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Motivations

The relevance of supersymmetric flux vacua:

» Minimal supersymmetry

v

Moduli stabilization

v

Gauge/string theory correspondence

D-branes are central in many models:
» non-abelian gauge theories
» non-perturbative effects
» domain walls, cosmic strings, vacuum-changing bubbles

» flavors in gauge/string theory correspondence



Our main interest: Type II theories on X = R'® x M.

Background geometry:
» NV =2andnofluxes — M =CY;

» N =1fromfluxeson M — M is generalized complex!

[Grana, Minasian, Petrini & Tomasiello, ‘05]



Our main interest: Type II theories on X = R'® x M.

Background geometry:
» N'=2andnofluxes — M=CYs

» N =1fromfluxeson M — M is generalized complex!

[Grana, Minasian, Petrini & Tomasiello, ‘05

D-brane geometry?
» On CY’s D-branes are (relatively) well understood

» Fluxes changes D-brane properties drastically!

— again, generalized (complex) geometry appears the natural language
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Ordinary calibrations

A calibration is a p-form w such that, for any p-submanifold > [Harvey & Lawson, ‘82

dw=0 , wlr<+Vg|zdo

A submanifold X is calibrated if

wr =Vglsdo Voex
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Main property: a calibrated cycle ¥ is volume minimizing:
Vol(X) < Vol(Z')

for any ¥’ in the same homology class of ¥ (13 exists such that 98 = ¥~ — ¥).

/\/g|zd”U:/w:/dw+/ w
b px B ¥/

/ w S/ Vel o = Vol(Z')
’ Z/

pa

Indeed

Vol(X)

On fluxless vacua Ep,(X) = Vol(X)
— supersymmetric branes wrap calibrated cycles (secker, Becker & Suominger, 951



Inclusions of background and world-volume fluxes

Natural to demand that generalized calibrations are [Gutowski, Papadopoulos

& Townsend, ‘99].



Inclusions of background and world-volume fluxes

Natural to demand that generalized calibrations are [Gutowski, Papadopoulos

& Townsend, ‘99].

D-branes wrap (X, F), withdF = H|x

The D-brane energy density is

E(X, F) = e ®\det(gls + F)do — Cls Ae” |op

Nontrivial role of F and H: How to include it?



Generalized calibrations for generalized cycles

[P. Koerber; P. Smyth & L. M. *05]

A generalized calibration is a polyform w = >, w) of definite parity such that

» Algebraic condition:
[w]s A e op < E(X,F) , for any generalized submanifold (X, F)

» Differential condition: dyw = (d+ HA)w =0



Generalized calibrations for generalized cycles

[P. Koerber; P. Smyth & L. M. *05]

A generalized calibration is a polyform w = >, w) of definite parity such that

» Algebraic condition:
[w]s A e op < E(X,F) , for any generalized submanifold (X, F)

» Differential condition: dyw = (d+ HA)w =0

A D-brane wraps a calibrated generalized cycle (X, F) iff
[wlz A e lop = E(X, F)
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ﬁ‘z! =F
Indeed

E(X,F)

/82]—') /w|>:/\e /de|):/\e+

A </5(z Fy=E(s, F).

= One expects that susy backgrounds have generalized calibrations such that
supersymmetric D-branes are characterized as calibrated!
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Generalized chains

» F # 0 induces lower-dimensional
charges

> Mutually supersymmetric
D-branes of different dimensions
and bound states

» Generalized calibrations:

Natural to consider chains of generalized submanifolds of different dimensions

EF)+(EC )+ (8 F)

W=t W) T W) T W)



Generalized submanifolds with magnetic sources

Y is a p-submanifold
C C Y is a (p — 3)-dim magnetic source

Generalized submanifolds (X, F¢) with

dFe = H|s + 03(C)

If X is a compact cycle

PDx[C] + [H|z] = 0 € H(Z, Z)

(%, Fe)



Generalized boundary operator

O boundary operator:

0(X, Fe) = (0%, Felox) — (C, Fele)
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Generalized boundary operator

O boundary operator:

O(%, Fe) = (9%, Felox) — (C, Fele)
O is dual to the dj-operator acting on the currents e re) = () AeTe
dujiz,7c) = Jo(s, 7e)

Extend by linearity to chains

(6,3) = (51, F) + (50, FO) + (55, FD) +



RR gauge invariance and generalized cycles

Transformation of D-brane CS term under RR-gauge transformations C = dy A
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RR gauge invariance and generalized cycles

Transformation of D-brane CS term under RR-gauge transformations C = dy A

6Scs = /(5C7.i(@,s)> = /(dHA,j(@,sﬁ = /(A,dﬂj(e,sﬂ = /(%]5(6,39
X X X X

Gauge invariance demands J(S, §) = 0

Consistent D-brane networks wrap generalized cycles

For example (X, Fox/) + (X', F') is a generalized cycle: D(p — 2)-brane wrapping
(X', F') ends on Dp-brane wrapping (X, Fos/ ) (suominger 051



Deformations inside generalized homology classes

e Ordinary deformations

(%, F)



(%, F)



Deformations inside generalized homology classes

Ordinary deformations
(L, 7) (=7

(B )



e Dissolutions: (X1, F1) + (%2, F) —

n DO

(22,.7:2 — O)

(El;-?:l =O)

(=, 7
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e Dissolutions: (X1, 1) + (X2, F) —

(=, 7

/.’F'=n

N



Desingularizations: (X1, F1) + (X2, F2) (', F)

(217 ‘7:622)



Desingularizations: (1, F1) + (X2, /) (', 7)




o MMS-instantons (vildacens. Moore

& Seiberg “01]

If H # 0 then we can have
transitions

(X,F7) — nothing

Time

D2-brane that sweeps out
a cycle that supports
3 units of H flux
and then shrinks
into oblivion

Magnetic monopole
in D2-brane
worldvolume gauge theory

3 DO-branes
that represent

the trivial twisted
homology class

if we can choose cycle (B, Fs ), where PD5[X] = [H|s]

u]
]
I

w
it



D-brane networks and calibrations

‘We can apply the generalized calibrations

w= Y wy

k even,odd

to generalized cycles

(6,5) = (X0, Fo)) + (52, FO) + (T3, FE) + ..



D-brane networks and calibrations

‘We can apply the generalized calibrations

w= Y wy

k even,odd

to generalized cycles
(8,8) = (51, F&)) + (%2, FE)) + (B3, FE) + .
Again, a calibrated generalized submanifolds minimizes its energy inside its
0-homology class:
E(6,3) < E(G',F")
if (6,3) - (6.§) = 0(&,9)



A simple example: The BIon . e v Ganien Gonis & tovment 071

D3

F£0

» D3+DI1 system:

Configuration 1

Configuration 2

associated generalized calibration

W = wp3 + Wpi :dxl/\dxz/\dx3+dx4



A simple example: The BIon . e v Ganien Gonis & tovment 071

- Configuration 1 Configuration 2

F£0

» D3+Dl1 system: associated generalized calibration
W = wp3 + Wpi del /\(1.)(2/\C1/‘C3-i-d.)C4

> Integrating w over configuration 1: Eyin = Volps + Lp)



A Simple example: The Blon [Callan & Maldacena; Gauntlett, Gomis & Townsend “97]

- Configuration 1 Configuration 2

F£0

» D3+Dl1 system: associated generalized calibration
W = wp3 + Wpi del /\(1.)(2/\C1/‘C3-i-(1.)64

> Integrating w over configuration 1: Eyin = Volps + Lp)
» D3 embedding: x* = ¢, a = 1,2,3, and x* = X(0)

[Ws AeTlop = V1ls + Fdlo & dX =+F = X =  (configuration 2)

4’r|(r
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N =1 flux vacua

General N/ = 1 Type II vacua on X = R"* x M:

metric: dS2 = eZA(".)dx“dxM + 8mn (}‘)dymd)’n ’

RR-fluxes: F(”) = F(”) + V01(4) N F(n,@ s

Killing spinors: a(y)=¢o ng)(y) + c.c.

20) =¢onP0) + ce



Pure spinors W™ (even) and W~ (odd)

1 2 1 + my...m, + +

k=even /odd . n=even,odd



Pure spinors W™ (even) and W~ (odd)

()

k=even /odd

‘We can set

v~ inlIA
Wl_{ v* inlIB “’2—{

1 myp...m,
as ® 773?” ~ Z Ewi.umﬂ : g ~ \Ui — Z \U(j,:l)

n=even,odd



Pure spinors W™ (even) and W~ (odd)

1 mp...m,

k=even /odd . n=even,odd
We can set
v~ inlIA v inllA
i _{ Vv inIIB W2—{ Vv~ inIIB

Background susy conditions <> equations for WV and W,
du(e" ®ReV)) = ¢"F | dy(¢® ®ImVY)) =0 , du(e” W) =0

[Graiia, Minasian, Petrini & Tomasiello, hep-th/0505212]



N = 1 background supersymmetry and calibrations

Since X = R"® x M, we have three possible calibrations on M:

@) e (67®R6W1 — C‘) space-time filling branes

i 240 .
gl ImW, strings
DW 34— i0 .

WPV = MPRe( W) domain walls
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N = 1 background supersymmetry and calibrations

Since X = R"® x M, we have three possible calibrations on M:

w(Ad) = M (67¢RC\U1 — C‘) space-time filling branes
e AU strings
Ww®W e3A_¢Re(e'9\|Jz) domain walls

They must satisfy the two conditions
> Algebraic condition  —  checked

> Differential condition dyw = 0 <> background supersymmetry conditions!

K-symmetry = Supersymmetric D-branes wrap calibrated generalized cycles



Relation with Hitchin’s and Gualtieri’s generalized complex geometry

Graiia, Minasian, Petrini & Tomasiello, hep-th/0505212

» dgV¥, ~ 0 integrable



Relation with Hitchin’s and Gualtieri’s generalized complex geometry

[Grana, Minasian, Petrini & Tomasiello, hep-th/0505212]

» dyW, ~0 = integrable generalized complex structure

» dy¥, ~ F = non-integrable generalized (almost) complex structure



Generalized complex geometry and D-branes

Space-filling admit effective N' = 1 4d description

» Superpotential depending on W, relation with DW’s
» D-terms depending on V; relation with strings

[L. M. “06

Generalized complex geometry crucial: massless spectrum in terms of a cohomology
group H' (%, F)

[P. Koerber & L. M. ‘06
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The total calibration

One can also consider mutually
BPS domain walls and strings
that are glued together

[Gauntlett, Gibbons, Hull & Townsend “00]

The total calibration on R? x M for these configurations is given by

w = di AdEAdEAM (67®R6W1 — C’) + dx' A 62A7®Im\U1+
+dx' Ad? A e TReW, 4+ di® A dx! A e CImY,



Networks on IIB warped CY compactifications

As a subcase, M can be a warped CY
[Grana & Polchinski ‘00; Giddings, Kachru & Polchinski ‘01

The total calibration is

wwey = d AdCAAS A (M —TAT = MO+ A — eI AT AT+
+dx' A de® AReQ + dx’ Adx' A ImQ



Networks on IIB warped CY compactifications

As a subcase, M can be a warped CY
[Grana & Polchinski ‘00; Giddings, Kachru & Polchinski ‘01
The total calibration is

wwey = d AdCAAS A (M —TAT = MO+ A — eI AT AT+
+dx' A dx® AReQ + dx’ A dx' A ImQ

One can consider for example networks of space-filling D3’s, D5 domain walls and
D7 strings.

Effects of H ## 0 on M
> If M is compact, a D7-string alone is inconsistent. We need D5-domain walls
ending on it

> A D5 domain wall wrapping an internal three-cycle [ with Jr H # 0 needs
space-filling D3’s ending on it



D5-D3 domain walls

The D5-wrap an internal generalized
three-cycle (I', ) with [ H = n, and
n space-filling D3’s ending on it, at
points p; € T.




D5-D3 domain walls

The D5-wrap an internal generalized
three-cycle (I', ) with [ H = n, and
n space-filling D3’s ending on it, at
points p; € T.

If x* = X(o), calibration condition
[w]r A e”Jiop = € implies

ReQ|r = \/det(g|r)d3a s dX = 3 F

Thus, I is a SLag cycle and AX = x3[H|r + 3, 67 (pi)]

Explicit examples on T° /Z> flux compactifications [Kachru, Schulz & Trivedi ©02] and
Klebanov-Strassler solution (see also [Kachru, Pearson & Verlinde ‘01])



Gluing domain walls

Tension of a BPS domain wall:
Tow = ;%| fr Q|

The DW is at an angle (I") with the x* axis in
the (x*, x*)-plane

a(l) = arg </FQ>

We can glue D5 domain walls wrapping
different I'; at different angles.




Gluing domain walls

Tension of a BPS domain wall: o

W = ,%|er‘

D
The DW is at an angle o(I") with the x* axis in /
the (x*, x*)-plane

a(l) = arg </r Q)

We can glue D5 domain walls wrapping / ¢
different I'; at different angles.

If PDy[>, T'i] = [H] a D7 must fill the string
HAQ=0 > Jr. © = 0 equilibrium condition:

ZTDW () cos () ZTDW (Fy)sina(l;) =0



Domain wall networks on T°/7Z,

N T .
~Tension = 1

E Tension = 1 SN

5.6

g /
I .
N Tension=2|§
L/

L Explicit examples on a specific
< 7% /7, flux compactification
5 with and without D7 filling the
5 gluing string
I
D
2
N\\'J\'cnsmn =2
I \\\
5 N
'z [3,4
=

Lyl
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Future directions

v

Explicit examples on truly generalized complex models

v

Relation with non-geometric backgrounds

» Quantization of fluxes

v

Inclusion of non-abelian effects



Simplest case: D-branes on Calabi-Yau 3-folds

> Pure spinors: W, = e’ and W, = QG0

v

E(X,F) = /glz + Fd'o, with dF = 0.

> The generalized calibrations are

w(evcn) — Re (eiﬁei./) , W(Odd) — Re (eiGQ) = dw(even/odd) —-0.

v

The calibration condition [w|s A ¢’ ]iop = /P[g] + F d"o is equivalent to the
conditions found by [Marifio, Minasian, Moore & Strominger, ‘99]
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