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1. Loop Quantum Gravity

Strongest candidate to a quantum theory of gravity that is non-perturbative
and background independent.
Based on Ashtekar’s variables which bring GR into the form of a gauge
theory.

• Densitized triad Ea
i and Ea

i Eb
i = qabq

• SU(2) connection Ai
a = Γi

a − γKi
a

Γi
a - spin connection; Ki

a - extrinsic curvature; γ - Barbero-Immirzi
parameter.

Quantization proceeds by using as basic variables holonomies,

he = exp

∫

e

τiA
i
aė

adt

along curves e, and fluxes,

F =

∫

S

τ iEa
i nad

2y

in spacial surfaces S. Flux operators have a discrete spectrum.



2. Loop Quantum Cosmology

Focuses on minisuperspace settings with finite degrees of freedom ( =
homogeneous and isotropic spacetimes).

1. Inverse triad corrections:

Based on the modification of the inverse scale factor below a critical
scale a∗.

2. Holonomy corrections:

Loops on which holonomies are computed have a non-vanishing
minimum area. Leads to a ρ2 modification in the Friedmann equation.

These corrections lead to interesting applications:

• Resolution of the initial singularity;

• Increase of the viability of the onset of inflation;

• Avoidance of a big crunch and oscillatory universes;



3. Key features of loop quantization

Ai
a = c ωi

a , c = γȧ

Ea
i = p ea

i , p = a2 , {c, p} =
8πG

3
γ

H =
1

8πG
ǫijk

Ea
j Eb

k√
detE

F i
ab +

π2
φ

2
√

detE
+
√

detE V (φ)

We want to write this Hamiltonian in terms of holonomies
h(λ) = exp(λ c τi)

1. Write Hamiltonian in terms of positive powers of the connection.
This can be done in several different ways ⇒ ambiguity parameter ℓ

2. Write the connection in terms of holonomies. Need to take the trace
over representation j of su(2) ⇒ ambiguity parameter j ⇒ critical
scale a∗;



3. Key features of loop quantization (cont.)

3. Curvature component obtained by considering holonomies around
closed square loop. Area is shrunk to the minimum eigenvalue of the area
operator ∆ ≈ ℓ2pl ⇒ λ → µ̄ and µ̄2a2 = ∆ [⇒ holonomy corrections ];

4. Quantization proceeds by promoting triads and holonomies to
operators (à la LQG);

5. Find eigenvalues of inverse triad operators such as EaiEbi/
√

detE
and 1/

√
detE ;

6. Spectrum of eigenvalues can be approximated by continuous
correction functions S(a) and Dl,j(a) [ inverse triad corrections ];

7. Finally, Hamiltonian looks like this:

H = − 3

8πG
S a

sin2(µ̄ c)

γ2µ̄2
+ Dl,j a−3

π2
φ

2
+ a3 V (φ)

8. ṗ = {p,H} ⇒ Friedmann equation



4. Inverse volume operator

Classically: d(a) = a−3

LQC: dl,j(a) = Dl(q)a
−3 where q =

(

a
a∗

)2

, a∗ ∝
√

j ℓpl

semiclassical phase
for a ≪ a∗ , D(q) ≈ D⋆a

n

classical phase
for a ≫ a∗ , D(q) ≈ 1
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5. Modified semi-classical equations

1. Modified Friedmann equation

H2 ≡
(

ȧ

a

)2

=
S

3

(

1

2

φ̇2

D
+ V (φ)

)

− S2

a2



5. Modified semi-classical equations

1. Modified Friedmann equation

H2 ≡
(

ȧ

a

)2

=
S

3

(

1

2

φ̇2

D
+ V (φ)

)

− S2

a2

2. Modified Klein-Gordon equation

φ̈ + 3
ȧ

a

(

1 − 1

3

d lnD

d ln a

)

φ̇ + D
dV

dφ
= 0

When d lnD/d ln a > 3: antifriction in expanding Universe and friction in
contracting universe.
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2. Modified Klein-Gordon equation

φ̈ + 3
ȧ

a

(

1 − 1

3

d lnD

d ln a

)

φ̇ + D
dV

dφ
= 0

When d lnD/d ln a > 3: antifriction in expanding Universe and friction in
contracting universe.

3. Variation of the Hubble rate

Ḣ = −Sφ̇2

2D

(

1 − 1

6

d lnD

d ln a
− 1

6

d lnS

d ln a

)

+
S

6

d lnS

d ln a
V +

(

1 − d lnS

d ln a

)

S2 1

a2

Superinflation for n + r = d lnD/d ln a + d lnS/d ln a > 6.



6. Consequences for inflation ( k = 0)

φ

V(φ)
slow−roll inflation

superinflation, k = 0

Tsujikawa and Singh (2003)

1. Super-inflation is brief;

2. φt ∝ φ̇initq
−6
init exp(−q

15/4
init ) , independent of j;

3. φt < 2.4ℓ−1
pl if Hubble bound (1/H > ℓpl) is satisfied ⇒ not enough

slow-roll inflation!



7. Bouncing Universe in k = +1

ln(ρ)

ln(a)

ln(ρ)

ln(a)

I / III II / IV (a) 

(b) 

Field redshifts more rapidly than curvature term provided φ̇2 > V
(w > −1/3).

As the field moves up the potential this condition becomes more difficult
to satisfy and is eventually broken. Slow-roll inflation follows.



8. Bouncing Universe in k = +1, with self interacting potential

φ

V(φ)
slow−roll inflation

superinflation, k = 1

φ2
t ∝ 1

φ̇init

1

q
3/2
init a3

∗

⇒ larger for lower j ⇒ more e-folds.



9. The story so far...

1. Flat geometry

• φ does not move high enough;
• φt independent of quantization parameter j.



9. The story so far...

1. Flat geometry

• φ does not move high enough;
• φt independent of quantization parameter j.

2. Positively curved geometry

• Allows oscillatory Universe;
• For massless scalar field cycles are symmetric and consequently

ever lasting;
• Presence of a self interaction potential breaks symmetry and

establishes initial conditions for inflation;
• Low j results into more inflation.



Can superinflation during the semi-classical phase replace
standard slow-roll inflation?



Can superinflation during the semi-classical phase replace
standard slow-roll inflation?

• Does it solve the flatness and horizon problems?

• Does it give rise to a scale invariant spectrum of curvature
perturbations?

• Is the spectrum of gravitational waves compactible with current
bounds?



10. Inflation

inflation

e.g. Slow-roll inflation with scalar field(s).

Structure originates from quantum fluctuations of the field(s).



11. Superinflation

superinflation

e.g. Ekpyrotic/cyclic universe, phantom field.



11. Superinflation

superinflation

e.g. Ekpyrotic/cyclic universe, phantom field, LQC effects.



12. Inflation, and the horizon problem

ln (1/aH)
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13. Superinflation, and the horizon problem
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14. Number of e-folds and the horizon problem

Requirement that the scale entering the horizon today exited N e-folds
before the end of inflation:

ln

(

aendHend

aNHN

)

= 68 − 1

2
ln

(

MPl

Hend

)

− 1

3
ln

(

ρend

ρreh

)1/4

1. In standard inflation: ln
(

aendHend
aNHN

)

≈ ln
(

aend
aN

)

≡ N ≈ 60

2. In LQC with a = (−τ)p and p ≪ 1

ln

(

aendHend

aNHN

)

= ln
τN

τend
= ln

(

aN

aend

)1/p

= −1

p
N

N ≈ −60 p

Number of e-folds of super-inflation required to solve the horizon problem
can be of only a few.



15. Scaling solution (inverse triad corrections)

Scaling solution ⇔ φ̇2/(2DV ) ≈ cnst.
Lidsey (2004)

a = (−τ)p

p =
2α

2ǭ − (2 + r)α

ǭ =
1

2

D

S

(

V,φ

V

)2

V = V0 φβ
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2
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V

)

V = V0φ
β

β = 4ǭ/(n − r)α > 0, α = 1 − n/6, D ∝ an, S ∝ ar.

Scaling solution is stable attractor for ǭ > 3α2 or β > (n − 6)/n ∼ O(1).



16. Perturbation equations

Define effective action that gives background equations of motion

S =

∫

dτ d3x a4

(

φ′2

2Da2
− δij

a2
∂iφ∂jφ − V

)

Perturb field φ = φb + δφ .
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Define effective action that gives background equations of motion

S =

∫

dτ d3x a4

(

φ′2

2Da2
− δij

a2
∂iφ∂jφ − V

)

Perturb field φ = φb + δφ .

Define u = aδφ/
√

D and expand in plane waves:

û(τ, x) =

∫

d3k

(2π)3/2

[

ωk(τ)âk + ω∗
k(τ)â†

−k

]

e−ik.x



16. Perturbation equations

Define effective action that gives background equations of motion

S =

∫

dτ d3x a4

(

φ′2

2Da2
− δij

a2
∂iφ∂jφ − V

)

Perturb field φ = φb + δφ .

Define u = aδφ/
√

D and expand in plane waves:

û(τ, x) =

∫

d3k

(2π)3/2

[

ωk(τ)âk + ω∗
k(τ)â†

−k

]

e−ik.x

Obtain equation of motion

ω′′
k +

(

D∗A
n(−τ)npk2 +

m2
effτ2

τ2

)

ωk = 0

where for the scaling solution

m2
eff τ2 = −2 + (3 − 2n)p +

1

2
(6 − 2n − n2)p2



17. General solution

General normalised solution is:

ωk(τ) =

√

π

2|2 + np|
√
−τ H

(1)
|ν| (x)

x ∝
√

Dk

aH
, ν = −

√

9 − 12p + 8np − 12p2 − 4p2n + 2n2p2

2 + np

Define, by analogy with standard inflation, effective horizon
√

D
aH or effective

wavenumber
√

Dk .



17. General solution

General normalised solution is:

ωk(τ) =

√

π

2|2 + np|
√
−τ H

(1)
|ν| (x)

x ∝
√

Dk

aH
, ν = −

√

9 − 12p + 8np − 12p2 − 4p2n + 2n2p2

2 + np

Define, by analogy with standard inflation, effective horizon
√

D
aH or effective

wavenumber
√

Dk .

On large scales (x ≪ 1) Pu ∝ k3|ωk|2 ∝ k3−2|ν|

Near scale invariance for

p = − 2

β(n − r) + 2(2 + r)
=

2α

2ǭ − (2 + r)α
≈ 0

Steep and negative potentials and fast-roll evolution



18. Holonomy corrections

Using holonomies as basic variables leads to a quadratic energy density
contribution in the Friedmann equation

H2 =
1

3
ρ
(

1 − ρ

2σ

)

with ρ < 2σ. In this work we consider

φ̈ + 3Hφ̇ + V,φ = 0

The variation of the Hubble rate is

Ḣ = −φ̇2

2

(

1 − ρ

σ

)

Superinflation for σ < ρ < 2σ.



19. Scaling solution (quadratic corrections)

”Scaling solution” ⇔ φ̇2/(2σ − V ) ≈ cnst.

a = (−τ)p

p = − 1

ǭ + 1

ǭ =
1

2

(

U,φ

U

)2

V = 2σ − U(φ)

U = U0 e−λφ
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2
/
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−

V
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U = U0 exp(− 0.5φ)

where λ2 = 2ǭ.

Scaling solution is stable attractor for all λ or ǭ



20. Power spectrum of the perturbed field

Power spectrum is given by:

Pu ∝ k3|ωk|2 ∝ k3−2|ν|

where ν = −
√

1 − 4m2
effτ2/2

For scaling solution m2
effτ2 = −2 + 3p(1 + p)

Near scale invariance ⇒ p = − 1
ǭ+1 = − 2

2λ2+2
≈ 0

Steep and positive potentials and fast-roll evolution



21. Tensor spectrum – Inverse triad corrections

Bojowald and Hossain (’07)

h′′
×,+ + 2H

[

1 − 1

2

d lnS

d ln a

]

h′
×,+ − S2∇2h×,+ = 0

Quantize: ĥ =
∫

(hkak + h∗
ka

†
k)e

−ik·x

hk(τ) =
S1/2

H1/2a

√

−p π

1 + rp
H(1)

ν (x)

ν =
1 + p(r − 2)

2(1 + pr)
, x =

−pSk

(1 + pr)H

Primordial power spectrum: Ph(τe, k) ∝ k3−2ν

For scaling solution p → 0 or ν → 1/2 ⇒ nt ≈ 2.



22. Present abundance of gravitational waves

Ph(τ0, k) ≈
(

k0

k

)4(

1 +
k

keq

)2

Ph(τe, k)

Ωgw ≈ 1

6
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)2
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23. Tensor spectrum – Holonomy corrections

Bojowald and Hossain (’07)

h′′
×,+ + 2Hh′

×,+ −∇2h×,+ + TQh×,+ = 2ΠQ

TQ = a2

3
ρ2

2σ , ΠQ = 1
2

ρ
2σ

(

a2

3 ρ − φ′2
)

Quantize: ĥ =
∫

(hkak + h∗
ka

†
k)e

−ik·x

hk(τ) =
1

H1/2a

√−p π H(1)
ν (−kτ)

ν =
1

2

√

1 + 4p + 12p2

Primordial power spectrum: Ph(τe, k) ∝ k3−2ν

For scaling solution p → 0 or ν → 1/2 ⇒ nt ≈ 2.



24. Present abundance of gravitational waves
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25. Summary and questions

1. Inverse triad corrections: Scale invariance for steep negative potentials,
V = V0φ

β;

2. Quadratic corrections: Scale invariance for steep positive potentials,
V = 2σ − U0 exp(−λφ) ;

3. Only a few e-folds necessary to solve the horizon problem;

4. Abundance of gravitational waves is highly suppressed with respect to
standard inflation;



25. Summary and questions

1. Inverse triad corrections: Scale invariance for steep negative potentials,
V = V0φ

β;

2. Quadratic corrections: Scale invariance for steep positive potentials,
V = 2σ − U0 exp(−λφ) ;

3. Only a few e-folds necessary to solve the horizon problem;

4. Abundance of gravitational waves is highly suppressed with respect to
standard inflation;

5. Are the flatness and monopole problems solved?

6. What is the power spectrum of the curvature perturbation?

7. Dynamics of multi-field superinflation? Assisted inflation? Non-
gaussianities?

8. Processes of reheating?


