

Atom interferometry – applications in gravimetry and some thoughts on current sensitivity limitations and concepts for future improvements

International Workshop on "Gravitational Waves Detection with Atom Interferometry" February 23-24, 2009 / Galileo Galilei Institute for Theoretical Physics – Arcetri, Firenze

Inertial sensing using atom interferometers

State of Art: AI Gravimeters + Gradiometers

Stanford Gravimeter (non-mobile) Achieved Accuracy: 4 · 10⁻⁹ g (?)

Paris Gravimeter ("mobile") Achieved Accuracy: 1.4 · 10⁻⁸ g

Florenz INFN Gravity Gradiometer MAGIA Measurement of the gravitational constant G Targeted Accuracy: $\Delta G/G = 1 \cdot 10^{-4}$

Kasevich Gravimeter (mobile) Bias Stability: < 10⁻¹⁰ g

Berlin Gravimeter GAIN (mobile, under construction) Targeted Accuracy: 5 · 10⁻¹⁰ g

Important gravitational effects

• spatial gravity variations

- gravity gradient $\sim 3.10^{-7}$ g / m
- global scale $\sim 10^{-3}$ g
- regional scale $\sim 10^{-6}$ g
- - navigation
 finding oil, water, minerals, archeological sites, ...
- temporal gravity variations
- ~ 10⁻⁷ g - tides
- man-made changes $\sim 10^{-9}$ g
- atmospheric pressure $\sim 10^{-10}$ g / mbar
- local water table $\sim 10^{-8}$ g
- $\sim 10^{-9} \text{ g}$

Airborne gravity gradiometery

Existing technology

AI sensors potentially offer 10 x – 100 x improvement in detection sensitivity at reduced instrument costs.

Gravitational effects of various objects

Object	mass	distance	gravity	gradient	angle	gravity change
	(kg)	(m)	(μGal)	$(\mu Gal/m)$	(deg)	(μGal)
Earth	6.0×10^{24}	6.4×10^{6}	9.8×10^{8}	308	0	9.8×10^{8}
Optical table	1000	1.5	3.0	4	0	3.0
Aluminum spacers	1	0.1	0.7	13	0	0.7
Experimental physicist	90	1.0	0.7	1.2	45	0.5
Theoretical physicist	120	3.0	0.1	0.06	0	0.1
Loaded truck	40000	10	2.7	0.5	45	2.0
Physics lecture hall	2.0×10^{6}	50	5.0	0.2	90	0.0
(demolished)			121			
Hole	2.0×10^{7}	100	13.3	0.3	85	1.3
(excavated)						

Different types of gravimeters

	Noise [g/Hz ^{1/2}]	Drift [g/day]	Accuracy [g]
Spring/Mass Systems	1 · 10 ⁻¹⁰	3 · 10 ⁻⁸	N/A
Levitated Superconducting Spheres (Cyogenic)	< 10 ⁻¹²	< 2 · 10 ⁻¹⁰	N/A
Falling Corner Cubes	5 · 10 ⁻⁸ *)	-	2 · 10 ⁻⁹
Atom Interferometer	2 · 10 ⁻⁸ *)	-	7 · 10 ⁻⁹

*) measured in the same laboratory; noise could be a factor 10 lower at a seismologically quiet site

FG-5 corner-cube gravimeter

GWR superconducting gravimeter

Burris Spring Gravity Meter

Main Purpose of absolute gravimeters

Compare readings taken at different locations and monitor changes for unlimited periods of time

Atom interferometric absolute gravimeter

- Noise < 10⁻⁸ g / Hz^{1/2} (basically limited by tectonic noise)
- Accuracy better than 10⁻⁹

Stanford University atomic fountain gravimeter

Stanford University atomic fountain gravimeter

Stanford gravimeter comparison

Stanford gravimeter comparison

	Value (μ Gal)	Uncertainty
Measured g value (tide corrected)	979, 933, 179	± 1
Polar motion	-4.8	± 0
Atmospheric pressure	+0.7	± 0.1
RF phase shift	-6	± 2
Cesium lock offset	-3	± 1
AC Stark shift	0	± 2
Coriolis effect due to Earth's rotation	0	± 2
Tilt and retro-reflection	0	± 1
Finite speed of light	+0.3	± 0.1
Transfer to top of fountain	-6.0	± 0.2
Atom interferometer gravity value	979,933,160	± 4

Table 7.1: Calculation of atom interferometer gravity value.

	Value (μ Gal)	Uncertainty
Measured g value (tide corrected)	979, 933, 304	± 2
Polar motion	-5.9	± 0
Atmospheric pressure	+1.7	± 0.1
Falling corner–cube gravity value	979, 933, 300	± 2

Table 7.2: Calculation of falling corner–cube gravity value.

Atom interferometer gravity value	979, 933, 160	±	4
Falling corner-cube gravity value	979, 933, 300	±	2
Measurement height correction	147	\pm	5
Difference	7	±	7

Stanford gravimeter comparison the environment at the time of measurement ...

The FINAQS Project (Future Inertial Atomic Quantum Sensors)

Collaboration of Five European research groups

Portable atomic quantum gravimeter GAIN

- <u>Compact</u>: three ~ 1 m³ Modules (interferometers assembly + two 19" racks for laser system and electronics)
- <u>Robust</u>: critical components based on technology developed for the high g-loads in drop tower experiments
- <u>Mobile</u>: designed to be "truckable" and for use at a variety of interesting locations

Targeted sensitivity:

1 • 10⁻⁹ g / sqrt(Hz) at a SNR of 300:1 (intrinsic noise only)

1 · 10⁻⁸ g / sqrt(Hz) at a SNR of 30:1 (under realistic vibration conditions)

Targeted absolute accuracy: $5 \cdot 10^{-10} \text{ g}$

QUANTUS - Quantum Gases under Microgravity

С О Ш

100000000 FEI FEI FEI FEI

H =	2.40m
Ø =	0.8 m
Mass <	280 kg

GAIN – current status

Laser System assembled and in Operation

Vacuum chamber assembled, currently baking out

GAIN – first environmental testing

Atom interferometry – applications in gravimetry and some thoughts on current sensitivity and concepts for future improvements

International Workshop on "Gravitational Waves Detection with Atom Interferometry" February 23-24, 2009 / Galileo Galilei Institute for Theoretical Physics – Arcetri, Firenze

Atom interferometer VS. high performance Seismometer

This figure describes the estimated system noise and clip level for CMG-5T broadband accelerometers and CMG-3T weak-motion sensors in terms of non-coherent power. Noise levels for the CMG-3T are shown separately for the vertical and horizontal sensors.

For reference, this graph also shows the Peterson NLNM (New Low Noise Model) and NHNM, as well as signal levels for seismic events of various magnitudes.

(Taken from USGS Technical Summary, US Geological Survey, 25 January 1990.)

Detailed calibration information is provided with every instrument, including amplitude and phase response curves, transducer outputs, the transfer function in poles/zeros notation, and (if applicable) the digitizer sensitivity-in counts per μ V.

Precision in determination of g in a single mascrement

 $\varphi := \Delta \phi = k_{eff} T^2 g$

use appropriate bias, limit ourselves to changes 19, 19

 $T_{g} := \sqrt{(Ag^2)} , \quad T_{\varphi} := \sqrt{(Ag^2)}$

 $f_{f} = \frac{1}{k_{eff} T^2} \int_{\infty}^{\infty} dx \int_{N}^{\infty} number of atoms} \int_{N}^{\infty} dx \int_{N}^{\infty} for standard techniques...}$

How to achieve higher precision / lower noise?

· increase Kep Ta

Increase number of atoms

· do better than the use of entanglement

Increase of T:

limited by atomic fountain hight

-> The 0.5 s for terrestrial applications different in space V Increase of Kerr: direct: limited by laser technology indirect: use multi plipton transitions / high order A Elecoil Bragg-diffraction V frequencies of counterpropagating beams are not equal for doms initially at vest... (requires small velocity spread & Viecoit

but very promising

Another	way	to	look	at	atomic	gra	vimet	ers:
			X(tz	.)	_=	1 2		

case b): sizescale constrained => large atomic mass is beneficial

Use of entanglement:

BER

a) If other sensitivity improvements are not enough ...

- In space
- in differential measurements (Mm, small forces, equivalence principle, gradients,...)

=> try to achieve Heisenberg limited (or N) sensitivity

Methods, classified à la "A quantum Rosetta Stone for Interterometry"; H. Lee, P. Kok, V. Dowling, arXiv: quant-ph/0202133 9Apr. 2002 in general : use both imports with appropriat states ...

(Pin) = V21 141 N-17+ 141 N41 2

(tim) = (N,N)AB

(tin) = (N, 0)

(N,0)+10,N>

Use of entanglement:

BER

b) make phaseshift directly proportional to gradient. (or even higher spatial derivatives) Standard method: L same beams Stop = Sup R Same beams KT2 Fors splitters and mirrors Stop = Sup KT2 Stop = Sup KT2 Stop = Sup KT2 yo:= thep - ghot = thep - theot => two independent measurements, then take desired difference with entanglement: -> one pair of atoms (top, bottom) at a time somehow prepared in state 1/21 (18,0>1e,th) - 1eth 18,0>) -> perform appropriate (hou-local) measurement after remainder of interferomoler sequence (T, I pulses) = yel key T2