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Motivations

The relevance of supersymmetric flux vacua:

I Minimal supersymmetry

I Moduli stabilization

I Gauge/string theory correspondence

I . . .

D-branes are central in many models:

I non-abelian gauge theories

I non-perturbative effects

I domain walls, cosmic strings, vacuum-changing bubbles

I flavors in gauge/string theory correspondence

I . . .
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Our main interest: Type II theories on X = R1,3 ×M.

Background geometry:

I N = 2 and no fluxes → M = CY3

I N = 1 from fluxes on M → M is generalized complex!

[Grana, Minasian, Petrini & Tomasiello, ‘05]

D-brane geometry?

I On CY’s D-branes are (relatively) well understood

I Fluxes changes D-brane properties drastically!

→ again, generalized (complex) geometry appears the natural language
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Ordinary calibrations

A calibration is a p-form ω such that, for any p-submanifold Σ [Harvey & Lawson, ‘82]

dω = 0 , ω|Σ ≤
p

g|Σ dpσ

A submanifold Σ is calibrated if

ω|Σ =
p

g|Σ dpσ ∀σ ∈ Σ
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Main property: a calibrated cycle Σ is volume minimizing:

Vol(Σ) ≤ Vol(Σ′)

for any Σ′ in the same homology class of Σ (B exists such that ∂B = Σ− Σ′).

Indeed

Vol(Σ) =

Z
Σ

p
g|Σ dpσ =

Z
Σ

ω =

Z
B

dω +

Z
Σ′

ω

=

Z
Σ′

ω ≤
Z

Σ′

p
g|Σ′ dpσ = Vol(Σ′)

On fluxless vacua EDp(Σ) = Vol(Σ)
→ supersymmetric branes wrap calibrated cycles [Becker, Becker & Strominger, ‘95]
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Inclusions of background and world-volume fluxes

Natural to demand that generalized calibrations are energy minimizing [Gutowski, Papadopoulos

& Townsend, ‘99].

D-branes wrap generalized submanifolds (Σ,F), with dF = H|Σ

The D-brane energy density is

E(Σ,F) = e−Φ
p

det(g|Σ + F)dpσ − C|Σ ∧ eF |top

Nontrivial role of F and H: How to include it?
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Generalized calibrations for generalized cycles
[P. Koerber; P. Smyth & L. M. ‘05]

A generalized calibration is a polyform ω =
P

k ω(k) of definite parity such that

I Algebraic condition:
[ω|Σ ∧ eF ]top ≤ E(Σ,F) , for any generalized submanifold (Σ,F)

I Differential condition: dHω ≡ (d + H∧)ω = 0

A D-brane wraps a calibrated generalized cycle (Σ,F) iff

[ω|Σ ∧ eF ]top = E(Σ,F)
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If (Σ,F) is calibrated generalized cycle, then it is energy minimizing

E(Σ,F) ≤ E(Σ′,F ′)

for any (Σ′,F ′) such that there is an interpolating generalized submanifold (B, F̃)



Indeed

E(Σ,F) =

Z
Σ

E(Σ,F) =

Z
Σ

ω|Σ ∧ eF =

Z
B

dHω|Σ ∧ eF̃+

+

Z
Σ′

ω|Σ ∧ eF
′
≤

Z
E(Σ′,F ′) = E(Σ′,F ′) .

⇒ One expects that susy backgrounds have generalized calibrations such that
supersymmetric D-branes are characterized as calibrated!
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Generalized chains

I F 6= 0 induces lower-dimensional
charges

I Mutually supersymmetric
D-branes of different dimensions
and bound states

I Generalized calibrations:

ω = . . . + ω(p+2) + ω(p) + ω(p−2) + . . .

Natural to consider chains of generalized submanifolds of different dimensions

(Σ
(p)
1 ,F1) + (Σ

(p−2)
2 ,F2) + (Σ

(p−4)
3 ,F3) + . . .



Generalized submanifolds with magnetic sources

• Σ is a p-submanifold

• C ⊂ Σ is a (p− 3)-dim magnetic source

Generalized submanifolds (Σ,FC) with

dFC = H|Σ + δ3
Σ(C)

⇓

If Σ is a compact cycle

PDΣ[C] + [H|Σ] = 0 ∈ H3(Σ, Z)



Generalized boundary operator

∂̂ boundary operator:

∂̂(Σ,FC) = (∂Σ,FC |∂Σ)− (C,FC |C)

∂̂ is dual to the dH-operator acting on the currents j(Σ,FC) ' δ(Σ) ∧ eFC

dH j(Σ,FC) = j∂̂(Σ,FC)

Extend by linearity to chains

(S, F) = (Σ1,F (1)
C1

) + (Σ2,F (2)
C2

) + (Σ3,F (3)
C3

) + . . .
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RR gauge invariance and generalized cycles

Transformation of D-brane CS term under RR-gauge transformations δC = dHλ

δSCS =

Z
X
〈δC, j(S,F)〉 =

Z
X
〈dHλ, j(S,F)〉 =

Z
X
〈λ, dH j(S,F)〉 =

Z
X
〈λ, j∂̂(S,F)〉

Gauge invariance demands ∂̂(S, F) = 0

⇒ Consistent D-brane networks wrap generalized cycles

For example (Σ,F∂Σ′) + (Σ′,F ′) is a generalized cycle: D(p− 2)-brane wrapping
(Σ′,F ′) ends on Dp-brane wrapping (Σ,F∂Σ′) [Strominger ‘95].
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Deformations inside generalized homology classes

• Ordinary deformations
(Σ,F) → (Σ′,F ′)
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• Dissolutions: (Σ1,F1) + (Σ2,F2) → (Σ′,F ′)
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• Desingularizations: (Σ1,F1) + (Σ2,F2) → (Σ′,F ′)



• Desingularizations: (Σ1,F1) + (Σ2,F2) → (Σ′,F ′)



• MMS-instantons [Maldacena, Moore

& Seiberg ‘01]

If H 6= 0 then we can have
transitions

(Σ,F) → nothing

Ti
m

e

3 D0!branes
that represent
the trivial twisted
homology class

Magnetic monopole
in D2!brane 

worldvolume gauge theory

D2!brane that sweeps out
a cycle that supports

3 units of H flux
and then shrinks

into oblivion

if we can choose cycle (B, F̃Σ), where PDB[Σ] = [H|B]



D-brane networks and calibrations

We can apply the generalized calibrations

ω =
X

k even,odd

ω(k)

to generalized cycles

(S, F) = (Σ1,F (1)
C1

) + (Σ2,F (2)
C2

) + (Σ3,F (3)
C3

) + . . .

Again, a calibrated generalized submanifolds minimizes its energy inside its
∂̂-homology class:

E(S, F) ≤ E(S′, F′)

if (S, F)− (S′, F′) = ∂̂(S̃, F̃)
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A simple example: The BIon [Callan & Maldacena; Gauntlett, Gomis & Townsend ‘97]

I D3+D1 system: associated generalized calibration

ω = ωD3 + ωD1 = dx1 ∧ dx2 ∧ dx3 + dx4

I Integrating ω over configuration 1: Emin = VolD3 + LD1

I D3 embedding: xa = σa, a = 1, 2, 3, and x4 = X(σ)

[ω|Σ ∧ eF ]top =
p

η|Σ + Fd3σ ⇔ dX = ?F ⇒ X = 1
4π|σ| (configuration 2)
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N = 1 flux vacua

General N = 1 Type II vacua on X = R1,3 ×M:

metric: ds2 = e2A(y)dxµdxµ + gmn(y)dymdyn ,

RR-fluxes: F(n) = F̂(n) + Vol(4) ∧ F̃(n−4) ,

Killing spinors: ε1(y) = ζ+ ⊗ η
(1)
+ (y) + c. c.

ε2(y) = ζ+ ⊗ η
(2)
∓ (y) + c. c.



Pure spinors Ψ+ (even) and Ψ− (odd)

η
(1)
+ ⊗ η

(2)†
± ∼

X
k=even/odd

1
k!

Ψ±
m1...mk γ

m1...mk ↔ Ψ± =
X

n=even,odd

Ψ±
(n)

We can set

Ψ1 =


Ψ− in IIA
Ψ+ in IIB Ψ2 =


Ψ+ in IIA
Ψ− in IIB

Background susy conditions ⇔ equations for Ψ1 and Ψ2

dH(e4A−ΦReΨ1) = e4AF̃ , dH(e2A−ΦImΨ1) = 0 , dH(e3A−ΦΨ2) = 0

[Graña, Minasian, Petrini & Tomasiello, hep-th/0505212]
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N = 1 background supersymmetry and calibrations

Since X = R1,3 ×M, we have three possible calibrations on M:

ω(4d) = e4A`
e−ΦReΨ1 − C̃

´
space-time filling branes

ω(string) = e2A−ΦImΨ1 strings
ω(DW) = e3A−ΦRe(eiθΨ2) domain walls

They must satisfy the two conditions

I Algebraic condition → checked

I Differential condition dHω = 0 ⇔ background supersymmetry conditions!

κ-symmetry ⇒ Supersymmetric D-branes wrap calibrated generalized cycles
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Relation with Hitchin’s and Gualtieri’s generalized complex geometry
[Graña, Minasian, Petrini & Tomasiello, hep-th/0505212]

I dHΨ2 ' 0 ⇒ integrable generalized complex structure

I dHΨ1 ' F ⇒ non-integrable generalized (almost) complex structure
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Generalized complex geometry and D-branes

Space-filling admit effective N = 1 4d description

I Superpotential depending on Ψ2 → relation with DW’s
I D-terms depending on Ψ1 → relation with strings

[L. M. ‘06]

Generalized complex geometry crucial: massless spectrum in terms of a cohomology
group H1(Σ,F)

[P. Koerber & L. M. ‘06]
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The total calibration

One can also consider mutually
BPS domain walls and strings
that are glued together
[Gauntlett, Gibbons, Hull & Townsend ‘00]

The total calibration on R3 ×M for these configurations is given by

ω = dx1 ∧ dx2 ∧ dx3 ∧ e4A`
e−ΦReΨ1 − C̃

´
+ dx1 ∧ e2A−ΦImΨ1+

+dx1 ∧ dx2 ∧ e3A−ΦReΨ2 + dx3 ∧ dx1 ∧ e3A−ΦImΨ2



Networks on IIB warped CY compactifications

As a subcase, M can be a warped CY

[Graña & Polchinski ‘00; Giddings, Kachru & Polchinski ‘01]

The total calibration is

ωWCY = dx1 ∧ dx2 ∧ dx3 ∧ (e4A − J ∧ J − e4AC̃) + dx1 ∧ (J − e−4AJ ∧ J ∧ J)+
+dx1 ∧ dx2 ∧ ReΩ + dx3 ∧ dx1 ∧ ImΩ

One can consider for example networks of space-filling D3’s, D5 domain walls and
D7 strings.

Effects of H 6= 0 on M

I If M is compact, a D7-string alone is inconsistent. We need D5-domain walls
ending on it

I A D5 domain wall wrapping an internal three-cycle Γ with
R

Γ
H 6= 0 needs

space-filling D3’s ending on it
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D5-D3 domain walls

The D5-wrap an internal generalized
three-cycle (Γ,F) with

R
Γ

H = n, and
n space-filling D3’s ending on it, at
points pi ∈ Γ.

If x3 = X(σ), calibration condition
[ω|Γ ∧ eF ]top = E implies

ReΩ|Γ =
p

det(g|Γ) d3σ , dX = ?3F

Thus, Γ is a SLag cycle and ∆X = ?3[H|Γ +
P

i δ
3
Γ(pi)]

Explicit examples on T6/Z2 flux compactifications [Kachru, Schulz & Trivedi ‘02] and
Klebanov-Strassler solution (see also [Kachru, Pearson & Verlinde ‘01])
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Klebanov-Strassler solution (see also [Kachru, Pearson & Verlinde ‘01])



Gluing domain walls

Tension of a BPS domain wall:
TDW = 1

gs
|
R

Γ
Ω|

The DW is at an angle α(Γ) with the x2 axis in
the (x2, x3)-plane

α(Γ) = arg
“ Z

Γ

Ω
”

We can glue D5 domain walls wrapping
different Γi at different angles.

If PDM[
P

i Γi] = [H] a D7 must fill the string

H ∧ Ω = 0 ⇒
P

i

R
Γi

Ω = 0 equilibrium condition:X
i

TDW(Γi) cos α(Γi) = 0 ,
X

i

TDW(Γi) sin α(Γi) = 0
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Domain wall networks on T6/Z2
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Explicit examples on a specific
T6/Z2 flux compactification
with and without D7 filling the
gluing string
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Future directions

I Explicit examples on truly generalized complex models

I Relation with non-geometric backgrounds

I Quantization of fluxes

I Inclusion of non-abelian effects

I . . .



Simplest case: D-branes on Calabi-Yau 3-folds

I Pure spinors: Ψ1 = eiJ and Ψ2 = Ω(3,0)

I E(Σ,F) =
p

g|Σ + F dnσ, with dF = 0.

I The generalized calibrations are

ω(even) = Re
`
eiθeiJ´

, ω(odd) = Re
`
eiθΩ

´
⇒ dω(even/odd) = 0 .

I The calibration condition [ω|Σ ∧ eF ]top =
p

P[g] + F dnσ is equivalent to the
conditions found by [Mariño, Minasian, Moore & Strominger, ‘99]
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