Superinflation in Loop Quantum Cosmology

Nelson Nunes *ITP, University of Heidelberg*

- Slow-roll from LQC k = 0 and k = 1
- Superinflation in LQC
- Scalar and tensor power spectrum

Lidsey, Mulryne, Nunes, Tavakol (2004) Mulryne, Nunes, Tavakol, Lidsey (2004) Mulryne, Nunes (2006) Copeland, Mulryne, Nunes, Shaeri (2007) and (2008)

1. Loop Quantum Gravity

Strongest candidate to a quantum theory of gravity that is non-perturbative and background independent. Based on Ashtekar's variables which bring GR into the form of a gauge

- theory.
- Densitized triad E_i^a and $E_i^a E_i^b = q^{ab}q$
- SU(2) connection $A_a^i = \Gamma_a^i \gamma K_a^i$

 Γ_a^i - spin connection; K_a^i - extrinsic curvature; γ - Barbero-Immirzi parameter.

Quantization proceeds by using as basic variables holonomies,

$$h_e = \exp \int_e \tau_i A_a^i \dot{e}^a dt$$

along curves e, and fluxes,

$$F = \int_{S} \tau^{i} E_{i}^{a} n_{a} d^{2} y$$

in spacial surfaces S. Flux operators have a discrete spectrum.

2. Loop Quantum Cosmology

Focuses on minisuperspace settings with finite degrees of freedom (= homogeneous and isotropic spacetimes).

1. Inverse triad corrections:

Based on the modification of the *inverse* scale factor below a critical scale a_* .

2. Holonomy corrections:

Loops on which holonomies are computed have a non-vanishing minimum area. Leads to a ρ^2 modification in the Friedmann equation.

These corrections lead to interesting applications:

- Resolution of the initial singularity;
- Increase of the viability of the onset of inflation;
- Avoidance of a big crunch and oscillatory universes;

3. Key features of loop quantization

$$A_a^i = c \,\omega_a^i \,, \qquad c = \gamma \dot{a}$$

$$E_i^a = p \,e_i^a \,, \qquad p = a^2 \,, \qquad \{c, p\} = \frac{8\pi G}{3} \gamma$$

$$\mathcal{H} = \frac{1}{8\pi G} \epsilon_{ijk} \frac{E_j^a E_k^b}{\sqrt{\det E}} F_{ab}^i + \frac{\pi_\phi^2}{2\sqrt{\det E}} + \sqrt{\det E} V(\phi)$$

We want to write this Hamiltonian in terms of holonomies
$$h^{(\lambda)} = \exp(\lambda c \tau_i)$$

1. Write Hamiltonian in terms of positive powers of the connection. This can be done in several different ways \Rightarrow ambiguity parameter ℓ

2. Write the connection in terms of holonomies. Need to take the trace over representation j of su(2) \Rightarrow ambiguity parameter $j \Rightarrow$ critical scale a_* ;

3. Key features of loop quantization (cont.)

3. Curvature component obtained by considering holonomies around closed square loop. Area is shrunk to the minimum eigenvalue of the area operator $\Delta \approx \ell_{\rm pl}^2 \Rightarrow \lambda \rightarrow \bar{\mu}$ and $\bar{\mu}^2 a^2 = \Delta$ [\Rightarrow holonomy corrections];

4. Quantization proceeds by promoting triads and holonomies to operators (à la LQG);

5. Find eigenvalues of inverse triad operators such as $E^{ai}E^{bi}/\sqrt{\det E}$ and $1/\sqrt{\det E}$;

6. Spectrum of eigenvalues can be approximated by *continuous* correction functions S(a) and $D_{l,j}(a)$ [inverse triad corrections];

7. Finally, Hamiltonian looks like this:

$$\mathcal{H} = -\frac{3}{8\pi G} S \, a \, \frac{\sin^2(\bar{\mu} \, c)}{\gamma^2 \bar{\mu}^2} + D_{l,j} \, a^{-3} \, \frac{\pi_{\phi}^2}{2} + a^3 \, V(\phi)$$

8. $\dot{p} = \{p, \mathcal{H}\} \Rightarrow$ Friedmann equation

4. Inverse volume operator

Classically: $d(a) = a^{-3}$

LQC: $d_{l,j}(a) = D_l(q)$

$$a^{-3}$$
 where $q = \left(\frac{a}{a}\right)$

 $\left(rac{a}{a_*}
ight)^2$, $a_* \propto \sqrt{j}\,\ell_{
m pl}$

semiclassical phase for $a \ll a_*$, $D(q) \approx D_\star a^n$

classical phase for $a \gg a_*$, $D(q) \approx 1$

5. Modified semi-classical equations

1. Modified Friedmann equation

$$H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{S}{3} \left(\frac{1}{2}\frac{\dot{\phi}^{2}}{D} + V(\phi)\right) - \frac{S^{2}}{a^{2}}$$

5. Modified semi-classical equations

1. Modified Friedmann equation

$$H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{S}{3} \left(\frac{1}{2}\frac{\dot{\phi}^{2}}{D} + V(\phi)\right) - \frac{S^{2}}{a^{2}}$$

2. Modified Klein-Gordon equation

$$\ddot{\phi} + 3\frac{\dot{a}}{a}\left(1 - \frac{1}{3}\frac{d\ln D}{d\ln a}\right)\dot{\phi} + D\frac{dV}{d\phi} = 0$$

When $d \ln D/d \ln a > 3$: antifriction in expanding Universe and friction in contracting universe.

5. Modified semi-classical equations

1. Modified Friedmann equation

$$H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{S}{3} \left(\frac{1}{2}\frac{\dot{\phi}^{2}}{D} + V(\phi)\right) - \frac{S^{2}}{a^{2}}$$

2. Modified Klein-Gordon equation

$$\ddot{\phi} + 3\frac{\dot{a}}{a}\left(1 - \frac{1}{3}\frac{d\ln D}{d\ln a}\right)\dot{\phi} + D\frac{dV}{d\phi} = 0$$

When $d \ln D/d \ln a > 3$: antifriction in expanding Universe and friction in contracting universe.

3. Variation of the Hubble rate

$$\dot{H} = -\frac{S\dot{\phi}^2}{2D} \left(1 - \frac{1}{6}\frac{d\ln D}{d\ln a} - \frac{1}{6}\frac{d\ln S}{d\ln a}\right) + \frac{S}{6}\frac{d\ln S}{d\ln a}V + \left(1 - \frac{d\ln S}{d\ln a}\right)S^2\frac{1}{a^2}$$

Superinflation for $n + r = d \ln D / d \ln a + d \ln S / d \ln a > 6$.

6. Consequences for inflation (k = 0)

- 1. Super-inflation is brief;
- 2. $\phi_t \propto \dot{\phi}_{\text{init}} q_{\text{init}}^{-6} \exp(-q_{\text{init}}^{15/4})$, independent of *j*;
- 3. $\phi_t < 2.4 \ell_{\rm pl}^{-1}$ if Hubble bound $(1/H > \ell_{\rm pl})$ is satisfied \Rightarrow not enough slow-roll inflation!

7. Bouncing Universe in k = +1

Field redshifts more rapidly than curvature term provided $\dot{\phi}^2 > V$ (w > -1/3).

As the field moves up the potential this condition becomes more difficult to satisfy and is eventually broken. Slow-roll inflation follows.

8. Bouncing Universe in k = +1, with self interacting potential

$$\phi_t^2 \propto rac{1}{\dot{\phi}_{
m init}} rac{1}{q_{
m init}^{3/2} a_*^3}$$

 \Rightarrow larger for lower $j \Rightarrow$ more e-folds.

9. The story so far...

1. Flat geometry

- ϕ does not move high enough;
- ϕ_t independent of quantization parameter j.

9. The story so far...

1. Flat geometry

- ϕ does not move high enough;
- ϕ_t independent of quantization parameter j.
- 2. Positively curved geometry
 - Allows oscillatory Universe;
 - For massless scalar field cycles are symmetric and consequently ever lasting;
 - Presence of a self interaction potential breaks symmetry and establishes initial conditions for inflation;
 - Low *j* results into more inflation.

Can superinflation during the semi-classical phase replace standard slow-roll inflation?

Can superinflation during the semi-classical phase replace standard slow-roll inflation?

- Does it solve the flatness and horizon problems?
- Does it give rise to a scale invariant spectrum of curvature perturbations?
- Is the spectrum of gravitational waves compactible with current bounds?

10. Inflation

e.g. Slow-roll inflation with scalar field(s).

Structure originates from quantum fluctuations of the field(s).

11. Superinflation

e.g. Ekpyrotic/cyclic universe, phantom field.

11. Superinflation

e.g. Ekpyrotic/cyclic universe, phantom field, LQC effects.

12. Inflation, and the horizon problem

13. Superinflation, and the horizon problem

14. Number of *e*-folds and the horizon problem

Requirement that the scale entering the horizon today exited N *e*-folds before the end of inflation:

$$\ln\left(\frac{a_{\rm end}H_{\rm end}}{a_NH_N}\right) = 68 - \frac{1}{2}\ln\left(\frac{M_{\rm Pl}}{H_{\rm end}}\right) - \frac{1}{3}\ln\left(\frac{\rho_{\rm end}}{\rho_{\rm reh}}\right)^{1/4}$$

1. In standard inflation: $\ln\left(\frac{a_{\text{end}}H_{\text{end}}}{a_NH_N}\right) \approx \ln\left(\frac{a_{\text{end}}}{a_N}\right) \equiv N \approx 60$

2. In LQC with $a = (-\tau)^p$ and $p \ll 1$

$$\ln\left(\frac{a_{\text{end}}H_{\text{end}}}{a_NH_N}\right) = \ln\frac{\tau_N}{\tau_{\text{end}}} = \ln\left(\frac{a_N}{a_{\text{end}}}\right)^{1/p} = -\frac{1}{p}N$$

 $N \approx -60 \, p$

Number of *e*-folds of super-inflation required to solve the horizon problem can be of only a few.

15. Scaling solution (inverse triad corrections)

Scaling solution $\Leftrightarrow \quad \dot{\phi}^2/(2DV) \approx \text{cnst.}$ Lidsey (2004) $V = V_0 \phi^\beta$ $a = (-\tau)^p$ 1.16 1.14 $p = \frac{2\alpha}{2\bar{\epsilon} - (2+r)\alpha}$ 1.12 $-\dot{\phi}^2/(2DV)$ $\bar{\epsilon} = \frac{1}{2} \frac{D}{S} \left(\frac{V_{,\phi}}{V} \right)^2$ 1.06 $V = V_0 \phi^\beta$ 1.04 1.02<u></u>_____ _0.5 -0.45 -0.35 -0.3-0.4 $\ln a/a_*$

 $\beta = 4\overline{\epsilon}/(n-r)\alpha > 0$, $\alpha = 1 - n/6$, $D \propto a^n$, $S \propto a^r$. Scaling solution is *stable* attractor for $\overline{\epsilon} > 3\alpha^2$ or $\beta > (n-6)/n \sim \mathcal{O}(1)$.

16. Perturbation equations

Define effective action that gives background equations of motion

$$S = \int d\tau \, d^3x \, a^4 \left(\frac{\phi'^2}{2Da^2} - \frac{\delta^{ij}}{a^2} \partial_i \phi \partial_j \phi - V \right)$$

Perturb field $\phi = \phi_b + \delta \phi$.

16. Perturbation equations

Define effective action that gives background equations of motion

$$S = \int d\tau \, d^3x \, a^4 \left(\frac{\phi'^2}{2Da^2} - \frac{\delta^{ij}}{a^2} \partial_i \phi \partial_j \phi - V \right)$$

Perturb field $\phi = \phi_b + \delta \phi$.

Define $u = a\delta\phi/\sqrt{D}$ and expand in plane waves:

$$\hat{u}(\tau, \mathbf{x}) = \int \frac{d^3 \mathbf{k}}{(2\pi)^{3/2}} \left[\omega_k(\tau) \hat{a}_{\mathbf{k}} + \omega_k^*(\tau) \hat{a}_{-\mathbf{k}}^{\dagger} \right] e^{-i\mathbf{k}.\mathbf{x}}$$

16. Perturbation equations

Define effective action that gives background equations of motion

$$S = \int d\tau \, d^3x \, a^4 \left(\frac{\phi'^2}{2Da^2} - \frac{\delta^{ij}}{a^2} \partial_i \phi \partial_j \phi - V \right)$$

Perturb field $\phi = \phi_b + \delta \phi$.

Define $u = a\delta\phi/\sqrt{D}$ and expand in plane waves:

$$\hat{u}(\tau, \mathbf{x}) = \int \frac{d^3 \mathbf{k}}{(2\pi)^{3/2}} \left[\omega_k(\tau) \hat{a}_{\mathbf{k}} + \omega_k^*(\tau) \hat{a}_{-\mathbf{k}}^{\dagger} \right] e^{-i\mathbf{k}.\mathbf{x}}$$

Obtain equation of motion

$$\omega_k'' + \left(D_* A^n (-\tau)^{np} k^2 + \frac{m_{\text{eff}}^2 \tau^2}{\tau^2} \right) \omega_k = 0$$

where for the scaling solution

$$m_{\text{eff}}^2 \tau^2 = -2 + (3 - 2n)p + \frac{1}{2}(6 - 2n - n^2)p^2$$

17. General solution

General normalised solution is:

$$\omega_k(\tau) = \sqrt{\frac{\pi}{2|2+np|}} \sqrt{-\tau} H^{(1)}_{|\nu|}(x)$$

$$x \propto \frac{\sqrt{Dk}}{aH}, \qquad \nu = -\frac{\sqrt{9 - 12p + 8np - 12p^2 - 4p^2n + 2n^2p^2}}{2 + np}$$

Define, by analogy with standard inflation, effective horizon $\frac{\sqrt{D}}{aH}$ or effective wavenumber $\sqrt{D}k$.

17. General solution

General normalised solution is:

$$\omega_k(\tau) = \sqrt{\frac{\pi}{2|2+np|}} \sqrt{-\tau} H^{(1)}_{|\nu|}(x)$$

$$x \propto \frac{\sqrt{Dk}}{aH}, \qquad \nu = -\frac{\sqrt{9 - 12p + 8np - 12p^2 - 4p^2n + 2n^2p^2}}{2 + np}$$

Define, by analogy with standard inflation, effective horizon $\frac{\sqrt{D}}{aH}$ or effective wavenumber \sqrt{Dk} .

On large scales ($x \ll 1$) $\mathcal{P}_u \propto k^3 |\omega_k|^2 \propto k^{3-2|\nu|}$

Near scale invariance for

$$p = -\frac{2}{\beta(n-r) + 2(2+r)} = \frac{2\alpha}{2\bar{\epsilon} - (2+r)\alpha} \approx 0$$

Steep and negative potentials and fast-roll evolution

18. Holonomy corrections

Using holonomies as basic variables leads to a quadratic energy density contribution in the Friedmann equation

$$H^2 = \frac{1}{3}\rho \left(1 - \frac{\rho}{2\sigma}\right)$$

with $\rho < 2\sigma$. In this work we consider

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi} = 0$$

The variation of the Hubble rate is

$$\dot{H} = -\frac{\dot{\phi}^2}{2} \left(1 - \frac{\rho}{\sigma}\right)$$

Superinflation for $\sigma < \rho < 2\sigma$.

19. Scaling solution (quadratic corrections)

"Scaling solution" $\Leftrightarrow \dot{\phi}^2/(2\sigma - V) \approx \text{cnst.}$

where $\lambda^2 = 2\bar{\epsilon}$.

Scaling solution is *stable* attractor for all λ or $\overline{\epsilon}$

20. Power spectrum of the perturbed field

Power spectrum is given by:

 $\mathcal{P}_u \propto k^3 |\omega_k|^2 \propto k^{3-2|\nu|}$

where
$$u = -\sqrt{1 - 4m_{ ext{eff}}^2 au^2}/2$$

For scaling solution $m_{
m eff}^2 au^2$ =

$$n_{\rm eff}^2 \tau^2 = -2 + 3p(1+p)$$

Near scale invariance \Rightarrow

$$p = -\frac{1}{\bar{\epsilon}+1} = -\frac{2}{2\lambda^2+2} \approx 0$$

Steep and positive potentials and fast-roll evolution

21. Tensor spectrum – Inverse triad corrections

Bojowald and Hossain ('07)

$$h_{\times,+}'' + 2\mathcal{H}\left[1 - \frac{1}{2}\frac{d\ln S}{d\ln a}\right]h_{\times,+}' - S^2\nabla^2 h_{\times,+} = 0$$

Quantize: $\hat{h} = \int (h_k a_k + h_k^* a_k^{\dagger}) e^{-i\mathbf{k}\cdot\mathbf{x}}$

$$h_k(\tau) = \frac{S^{1/2}}{\mathcal{H}^{1/2}a} \sqrt{\frac{-p\,\pi}{1+rp}} \,H_{\nu}^{(1)}(x)$$

$$\nu = \frac{1 + p(r - 2)}{2(1 + pr)}, \qquad x = \frac{-pSk}{(1 + pr)\mathcal{H}}$$

Primordial power spectrum: $P_h(au_{
m e},k) \propto k^{3-2
u}$

For scaling solution $p \rightarrow 0$ or $\nu \rightarrow 1/2 \implies n_t \approx 2$.

22. Present abundance of gravitational waves

$$\mathcal{P}_{h}(\tau_{0},k) \approx \left(\frac{k_{0}}{k}\right)^{4} \left(1 + \frac{k}{k_{eq}}\right)^{2} \mathcal{P}_{h}(\tau_{e},k)$$
$$\Omega_{gw} \approx \frac{1}{6} \left(\frac{k}{k_{0}}\right)^{2} \mathcal{P}_{h}(\tau_{0},k)$$

23. Tensor spectrum – Holonomy corrections

Bojowald and Hossain ('07)

$$h_{\times,+}'' + 2\mathcal{H}h_{\times,+}' - \nabla^2 h_{\times,+} + T_Q h_{\times,+} = 2\Pi_Q$$

$$T_Q = \frac{a^2}{3} \frac{\rho^2}{2\sigma}, \qquad \Pi_Q = \frac{1}{2} \frac{\rho}{2\sigma} \left(\frac{a^2}{3}\rho - \phi'^2\right)$$

Quantize: $\hat{h} = \int (h_k a_k + h_k^* a_k^{\dagger}) e^{-i\mathbf{k}\cdot\mathbf{x}}$

$$h_k(\tau) = \frac{1}{\mathcal{H}^{1/2}a} \sqrt{-p \pi} H_{\nu}^{(1)}(-k\tau)$$
$$\nu = \frac{1}{2} \sqrt{1 + 4p + 12p^2}$$

Primordial power spectrum: $P_h(au_{
m e},k) \propto k^{3-2
u}$

For scaling solution $p \to 0$ or $\nu \to 1/2 \implies n_t \approx 2$.

24. Present abundance of gravitational waves

25. Summary and questions

- 1. Inverse triad corrections: Scale invariance for steep negative potentials, $V = V_0 \phi^{\beta}$;
- 2. Quadratic corrections: Scale invariance for steep positive potentials, $V = 2\sigma U_0 \exp(-\lambda \phi)$;
- 3. Only a few *e*-folds necessary to solve the horizon problem;
- 4. Abundance of gravitational waves is highly suppressed with respect to standard inflation;

25. Summary and questions

- 1. Inverse triad corrections: Scale invariance for steep negative potentials, $V = V_0 \phi^{\beta}$;
- 2. Quadratic corrections: Scale invariance for steep positive potentials, $V = 2\sigma U_0 \exp(-\lambda \phi)$;
- 3. Only a few *e*-folds necessary to solve the horizon problem;
- 4. Abundance of gravitational waves is highly suppressed with respect to standard inflation;
- 5. Are the flatness and monopole problems solved?
- 6. What is the power spectrum of the curvature perturbation?
- 7. Dynamics of multi-field superinflation? Assisted inflation? Nongaussianities?
- 8. Processes of reheating?