PDFs as the default choice for precision studies in that context.

6.3 Factorisation- and renormalisation-scheme dependences

In this section we consider the dependence of the observable of eq. (6.4) upon the choice

of the factorisation and the renormalisation schemes. We first point out that these two

dependencies may be seen as being of a di↵erent nature, in spite of the fact that they both

induce di↵erences that are beyond the accuracy one is working at (thus, in our case, the

di↵erences are of NNLO). In particular, it is often the case that a definite renormalisation

scheme is chosen because it is thought to be particularly apt at correctly capturing dom-

inant e↵ects of perturbative orders higher than those included in the computation one is

performing (e.g., the Gµ scheme for processes that involve W ’s and Z’s, and no photons).

This viewpoint is of course legitimate, but its validity diminishes with the ability to carry

27For each process, we have computed several di↵erential and cumulative observables, and studied them

in the same manner as what is done here for that of eq. (6.4).
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irrelevant. We therefore repeat the procedure of eq. (2.14) in order to identify how the

impact of the term 2i⇡⇥(rkl) translates into the DP algorithm. Moreover, we keep track

of the terms that would be otherwise discarded assuming condition (2.4).

Starting from (2.16) we obtain

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) =

= L(s,M2) + 2l(s,M2)

✓
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s
� i⇡⇥(rkl)

◆
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s) =
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M

2
W

M2
| {z }

LSC

+2l(s)
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s
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◆

| {z }
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+ (2.17)

2l(M2
W ,M

2) log
|rkl|

s
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s)

| {z }
SSCs!rkl

+ · · ·

where we have dropped in the splitting of the logarithms only terms involving neither s

nor rkl.5 In the third line of eq. (2.17) there are terms that are relevant for the formal

expansion in LA, i.e., the correct expression to be used instead of (2.14). The first two

terms in the sum give the LSC logarithms, while the third one contributes to the SSC

ones. On the contrary in the fourth line there are further terms that become relevant when

s � rkl � M , i.e., departing from condition (2.4). Formally, they do not enter the LA so

they cannot be identified neither as LSC nor as SSC. On the other hand, since they depend

on rkl, we will take into account their contribution in the expression of the SSC logarithms

(Sec. 2.4). For this reason we have denoted them in eq. (2.17) as SSCs!rkl .

As we will discuss in more detail in Sec. 6.2, even taking into account the SSCs!rkl

contribution, the full control of logarithms involving the ratios of |rkl| invariants and s

cannot be achieved via the DP algorithm. We will discuss the case of a specific process for

which this limitation is manifest. On the other hand, several numerical results in Sec. 6.2

and Sec. 7 clearly show how the inclusion of the SSCs!rkl terms substantially improves the

approximation of such class of logarithms and in turn of EW virtual one-loop corrections

at high energy.

2.3 LSC: Leading soft-collinear contributions

The LSC logarithms can be rearranged as a single sum over the external legs,

�
LSC

M
i1...in =

nX

k=1

�
LSC
i
0
kik

(k)M
i1...i

0
k...in

0 , (2.18)

5These terms are L(M2
W ,M2) and �i⇡⇥(rkl)l(M

2
W ,M2), which are indeed neglected unless the vector

boson is the photon and M2 ! Q2. In that case these contributions are retained. The former, together

with the term 2l(s) log
M2

W
M2 from the LSC, is entering the definition of Lem(s,Q2,m2

k) in eq. (2.20). The

latter, again only for the photons, enters directly eq. (2.23) together with the term 2l(M2
W ,M2) log |rkl|

s

from the SSCs!rkl .
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NO term

Sudakov logs can 
approximate very well 
the NLO EW but not 
only the logs of the 
form  with 

 are relevant. 

A l s o d o u b l e a n d 
single logs among 
invariants are not 
negligible.

α
4πs2

w
logk(s/m2

W)

k = 1,2



ZHH
One should keep in mind that BSM effects may increase total rates.  
Most of the Sudakov effects would be unchanged with no new 
resonant particles.
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What about extra radiation of Z (and H)?

We know that unlike QCD in virtual+real there is not the exact 
cancellation of logarithms. 
But a cancellation is still present, how much large?
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Figure 7. Impact of heavy boson radiation (HBR) on the pT,avt, m(tt̄), yavt and y(tt̄) di↵erential
distributions at 13 TeV. The format of the plots is described in the text.

is unclear. The impact of HBR on the two rapidity distributions is tiny, typically within 3

permil of the NNLO QCD prediction.

6 Conclusions

In this work we derive for the first time predictions for all main top-quark pair di↵erential

distributions 7 with stable top quarks at the LHC at NNLO QCD accuracy and including

the following EW corrections: the NLO EW e↵ects of O(↵2
s↵), all subleading NLO terms

of order O(↵s↵2) and O(↵3) as well as the LO contributions of order O(↵s↵) and O(↵2).

We present a detailed analysis of top-pair production at the LHC at 13 TeV and we

find that the e↵ect of EW corrections on di↵erential distributions with stable top quarks

is in general within the current total (scale+PDF) theory uncertainty. A notable excep-

tion is the pT,avt distribution in the boosted regime where the e↵ect of EW corrections is

significant with respect to the current total theory error. We have checked that similar

conclusions apply also for LHC at 8 TeV. All results derived in this work in the multiplica-

7One distribution we do not consider is pT,tt̄ which is not known in NNLO QCD, and for which resum-

mation is mandatory in order to have reliable predictions.
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increase of the energy this ratio became larger, but with the same trend, indeed at 3 TeV
the HBR value reaches at most the 10% of the LO in the low pT region, and descending
with the increase of it; at 10 TeV and at low pT , the HBR value is the 150% of the LO,
becoming equal to it at ⇠500 GeV and proceeding to decrease. In the third inset, we see
that the cancellation between the real emission terms and the Sudakov ones increases;
even if the HBR distribution increases with pT , Sudakov corrections become more and
more negative, as shown in Fig.3.4. At 10 TeV this is more evident.
For the µ

+
µ
�
! W

+
W

�, the real emission of an extra Z boson does not suppress W

production at large pT like it was happening for the leptons in the previous process
considered; at 3 TeV the HBR value reach at most 15% of the LO one and at 10 TeV
up to 40%. In the third inset of the two groups of plots about this process, we see that
the cancellation become smaller and smaller but at a certain point, toward the highest
pT , starts to become more significant.

Figure 3.11: Same as Fig.3.9 but for tt̄ production
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No PDFs effects 
included, partons 
only.

Czakon, Heymes, Mitov, DP, Tsinikos, Zaro ‘17

Master Thesis of  
Antonio Sandroni ’23 

No cuts on HBR and 
no recombination of 
the Z with the top. 

Muon:
How much of the HBR 
should be taken into 
account in inclusive 
production?
How much of it must 
be clustered together 
with other particles?

T h e a n s w e r w i l l 
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NLO EW corrections.
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OUTLOOK rather than CONCLUSION 
Why did we automate Sudakov in aMG5?

- EW corrections are mandatory for phenomenology at muon 
colliders. 

- There are many interesting open questions/issues on this subject. 

- We discussed the Sudakov approximation vs the exact NLO EW 
for direct production. 

- Sudakov logs are the bulk of the NLO EW contribution and they 
are a good approximation under some conditions: single logs 
present, logs among invariants present, correct scheme  
adopted, mass-suppressed contributions negligible. 

- HBR has an impact, how much it is still to be studied in detail. 

- Resummation is mandatory for sensible results in many 
configurations.

SDKweak
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Final advertisement 
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Considering only the dominant contribution from NLO EW:

Sudakov and QED FSR.

Matching of NLO QCD + PS + EWSL + QED FSR at the LHC:
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Abstract: In this work we present a new method for the combination of electroweak (EW)

corrections at high energies, the so-called EW Sudakov logarithms (EWSL), and next-

to-leading-order QCD predictions matched to parton-shower simulations (NLO+PS). Our

approach is based on a reweighting procedure of NLO+PS events. In particular, both events

with and without an extra hard emission from matrix elements are consistently reweighted

via the inclusion of the corresponding EWSL contribution. We describe the technical details

and the implementation in the MadGraph5 aMC@NLO framework. Via a completely

automated procedure, events at this level of accuracy can be obtained for a vast class

of hadroproduction processes. As a byproduct we provide results for phenomenologically

relevant physical distributions from top-quark pair and Higgs boson associated production

(tt̄H) and from the associated production of three Z gauge bosons (ZZZ).

This method is based on the 
 approach discussed 

in the talk.
SDKweak

Both Born, QCD virtual and separately real corrections are 
consistently reweighted via NLO EW Sudakov logarithms. 



EXTRA SLIDES 
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Our revisitation and automation: Amplitude level
We have revisited and automated in aMG5 the Denner&Pozzorini 
algorithm for the evaluation of one-loop EW Sudakov corrections to 
amplitudes (Denner, Pozzorini ’01). In particular we have introduced the 
following novelties.  

- IR QED divergencies are dealt with via Dimensional Regularisation, 
with strictly massless photons and light fermions. 

- Additional logarithms that involve ratios between invariants, and 
therefore angular dependences, are taken into account. 

- We correctly take into account an imaginary term that was previously 
omitted in the literature. Relevant for  processes with 

- Moving to the level of interferences of tree and one-loop amplitudes, 
we take into account NLO EW contributions originating from QCD 
loops on top of subleading LO terms.

2 → n n > 2

32



Example ( ):  scan in 2 → 2 uū → ZZ θ

Denner&Pozzorini algorithm works only with non 
mass-suppressed LO processes: we select only 
helicity configurations > 10^(-3) of the dominant 
one.

Dots: NLO EW (MadLoop). Lines = Sudakov. 
Dashed: standard approach. 
Solid: our formulation (more angular information)

Dots-Solid/LO: quite horizontal, the correct 
Log dependence is very-well approximated.

Dots-Dashed/LO: not horizontal, the correct 
Log dependence is lost.

33



Implementation

• �i: the scalar doublet containing the Higgs particle H and the neutral and charged

Goldstone bosons �,�±.

An important technical point of the DP algorithm is that, since high-energy limit is as-

sumed, the Goldstone-boson equivalence theorem can be used. In fact, with this algorithm,

contributions from longitudinal gauge-bosons are always evaluated via the Goldstone-boson

equivalence theorem. We will return to this point in Sec. 5.1.

Following the same notation of Ref. [39], the couplings of each external field 'ik to the

gauge bosons Va is denoted by ieIVa('), namely, ieIVa
'i'i0

(') is the coupling corresponding

to the Va'̄i'i0 vertex, with all fields that are incoming. For simplicity, in the formulas

the components 'ik are replaced by their indices ik, namely, Ia
iki

0
k
(k). All the values and

formulas for the quantities Ia
iki

0
k
(k), as many other terms appearing in the next sections are

reported in detail in the appendices of Ref. [39]. We do not repeat them here, but we want

to warn the reader that the same exact conventions for Feynman rules have to be used in

order obtain consistent results.

For any process denoted as in (2.9), the Born matrix element reads

M
i1...in
0 (p1, . . . , pn). (2.10)

The O(↵) corrections to M0 in LA, �M, has the form

�M
i1...in(p1, . . . , pn) = M

i
0
1...i

0
n

0 (p1, . . . , pn)�i01i1...i0nin . (2.11)

Equation (2.11) means that the result can be written in a factorised form, but that involves

Born amplitudes for di↵erent processes. The contributions to �M have di↵erent origins:

� = �
LSC + �

SSC + �
C + �

PR
. (2.12)

The quantities �
LSC and �

SSC are respectively the leading and subleading soft-collinear

logarithms. They both emerge from the DL, which in turn originate from the eikonal ap-

proximation of one-loop diagrams where gauge bosons are exchanged between external legs

and are soft-collinear. The former represents the symmetric and solely energy-dependent

class of logarithms, while the latter involves mass ratios and ratios of invariants. The

quantity �
C consists of the collinear logarithms, originating from virtual collinear gauge

bosons from external lines and field renormalisation constants. The logarithms resulting

from parameter renormalisation, which can be determined by the running of the couplings,

corresponds to the term �
PR. In the case of longitudinally polarised bosons the equivalences

M
...W

±
L ...

0 = M
...�

±
...

0 ,

M
...ZL...

0 = iM...�...

0 , (2.13)

are used and can be applied also for what concerns the di↵erent terms entering the definition

of �.

In the following subsections we provide the formulas entering the implementation in

MadGraph5 aMC@NLO, which is described in Sec. 5. We will discuss in details only the

aspects concerning the di↵erences w.r.t. Ref. [39].
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Born amplitude:

One-loop EW 
Sudakov corrections:

the logsother tree-level 
amplitudes

and techniques for tensor-integral reduction [112–114], all automated within the module

MadLoop [18]. Moreover, the codes CutTools [115], Ninja [116, 117] and Collier [118]

are employed within MadLoop, which has been optimised by taking inspiration from Open-

Loops [20] for the integrand evaluation.

As already possible in the code, NLO QCD and EW corrections can be invoked via the

syntax [QCD] [QED], see Refs. [16, 17] for more details. However, now the code allows also

for the evaluation of virtual one-loop Sudakov logarithms by adding after the command

generate or add process the flag --ewsudakov. As we have said, the code works for the

moment for O(↵) corrections to the ⌃LOi contribution with i = 1 and i = k, according to

eqs. (3.1) and (3.2). In order to implement the DP algorithm in MadGraph5 aMC@NLO,

three main technical features had to be implemented:

1. The generation of all the amplitudes that are necessary for the computation of the

DL and SL.

2. The evaluation of the amplitudes, especially the interferences of amplitudes involving

di↵erent external legs.

3. The evaluation of the derivatives of the amplitudes, which enter the formulas con-

cerning the PR terms.

In the following subsections we address each of the previous points.

5.1 Generation of the amplitudes

We start discussing the case of a generic partonic process

'i1(p1)'i2(p2) ! 'i3(p3) . . .'in(pn) , (5.1)

and at the end we return to the case of proton–proton collisions.

The formulas of Sec. 2, which are given for n ! 0 processes, can be easily reframed in

terms of more common 2 ! n� 2 amplitudes, via crossing symmetry.

Mi1...in(p1, . . . , pn) ⌘ M('i1(p1) . . .'in(pn) ! 0)

= M('i1(p1)'i2(p2) ! '̄i3(�p3) . . . '̄in(�pn)) (5.2)

As a first step, the algorithm checks if longitudinally polarised Z or W bosons are present

in the external legs. In such a case all the possible amplitudes that can be obtained

with one or more substitutions according to eq. (2.13) are generated. In other words,

starting from Mi1...{nWW±}{nZZ}...in , where {nWW
±
} and {nZZ} stands for nW and nZ

appearances of W and Z bosons respectively, the amplitudes Mi1...{(nW�1)W±}�±{nZZ}...in
and Mi1...{nW±}{(nZ�1)Z}�...in are recursively generated via the substitutions

Z �! � , (5.3)

W
±

�! �
±
, (5.4)

up to the point that allW and/or Z bosons are transformed into Goldstone bosons. Clearly,

any of the previous substitutions can lead to a process for which no tree-level Feynman
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bosons.

diagram can contribute to the amplitude. Such a case is automatically detected by the

code and the amplitude is not generated. From this point on, while the original amplitude

Mi1...{nWW±}{nZZ}...in is retained and used for the computation of the LO cross section,

the complete set of amplitudes

Mi1...{(nW�kW )W±}{kW�±}{(nZ�kZ)Z}{kZ�}...in , (5.5)

with 0  kW  nW and 0  kZ  nZ is used for the following steps in the generation of

the amplitudes.

As discussed in Sec. 2, the formulas for the di↵erent contributions leading to DL and SL

involve amplitudes with external particles that are di↵erent from the original ones in M0.

In particular, starting from the process in (2.9) it is necessary to generate the amplitudes

for all the processes

'i1(p1) . . .'i
0
k
. . .'in(pn)! 0 , (5.6)

with 1  k  n that can be obtained applying the substitution 'ik ! 'i
0
k
of the form:

Z  ! A , (5.7)

H  ! � . (5.8)

With the symbol  ! we understand that the substitution works in the two directions.

Substitution (5.7) is necessary for the non-diagonal components of Cew entering the LSC

terms and of bew
N 0N entering the C terms. Substitution (5.8) is necessary for the non-diagonal

components of (IZ)2 entering the neutral SSC terms. Moreover it is necessary to generate

also the amplitudes for the processes

'i1(p1) . . .'i
0
k
. . .'i

0
l
. . .'in(pn)! 0 , (5.9)

that can be obtained either applying two substitutions 'ik ! 'i
0
k
and 'il ! 'i

0
l
of the

form (5.8), again for the non-diagonal components of (IZ)2 in the neutral SSC terms, or

two di↵erent 'ik ! 'i
0
k
and 'il ! 'i

0
l
substitutions that together do not violate charge

conservation, each one of them of the form:

f�  ! f�� , (5.10)

H  ! �
±
, (5.11)

�  ! �
±
, (5.12)

A  ! W
±
, (5.13)

Z  ! W
±
. (5.14)

The substitutions (5.10)–(5.14) originate from the purely non-diagonal structure of

I
±
I
⌥ entering the charged SSC terms. We remind the reader that both the substitutions

(5.7)–(5.8) for the processes (5.6) and (5.10)–(5.14) for the processes (5.9) have to be

performed starting from each one of the possible processes in (5.5) that can be obtained

from (2.9) via the substitutions (5.3)–(5.4).

For hadronic calculations the initial-state at the Born is itself given by a set of di↵erent

partonic initial states. The procedure described so far has to be therefore repeated for

each partonic initial-state that can contribute at the Born level to the final-state that is

considered.
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C contributions.

Re levan t f o r SSC 
charged contributions.

Amplitudes with one or 2 
different external particles w.r.t. 
the Born have to be generated.



Organisation of the logs in the algorithm

The DL term containing the invariant rkl depends on the angle between the momenta pk
and pl. Writing

L(|rkl|,M2) = L(s,M2) + 2l(s,M2) log
|rkl|
s

+ L(|rkl|, s), (3.3)

the angular-dependent part is isolated in logarithms of rkl/s, and gives a subleading soft–
collinear (SSC) contribution of order l(s) log(|rkl|/s), whereas terms L(|rkl|, s) can be
neglected in LA. The remaining part, together with the additional contributions from
photon loops in (3.2), gives the leading soft–collinear (LSC) contribution and is angular-
independent. The eikonal approximation (3.1) applies to chiral fermions, Higgs bosons,
and transverse gauge bosons, and depends on their gauge couplings IVa(k).

Owing to the longitudinal polarization vectors (4.24) which grow with energy, matrix
elements involving longitudinal gauge bosons have to be treated with the equivalence
theorem, i.e. they have to be expressed by matrix elements involving the corresponding
Goldstone bosons. A detailed description of the equivalence theorem is given in Section 4.
As explained there, the equivalence theorem for Born matrix elements (4.26) receives no
DL one-loop corrections. Therefore, the soft-collinear corrections for external longitudinal
gauge bosons can be obtained using the simple relations

δDLM...W±

L
... = δDLM...φ±...,

δDLM...ZL... = iδDLM...χ..., (3.4)

from the corrections (3.2) for external Goldstone bosons.

Leading soft–collinear contributions

The invariance of the S matrix with respect to global SU(2) × U(1) transformations
implies

0 = δVaMi1...in = ie
∑

k

IVa

i′
k
ik
(k)Mi1...i′k...in . (3.5)

For external Goldstone fields extra contributions proportional to the Higgs vacuum ex-
pectation value appear, which are, however, irrelevant in the high-energy limit. Using
(3.5), the LSC logarithms in (3.2) can be written as a single sum over external legs,

δLSCMi1...in =
n
∑

k=1

δLSCi′
k
ik
(k)Mi1...i′k ...in

0 . (3.6)

After evaluating the sum over A, Z, and W in (3.2), the correction factors read

δLSCi′
k
ik
(k) = −

1

2

[

Cew
i′
k
ik
(k)L(s)− 2(IZ(k))2i′

k
ik
log

M2
Z

M2
W

l(s) + δi′
k
ikQ

2
kL

em(s,λ2, m2
k)

]

. (3.7)

The first term represents the DL symmetric-electroweak part and is proportional to the
electroweak Casimir operator Cew defined in (B.10). This is always diagonal in the SU(2)
indices, except for external transverse neutral gauge bosons in the physical basis (B.14),
where it gives rise to mixing between amplitudes involving photons and Z bosons. The

6

with

δCi′
k
ik
(k) = δcolli′

k
ik
(k) +

1

2
δZϕ

i′
k
ik

∣

∣

∣

∣

µ2=s
. (4.3)

The collinear factors δcoll(k) and the corrections δC(k) depend on the quantum numbers of
the external fields ϕik . In the following we give the results for chiral fermions, transverse
charged gauge bosons WT, transverse neutral gauge bosons AT,ZT, longitudinal gauge
bosons WL,ZL, and Higgs bosons. We use the conventions of Ref. [ 16] for the Feynman
rules, the self-energies, and the renormalization constants.

Chiral fermions

In LA the FRCs for fermions fκ
σ with chirality κ = R,L and isospin indices σ = ± are

given by

δZκ
fσfσ′

= δσσ′

{

−
[

Cew
fκ +

1

4s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(µ2)

+Q2
fσ

[

2l(M2
W,λ2)− 3l(M2

W, m2
fσ)
]}

, (4.4)

where the contribution of a non-trivial quark-mixing matrix is not considered. The FRCs
depend on the chirality of the fermions, and contain Yukawa terms proportional to the
masses of the fermion fσ and of its isospin partner f−σ. While these are negligible for
leptons and light quarks, they give large contributions for fκ

σ = tR, tL, and bL, where one
of the masses is mt.

From the mass-singular loop diagrams we obtain the factor [ 18]

δcollfσfσ′
(fκ) = δσσ′

[

2Cew
fκ l(µ2) + 2Q2

fσ
l(M2

W, m2
fσ
)
]

, (4.5)

and the complete contribution (4.3) reads

δCfσfσ′
(fκ) = δσσ′

{[

3

2
Cew

fκ −
1

8s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(s) +Q2
fσ
lem(m2

fσ
)

}

,

(4.6)
where the pure electromagnetic logarithms

lem(m2
f ) :=

1

2
l(M2

W, m2
f ) + l(M2

W,λ2) (4.7)

originate from the photonic loops as a result of the gap between the electromagnetic and
weak scales. The symmetric-electroweak part of (4.6), i.e. the term proportional to l(s),
agrees with Refs. [ 7, 15] up to the Yukawa contributions, and the electromagnetic part
(4.7) agrees with Ref. [ 15].

Transverse charged gauge bosons W

The FRC of W± bosons in LA reads

δZWW = −
∂ΣWW

T (k2)

∂k2

∣

∣

∣

∣

∣

k2=M2
W

= [bewW − 2Cew
W ] l(µ2) + 2Q2

Wl(M2
W,λ2), (4.8)
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second term originates from Z-boson loops, owing to the difference between MW and MZ,
and

Lem(s,λ2, m2
k) := 2l(s) log

(

M2
W

λ2

)

+ L(M2
W,λ2)− L(m2

k,λ
2) (3.8)

contains all logarithms of pure electromagnetic origin. The LSC corrections for external
longitudinal gauge bosons are directly obtained from (3.7) by using the quantum numbers
of the corresponding Goldstone bosons. Formula (3.7) is in agreement with Refs. [ 9, 11].
In Ref. [ 10] the logarithm L(m2

k,λ
2) that depends on the mass of the external state is

missing.

Subleading soft–collinear contributions

The contribution of the second term of (3.3) to (3.2) remains a sum over pairs of
external legs,

δSSCMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

δVa,SSC
i′
k
iki

′
l
il
(k, l)Mi1...i

′
k...i

′
l...in

0 , (3.9)

with angular-dependent terms. The exchange of soft, neutral gauge bosons contributes
with

δA,SSC
i′
k
iki

′
l
il
(k, l) = 2

[

l(s) + l(M2
W,λ2)

]

log
|rkl|
s

IAi′
k
ik
(k)IAi′

l
il
(l),

δZ,SSCi′
k
iki

′
l
il
(k, l) = 2l(s) log

|rkl|
s

IZi′
k
ik
(k)IZi′

l
il
(l), (3.10)

and, except for IZ in the neutral scalar sector H,χ (see App. B), the couplings IN are
diagonal matrices. The exchange of charged gauge bosons yields

δW
±,SSC

i′
k
iki

′
l
il

(k, l) = 2l(s) log
|rkl|
s

I±i′
k
ik
(k)I∓i′

l
il
(l), (3.11)

and owing to the non-diagonal matrices I±(k) [cf. (B.17), (B.22) and (B.26)], contributions
of SU(2)-transformed Born matrix elements appear on the left-hand side of (3.9). In
general, these transformed Born matrix elements are not related to the original Born
matrix element and have to be evaluated explicitly.

The SSC corrections for external longitudinal gauge bosons are obtained from (3.9)
with the equivalence theorem (3.4) , i.e. the couplings and the Born matrix elements for
Goldstone bosons3 have to be used on the right-hand side of (3.9).

The application of the above formulas is illustrated in Section 6 for the case of 4-
particle processes, where owing to r12 = r34, r13 = r24 and r14 = r23, (3.9) reduces to

δSSCMi1i2i3i4 =
∑

Va=A,Z,W±

2
[

l(s) + l(M2
W,M2

Va
)
]

× (3.12)

{

log
|r12|
s

[

IVa

i′1i1
(1)I V̄a

i′2i2
(2)Mi′1i

′
2i3i4

0 + IVa

i′3i3
(3)I V̄a

i′4i4
(4)Mi1i2i′3i

′
4

0

]

3Note that for Goldstone bosons χ, the equivalence theorem as well as the couplings (B.23) and (B.21)
contain the imaginary constant i.
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configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.

– 7 –

Two examples: LSC and C for fermions

Casimir for the entire
SU(2)L × U(1)B

Charge for
U(1)QED

The full EW is present between  and , while only QED is present between  and .s M2
W M2

W λ2

So the QED contribution is split between the intervals . But the division at 
 is simply determined by convenience, in parallel with the weak case. In this case  is 

just a technical parameter and not a physical quantity. 

(s, M2
W) + (M2

W, λ2)
M2

W M2
W
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Cross-sections: standard approach in the literature

The DL term containing the invariant rkl depends on the angle between the momenta pk
and pl. Writing

L(|rkl|,M2) = L(s,M2) + 2l(s,M2) log
|rkl|
s

+ L(|rkl|, s), (3.3)

the angular-dependent part is isolated in logarithms of rkl/s, and gives a subleading soft–
collinear (SSC) contribution of order l(s) log(|rkl|/s), whereas terms L(|rkl|, s) can be
neglected in LA. The remaining part, together with the additional contributions from
photon loops in (3.2), gives the leading soft–collinear (LSC) contribution and is angular-
independent. The eikonal approximation (3.1) applies to chiral fermions, Higgs bosons,
and transverse gauge bosons, and depends on their gauge couplings IVa(k).

Owing to the longitudinal polarization vectors (4.24) which grow with energy, matrix
elements involving longitudinal gauge bosons have to be treated with the equivalence
theorem, i.e. they have to be expressed by matrix elements involving the corresponding
Goldstone bosons. A detailed description of the equivalence theorem is given in Section 4.
As explained there, the equivalence theorem for Born matrix elements (4.26) receives no
DL one-loop corrections. Therefore, the soft-collinear corrections for external longitudinal
gauge bosons can be obtained using the simple relations

δDLM...W±

L
... = δDLM...φ±...,

δDLM...ZL... = iδDLM...χ..., (3.4)

from the corrections (3.2) for external Goldstone bosons.

Leading soft–collinear contributions

The invariance of the S matrix with respect to global SU(2) × U(1) transformations
implies

0 = δVaMi1...in = ie
∑

k

IVa

i′
k
ik
(k)Mi1...i′k...in . (3.5)

For external Goldstone fields extra contributions proportional to the Higgs vacuum ex-
pectation value appear, which are, however, irrelevant in the high-energy limit. Using
(3.5), the LSC logarithms in (3.2) can be written as a single sum over external legs,

δLSCMi1...in =
n
∑

k=1

δLSCi′
k
ik
(k)Mi1...i′k ...in

0 . (3.6)

After evaluating the sum over A, Z, and W in (3.2), the correction factors read

δLSCi′
k
ik
(k) = −

1

2

[

Cew
i′
k
ik
(k)L(s)− 2(IZ(k))2i′

k
ik
log

M2
Z

M2
W

l(s) + δi′
k
ikQ

2
kL

em(s,λ2, m2
k)

]

. (3.7)

The first term represents the DL symmetric-electroweak part and is proportional to the
electroweak Casimir operator Cew defined in (B.10). This is always diagonal in the SU(2)
indices, except for external transverse neutral gauge bosons in the physical basis (B.14),
where it gives rise to mixing between amplitudes involving photons and Z bosons. The

6

with

δCi′
k
ik
(k) = δcolli′

k
ik
(k) +

1

2
δZϕ

i′
k
ik

∣

∣

∣

∣

µ2=s
. (4.3)

The collinear factors δcoll(k) and the corrections δC(k) depend on the quantum numbers of
the external fields ϕik . In the following we give the results for chiral fermions, transverse
charged gauge bosons WT, transverse neutral gauge bosons AT,ZT, longitudinal gauge
bosons WL,ZL, and Higgs bosons. We use the conventions of Ref. [ 16] for the Feynman
rules, the self-energies, and the renormalization constants.

Chiral fermions

In LA the FRCs for fermions fκ
σ with chirality κ = R,L and isospin indices σ = ± are

given by

δZκ
fσfσ′

= δσσ′

{

−
[

Cew
fκ +

1

4s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(µ2)

+Q2
fσ

[

2l(M2
W,λ2)− 3l(M2

W, m2
fσ)
]}

, (4.4)

where the contribution of a non-trivial quark-mixing matrix is not considered. The FRCs
depend on the chirality of the fermions, and contain Yukawa terms proportional to the
masses of the fermion fσ and of its isospin partner f−σ. While these are negligible for
leptons and light quarks, they give large contributions for fκ

σ = tR, tL, and bL, where one
of the masses is mt.

From the mass-singular loop diagrams we obtain the factor [ 18]

δcollfσfσ′
(fκ) = δσσ′

[

2Cew
fκ l(µ2) + 2Q2

fσ
l(M2

W, m2
fσ
)
]

, (4.5)

and the complete contribution (4.3) reads

δCfσfσ′
(fκ) = δσσ′

{[

3

2
Cew

fκ −
1

8s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(s) +Q2
fσ
lem(m2

fσ
)

}

,

(4.6)
where the pure electromagnetic logarithms

lem(m2
f ) :=

1

2
l(M2

W, m2
f ) + l(M2

W,λ2) (4.7)

originate from the photonic loops as a result of the gap between the electromagnetic and
weak scales. The symmetric-electroweak part of (4.6), i.e. the term proportional to l(s),
agrees with Refs. [ 7, 15] up to the Yukawa contributions, and the electromagnetic part
(4.7) agrees with Ref. [ 15].

Transverse charged gauge bosons W

The FRC of W± bosons in LA reads

δZWW = −
∂ΣWW

T (k2)

∂k2

∣

∣

∣

∣

∣

k2=M2
W

= [bewW − 2Cew
W ] l(µ2) + 2Q2

Wl(M2
W,λ2), (4.8)

9

configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.
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Two examples: LSC and C for fermions

Casimir for the entire
SU(2)L × U(1)B

Charge for
U(1)QED

The logarithms between  and the infrared scale are simply removed. Equivalently in the 
case of DR, logarithms involving  and the IR regulator . 

Easy, but not very well motivated.

We will denote in the following this approach as .

M2
W

M2
W Q2

SDK0

SDK0
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Purely WeakThe purely weak version of the DP algorithm, SDKweak, can be obtained following

these steps:

1. Calculate the �
PR in eq. (2.12) as in the standard SDK approach.

2. For each external particle 'ik in (2.9), set

Qk = I
A(k) = 0 . (4.1)

This step alone has the e↵ect of eliminating all the terms tagged as “em”, with the

exception of �Zem
AA

. It also eliminates all the SSC terms and C terms that lead to

SL originating from photons, with the exception of those related to transverse W

bosons.

3. For each external particle 'ik in (2.9), perform the replacement

C
ew
i
0
kik

(k) �! C
ew
i
0
kik

(k)�Q
2
k
, (4.2)

with the value of Q2
k
before enforcing eq. (4.1). This, in combination with eq. (4.1),

has the e↵ect of eliminating the DL due to photons.

4. Perform the replacement

b
ew
W �! b

ew
W � 11/3 . (4.3)

This has the e↵ect of eliminating for the transverse W bosons the C terms that lead

to SL originating from photons.

5. Set

�Z
em
AA = 0 , (4.4)

and perform the replacement

b
ew
AA �! b

ew
AA +

4

3

X

f,i,� 6=t

N
f

CQ
2
f�

= b
ew
AA + 80/9 . (4.5)

This has the e↵ect of eliminating, for the photons, the C terms that lead to SL

originating from light fermions.

6. Calculate the remaining terms in eq. (2.12) with the new redefinitions of steps 2–5.

We want to stress that, thank to the step 1, the redefinitions of steps 2–5 do not apply

to all the PR contributions discussed in Sec. 2.6; for them any QED-like contribution is

retained. We remind the reader that also in this context we assume the use of either

the ↵(MZ) or Gµ-scheme, which both have an IR structure that is MS-like, namely, IR

poles are not present in the ↵ counter-term, �↵.8 This di↵erence of treatment for the

PR terms, besides the definition of purely weak and QED introduced before, can also be

understood in a di↵erent way. Logarithms from PR are related to UV renormalisation and

8The algorithm therefore has to be slightly modified for the case of isolated photons in the final state

(see also the discussion in Ref. [17]); we leave this to future work.
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