Pseudo-supersymmetry: a tale of alternate realities

Jan Rosseel (ITF, K. U. Leuven)

Work in progress by: E. Bergshoeff, J. Hartong, A. Ploegh, D. Van den Bleeken, J.R.

Firenze, april 4th 2007

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

1. Introduction and motivation

Goal Domain-wall vs. cosmology correspondence Variant supergravities The superalgebra

- 2. The strategy
- 3. More generally
- 4. The domain-wall cosmology correspondence

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

5. Summary and discussion

Goal

 Goal : Construct different supergravity actions from one 'complex' action by taking different real slices.

► Motivation :

- 1. The domain-wall vs. cosmology correspondence (Townsend, Skenderis) suggests that this can be done. Explicit realisation of this correspondence in a supergravity setting.
- 2. 'Variant' supergravities in 10 and 11 dimensions have been considered by looking at time-like T-duality, e.g. the so-called *-theories. (Hull, Bergshoeff, Van Proeyen, Vaula). Can we construct these explicitly?

Goal

 Goal : Construct different supergravity actions from one 'complex' action by taking different real slices.

• Motivation :

- 1. The domain-wall vs. cosmology correspondence (Townsend, Skenderis) suggests that this can be done. Explicit realisation of this correspondence in a supergravity setting.
- 2. 'Variant' supergravities in 10 and 11 dimensions have been considered by looking at time-like T-duality, e.g. the so-called *-theories. (Hull, Bergshoeff, Van Proeyen, Vaula). Can we construct these explicitly?

Goal

 Goal : Construct different supergravity actions from one 'complex' action by taking different real slices.

• Motivation :

- 1. The domain-wall vs. cosmology correspondence (Townsend, Skenderis) suggests that this can be done. Explicit realisation of this correspondence in a supergravity setting.
- 2. 'Variant' supergravities in 10 and 11 dimensions have been considered by looking at time-like T-duality, e.g. the so-called *-theories. (Hull, Bergshoeff, Van Proeyen, Vaula). Can we construct these explicitly?

Domain-walls vs. cosmologies

There is a correspondence between domain-walls and cosmologies (Townsend, Skenderis).

Domain wall metric

$$\mathrm{d}s^2 = dz^2 + \mathrm{e}^{2\beta\varphi} \Big[-\frac{\mathrm{d}\tau^2}{1+k\tau^2} + \tau^2 (\mathrm{d}\psi^2 + \mathrm{sinh}^2\psi\mathrm{d}\Omega_{d-2}^2) \Big]$$

where
$$k = 0, \pm 1, \varphi = \varphi(z)$$
.

FLRW cosmology

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + \mathrm{e}^{2\beta\phi} \Big[\frac{\mathrm{d}r^2}{1-kr^2} + r^2 (\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\Omega_{d-2}^2) \Big] \,.$$

where $k = 0, \pm 1, \phi = \phi(t)$.

Related via analytical continuation : $(t, r, \theta) = -i(z, \tau, \psi)$ and $\phi(t) = \varphi(it)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Domain-walls vs. cosmologies

There is a correspondence between domain-walls and cosmologies (Townsend, Skenderis).

Domain wall metric

$$\mathrm{d}s^2 = \mathrm{d}z^2 + \mathrm{e}^{2\beta\varphi} \Big[-\frac{\mathrm{d}\tau^2}{1+k\tau^2} + \tau^2 (\mathrm{d}\psi^2 + \mathrm{sinh}^2\psi \mathrm{d}\Omega_{d-2}^2) \Big] \,.$$

where
$$k = 0, \pm 1, \varphi = \varphi(z)$$
.

FLRW cosmology

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + \mathrm{e}^{2\beta\phi} \Big[\frac{\mathrm{d}r^2}{1-kr^2} + r^2 (\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\Omega_{d-2}^2) \Big] \,.$$

where $k = 0, \pm 1, \phi = \phi(t)$.

Related via analytical continuation : $(t, r, \theta) = -i(z, \tau, \psi)$ and $\phi(t) = \varphi(it)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへぐ

Domain-walls vs. cosmologies

There is a correspondence between domain-walls and cosmologies (Townsend, Skenderis).

Domain wall metric

$$\mathrm{d}s^2 = \mathrm{d}z^2 + \mathrm{e}^{2\beta\varphi} \left[-\frac{\mathrm{d}\tau^2}{1+k\tau^2} + \tau^2 (\mathrm{d}\psi^2 + \mathrm{sinh}^2\psi \mathrm{d}\Omega_{d-2}^2) \right].$$

where
$$k = 0, \pm 1, \varphi = \varphi(z)$$
.

FLRW cosmology

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + \mathrm{e}^{2\beta\phi} \Big[\frac{\mathrm{d}r^2}{1-kr^2} + r^2 (\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\Omega_{d-2}^2) \Big] \,.$$

where $k = 0, \pm 1, \phi = \phi(t)$.

Related via analytical continuation : $(t, r, \theta) = -i(z, \tau, \psi)$ and $\phi(t) = \varphi(it)$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 = ∽ � � �

Domain-walls vs. cosmologies

There is a correspondence between domain-walls and cosmologies (Townsend, Skenderis).

Domain wall metric

$$\mathrm{d}s^2 = \mathrm{d}z^2 + \mathrm{e}^{2\beta\varphi} \Big[-\frac{\mathrm{d}\tau^2}{1+k\tau^2} + \tau^2 (\mathrm{d}\psi^2 + \mathrm{sinh}^2\psi \mathrm{d}\Omega_{d-2}^2) \Big] \,.$$

where
$$k = 0, \pm 1, \varphi = \varphi(z)$$
.

FLRW cosmology

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + \mathrm{e}^{2\beta\phi} \Big[\frac{\mathrm{d}r^2}{1-kr^2} + r^2 (\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\Omega_{d-2}^2) \Big] \,.$$

where $k = 0, \pm 1, \phi = \phi(t)$.

Related via analytical continuation : $(t, r, \theta) = -i(z, \tau, \psi)$ and $\phi(t) = \varphi(it)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Domain-walls vs. cosmologies

Considering gravity coupled to scalars:

$$\mathcal{L} = \sqrt{-g} \Big[R - \frac{1}{2} (\partial \sigma)^2 - \eta V(\sigma) \Big], \quad \eta = \pm 1.$$

DW for $(\eta = 1, k = \pm 1 \text{ or } 0)$ → cosmology for $(\eta = -1, k = \mp 1 \text{ or } 0)$. For the DW (fake supersymmetry)

$$V=2\left(|W'|^2-lpha^2|W|^2
ight) \quad ext{and} \quad (D_\mu-lphaeta W\Gamma_\mu)\epsilon=0$$

► For the cosmology (fake pseudo-supersymmetry)

 $V = -2\left(|W'|^2 - \alpha^2 |W|^2\right)$ and $(D_\mu - i\alpha\beta W\Gamma_\mu)\epsilon = 0$

 $\blacktriangleright \Gamma^{\mu} D_{\mu} \epsilon = M \epsilon:$

- 1. susy : *M* hermitian
- 2. pseudo-susy : M anti-hermitian.

Domain-walls vs. cosmologies

Considering gravity coupled to scalars:

$$\mathcal{L} = \sqrt{-g} \Big[R - \frac{1}{2} (\partial \sigma)^2 - \eta V(\sigma) \Big], \quad \eta = \pm 1.$$

DW for (η = 1, k = ±1 or 0) → cosmology for (η = −1, k = ∓1 or 0).
For the DW (fake supersymmetry)

$$V = 2\left(|W'|^2 - \alpha^2 |W|^2\right)$$
 and $(D_\mu - \alpha\beta W\Gamma_\mu)\epsilon = 0$

► For the cosmology (fake pseudo-supersymmetry)

 $V = -2\left(|W'|^2 - \alpha^2 |W|^2\right)$ and $(D_\mu - i\alpha\beta W\Gamma_\mu)\epsilon = 0$

 $\blacktriangleright \Gamma^{\mu} D_{\mu} \epsilon = M \epsilon:$

- 1. susy : *M* hermitian
- 2. pseudo-susy : M anti-hermitian.

Domain-walls vs. cosmologies

Considering gravity coupled to scalars:

$$\mathcal{L} = \sqrt{-g} \Big[R - \frac{1}{2} (\partial \sigma)^2 - \eta V(\sigma) \Big], \quad \eta = \pm 1.$$

DW for (η = 1, k = ±1 or 0) → cosmology for (η = −1, k = ∓1 or 0).
For the DW (fake supersymmetry)

$$V = 2\left(|W'|^2 - \alpha^2 |W|^2\right)$$
 and $(D_\mu - \alpha\beta W\Gamma_\mu)\epsilon = 0$

For the cosmology (fake pseudo-supersymmetry)

$$V = -2\left(|W'|^2 - \alpha^2 |W|^2\right) \quad \text{and} \quad (D_\mu - \mathbf{i}\alpha\beta W\Gamma_\mu)\epsilon = 0$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

 $\blacktriangleright \Gamma^{\mu} D_{\mu} \epsilon = M \epsilon:$

1. susy : M hermitian

2. pseudo-susy : M anti-hermitian.

Domain-walls vs. cosmologies

Considering gravity coupled to scalars:

$$\mathcal{L} = \sqrt{-g} \Big[R - \frac{1}{2} (\partial \sigma)^2 - \eta V(\sigma) \Big], \quad \eta = \pm 1.$$

DW for (η = 1, k = ±1 or 0) → cosmology for (η = −1, k = ∓1 or 0).
For the DW (fake supersymmetry)

$$V = 2\left(|W'|^2 - \alpha^2 |W|^2\right)$$
 and $(D_\mu - \alpha\beta W\Gamma_\mu)\epsilon = 0$

For the cosmology (fake pseudo-supersymmetry)

$$V = -2\left(|W'|^2 - \alpha^2 |W|^2\right) \quad \text{and} \quad (D_\mu - \mathbf{i}\alpha\beta W\Gamma_\mu)\epsilon = 0$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

 $\blacktriangleright \Gamma^{\mu} D_{\mu} \epsilon = M \epsilon:$

- 1. susy : *M* hermitian
- 2. pseudo-susy : *M* anti-hermitian.

From a supergravity point of view this correspondence looks rather strange:

- Supersymmetric domain walls can be generically found, supersymmetric cosmologies not.
- $V \rightarrow -V, W \rightarrow iW?$
- In real supergravity you do care about reality of fermions \leftrightarrow fake supergravity.
- ► Is there a way of realizing this in a supergravity context, i.e. see the Killing spinor conditions as arising from $\delta_{\epsilon}\psi_{\mu} = 0$?

Strategy :

- 1. Look at 'complex' supergravity theories.
- 2. Impose reality conditions, i.e. take real slices
- 3. See how many slices per signature are possible and what the implications of this are.

From a supergravity point of view this correspondence looks rather strange:

- Supersymmetric domain walls can be generically found, supersymmetric cosmologies not.
- $V \rightarrow -V, W \rightarrow iW?$
- In real supergravity you do care about reality of fermions \leftrightarrow fake supergravity.
- ► Is there a way of realizing this in a supergravity context, i.e. see the Killing spinor conditions as arising from $\delta_{\epsilon}\psi_{\mu} = 0$?

Strategy :

- 1. Look at 'complex' supergravity theories.
- 2. Impose reality conditions, i.e. take real slices
- 3. See how many slices per signature are possible and what the implications of this are.

- From a supergravity point of view this correspondence looks rather strange:
 - Supersymmetric domain walls can be generically found, supersymmetric cosmologies not.
 - $V \rightarrow -V, W \rightarrow iW?$
 - In real supergravity you do care about reality of fermions \leftrightarrow fake supergravity.
- ► Is there a way of realizing this in a supergravity context, i.e. see the Killing spinor conditions as arising from $\delta_{\epsilon}\psi_{\mu} = 0$?

► Strategy :

- 1. Look at 'complex' supergravity theories.
- 2. Impose reality conditions, i.e. take real slices
- 3. See how many slices per signature are possible and what the implications of this are.

- From a supergravity point of view this correspondence looks rather strange:
 - Supersymmetric domain walls can be generically found, supersymmetric cosmologies not.
 - $V \rightarrow -V, W \rightarrow iW?$
 - In real supergravity you do care about reality of fermions \leftrightarrow fake supergravity.
- ► Is there a way of realizing this in a supergravity context, i.e. see the Killing spinor conditions as arising from $\delta_{\epsilon}\psi_{\mu} = 0$?
- ► Strategy :
 - 1. Look at 'complex' supergravity theories.
 - 2. Impose reality conditions, i.e. take real slices
 - 3. See how many slices per signature are possible and what the implications of this are.

- From a supergravity point of view this correspondence looks rather strange:
 - Supersymmetric domain walls can be generically found, supersymmetric cosmologies not.
 - $V \rightarrow -V, W \rightarrow iW?$
 - In real supergravity you do care about reality of fermions \leftrightarrow fake supergravity.
- ► Is there a way of realizing this in a supergravity context, i.e. see the Killing spinor conditions as arising from $\delta_{\epsilon}\psi_{\mu} = 0$?

Strategy :

- 1. Look at 'complex' supergravity theories.
- 2. Impose reality conditions, i.e. take real slices
- 3. See how many slices per signature are possible and what the implications of this are.

- From a supergravity point of view this correspondence looks rather strange:
 - Supersymmetric domain walls can be generically found, supersymmetric cosmologies not.
 - $V \rightarrow -V, W \rightarrow iW?$
 - In real supergravity you do care about reality of fermions \leftrightarrow fake supergravity.
- ► Is there a way of realizing this in a supergravity context, i.e. see the Killing spinor conditions as arising from $\delta_{\epsilon}\psi_{\mu} = 0$?

Strategy :

- 1. Look at 'complex' supergravity theories.
- 2. Impose reality conditions, i.e. take real slices
- 3. See how many slices per signature are possible and what the implications of this are.

Variant supergravities

*-theories in 10 dimensions obtained by time-like T-dualities (Hull)

$$egin{array}{cccc} T_s & & & \\ IIA &
ightarrow & IIB & \\ T_t & \downarrow & & \downarrow & T_t & \\ IIB^* &
ightarrow & IIA^* & \\ & T_s & & \end{array}$$

Also leads to theories in other signatures.

RR-fields become ghosts

e.g.
$$L_{IIA^*} = \sqrt{-g} \left\{ e^{-2\phi} \left[R + 4(\partial\phi)^2 - \frac{1}{2}H \cdot H \right] + \frac{1}{2} \sum_{n=0,1,2} F^{(2n)} \cdot F^{(2n)} \right\}$$

▶ a naive connection to domain wall vs. cosmology correspondence : $C \rightarrow iC \Rightarrow W \rightarrow iW.$

Variant supergravities

*-theories in 10 dimensions obtained by time-like T-dualities (Hull)

$$egin{array}{cccc} T_s & & & \\ IIA &
ightarrow & IIB & \\ T_t & \downarrow & \downarrow & T_t & \\ IIB^* &
ightarrow & IIA^* & \\ & T_s & & \end{array}$$

Also leads to theories in other signatures.

RR-fields become ghosts

e.g.
$$L_{IIA^*} = \sqrt{-g} \left\{ e^{-2\phi} \left[R + 4(\partial\phi)^2 - \frac{1}{2}H \cdot H \right] + \frac{1}{2} \sum_{n=0,1,2} F^{(2n)} \cdot F^{(2n)} \right\}$$

▶ a naive connection to domain wall vs. cosmology correspondence : $C \rightarrow iC \Rightarrow W \rightarrow iW.$

Variant supergravities

*-theories in 10 dimensions obtained by time-like T-dualities (Hull)

$$egin{array}{cccc} T_s & & & \\ IIA &
ightarrow & IIB & \\ T_t & \downarrow & \downarrow & T_t & \\ IIB^* &
ightarrow & IIA^* & \\ & T_s & & \end{array}$$

Also leads to theories in other signatures.

RR-fields become ghosts

e.g.
$$L_{IIA^*} = \sqrt{-g} \left\{ e^{-2\phi} \left[R + 4(\partial\phi)^2 - \frac{1}{2}H \cdot H \right] + \frac{1}{2} \sum_{n=0,1,2} F^{(2n)} \cdot F^{(2n)} \right\}$$

► a naive connection to domain wall vs. cosmology correspondence : $C \rightarrow iC \Rightarrow W \rightarrow iW.$

The complex vs real superalgebra

Superalgebra that underlies all these 'variant supergravities' = OSp(1|32).

- Has a unique real form.
- ▶ Imposing different reality conditions on the complex algebra → different parametrizations of this real form → Hull's theories (Bergshoeff, Van Proeyen)
- dualities then relate the various parametrizations
- All this was on the level of the algebra
- ► ⇒ We'd like to do a similar thing on the level of the action? (Vaula, Nishino, Gates)

The complex vs real superalgebra

- Superalgebra that underlies all these 'variant supergravities' = OSp(1|32).
- ► Has a unique real form.
- ▶ Imposing different reality conditions on the complex algebra → different parametrizations of this real form → Hull's theories (Bergshoeff, Van Proeyen)
- dualities then relate the various parametrizations
- All this was on the level of the algebra
- ► ⇒ We'd like to do a similar thing on the level of the action? (Vaula, Nishino, Gates)

The complex vs real superalgebra

- Superalgebra that underlies all these 'variant supergravities' = OSp(1|32).
- ► Has a unique real form.
- ► Imposing different reality conditions on the complex algebra → different parametrizations of this real form → Hull's theories (Bergshoeff, Van Proeyen)
- dualities then relate the various parametrizations
- All this was on the level of the algebra
- ► ⇒ We'd like to do a similar thing on the level of the action? (Vaula, Nishino, Gates)

The complex vs real superalgebra

- Superalgebra that underlies all these 'variant supergravities' = OSp(1|32).
- ► Has a unique real form.
- ► Imposing different reality conditions on the complex algebra → different parametrizations of this real form → Hull's theories (Bergshoeff, Van Proeyen)
- dualities then relate the various parametrizations
- All this was on the level of the algebra
- ► ⇒ We'd like to do a similar thing on the level of the action? (Vaula, Nishino, Gates)

The complex vs real superalgebra

- Superalgebra that underlies all these 'variant supergravities' = OSp(1|32).
- ► Has a unique real form.
- ► Imposing different reality conditions on the complex algebra → different parametrizations of this real form → Hull's theories (Bergshoeff, Van Proeyen)
- dualities then relate the various parametrizations
- All this was on the level of the algebra
- ► ⇒ We'd like to do a similar thing on the level of the action? (Vaula, Nishino, Gates)

The complex vs real superalgebra

- Superalgebra that underlies all these 'variant supergravities' = OSp(1|32).
- ► Has a unique real form.
- ► Imposing different reality conditions on the complex algebra → different parametrizations of this real form → Hull's theories (Bergshoeff, Van Proeyen)
- dualities then relate the various parametrizations
- All this was on the level of the algebra
- ➤ ⇒ We'd like to do a similar thing on the level of the action? (Vaula, Nishino, Gates)

$$\begin{split} S_{IIA} &= -\frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} \Big\{ e^{-2\phi} \Big[R - 4 \big(\partial\phi\big)^2 + \frac{1}{2} H \cdot H + -2\partial^{\mu}\phi\chi_{\mu}^{(1)} \\ &+ H \cdot \chi^{(3)} + 2\bar{\psi}_{\mu}\Gamma^{\mu\nu\rho}\nabla_{\nu}\psi_{\rho} - 2\bar{\lambda}\Gamma^{\mu}\nabla_{\mu}\lambda + 4\bar{\lambda}\Gamma^{\mu\nu}\nabla_{\mu}\psi_{\nu} \Big] + \\ &+ \sum_{n=0}^2 \frac{1}{2} G^{(2n)} \cdot G^{(2n)} + G^{(2n)} \cdot \Psi^{(2n)} \Big\} \end{split}$$

• $\bar{\lambda} = \bar{\lambda}^{\dagger} \Gamma_0 = \lambda^T C$ = reality condition.

• If $\bar{\lambda} = \lambda^T C$, supersymmetry does not really depend on the reality of the fields.

• Consider all fields to be complex and interpret $\overline{\lambda} = \lambda^T \mathcal{C} \rightarrow \text{still}$ supersymmetric.

$$\begin{split} S_{IIA} &= -\frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} \Big\{ e^{-2\phi} \Big[R - 4 \big(\partial\phi\big)^2 + \frac{1}{2} H \cdot H + -2\partial^{\mu}\phi\chi_{\mu}^{(1)} \\ &+ H \cdot \chi^{(3)} + 2\bar{\psi}_{\mu}\Gamma^{\mu\nu\rho}\nabla_{\nu}\psi_{\rho} - 2\bar{\lambda}\Gamma^{\mu}\nabla_{\mu}\lambda + 4\bar{\lambda}\Gamma^{\mu\nu}\nabla_{\mu}\psi_{\nu} \Big] + \\ &+ \sum_{n=0}^2 \frac{1}{2} G^{(2n)} \cdot G^{(2n)} + G^{(2n)} \cdot \Psi^{(2n)} \Big\} \end{split}$$

- $\bar{\lambda} = \bar{\lambda}^{\dagger} \Gamma_0 = \lambda^T C$ = reality condition.
- If $\overline{\lambda} = \lambda^T C$, supersymmetry does not really depend on the reality of the fields.

• Consider all fields to be complex and interpret $\bar{\lambda} = \lambda^T C \rightarrow \text{still}$ supersymmetric.

$$\begin{split} S_{IIA} &= -\frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} \Big\{ e^{-2\phi} \Big[R - 4 \big(\partial\phi\big)^2 + \frac{1}{2} H \cdot H + -2\partial^{\mu}\phi\chi_{\mu}^{(1)} \\ &+ H \cdot \chi^{(3)} + 2\bar{\psi}_{\mu}\Gamma^{\mu\nu\rho}\nabla_{\nu}\psi_{\rho} - 2\bar{\lambda}\Gamma^{\mu}\nabla_{\mu}\lambda + 4\bar{\lambda}\Gamma^{\mu\nu}\nabla_{\mu}\psi_{\nu} \Big] + \\ &+ \sum_{n=0}^2 \frac{1}{2} G^{(2n)} \cdot G^{(2n)} + G^{(2n)} \cdot \Psi^{(2n)} \Big\} \end{split}$$

• $\bar{\lambda} = \bar{\lambda}^{\dagger} \Gamma_0 = \lambda^T C$ = reality condition.

• If $\bar{\lambda} = \lambda^T C$, supersymmetry does not really depend on the reality of the fields.

• Consider all fields to be complex and interpret $\bar{\lambda} = \lambda^T C \rightarrow \text{still}$ supersymmetric.

$$\begin{split} S_{IIA} &= -\frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} \Big\{ e^{-2\phi} \Big[R - 4(\partial\phi)^2 + \frac{1}{2}H \cdot H + -2\partial^{\mu}\phi\chi_{\mu}^{(1)} \\ &+ H \cdot \chi^{(3)} + 2\bar{\psi}_{\mu}\Gamma^{\mu\nu\rho}\nabla_{\nu}\psi_{\rho} - 2\bar{\lambda}\Gamma^{\mu}\nabla_{\mu}\lambda + 4\bar{\lambda}\Gamma^{\mu\nu}\nabla_{\mu}\psi_{\nu} \Big] + \\ &+ \sum_{n=0}^2 \frac{1}{2}G^{(2n)} \cdot G^{(2n)} + G^{(2n)} \cdot \Psi^{(2n)} \Big\} \end{split}$$

• $\bar{\lambda} = \bar{\lambda}^{\dagger} \Gamma_0 = \lambda^T C$ = reality condition.

• If $\bar{\lambda} = \lambda^T C$, supersymmetry does not really depend on the reality of the fields.

• Consider all fields to be complex and interpret $\bar{\lambda} = \lambda^T C \rightarrow \text{still}$ supersymmetric.

• Impose suitable reality conditions on the fermions:

$$\chi^* = R\chi \,.$$

Compatibility with Lorentz invariance implies

$$R = \alpha B$$
 or $R = \alpha B \Gamma_{11}$ with $B = C\Gamma_0$.

- There are then two possibilities to impose reality conditions on the fermions:

$$\begin{split} \psi^*_{\mu} &= \alpha^I_{\psi} \ B \ \psi_{\mu} & \psi^*_{\mu} = \alpha^I_{\psi} \ B \ \Gamma_{11} \ \psi_{\mu} \\ \lambda^* &= \alpha^I_{\lambda} \ B \ \lambda & \lambda^* = \alpha^I_{\lambda} \ B \ \Gamma_{11} \ \lambda \end{split}$$

• Impose suitable reality conditions on the fermions:

$$\chi^* = R\chi \,.$$

Compatibility with Lorentz invariance implies

 $R = \alpha B$ or $R = \alpha B \Gamma_{11}$ with $B = C\Gamma_0$.

- There are then two possibilities to impose reality conditions on the fermions:

$$\begin{split} \psi^*_{\mu} &= \alpha^I_{\psi} \ B \ \psi_{\mu} & \psi^*_{\mu} = \alpha^I_{\psi} \ B \ \Gamma_{11} \ \psi_{\mu} \\ \lambda^* &= \alpha^I_{\lambda} \ B \ \lambda & \lambda^* = \alpha^I_{\lambda} \ B \ \Gamma_{11} \ \lambda \end{split}$$

• Impose suitable reality conditions on the fermions:

$$\chi^* = R\chi$$
.

Compatibility with Lorentz invariance implies

$$R = \alpha B$$
 or $R = \alpha B \Gamma_{11}$ with $B = C\Gamma_0$.

- There are then two possibilities to impose reality conditions on the fermions:

$$\begin{split} \psi^*_{\mu} &= \alpha^I_{\psi} \ B \ \psi_{\mu} & \psi^*_{\mu} = \alpha^{II}_{\psi} \ B \ \Gamma_{11} \ \psi_{\mu} \\ \lambda^* &= \alpha^I_{\lambda} \ B \ \lambda & \lambda^* = \alpha^{II}_{\lambda} \ B \ \Gamma_{11} \ \lambda \end{split}$$

• Impose suitable reality conditions on the fermions:

$$\chi^* = R\chi$$
.

Compatibility with Lorentz invariance implies

$$R = \alpha B$$
 or $R = \alpha B \Gamma_{11}$ with $B = C\Gamma_0$.

- There are then two possibilities to impose reality conditions on the fermions:

$$\begin{aligned} \psi^*_{\mu} &= \alpha^I_{\psi} \ B \ \psi_{\mu} & \psi^*_{\mu} &= \alpha^{II}_{\psi} \ B \ \Gamma_{11} \ \psi_{\mu} \\ \lambda^* &= \alpha^I_{\lambda} \ B \ \lambda & \lambda^* &= \alpha^{II}_{\lambda} \ B \ \Gamma_{11} \ \lambda \end{aligned}$$

Reality conditions on the bosonic fields :

$$\phi^* = \phi \,, \ e^{a*}_\mu = e^a_\mu \,, \ B^*_{\mu\nu} = \alpha^{I,II}_B B_{\mu\nu} \,, \ C^{(m)*} = \alpha^{I,II}_m C^{(m)} \,,$$

Next step : determine all the α -factors. This is done by imposing reality of the action and by checking consistency with the supersymmetry transformation laws.

$$\begin{split} \delta_{\epsilon} b &= \bar{\epsilon} \Gamma f \quad \Rightarrow \quad (\delta_{\epsilon} b)^* = (\bar{\epsilon} \Gamma f)^* \\ \delta_{\epsilon} f &= b \epsilon \quad \Rightarrow \quad (\delta_{\epsilon} f)^* = (b \epsilon)^* \,. \end{split}$$

This leads to a set of relations between the α-factors. For type IIA in (1,9) it turns out that both sets of reality conditions on the fermions give a consistent choice of α-factors.

Reality conditions on the bosonic fields :

$$\phi^* = \phi \,, \ e^{a*}_\mu = e^a_\mu \,, \ B^*_{\mu\nu} = \alpha^{I,II}_B B_{\mu\nu} \,, \ C^{(m)*} = \alpha^{I,II}_m C^{(m)} \,,$$

• Next step : determine all the α -factors. This is done by imposing reality of the action and by checking consistency with the supersymmetry transformation laws.

$$\begin{split} \delta_{\epsilon} b &= \bar{\epsilon} \Gamma f \qquad \Rightarrow \qquad (\delta_{\epsilon} b)^* = (\bar{\epsilon} \Gamma f)^* \\ \delta_{\epsilon} f &= b \epsilon \qquad \Rightarrow \qquad (\delta_{\epsilon} f)^* = (b \epsilon)^* \,. \end{split}$$

This leads to a set of relations between the α-factors. For type IIA in (1,9) it turns out that both sets of reality conditions on the fermions give a consistent choice of α-factors.

Reality conditions on the bosonic fields :

$$\phi^* = \phi \,, \ e^{a*}_\mu = e^a_\mu \,, \ B^*_{\mu\nu} = \alpha^{I,II}_B B_{\mu\nu} \,, \ C^{(m)*} = \alpha^{I,II}_m C^{(m)} \,,$$

• Next step : determine all the α -factors. This is done by imposing reality of the action and by checking consistency with the supersymmetry transformation laws.

$$\begin{split} \delta_{\epsilon} b &= \bar{\epsilon} \Gamma f \qquad \Rightarrow \qquad (\delta_{\epsilon} b)^* = (\bar{\epsilon} \Gamma f)^* \\ \delta_{\epsilon} f &= b \epsilon \qquad \Rightarrow \qquad (\delta_{\epsilon} f)^* = (b \epsilon)^* \,. \end{split}$$

This leads to a set of relations between the α-factors. For type IIA in (1,9) it turns out that both sets of reality conditions on the fermions give a consistent choice of α-factors.

• Two different reality conditions \rightarrow two different theories.

IIA	IIA*
$\epsilon^* = -\mathcal{C}\Gamma_0\epsilon$	$\epsilon^* = -\mathcal{C}\Gamma_0\Gamma_{11}\epsilon$
$\psi^*_\mu = -\mathcal{C}\Gamma_0\psi_\mu$	$\psi_{\mu}^{*} = -\mathcal{C}\Gamma_{0}\Gamma_{11}\psi_{\mu}$
$\dot{\lambda}^* = -\mathcal{C}\Gamma_0\lambda$	$\dot{\lambda}^* = + \mathcal{C} \Gamma_0 \Gamma_{11} \lambda$
$e_^{a*}=e_^a$	$e_^{a*}=e_^a$
$B^*_{\mu u}=B_{\mu u}$	$B^*_{\mu u}=B_{\mu u}$
$\phi^* = \phi$	$\phi^* = \phi$
$C^{(m)*} = C^{(m)}$	$C^{(m)*} = -C^{(m)}$

► To construct actions :

1. Replace $\chi^T C$ by $-\alpha_{\chi}^{-1} \chi^{\dagger} \Gamma_0$ (IIA) or by $\alpha_{\chi}^{-1} \chi^{\dagger} \Gamma_0 \Gamma_{11}$ (IIA*).

2. In IIA case, this gives a good action. In IIA* case, express everything in real fields by redefining $C^{(m)} = i\tilde{C}^{(m)}$ and $\lambda = i\tilde{\lambda}$.

• Two different reality conditions \rightarrow two different theories.

IIA	IIA*
$\epsilon^* = -\mathcal{C}\Gamma_0\epsilon$	$\epsilon^* = -\mathcal{C}\Gamma_0\Gamma_{11}\epsilon$
$\psi^*_\mu = -\mathcal{C}\Gamma_0\psi_\mu$	$\psi_{\mu}^{*} = -\mathcal{C}\Gamma_{0}\Gamma_{11}\psi_{\mu}$
$\dot{\lambda}^* = -\mathcal{C}\Gamma_0\lambda$	$\dot{\lambda}^* = + \mathcal{C} \Gamma_0 \Gamma_{11} \lambda$
$e_^{a*}=e_^a$	$e_^{a*}=e_^a$
$B^*_{\mu u}=B_{\mu u}$	$B^*_{\mu u}=B_{\mu u}$
$\phi^* = \phi$	$\phi^* = \phi$
$C^{(m)*} = C^{(m)}$	$C^{(m)*} = -C^{(m)}$

To construct actions :

- 1. Replace $\chi^T C$ by $-\alpha_{\chi}^{-1} \chi^{\dagger} \Gamma_0$ (IIA) or by $\alpha_{\chi}^{-1} \chi^{\dagger} \Gamma_0 \Gamma_{11}$ (IIA*).
- 2. In IIA case, this gives a good action. In IIA* case, express everything in real fields by redefining $C^{(m)} = i\tilde{C}^{(m)}$ and $\lambda = i\tilde{\lambda}$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

• Two different reality conditions \rightarrow two different theories.

IIA	IIA*
$\epsilon^* = -\mathcal{C}\Gamma_0\epsilon$	$\epsilon^* = -\mathcal{C}\Gamma_0\Gamma_{11}\epsilon$
$\psi^*_\mu = -\mathcal{C}\Gamma_0\psi_\mu$	$\psi_{\mu}^{*} = -\mathcal{C}\Gamma_{0}\Gamma_{11}\psi_{\mu}$
$\dot{\lambda}^* = -\mathcal{C}\Gamma_0\lambda$	$\lambda^* = + \mathcal{C}\Gamma_0\Gamma_{11}\lambda$
$e_^{a*}=e_^a$	$e_{\mu}{}^{a*}=e_{\mu}{}^a$
$B^*_{\mu u}=B_{\mu u}$	$B^*_{\mu u}=B_{\mu u}$
$\phi^* = \phi$	$\phi^* = \phi$
$C^{(m)*} = C^{(m)}$	$C^{(m)*} = -C^{(m)}$

- To construct actions :
 - 1. Replace $\chi^T C$ by $-\alpha_{\chi}^{-1} \chi^{\dagger} \Gamma_0$ (IIA) or by $\alpha_{\chi}^{-1} \chi^{\dagger} \Gamma_0 \Gamma_{11}$ (IIA*).
 - 2. In IIA case, this gives a good action. In IIA* case, express everything in real fields by redefining $C^{(m)} = i\tilde{C}^{(m)}$ and $\lambda = i\tilde{\lambda}$.

• Two different reality conditions \rightarrow two different theories.

IIA	IIA*
$\epsilon^* = -\mathcal{C}\Gamma_0\epsilon$	$\epsilon^* = -\mathcal{C}\Gamma_0\Gamma_{11}\epsilon$
$\psi^*_\mu = -\mathcal{C}\Gamma_0\psi_\mu$	$\psi_{\mu}^{*} = -\mathcal{C}\Gamma_{0}\Gamma_{11}\psi_{\mu}$
$\dot{\lambda}^* = -\mathcal{C}\Gamma_0\lambda$	$\dot{\lambda}^* = + \mathcal{C}\Gamma_0\Gamma_{11}\lambda$
$e_^{a*}=e_^a$	$e_{\mu}{}^{a*}=e_{\mu}{}^a$
$B^*_{\mu u}=B_{\mu u}$	$B^*_{\mu u}=B_{\mu u}$
$\phi^* = \phi$	$\phi^* = \phi$
$C^{(m)*} = C^{(m)}$	$C^{(m)*} = -C^{(m)}$

► To construct actions :

1. Replace $\chi^T C$ by $-\alpha_{\chi}^{-1} \chi^{\dagger} \Gamma_0$ (IIA) or by $\alpha_{\chi}^{-1} \chi^{\dagger} \Gamma_0 \Gamma_{11}$ (IIA*).

2. In IIA case, this gives a good action. In IIA* case, express everything in real fields by redefining $C^{(m)} = i\tilde{C}^{(m)}$ and $\lambda = i\tilde{\lambda}$.

 \blacktriangleright \rightarrow So the RR-fields indeed become ghosts in IIA*.

• Two different reality conditions \rightarrow two different theories.

IIA	IIA*
$\epsilon^* = -\mathcal{C}\Gamma_0\epsilon$	$\epsilon^* = -\mathcal{C}\Gamma_0\Gamma_{11}\epsilon$
$\psi^*_\mu = -\mathcal{C}\Gamma_0\psi_\mu$	$\psi_{\mu}^{*} = -\mathcal{C}\Gamma_{0}\Gamma_{11}\psi_{\mu}$
$\dot{\lambda}^* = -\mathcal{C}\Gamma_0\lambda$	$\dot{\lambda}^* = + \mathcal{C}\Gamma_0\Gamma_{11}\lambda$
$e_^{a*}=e_^a$	$e_{\mu}{}^{a*}=e_{\mu}{}^a$
$B^*_{\mu u}=B_{\mu u}$	$B^*_{\mu u}=B_{\mu u}$
$\phi^* = \phi$	$\phi^* = \phi$
$C^{(m)*} = C^{(m)}$	$C^{(m)*} = -C^{(m)}$

- ► To construct actions :
 - 1. Replace $\chi^T C$ by $-\alpha_{\chi}^{-1} \chi^{\dagger} \Gamma_0$ (IIA) or by $\alpha_{\chi}^{-1} \chi^{\dagger} \Gamma_0 \Gamma_{11}$ (IIA*).
 - 2. In IIA case, this gives a good action. In IIA* case, express everything in real fields by redefining $C^{(m)} = i\tilde{C}^{(m)}$ and $\lambda = i\tilde{\lambda}$.

Type II theories in different signatures

- So far, we've found real slices of the complex action, leading to IIA and IIA* theories in (1,9) signature, but using more general reality conditions, one can find IIA theories in other signatures.
- ► Results for type IIA

<i>t</i> mod 4	0		1	2
type	SM	MW	*MW	Μ
α_B		+	+	
$\alpha_{-1} = \alpha_3$	+	+		
		+		+

Similar analysis for type IIB

<i>t</i> mod 4		3	
type	MW	*MW	SMW
	+	+	
$\alpha_0 = \alpha_4$	+		
	+		+

Type II theories in different signatures

- So far, we've found real slices of the complex action, leading to IIA and IIA* theories in (1,9) signature, but using more general reality conditions, one can find IIA theories in other signatures.
- Results for type IIA

<i>t</i> mod 4	0	1		2
type	SM	MW	*MW	М
α_B	-	+	+	-
$\alpha_{-1} = \alpha_3$	+	+	-	-
α_1	-	+	-	+

Similar analysis for type IIB

<i>t</i> mod 4		3	
type	MW	*MW	SMW
	+	+	
$\alpha_0 = \alpha_4$	+		
	+		+

Type II theories in different signatures

- So far, we've found real slices of the complex action, leading to IIA and IIA* theories in (1,9) signature, but using more general reality conditions, one can find IIA theories in other signatures.
- Results for type IIA

<i>t</i> mod 4	0	1		2
type	SM	MW *MW		М
α_B	-	+	+	-
$\alpha_{-1} = \alpha_3$	+	+	-	-
α_1	-	+	-	+

Similar analysis for type IIB

<i>t</i> mod 4		3	
type	MW *MW		SMW
α_B	+	+	-
$\alpha_0 = \alpha_4$	+	-	-
α_2	+	-	+

Type II theories in different signatures

- So far, we've found real slices of the complex action, leading to IIA and IIA* theories in (1,9) signature, but using more general reality conditions, one can find IIA theories in other signatures.
- Results for type IIA

<i>t</i> mod 4	0	1		2
type	SM	MW *MW		М
α_B	-	+	+	-
$\alpha_{-1} = \alpha_3$	+	+	-	-
α_1	-	+	-	+

Similar analysis for type IIB

<i>t</i> mod 4	1		3
type	MW	*MW	SMW
α_B	+	+	-
$\alpha_0 = \alpha_4$	+	-	-
α_2	+	-	+

- Variant supergravities can be constructed by taking real slices of one complex action.
- In some signatures (e.g.(1,9)), two distinct possibilities occur.
- ▶ Relation with extended supersymmetry.
- ▶ In the bosonic sector, the difference lies in the fact that RR-forms become ghosts.

▶ Might be useful for DW-cosmology correspondence.

- Variant supergravities can be constructed by taking real slices of one complex action.
- ▶ In some signatures (e.g.(1,9)), two distinct possibilities occur.
- Relation with extended supersymmetry.
- ▶ In the bosonic sector, the difference lies in the fact that RR-forms become ghosts.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ Might be useful for DW-cosmology correspondence.

- Variant supergravities can be constructed by taking real slices of one complex action.
- ▶ In some signatures (e.g.(1,9)), two distinct possibilities occur.
- Relation with extended supersymmetry.
- In the bosonic sector, the difference lies in the fact that RR-forms become ghosts.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ Might be useful for DW-cosmology correspondence.

- Variant supergravities can be constructed by taking real slices of one complex action.
- ▶ In some signatures (e.g.(1,9)), two distinct possibilities occur.
- ► Relation with extended supersymmetry.
- In the bosonic sector, the difference lies in the fact that RR-forms become ghosts.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Might be useful for DW-cosmology correspondence.

- Variant supergravities can be constructed by taking real slices of one complex action.
- ▶ In some signatures (e.g.(1,9)), two distinct possibilities occur.
- ► Relation with extended supersymmetry.
- In the bosonic sector, the difference lies in the fact that RR-forms become ghosts.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Might be useful for DW-cosmology correspondence.

An example in mIIA and mIIA*

• Consider a truncation of mIIA:

$$S_{\text{IIA}} = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} \left(R - \frac{1}{2} \left(\partial \phi \right)^2 - \frac{1}{2} e^{5\phi/2} m^2 \right),$$

Note that m is a real mass parameter! The potential can be expressed in terms of a real superpotential W

$$V = 8\left(\frac{\delta W}{\delta \phi}\right)^2 - \frac{9}{2}W^2 = \frac{1}{2}e^{5\phi/2}m^2, \quad W = \frac{1}{4}e^{5\phi/4}m.$$

The supersymmetry transformations are then

$$\delta \psi_{\mu} = \left(D_{\mu} - \frac{1}{8} W \Gamma_{\mu} \right) \epsilon ,$$

$$\delta_{\epsilon} \lambda = \left(\partial \phi + 4 \frac{\delta W}{\delta \phi} \right) \epsilon ,$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An example in mIIA and mIIA*

- We can now construct the *-version mIIA*, by imposing different reality conditions.
 - 1. ϕ , e^a_μ real.
 - 2. Spinors obey adapted reality conditions.
 - 3. $\rightarrow m$ is now purely imaginary!, redefine : $\tilde{m} = -im$
- ▶ The action is then changed to

$$S_{\text{IIA}} = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} \left(R - \frac{1}{2} \left(\partial \phi \right)^2 + \frac{1}{2} e^{5\phi/2} \tilde{m}^2 \right),$$
$$V = -8 \left(\frac{\delta \tilde{W}}{\delta \phi} \right)^2 + \frac{9}{2} \tilde{W}^2 = -\frac{1}{2} e^{5\phi/2} m^2, \quad W = \frac{i}{4} e^{5\phi/4} \tilde{m} = i \tilde{W}.$$

The supersymmetry transformations are then

$$\delta \psi_{\mu} = \left(D_{\mu} - \frac{\mathrm{i}}{8} \tilde{W} \Gamma_{\mu} \right) \epsilon ,$$

$$\delta_{\epsilon} \lambda = \left(-\mathrm{i} \partial \phi + 4 \frac{\delta \tilde{W}}{\delta \phi} \right) \epsilon ,$$

An example in mIIA and mIIA*

- We can now construct the *-version mIIA*, by imposing different reality conditions.
 - 1. ϕ , e^a_μ real.
 - 2. Spinors obey adapted reality conditions.

3. $\rightarrow m$ is now purely imaginary!, redefine : $\tilde{m} = -im$

▶ The action is then changed to

$$S_{\text{IIA}} = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} \left(R - \frac{1}{2} \left(\partial \phi \right)^2 + \frac{1}{2} e^{5\phi/2} \tilde{m}^2 \right),$$
$$V = -8 \left(\frac{\delta \tilde{W}}{\delta \phi} \right)^2 + \frac{9}{2} \tilde{W}^2 = -\frac{1}{2} e^{5\phi/2} m^2, \quad W = \frac{1}{4} e^{5\phi/4} \tilde{m} = \mathrm{i} \tilde{W}.$$

The supersymmetry transformations are then

$$\delta \psi_{\mu} = \left(D_{\mu} - \frac{\mathrm{i}}{8} \tilde{W} \Gamma_{\mu} \right) \epsilon ,$$

$$\delta_{\epsilon} \lambda = \left(-\mathrm{i} \partial \phi + 4 \frac{\delta \tilde{W}}{\delta \phi} \right) \epsilon ,$$

An example in mIIA and mIIA*

- We can now construct the *-version mIIA*, by imposing different reality conditions.
 - 1. ϕ , e^a_μ real.
 - 2. Spinors obey adapted reality conditions.

3. $\rightarrow m$ is now purely imaginary!, redefine : $\tilde{m} = -im$.

▶ The action is then changed to

$$S_{\text{IIA}} = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} \left(R - \frac{1}{2} \left(\partial \phi \right)^2 \left(+ \frac{1}{2} e^{5\phi/2} \tilde{m}^2 \right) \right),$$
$$V = -8 \left(\frac{\delta \tilde{W}}{\delta \phi} \right)^2 + \frac{9}{2} \tilde{W}^2 = -\frac{1}{2} e^{5\phi/2} m^2, \quad W = \frac{1}{4} e^{5\phi/4} \tilde{m} = \mathrm{i} \tilde{W}.$$

The supersymmetry transformations are then

$$\begin{split} \delta\psi_{\mu} = & \left(D_{\mu} - \frac{\mathrm{i}}{8}\tilde{W}\Gamma_{\mu}\right)\epsilon\,,\\ \delta_{\epsilon}\lambda = & \left(-\mathrm{i}\partial\phi + 4\frac{\delta\tilde{W}}{\delta\phi}\right)\epsilon\,, \end{split}$$

▲□▶▲□▶▲□▶▲□▶ ■ のへの

An example in mIIA and mIIA*

- We can now construct the *-version mIIA*, by imposing different reality conditions.
 - 1. ϕ , e^a_μ real.
 - 2. Spinors obey adapted reality conditions.
 - 3. $\rightarrow m$ is now purely imaginary!, redefine : $\tilde{m} = -im$.
- The action is then changed to

$$S_{\text{IIA}} = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} \left(R - \frac{1}{2} \left(\partial \phi \right)^2 \left(+ \frac{1}{2} e^{5\phi/2} \tilde{m}^2 \right) \right),$$

$$V = -8(\frac{\delta \tilde{W}}{\delta \phi})^2 + \frac{9}{2}\tilde{W}^2 = -\frac{1}{2}e^{5\phi/2}m^2, \quad W = \frac{i}{4}e^{5\phi/4}\tilde{m} = i\tilde{W}.$$

The supersymmetry transformations are then

$$\delta \psi_{\mu} = \left(D_{\mu} - \frac{\mathrm{i}}{8} \tilde{W} \Gamma_{\mu} \right) \epsilon ,$$

$$\delta_{\epsilon} \lambda = \left(-\mathrm{i} \partial \phi + 4 \frac{\delta \tilde{W}}{\delta \phi} \right) \epsilon ,$$

▲□▶▲□▶▲□▶▲□▶ ■ のへの

An example in mIIA and mIIA*

- We can now construct the *-version mIIA*, by imposing different reality conditions.
 - 1. ϕ , e^a_μ real.
 - 2. Spinors obey adapted reality conditions.
 - 3. $\rightarrow m$ is now purely imaginary!, redefine : $\tilde{m} = -im$.
- The action is then changed to

$$S_{\text{IIA}} = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} \left(R - \frac{1}{2} \left(\partial \phi \right)^2 \left(+ \frac{1}{2} e^{5\phi/2} \tilde{m}^2 \right),$$
$$V = -8 \left(\frac{\delta \tilde{W}}{\delta \phi} \right)^2 + \frac{9}{2} \tilde{W}^2 = -\frac{1}{2} e^{5\phi/2} m^2, \quad W = \frac{i}{4} e^{5\phi/4} \tilde{m} = i \tilde{W}.$$

The supersymmetry transformations are then

$$\delta \psi_{\mu} = \left(D_{\mu} - \frac{\mathrm{i}}{8} \tilde{W} \Gamma_{\mu} \right) \epsilon ,$$

$$\delta_{\epsilon} \lambda = \left(-\mathrm{i} \partial \phi + 4 \frac{\delta \tilde{W}}{\delta \phi} \right) \epsilon ,$$

▲□▶▲□▶▲□▶▲□▶ ■ のへ⊙

An example in mIIA and mIIA*

- We can now construct the *-version mIIA*, by imposing different reality conditions.
 - 1. ϕ , e^a_μ real.
 - 2. Spinors obey adapted reality conditions.
 - 3. $\rightarrow m$ is now purely imaginary!, redefine : $\tilde{m} = -im$.
- The action is then changed to

$$S_{\text{IIA}} = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} \left(R - \frac{1}{2} \left(\partial \phi \right)^2 \left(\frac{1}{2} e^{5\phi/2} \tilde{m}^2 \right) \right),$$

$$V = -8\left(\frac{\delta \tilde{W}}{\delta \phi}\right)^2 + \frac{9}{2}\tilde{W}^2 = -\frac{1}{2}e^{5\phi/2}m^2, \quad W = \frac{i}{4}e^{5\phi/4}\tilde{m} = i\tilde{W}.$$

The supersymmetry transformations are then

$$\delta \psi_{\mu} = \left(D_{\mu} - \frac{i}{8} \tilde{W} \Gamma_{\mu} \right) \epsilon ,$$

$$\delta_{\epsilon} \lambda = \left(-i \partial \phi + 4 \frac{\delta \tilde{W}}{\delta \phi} \right) \epsilon ,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへ⊙

An example in mIIA and mIIA*

This is precisely the setup as proposed in the DW-cosm correspondence:

▶ mIIA has a supersymmetric domain wall solution (*D*8 brane)

$$ds^{2} = H^{1/8}[-dt^{2} + (dx^{\mu})^{2}] + H^{9/8}dz^{2} \qquad (H = 1 + mz)$$

The Killing spinor obeys:

$$\Gamma_{\underline{z}}\epsilon = \epsilon$$
, $(\Gamma_{\underline{z}})^2 = 1$.

▶ mIIA* has a 'pseudo-supersymmetric' cosmological solution (*E*8 brane)

$$ds_s^2 = H^{1/8}[dz^2 + (dx^{\mu})^2] - H^{9/8}dt^2 \qquad (H = 1 + \tilde{m}t)$$

Its Killing spinor obeys

$$i\Gamma_{\underline{t}}\epsilon = \epsilon$$
, $(i\Gamma_{\underline{t}})^2 = 1$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

▶ Related via analytical continuation.

An example in mIIA and mIIA*

This is precisely the setup as proposed in the DW-cosm correspondence:

▶ mIIA has a supersymmetric domain wall solution (*D*8 brane)

$$ds^{2} = H^{1/8}[-dt^{2} + (dx^{\mu})^{2}] + H^{9/8}dz^{2} \qquad (H = 1 + mz)$$

The Killing spinor obeys:

$$\Gamma_{\underline{z}}\epsilon = \epsilon \,, \quad (\Gamma_{\underline{z}})^2 = 1 \,.$$

▶ mIIA* has a 'pseudo-supersymmetric' cosmological solution (*E*8 brane)

$$ds_s^2 = H^{1/8}[dz^2 + (dx^{\mu})^2] - H^{9/8}dt^2 \qquad (H = 1 + \tilde{m}t)$$

Its Killing spinor obeys

$$i\Gamma_{\underline{t}}\epsilon = \epsilon$$
, $(i\Gamma_{\underline{t}})^2 = 1$.

▶ Related via analytical continuation.

An example in mIIA and mIIA*

This is precisely the setup as proposed in the DW-cosm correspondence:

▶ mIIA has a supersymmetric domain wall solution (*D*8 brane)

$$\mathrm{d}s^2 = H^{1/8}[-\mathrm{d}t^2 + (\mathrm{d}x^\mu)^2] + H^{9/8}\mathrm{d}z^2 \qquad (H = 1 + mz)$$

The Killing spinor obeys:

$$\Gamma_{\underline{z}}\epsilon = \epsilon$$
, $(\Gamma_{\underline{z}})^2 = 1$.

▶ mIIA* has a 'pseudo-supersymmetric' cosmological solution (*E*8 brane)

$$ds_s^2 = H^{1/8} [dz^2 + (dx^{\mu})^2] - H^{9/8} dt^2 \qquad (H = 1 + \tilde{m}t)$$

Its Killing spinor obeys

$$i\Gamma_{\underline{t}}\epsilon = \epsilon$$
, $(i\Gamma_{\underline{t}})^2 = 1$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Related via analytical continuation.

Summary and discussion

- Variant supergravities can be seen as different real slices of one complex action.
- In some signatures, two different real slices exist.
- ► This provides a natural setting for the domain-wall vs. cosmology correspondence, as exemplified by the *D*8 *E*8 example.
- pseudo-supersymmetry in supergravity = supersymmetry in a *-theory
- What about other dimensions? \rightarrow need for extended susy.
- ► Can this always be done? (For every DW sugra a corresponding *?)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Variant supergravities can be seen as different real slices of one complex action.
- In some signatures, two different real slices exist.
- ► This provides a natural setting for the domain-wall vs. cosmology correspondence, as exemplified by the *D*8 *E*8 example.
- pseudo-supersymmetry in supergravity = supersymmetry in a *-theory
- What about other dimensions? \rightarrow need for extended susy.
- ► Can this always be done? (For every DW sugra a corresponding *?)

- Variant supergravities can be seen as different real slices of one complex action.
- In some signatures, two different real slices exist.
- ► This provides a natural setting for the domain-wall vs. cosmology correspondence, as exemplified by the *D*8 *E*8 example.
- pseudo-supersymmetry in supergravity = supersymmetry in a *-theory
- What about other dimensions? \rightarrow need for extended susy.
- ► Can this always be done? (For every DW sugra a corresponding *?)

- Variant supergravities can be seen as different real slices of one complex action.
- In some signatures, two different real slices exist.
- ► This provides a natural setting for the domain-wall vs. cosmology correspondence, as exemplified by the *D*8 *E*8 example.
- pseudo-supersymmetry in supergravity = supersymmetry in a *-theory
- What about other dimensions? \rightarrow need for extended susy.
- Can this always be done? (For every DW sugra a corresponding *?)

- Variant supergravities can be seen as different real slices of one complex action.
- In some signatures, two different real slices exist.
- ► This provides a natural setting for the domain-wall vs. cosmology correspondence, as exemplified by the *D*8 *E*8 example.
- pseudo-supersymmetry in supergravity = supersymmetry in a *-theory
- What about other dimensions? \rightarrow need for extended susy.
- Can this always be done? (For every DW sugra a corresponding *?)

- Variant supergravities can be seen as different real slices of one complex action.
- In some signatures, two different real slices exist.
- ► This provides a natural setting for the domain-wall vs. cosmology correspondence, as exemplified by the *D*8 − *E*8 example.
- pseudo-supersymmetry in supergravity = supersymmetry in a *-theory
- What about other dimensions? \rightarrow need for extended susy.
- ► Can this always be done? (For every DW sugra a corresponding *?)

- Variant supergravities can be seen as different real slices of one complex action.
- In some signatures, two different real slices exist.
- ► This provides a natural setting for the domain-wall vs. cosmology correspondence, as exemplified by the *D*8 *E*8 example.
- pseudo-supersymmetry in supergravity = supersymmetry in a *-theory
- What about other dimensions? \rightarrow need for extended susy.
- ► Can this always be done? (For every DW sugra a corresponding *?)