Electroweak precision physics at the LHC: the M_W and $\sin \theta_{\rm eff}^{\rm lept}$ example

Mauro Chiesa

INFN

Theory Challenges in the Precision Era of the Large Hadron Collider, GGI, October 5th, 2023

 EW precision physics = precise determination of some parameter of the EW sector of the Standard Model

- $\blacksquare M_W, M_Z, M_H, \cdots$
- Γ_W , Γ_Z , ...
- $\sin \theta_W$, ...

precise measurements inevitably call for precise theoretical predictions (see later)

- truncation of the perturbative expansion/missing higher-order effects
- parametric dependence on input parameters (e.g. EW input parameters, fermion masses, coupling constants, etc)
- uncertainties from non perturbative effects (e.g. hadronic running of α , at hadron colliders PDFs and QCD effects at small p_T)
- technical details of the calculation, like treatment of resonances, combination strategies for QCD and EW effects, beyond fixed-order matching strategies for fixed order predictions matched with parton shower, etc

EW input parameter scheme (EW-IPS)

Choice of the 3 independent parameter (gauge boson masses and/or couplings) to be taken as independent parameters

For a specific order in perturbation theory (say NLO) all EW-IPS are formally equivalent, but some EW-IPS can lead to smaller (EW) theoretical uncertainties

- \blacksquare if the input parameters are determined experimentally with high accuracy \Rightarrow reduced parametric unc.s
- if the NLO EW corrections in the chosen scheme are small \Rightarrow uncertainties from missing $\mathcal{O}(\alpha^2)$ effects should be small ($\sim \delta_{\rm NLO}^2$)
- some classes of parametric uncertainties might disappear with some scheme choices: e.g. the hadronic contributions to the running of α when using $\alpha(M_Z)$ or G_{μ} as input

Why EW corrections at the LHC?

- at hadron colliders QCD effects dominate
- $\alpha_S \sim 0.1$, $\alpha \sim 1/137$
- at the cross section level
 - $\delta^{\text{NLO EW}} << \delta^{\text{NLO QCD}}$
 - $\bullet \ \mathcal{O}(\alpha_S^2) \sim \mathcal{O}(\alpha)$

provided that the event selection is inclusive!

This is NOT always the case, see e.g. VBS scattering:

Order	$\mathcal{O}(\alpha^7)$	$\mathcal{O}(\alpha_S \alpha^6)$	$\mathcal{O}(\alpha_S^2 \alpha^5)$	$\mathcal{O}(\alpha_S^3 \alpha^4)$
$\delta\sigma_{ m NLO}$ [fb]	-0.2169(3)	-0.0568(5)	-0.00032(13)	-0.0063(4)
$\delta\sigma_{ m NLO}/\sigma_{ m LO}$ [%]	-13.2	-3.5	0.0	-0.4

 $pp o W^+ W^+ j j$ (Denner et al. 1611.02951, 1708.00268, 1906.01863)

remark1: QED collinear FSR

 $M_{l\,l}$ plot in NC DY from 0911.2329

remark2: Weak Sudakov corrections

virtual weak corrections can reach several tens of percent in the Sudakov regime

jet p_T in V+ jet from 0906.1656

Measurement that do not depend on theoretical predictions (a little idealized)

 $\label{eq:Data} Data/theory \ \ comparison \ \ serves \ \ as \ \ a \ precision \ test \ of \ the \ SM$

Possible deviations can be interpreted as NP effects (indirect NP searches)

Measurement that do not depend on theoretical predictions, like template fits. Example M_W determination at the LHC:

- generate several Monte Carlo samples with different M_W
- $\hfill\blacksquare$ the measured M_W corresponds to the sample that best fits to the data

theory uncertainties = approximation in templates propagate to M_W measurement and become part of the total experimental error budget

Theoretical uncertainties in M_W measurement: strategy

Impact of different EW effects (an theory uncertainties from weak and mixed QCD-EW corrs) on *W*-mass measurement in: arXiv:1612.02841 (W_ew-BMNNP)

1 pseudodata

- Monte Carlo samples with a given theoretical accuracy
- play the role of experimental data

2 templates

- \blacksquare MC samples at NLO QCD+QCD-PS (or LO) generated for different values of M_W
- will be fitted to the pseudodata
- 3 $\Delta M_W = M_W$ (pseudodata) M_W (fit output)

Theory uncertainties in M_W measurement: tools

Monte Carlo generators

HORACE (Carloni Calame et al. hep-ph/0303102, hep-ph/050626)

- MC event generator for DY
- can generate events at NLO EW+QED-PS, and NLO EW+QED-PS+unresolved l⁺l⁻ radiation
- buit-in QED PS implementation

Parton Showers

PYTHIA (Sjostrand et al. hep-ph/0603175; arXiv:0710.3820)

- general purpose shower MC generator
- can generate multiple QCD and QED radiation
- used for ISR multiple QCD (and QED) radiation AND non-perturbative QCD effects
- in some runs used for QED FSR (see later)

POWHEG-BOX-V2/W_ew-BMNNP (Barze et al. arXiv:1202.0465)

- MC event generator for charged DY
- can generate events at NLO QCD+QCD-PS and NLO (QCD+EW)+(QCD+QED)-PS
- relies on external shower MC programs (i.e. PYTHIA, PYTHIA+PHOTOS)

PH0TOS (Barberio et al. CPC 66 (1991), CPC 79 (1994), Golonka et al. hep-ph/0506026)

- general purpose shower MC generator
- can generate multiple QED radiation off fermions (from W decay)
- in some runs used for QED FSR (see later)

Mixed QCD-EW corrections (1)

 $pp \rightarrow \mu^+ \nu_\mu$, fit to $M_{\rm T}(\mu^+ \nu_\mu)$

	Templates	Pseudodata	M_W shifts (MeV)
1	LO		56.0 ± 1.0
3	LO	HORACE(EW) NLO	-94.0 ± 1.0
4 5	LO	HORACE (EW,QEDPS) POWHEG(QCD.EW) NLQ	-88.0 ± 1.0 -14.0 ± 1.0
6	LO	POWHEG(QCD,EW) two-rad+PYTHIA(QCD)+PHOTOS	-5.6 ± 1.0

	samples	M_W shift (MeV)
$\sum_{m=1,n=1}^{\infty} \delta'_{\alpha_s \alpha^n} + \sum_{m=2}^{\infty} \delta'_{\alpha_s} + \sum_{n=2}^{\infty} \delta'_{\alpha^n}$	[6]-[5]	$8.4 \pm 1.4 \ \mathrm{MeV}$
$\sum_{m=2}^{\infty} \delta'_{\alpha m}$	[2]-[1]	$18.4~{\pm}2.2~{\rm MeV}$
$\sum_{n=2}^{\infty} \delta'_{\alpha n}$	[4]-[3]	$6.0~{\pm}1.4~{\rm MeV}$

 $\sum_{m=1,n=1}^{\infty} \delta'_{\alpha_s^m \alpha^n} = ([6]-[5])-([2]-[1])-([4]-[3]) = -16.0 \pm 3.0 \text{ MeV}$

in agreement with the results of Dittmaier et al. 1511.08016 for the full $\mathcal{O}(\alpha\alpha_{\mathcal{S}})$ corrections in pole approx. (-14 MeV)

non-log QED, weak and mixed EW-QCD contributions (2)

	$pp ightarrow W^+$, $\sqrt{s} = 14$ TeV		M_W shifts (MeV)			
	Templates accuracy: NLO-QCD+QCD $_{\mathrm{PS}}$		$W^+ \to \mu^+ \nu$		$W^+ \to e^+ \nu (dres)$	
	Pseudodata accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ
1		Dymus	05.2+0.6	400+2	20 0+0 6	140+2
1	NLO-QCD+(QCD+QED) _{PS}	PYTHIA	-95.2±0.0	-400 ± 3	-38.0 ± 0.0	-149±2
2	$NLO\operatorname{-QCD}+(QCD\operatorname{+QED})_{\mathrm{PS}}$	Рнотоз	-88.0 ± 0.6	-368±2	$-38.4 {\pm} 0.6$	-150 ± 3
3	$NLO ext{-}(QCD ext{+}EW) ext{+}(QCD ext{+}QED)_{\mathrm{PS}} ext{two-rad}$	Рутніа	-89.0±0.6	-371±3	-38.8±0.6	-157±3
4	${\sf NLO-(QCD+EW)+(QCD+QED)}_{\rm PS}{\tt two-rad}$	Рнотоз	-88.6±0.6	-370±3	-39.2±0.6	-159±2

ATLAS collaboration at LHC use as templates POWHEG-QCD+PYTHIA-QCD+PHOTOS

uncertainties from			$\Delta M_W({ m MeV})$ bare muons			
weak,		QED FSR model	M_T	p_T^ℓ		
mixed QCD-EW corr.	LHC	Pythia Photos	$^{+6.2~\pm~0.8}_{-0.6~\pm~0.8}$	$+29 \pm 4$ -2 ± 4		

non-log QED, weak and mixed EW-QCD contributions

- Full $\mathcal{O}(\alpha \alpha_S)$ (arXiv:2102.12539,arXiv:2201.01754): it would be nice to study their impact on M_W extraction. What is the shift w.r.t. the factorized approximation?
- QED, WEAK, and mixed effects inevitably have an interplay with IS QCD effects (e.g. $PS \times \overline{B}$)
- in our simulation we only used PYTHIA8 for ISR QED and QCD shower and non-perturbative effects with a default PYTHIA tuning
- how do the shifts change if we use another shower MC, say HERWIG?
- how do the estimates change when changing the PYTHIA tune? (having in mind the ATLAS procedure of tuning PYTHIA to reproduce the $Z p_T$ data)
- how do the shifts change if we use another description of IS effects, say for instance RESBOS like in TEVATRON analyses?

$\sin heta_{ m eff}^{ m lept}$ at the LHC

measured from invariant-mass forward-backward asymmetry (or from the A_4 angular coefficient)

$$A_{FB}(M_{ll}) = \frac{F(M_{ll}) - B(M_{ll})}{F(M_{ll}) + B(M_{ll})}$$
$$F = \int_0^1 d\cos\theta^* \frac{d\sigma}{d\cos\theta^*}, \qquad B = \int_{-1}^0 d\cos\theta^* \frac{d\sigma}{d\cos\theta^*}$$

 θ^* measured in the Collins-Soper frame

using template fits

- measure $A_{FB}(M_{ll})$
- senerate Monte Carlo samples with different values of $\sin heta_W$
- fit the template to the data

measured $\sin\theta_W$ is the one of the sample that describes best the data

$\sin heta_{\mathrm{eff}}^{\mathrm{lept}}$ and EW corrections

- \blacksquare calculations are usually done in the on-shell scheme with EW input parameters $(\alpha/G_{\mu},M_W,M_Z)$
- in the OS $(\alpha/G_{\mu}, M_W, M_Z)$ schemes, $\sin \theta$ is constant at all orders

$$\sin\theta_{OS}^2 = 1 - \frac{M_W^2}{M_Z^2}$$

• in the direct determination of $\sin \theta$ we want to extract $\sin \theta$ from the strength of the Zff coupling that is NOT constant at H.O.

$$\sin\theta_{\rm eff}^2 = \frac{1}{4} \left(1 - {\rm Re} \frac{g_V}{g_A} \right)$$

• $\sin \theta_{\text{eff}}^2 = \kappa_l \sin \theta_{OS}$, ($\kappa_l = 1$ at LO)

Template fits for $\sin heta_{\mathrm{eff}}^{\mathrm{lept}}$ and EW corrections

- Accuracy goal on $\sin^2 \theta_W$ is 10^{-4} : EW corrections mandatory
- $\sin \theta_W$ can always be used as input parameter for fits at LO
- The typical input schemes used at the LHC are $(\alpha/G_{\mu}, M_W, M_Z)$: sin θ_W is a derived quantity

In order to perform a fit at NLO EW and have a clean way to estimate the EW uncertainties, a new input parameter scheme should be used with $\sin \theta_W$ as free parameter [arXiv:1906.11569]

 $(\alpha/G_{\mu},\sin\theta,M_Z)$

NC DY in the $(\alpha/G_{\mu}, \sin\theta, M_Z)$ scheme

w.r.t. the on-shell scheme, different expression for the counterterm functions $\frac{\delta s_W^2}{s_W^2}$ and Δr

Renormalization conditions

$$\begin{split} &\frac{ie}{2s_W c_W}\gamma^{\mu}\Big[g_V^l-g_A^l\gamma_5\Big],\\ &g_V=\frac{g_L+g_R}{2},\quad g_A=\frac{g_L-g_R}{2} \end{split}$$

at LO
$$\sin \theta_{\mathrm{eff}}^2 = \frac{1}{4} (1 - \mathrm{Re} \frac{g_V}{g_A})$$

the renormalization condition is

$$\sin\theta_{\rm eff}^2\Big|_{NLO} = \sin\theta_{\rm eff}^2\Big|_{LO} \qquad \Rightarrow \qquad \frac{g_V + \delta g_V}{g_A + \delta g_A} = \frac{g_V}{g_A}$$

$$\frac{\delta \sin \theta_{\rm eff}^2}{\sin \theta_{\rm eff}^2} = {\rm Re} \Big\{ \frac{\cos \theta_{\rm eff}}{\sin \theta_{\rm eff}} \frac{\Sigma_T^{AZ}(M_Z^2)}{M_Z^2} + (1 - \frac{Q_l}{I_3^l} \sin \theta_{\rm eff}^2) [\delta V^L - \delta V^R] \Big\}$$

 $\delta V^{L/R}$ = bare vertex diagrams+fermion w.f. renorm.

$$\delta^{QED}g_L = \delta^{QED}g_R$$
: affected only by weak corrections

no enhancement from logs of fermion masses

• no dependence on $\Delta \rho$ (no m_t^2 enhancement)

 Δr , $\Delta \tilde{r}$

computed from the NLO EW corrections to μ -decay after subtracting 1-loop QED corrections in the Fermi model

$$\Delta r = \Delta r(\alpha, M_W, M_Z)$$

$$\Delta \tilde{r} = \Delta r(\alpha, \sin \theta, M_Z)$$

 Δr $= LO \simeq \frac{-1}{M_W^2}$ $= CT \simeq \frac{\delta M_W^2}{M_W^4}$ $= \Delta r = \Delta \alpha(s) - \frac{c_W^2}{s_W^2} \Delta \rho + \Delta r_{\text{remn}}$

Mauro Chiesa

$\Delta \tilde{r}$

$$\begin{array}{l} \bullet \ \mathsf{LO} \simeq \frac{-1}{c_W^2 M_Z^2} \\ \bullet \ \mathsf{CT} \simeq \frac{\delta M_Z^2}{c_W^2 M_Z^4} - \frac{2}{M_Z^2} \frac{s_W^2}{c_W^2} \frac{\delta \tilde{s}_W}{\tilde{s}_W} \\ \bullet \ \Delta \tilde{r} = \Delta \alpha(s) - \Delta \rho + \Delta \tilde{r}_{\mathrm{remn}} \end{array}$$

EW precision physics at the LHC: M_W and $\sin \theta_{eff}^{\text{lept}}$

The $(G_{\mu}, \sin \theta_{\text{eff}}, M_Z)$ scheme: numerical results (1)

sensitivity dominated by LO behaviour

- NLO EW corrections are smaller in the $(G_{\mu}, \sin \theta_{\text{eff}}, M_Z)$ scheme
- H.O. effects smaller in the $(G_{\mu}, \sin \theta_{\text{eff}}, M_Z)$ scheme

smaller parametric uncertainties from m_t dependence compared to the OS $(\alpha/G_{\mu}, M_W, M_Z)$ scheme

m_t^2 dependence from Δho

- OS $(\alpha/G_{\mu}, M_W, M_Z)$ scheme: $\Delta \rho$ enters Δr and δs_W . EW corrections affect γ and Z diagrams in a different way.
- $\sin\theta$ scheme: $\Delta\rho$ enters only Δr . Overall effect, cancels in A_{FB} .

Weak mixing angle: energy dependence

 $\sin\theta_{\rm eff}^{\rm lept}$ measures the strength of the $Zf\overline{f}$ coupling at the weak scale

To quantify the energy dependence of the $Zf\overline{f}$ one has to resort to some energy dependent definition of $\sin\theta$

 $\Rightarrow \sin \theta_{\overline{\mathrm{MS}}}(\mu_R^2)$ (though other choices are possible)

We can use template fits by looking at kinematic distributions like M_{ll} or $A_{
m fb}$, but

- theoretical ingredients in the templates must match exactly the definitions/conventions used for $\sin\theta_{\overline{\rm MS}}(\mu_R^2)$
- one has to assume the form of the running (e.g. the SM running)
- the fit parameter will be the value of $\sin \theta_{\overline{\mathrm{MS}}}(\mu^*)$, taken as the starting value of the evolution starting from a scale μ^* (e.g. midpoint of the invariant mass bins, etc.)

implement

- \blacksquare the $\overline{\rm MS}$ running of α and $\sin^2\theta$
- the decoupling strategy: M_W , m_{top}
- $\blacksquare\ \overline{\rm MS}$ counterterms for α and \sin^2

$\overline{\mathrm{MS}}$ weak mixing angle

[arXiv:2302.10782]

 $\mathsf{Examples}$ of the role of precision EW calculations in the context of template fits for DY

- M_W determination and estimate of the theory uncertainties
- $\sin \theta_{\rm eff}^{\rm lept}$: subtleties in the parameter extraction at NLO and the input/renormalization scheme with $\sin \theta_{\rm eff}^{\rm lept}$ as input
- ${\scriptstyle \bullet}$ possible strategies to measure the running of $\sin\theta$

Backup Slides

	$pp \rightarrow W^+$, $\sqrt{s} = 14$ TeV			M_W shifts (MeV)			
	Templates accuracy: NLO-QCD+QCD $_{\mathrm{PS}}$		$W^+ \to \mu^+ \nu$		$W^+ \rightarrow e^+ \nu (dres)$		
	Pseudodata accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ	
1	$NLO\operatorname{-}QCD\operatorname{+}(QCD\operatorname{+}\operatorname{QED})_{\mathrm{PS}}$	Рутніа	-95.2±0.6	-400±3	-38.0±0.6	-149±2	
2	$NLO-QCD+(QCD+QED)_{PS}$	Рнотоз	-88.0±0.6	-368±2	-38.4±0.6	-150±3	
3	$NLO\operatorname{-}(QCD\operatorname{+}EW)\operatorname{+}(QCD\operatorname{+}\operatorname{QED})_{\operatorname{PS}}\operatorname{two-rad}$	Рутніа	-89.0±0.6	-371±3	-38.8±0.6	-157±3	
4	$NLO\text{-}(QCD\text{+}EW)\text{+}(QCD\text{+}QED)_{\mathrm{PS}}\texttt{two-rad}$	Рнотоз	-88.6±0.6	-370±3	-39.2±0.6	-159±2	
4	${\tt NLO-(QCD+EW)+(QCD+QED)_{PS}{\tt two-rad}}$	Рнотоз	-88.6±0.6	-370±3	-39.2±0.6	-159±2	

■ impact of non-log QED, weak and mixed EW-QCD contributions

■ different effects for PHOTOS or PYTHIA (different non-log QED terms)

• more stable results for $M_{\rm T}$ (less sensitive to mixed EW-QCD corrections)

NLO+PS matching with EW corrections

• NLO EW corrections: $d\sigma = d\sigma_0 \left[1 + \delta_{\alpha}\right]$

QED-PS: all order γ radiation in leading log approx.

 $d\sigma = d\sigma_0 \left[1 + \sum_{n=1}^{\infty} \delta'_{\alpha^n} \right]$

• NLO EW+QED-PS: $d\sigma = d\sigma_0 \left[1 + \delta_\alpha + \sum_{n=2}^{\infty} \delta'_{\alpha^n}\right]$

matching replaces first PS radiation with NLO real radiation

• HORACE NLO EW+QED-PS: $d\sigma = d\sigma_0 \left[1 + \delta_{\alpha} + \sum_{n=2}^{\infty} \delta'_{\alpha^n}\right]$

■ POWHEG NLO (QCD+EW)+(QCD+QED)-PS:

$$d\sigma = d\sigma_0 \left[1 + \delta_{\alpha_s} + \delta_{\alpha} + \sum_{m=1,n=1}^{\infty} \delta'_{\alpha_s^m \alpha^n} + \sum_{m=2}^{\infty} \delta'_{\alpha_s^m} + \sum_{n=2}^{\infty} \delta'_{\alpha^n} \right]$$

POWHEG-BOX-V2

- try to generate one radiation from each $\alpha_r \ (p_T^{\alpha_r})$
- find the hardest radiation $(p_{\rm T}^{max})$
- $p_{\rm T}^{max}$ is the starting scale of the PS

POWHEG-BOX-RES

- try to generate one radiation from each $\alpha_r (p_T^{\alpha_r})$
- for each resonance *r*, find the hardest radiation emitted by the resonance (*p*^{max}_{T,r})
- $p_{\mathrm{T},r}^{max}$ is the starting scale of the PS radiation from r
- POHWEG-BOX-RES (like) events contain up to one radiation from each resonance
- PS radiation from each resonance must be vetoed independently
- dedicated interface to PS unavoidable (no LHE accord for multiple scales, scalup works for one radiation only)

POWHEG-BOX-RES (like) treatment of resonances

3 radiation regions:
 QCD ISR, QED ISR, QED FSR

2 resonances: IS, W

The events contain up to 2 radiations:

- 1 one ISR QED or QCD radiation setting the scale of the IS shower
- 2 one FSR QED radiation setting the scale of the FS shower

POWHEG-BOX-RES (like) treatment of resonances (2)

EW precision physics at the LHC: M_W and $\sin \theta \frac{\text{lept}}{\alpha}$ Mauro Chiesa

HORACE

$$d\sigma^{\infty} = F_{SV} \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{i=0}^n F_{H,i} \right) |\mathcal{M}_{n,LL}|^2 d\Phi_n$$

POWHEG

$$d\sigma = \sum_{f_b} \bar{B}^{f_b}(\mathbf{\Phi}_n) d\mathbf{\Phi}_n \left\{ \Delta^{f_b}(\mathbf{\Phi}_n, p_T^{min}) + \sum_{\alpha_r \in \{\alpha_r | f_b\}} \frac{\left[d\Phi_{rad} \theta(k_T - p_T^{min}) \Delta^{f_b}(\mathbf{\Phi}_n, k_T) R(\mathbf{\Phi}_{n+1}) \right]_{\alpha_r}^{\bar{\mathbf{\Phi}}_n^{\alpha_r} = \mathbf{\Phi}_n}}{B^{f_b}(\mathbf{\Phi}_n)} \right\}$$

Universal fermionic corrections (H.O.) (2)

$$\Delta \rho = \frac{\Sigma_T^{ZZ}(0)}{M_Z^2} - \frac{\Sigma_T^{WW}(0)}{M_W^2}$$

$\Delta \rho$ in H.O. calculation:

$$\Delta \rho = 3x_t [1 + \rho^{(2)} x_t] \Big[1 - \frac{2\alpha_S}{9\pi} (\pi^2 + 3) \Big]$$

$$3x_t = \frac{3\sqrt{2G_\mu m_t^2}}{16\pi^2} = \Delta\rho^{(1)}$$

including 2-loop EW and QCD effects

Universal fermionic corrections (H.O.) (1)

- \blacksquare Leading fermionic corrections to DY come from $\Delta \alpha$ and $\Delta \rho$
- They can be included at 2-loop rescaling the relevant parameters in the LO amplitudes (subtracting the terms O(a) already present at NLO)

~

In the OS scheme:

$$\alpha_0 \to \frac{\alpha_0}{1 - \Delta \alpha(M_Z^2)}, \ s_W^2 \to s_W^2 (1 + \frac{\delta s_W^2}{s_W^2}) = s_W^2 + \Delta \rho c_W^2$$

 g_L and g_R diagrams receive different corrections

• In the $\sin\theta$ scheme:

$$\alpha_0 \rightarrow \frac{\alpha_0}{1 - \Delta \alpha(M_Z^2)}, \ G_\mu \rightarrow G_\mu (1 + \Delta \rho)^2$$

overall factor, cancels in A_{FB}