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Introduction and motivation
Goal

I Goal : Construct different supergravity actions from one ’complex’ action
by taking different real slices.

I Motivation :
1. The domain-wall vs. cosmology correspondence (Townsend, Skenderis)

suggests that this can be done. Explicit realisation of this correspondence in a
supergravity setting.

2. ’Variant’ supergravities in 10 and 11 dimensions have been considered by
looking at time-like T-duality, e.g. the so-called *-theories. (Hull, Bergshoeff,
Van Proeyen, Vaula). Can we construct these explicitly?
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Introduction and motivation
Domain-walls vs. cosmologies

There is a correspondence between domain-walls and cosmologies (Townsend,
Skenderis).

I Domain wall metric

ds2 = dz2 + e2βϕ
[
− dτ 2

1 + kτ 2 + τ 2(dψ2 + sinh2ψdΩ2
d−2)

]
.

where k = 0,±1, ϕ = ϕ(z).
I FLRW cosmology

ds2 = −dt2 + e2βφ
[ dr2

1− kr2 + r2(dθ2 + sin2θdΩ2
d−2)

]
.

where k = 0,±1, φ = φ(t).
Related via analytical continuation : (t, r, θ) = −i(z, τ, ψ) and φ(t) = ϕ(it).
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Introduction and motivation
Domain-walls vs. cosmologies

I Considering gravity coupled to scalars:

L =
√
−g

[
R− 1

2
(∂σ)2 − ηV(σ)

]
, η = ±1 .

DW for (η = 1, k = ±1 or 0)→ cosmology for (η = −1, k = ∓1 or 0).
I For the DW (fake supersymmetry)

V = 2
(
|W ′|2 − α2|W|2

)
and (Dµ − αβWΓµ)ε = 0

I For the cosmology (fake pseudo-supersymmetry)

V = −2
(
|W ′|2 − α2|W|2

)
and (Dµ − iαβWΓµ)ε = 0

I ΓµDµε = Mε:
1. susy : M hermitian
2. pseudo-susy : M anti-hermitian.
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Domain-walls vs. cosmologies

I From a supergravity point of view this correspondence looks rather
strange:

• Supersymmetric domain walls can be generically found, supersymmetric
cosmologies not.

• V → −V , W → iW?
• In real supergravity you do care about reality of fermions↔ fake supergravity.

I Is there a way of realizing this in a supergravity context, i.e. see the Killing
spinor conditions as arising from δεψµ = 0?

I Strategy :
1. Look at ’complex’ supergravity theories.
2. Impose reality conditions, i.e. take real slices
3. See how many slices per signature are possible and what the implications of

this are.
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Introduction and motivation
Variant supergravities

I *-theories in 10 dimensions obtained by time-like T-dualities (Hull)

Ts

IIA → IIB
Tt ↓ ↓ Tt

IIB∗ → IIA∗

Ts

Also leads to theories in other signatures.
I RR-fields become ghosts

e.g. LIIA∗ =
√
−g

e−2φ
[

R + 4(∂φ)2 − 1
2

H · H
]

+
1
2

∑
n=0,1,2

F(2n) · F(2n)


I a naive connection to domain wall vs. cosmology correspondence :

C → iC ⇒ W → iW.
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Introduction and motivation
The complex vs real superalgebra

I Superalgebra that underlies all these ’variant supergravities’ = OSp(1|32).
I Has a unique real form.
I Imposing different reality conditions on the complex algebra → different

parametrizations of this real form → Hull’s theories (Bergshoeff, Van Proeyen)
I dualities then relate the various parametrizations
I All this was on the level of the algebra
I ⇒ We’d like to do a similar thing on the level of the action? (Vaula, Nishino,

Gates)
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The strategy
The complex action

I Consider the standard type IIA action in signature (t, s) = (1, 9):

SIIA =−
1

2κ2
10

Z
d10x

p
−g
n

e−2φ
h

R − 4
�
∂φ
�2

+ 1
2 H · H +−2∂µφχ

(1)
µ

+ H · χ(3) + 2ψ̄µΓµνρ∇νψρ − 2λ̄Γµ∇µλ+ 4λ̄Γµν∇µψν

i
+

+
2X

n=0

1
2 G(2n) · G(2n) + G(2n) ·Ψ(2n)

o

I λ̄ = λ̄†Γ0 = λTC = reality condition.
I If λ̄ = λTC, supersymmetry does not really depend on the reality of the

fields.
I Consider all fields to be complex and interpret λ̄ = λTC → still

supersymmetric.
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The strategy
Reality conditions on the fields

I Impose suitable reality conditions on the fermions:

χ∗ = Rχ .

I Compatibility with Lorentz invariance implies

R = α B or R = α B Γ11 with B = CΓ0 .

I This is a good reality condition as in both cases * is an involution :
χ∗∗ = χ.

I There are then two possibilities to impose reality conditions on the
fermions:

ψ∗
µ = αI

ψ B ψµ ψ∗
µ = αII

ψ B Γ11 ψµ
λ∗ = αI

λ B λ λ∗ = αII
λ B Γ11 λ
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The strategy
Reality conditions on the fields

I Reality conditions on the bosonic fields :

φ∗ = φ , ea∗
µ = ea

µ , B∗
µν = αI,II

B Bµν , C(m)∗ = αI,II
m C(m) .

I Next step : determine all the α-factors. This is done by imposing reality of
the action and by checking consistency with the supersymmetry
transformation laws.

δεb = ε̄Γf ⇒ (δεb)∗ = (ε̄Γf )∗

δεf = bε ⇒ (δεf )∗ = (bε)∗ .

I This leads to a set of relations between the α-factors. For type IIA in (1, 9)
it turns out that both sets of reality conditions on the fermions give a
consistent choice of α-factors.
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The strategy
IIA and IIA*

I Two different reality conditions → two different theories.
IIA IIA*

ε∗ = −CΓ0ε ε∗ = −CΓ0Γ11ε
ψ∗
µ = −CΓ0ψµ ψ∗

µ = −CΓ0Γ11ψµ
λ∗ = −CΓ0λ λ∗ = +CΓ0Γ11λ
eµa∗ = eµa eµa∗ = eµa

B∗
µν = Bµν B∗

µν = Bµν
φ∗ = φ φ∗ = φ

C(m)∗ = C(m) C(m)∗ = −C(m)

I To construct actions :
1. Replace χTC by −α−1

χ χ†Γ0 (IIA) or by α−1
χ χ†Γ0Γ11 (IIA*).

2. In IIA case, this gives a good action. In IIA* case, express everything in real
fields by redefining C(m) = iC̃(m) and λ = iλ̃.

I → So the RR-fields indeed become ghosts in IIA*.
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fields by redefining C(m) = iC̃(m) and λ = iλ̃.

I → So the RR-fields indeed become ghosts in IIA*.
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More generally
Type II theories in different signatures

I So far, we’ve found real slices of the complex action, leading to IIA and
IIA* theories in (1, 9) signature, but using more general reality conditions,
one can find IIA theories in other signatures.

I Results for type IIA
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Intermediate summary

I Variant supergravities can be constructed by taking real slices of one
complex action.

I In some signatures (e.g.(1, 9)), two distinct possibilities occur.
I Relation with extended supersymmetry.
I In the bosonic sector, the difference lies in the fact that RR-forms become

ghosts.
I Might be useful for DW-cosmology correspondence.
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The domain-wall cosmology correspondence
An example in mIIA and mIIA*

I Consider a truncation of mIIA:

SIIA =
1

2κ2
10

∫
d10x

√
−g

(
R− 1

2
(
∂φ

)2 − 1
2 e5φ/2m2

)
,

Note that m is a real mass parameter! The potential can be expressed in
terms of a real superpotential W

V = 8(
δW
δφ

)2 − 9
2

W2 =
1
2

e5φ/2m2 , W =
1
4

e5φ/4m .

The supersymmetry transformations are then

δψµ =
(

Dµ −
1
8

WΓµ
)
ε ,

δελ =
(
6∂φ+ 4

δW
δφ

)
ε ,
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The domain-wall cosmology correspondence
An example in mIIA and mIIA*

This is precisely the setup as proposed in the DW-cosm correspondence:
I mIIA has a supersymmetric domain wall solution (D8 brane)

ds2 = H1/8[−dt2 + (dxµ)2] + H9/8dz2 (H = 1 + mz)

The Killing spinor obeys:

Γzε = ε , (Γz)2 = 1 .

I mIIA∗ has a ’pseudo-supersymmetric’ cosmological solution (E8 brane)

ds2
s = H1/8[dz2 + (dxµ)2]− H9/8dt2 (H = 1 + m̃t)

Its Killing spinor obeys

iΓtε = ε , (iΓt)2 = 1 .

I Related via analytical continuation.
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Summary and discussion

I Variant supergravities can be seen as different real slices of one complex
action.

I In some signatures, two different real slices exist.
I This provides a natural setting for the domain-wall vs. cosmology

correspondence, as exemplified by the D8− E8 example.
I pseudo-supersymmetry in supergravity = supersymmetry in a *-theory
I What about other dimensions? → need for extended susy.
I Can this always be done? (For every DW sugra a corresponding *?)
I Implications for stability of cosmological solutions?
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