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• In the informal spirit of this workshop, I want to discuss some ideas that are

speculative, but (I hope!) interesting. My own published work on this is not new.

I will simply try to put it in a different context, discuss some more recent results

by other authors, and end with some questionmarks.

• A way to introduce these ideas is as follows: the classical (super)gravity

equations admit a set of solution-generating ‘symmetries’ . These include U

dualities, which are relics of spontaneously-broken gauge symmetries, such as

large reparametrizations of tori . They include, however, also transformations

which change the physical properties of the solution. The simplest example

are scale transformations, e.g. for 11D supergravity:

gµν → λ2gµν , Aµνρ → λ3Aµνρ , L → λ2L .

Flux quantization breaks (in general) this symmetry to a Z+ subgroup, which

survives (in many cases) all other ‘quantum corrections’.
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• A more intriguing example are the Ehlers-Geroch transformations of pure

Einstein gravity, and its extensions to effective supergravities. Assuming

e.g. the existence of a Killing vector field ξµ, one may define on-shell the

complex scalar z = ω+ i|ξ|2, where

ξµξ
µ = |ξ|2 , εµνρσξν∇ρξσ = Dµ

(h)ω , and hµν = |ξ|2(gµν − ξµξν/|ξ|2) .

The remaining equations are then invariant under SL(2,R) transformations of z .

This symmetry of the equations becomes infinite - dimensional if there are two

Killing vectors. It can be extended easily to effective string-theory actions.

Johnson+Myers, Sen, Bakas, ....

• The question that one may ask is whether such transformations can be defined

for the exact string equations of motion. I will now argue that there exist candidate

generators, at least in the case of open string theory, the conformal defects.

This is one of their possible uses in string theory – the other will come in the end.
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• Solutions of open-string theory can be thought of as boundary states that

annihilate the (non-anomalous) super-Virasoro algebra:

(LN − L̄−N) |B � = (Gr − iḠ−r) |B � = 0 for all N, r .

In the open channel, this is the condition that no energy and supercharge flow

to/from the worldsheet boundary. This must be supplemented by the condition

of tadpole cancellation for certain RR fields that correspond to top-forms in

the non-compact spacetime. The latter requires in general the introduction of

an additional crosscap state |C �. Let us for now ignore this complication, and

focus on (space non-filling) D-branes, which do not couple to RR top forms.

• Let O be now an operator acting (formally) on the space of boundary states.

For this to be a symmetry of the equations, we must demand:

[LN − L̄−N ,O] = [Gr − iḠ−r ,O] = 0 .

This is precisely the condition satisfied by conformal defects.
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0 ε τ

σ

defect

An arbitrary operator O is not a priori an admissible transformation. We must

further require that it be of the following form:

O = trP exp

(
−
∫ 2π

0
dσHI(φ, s)

)
,

corresponding to an impurity which interacts locally with the (worldsheet) bulk

fields φ. Here the trace is over the (finite-dimensional) space of states s of the

defect. Any given impurity Hamiltonian will flow, in principle, in the IR to a

conformally- invariant defect. Thus such conformal operators are common.
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Conformal defects were first considered in the condensed-matter literature, as

impurities of quantum wires (Fisher + Kane ’92) , or as lines of ‘weak links’ in

the Ising model (Affleck + Oshikawa ’96). They are special cases of conformal

interfaces, which obey the generalized condition:

(L(1)
N − L̄(1)

−N) ×O = O × (L(2)
N − L̄(2)

−N) .

Their algebraic properties have been analyzed by many authors (see later).

In string theory they first appeared as the holographic duals of AdS2 branes

(CB, de Boer, Dijkgraaf + Ooguri ’01; Karch + Randall ’01; CB ’02).
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• General conformal defects are partly-transmitting and partly-reflecting. It has

been conjectured by Quella, Runkel + Watts ’06 (and it has been checked in

many examples) that

T ≤
2min(c1, c2)

c1 + c2
, R ≥

|c1 − c2|
c1 + c2

.

Such defects cannot appear on the worldsheet of physical strings, since they only

preserve a subset of the Virasoro charges (the one that leaves their time-like

worldlines unchanged).

• The special defects that are purely transmitting are called topological. They

obey the more stringent conditions (Petkova + Zuber ’00):

[LN ,Otop] = [L̄−N ,Otop] = 0 for all N .

An example are chiral conformal defects, that can be pictured as moving on the

lightcone. On a Euclidean worldsheet, topological defect lines can be deformed

continuously in any arbitrary way, as long as they do not encounter boundaries

and/or bulk-operator insertions.
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Topological defects can appear on the worldsheet of physical strings. But is this

story interesting? (postpone this to the end of the talk).

• Non-interacting defects give the (trivial) operators n1. These correspond

to the scale transformations of the dual supergravity solutions. Furthermore,

to each Otop one can associate the orientation-reversed defect O′top. It can be

also shown, by purely algebraic means, that topological defects obey a fusion

algebra (Petkova + Zuber ’00):

Oa
top ×Ob

top = nabc Oc
top .

Automorphisms of the operator algebra of the CFT (such as φ→ φ+ a, or

φ→ −φ for a free scalar field) correspond to invertible defects, which satisfy

Otop ×O′top = 1. They form a group that generates real perturbative-symmetry

transformations (such as translations or T-dualities of D-branes in some flat

dimensions).

Fuchs, Fröhlich, Runkel + Schweigert ’05

.
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The proposal is that more general conformal defects can be used as

solution-generating transformations of open-string theory.

The challenge is to construct explicit examples, and to understand

more generally whether/when such transformations are well-defined.
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A very useful technical device for constructing conformal interfaces is the

folding trick (Affleck + Oshikawa ’96). This maps interfaces onto boundary

states of the product theory CFT1⊗CFT2 (with left- and right-movers in

CFT2 interchanged). The operation obviously respects the locality and the

unitarity of the underlying theories.
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The trivial defect corresponds to a permutation brane, for which:

Left (right) movers of CFT1 ↔ Right (left) movers of CFT2.

In geometric language this is the diagonally-embedded, middle-dim. D- brane.

For a free scalar field, for instance, this brane imposes ∂±φ1 = ∂∓φ2. The D-

brane is deformed continuously when the volume (or other continuous moduli)

are changed in one of the two CFTs. The deformed brane O(r1, r2) is not

topological, since R = |r21 − r22|/(r21 + r22) 6= 0.

CB, de Boer, Dijkgraaf, Ooguri

θ

D1 D0

2π

2π r

r

1

2

0
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Perturbations of the trivial diagonal brane (with CFT1 = CFT2) are described

in the sigma-model approach by the following, renormalizable by power-counting,

interactions:

O = tr P exp

(
i

∫ 2π

0
dσ

[
AM(X) ∂σX

M +
1

2πα′
YM(X) ∂τX

M

])
.

Here the XM are the worldsheet fields defined in a target-space M, and A and Y

are gauge and coordinate fields of the D-brane. These can be matrix-valued

so as to account for Chan-Paton factors. In general, the tachyon field may be

also turned on the diagonal brane.

♠ The conformal-invariance conditions of a defect line can thus be derived pertur-

batively from a (matrix-valued) Dirac-Born-Infeld action, describing the dynamics

of a diagonal D-brane in the doubled target space M×M.
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The action of the defect on a D-brane submanifold, D ⊂M, amounts semi-

classically to pulling back the fields AM and YM from M to D. In the process,

half of the fields (A⊥ and Y‖) are set as expected to zero.

This adds an entry to the (extensive) dictionary between worldsheet and target-

space features, and it gives a geometric interpretation to the solution-generating

transformations induced by defects. ♠♠

Note that since defects respect unitarity and locality, there is no need to check

the Cardy, or other consistency conditions for the transformed branes. This is not

true for the crosscap state, which obeys:

(LN − (−)NL̄−N) |C � = 0

(with similar conditions for the fermionic generators). Although topological defects

respect this condition, they violate in general the requirement that in the closed

channel of the Klein bottle multiplicities must be ±1 (so as to project out part

of the closed-string spectrum).

13



This additional requirement is obeyed by defects that act as Z2 automorphisms

of the operator algebra, and (possibly) by interfaces that correspond to allowed

deformations of the orientifold theory. Other defects have no consistent action

on the crosscap state.

• Besides the free-field examples discussed so far, many conformal defects

and interfaces have been constructed in a variety of models in the last few years

(Quella, Fredenhagen, Recknagel, Schomerus, Graham, Watts and others).

In the rest of this talk I will focus on conformal defects in WZW models, and

then discuss the construction of defects that induce the decay of unstable D-branes

in bosonic string theory.
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WZW defects

D-branes of WZW models are by now very well (though still not completely)

understood, both from the algebraic and from the geometric viewpoint.

Cardy; Bianchi, Pradisi, Sagnotti + Stanev

Alekseev, Schomerus+Recknagel; CB, Douglas + Schweigert

Maldacena, Moore + Seiberg; Gaberdiel + Gannon; Gawedzki · · ·

The RG flows between symmetric D-branes describe the (partial) screening of

magnetic impurities by the electron gas in a metal – the Kondo problem (Affleck +

Ludwig ’91). In geometric language, it describes the blowing-up of a magnetic brane

(dual to the dielectric Myers effect).

Let us now see how these flows can be obtained from the action of topological

defects. A similar universality of flows has been first proposed in minimal models

(Graham + Watts ’03).
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♠ The existence of conformal defects in WZW models can be inferred from a

semiclassical argument, similar to the one used by Witten ’84 to infer conformal

invariance in the bulk. One starts with the classical currents

J(x+) = −iκ (∂+g)g
−1 and J̄(x−) = iκ g−1∂−g ,

where x± = τ ± σ, the g(x+, x−) take values in a Lie group G, and κ = ψ2k/2

with ψ the length of long roots and k the level of the current algebra. The

currents generate the left and right symmetry transformations

g → u(x+)−1 g ū(x−) ,

under which they themselves transform in the same way as the components of a

2D gauge field:

J → u−1Ju+ iκ u−1∂+u and J̄ → ū−1J̄ ū+ iκ ū−1∂−ū .
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Thus the following ‘Wilson loops’ [with ta the Lie algebra generators in the

representation R] will be invariant under all the symmetry transformations:

Ochir(λ;R) = TrR P exp

(
iλ

∮
C

dx+ Jata
)
,

if we choose λ = λ∗ ≡ −1/κ . Note that (A+, A−) = λ(Jata,0) is a flat

connection for any value of λ, so that Ochir(λ;R) is always topological at the

classical level [the contour can be deformed by the non-abelian Stokes theorem] .

But this does not survive renormalisation, which introduces (through dimensional

transmutation) a length scale. For λ = λ∗ on the other hand:

{Jan , Ochir(λ
∗;R)} = {J̄an , Ochir(λ

∗;R)} = 0 .

If these relations survive quantization, then the above special Wilson loops will

describe topological defect lines. [In the classical theory they measure the

monodromies of a solution.]
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A similar semiclassical argument helps us identify also a class of conformal (but

not topological) defects, by considering the more general ‘Wilson lines’

O(λ, λ̄;R) = TrR P exp

(
i

∫ 2π

0
dσ (λ Ja − λ̄ J̄a) ta

)
.

For λ = λ̄ = λ∗/2 these are invariant under (vector-like) transformations, i.e.

transformations with u(x) = ū(−x). It follows that

{
Jan + J̄a−n , O

(
λ∗

2
,
λ∗

2
;R

)}
= 0 .

If these relations survive quantization, they would imply that O(λ∗/2, λ∗/2;R) are

(G-symmetric) conformal defects. As we shall see, they correspond to unstable

fixed points of the RG flow.
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In order to construct the quantum defects (CB + Gaberdiel ’04) we start with
the formal expression

Ochir(λ;R) =
∞∑

N=0

(iλ)N O(N)(R) ,

where

O(N)(R) = TrR (ta1 · · · taN)

(
N∏
i=1

∫ 2π

0
dσi

)
θσ1>···>σN J

a1(σ1) · · · JaN(σN) .

Classically the order of the currents is irrelevant, but in the quantum theory

there is an ambiguity due to the short-distance singularities of the OPE.

• To guide the choice, we insist that the following two symmetries be preserved:

(i) the path can start at any point σ0 on the circle, and (ii) the result is inva-

riant if the loop orientation is reversed, and R is traded for its conjugate

representation. These symmetries can be preserved by the following (non-

unique) regularization prescription:
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O(N)
reg (R) = TrR (ta1 · · · taN)

(
N∏
i=1

∫ 2π

0
dσi

)
θσ1>···>σN ×

×
1

2N

(
Ja1

reg(σ1) · · · JaNreg(σN) + cyclic + reversal
)
,

where

Jareg(σ) =
∑
n∈Z

Jan e
−inσ−|n|s/2 .

Note (i) that since the bare currents at non-coincident points commute, the

choice of ordering is part of the regularisation prescription and (ii) that the

prescription guarantees that O(N)
reg (R) commutes with the generator L0 − L̄0.

Thus, even without being topological, it can be transported to the boundary

of the half-cylinder freely.
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Plugging the mode expansion (with J̃an ≡ Jan e
−|n|s/2) and performing explicitly

the integrals leads to the following expressions for the first few values of N :

O(2)
reg(R) = 2π2 TrR(t

atb) Ja0J
b
0 ,

O(3)
reg(R) =

2π2

3
TrR(t

atbtc)

 π
3
Ja0J

b
0J

c
0 +

∑
n6=0

i

n
J̃a−nJ̃

b
nJ

c
0 + cyclic + reversal

 ,

O(4)
reg(R) =

π2

2
TrR(t

atbtctd)

[
π2

6
Ja0J

b
0J

c
0J

d
0 +

∑
n6=0

iπ

n
J̃a−nJ̃

b
nJ

c
0J

d
0

+
∑
n6=0

1

n2

(
J̃a−nJ̃

b
nJ

c
0J

d
0 − J̃a−nJ

b
0J̃

c
nJ

d
0

)
+

∑
m,l,n6=0

m+n+l=0

1

ml
J̃amJ̃

b
nJ̃

c
l J

d
0

−
1

2

∑
m,n6=0

1

mn
J̃a−nJ̃

b
nJ̃

c
−mJ̃

d
m + cyclic + reversal

]
.
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After normal ordering, i.e. moving all positive modes to the right of negative

modes, we get :

O(2)
reg(R) = 2π2IR J

a
0J

a
0 ,

O(3)
reg(R) =

2π3

3
I(3)
R dabc Ja0J

b
0J

c
0 + 4π2IR f

abc
∑
n>0

1

n
Ja−nJ

b
0J

c
n −

− 4π2i IR h
∨ψ2

[∑
n>0

1

n
Ja−nJ

a
n −

1

2
Ja0J

a
0

(∑
n>0

e−ns

n

)
+

κ

6
dim(g)

(∑
n>0

e−ns

)]
,

O(4)
reg(R) = : O(4)

reg(R) : − 2π2 IR h
∨ψ2 κ

[∑
n>0

1

n
Ja−nJ

a
n − Ja0J

a
0

(∑
n>0

e−ns

n

)
+

+
κ

4
dim(G)

(∑
n>0

e−ns

)]
+ subleading .

where IR = C(R)× dim(R)/dim(G) , TrR (tatbtc) = i
2
fabc IR + 1

2
dabc I(3)

R , and

hV is the dual Coxeter number.
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• We can absorb all divergences at this order with the help of the two local

counterterms (a mass and coupling-constant renromalization):

∫ 2π

0
dσ(∆m+ i∆λJata) .

These are the only relevant operators consistent with the global G symmetry of

the problem. The explicit form of these renormalizations is:

∆m = π C(R)h∨ψ2

(
1

3
κλ3 +

1

4
κ2λ4 + subleading

)
×

1

s
,

λeff = λ+
1

2
(λ2 + κλ3) ξ+

1

4
λ3 ξ2 +O(λ4) ,

where ξ = h∨ψ2 log s . Note that λeff is independent of the representation R. Note

also that s is the ratio of the (only) two length scales in the problem: the short-

distance cutoff and the circumference L of the cylinder.
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The β-function of the chiral defect thus reads:

β(λeff) = −
dλeff

d logs
= −

1

2
h∨ψ2

(
λ2

eff + κλ3
eff +O(λ4

eff)
)
.

It is asymptotically free, and has an infrared fixed point at the critical value

λ∗ = −
1

κ
+O

(
1

κ2

)
.

This is perturbatively-small for large κ. If one brings this defect to a D0-brane

boundary, one recovers the RG flow of the Kondo problem (derived in a non-

conventional way).

The basic point, however, is that this is a universal RG flow,

applicable to any UV fixed point.
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More generally, the fusion of these topological defects, among themselves and

with the Cardy boundary states, is the same as the fusion of primary fields. For

instance, in the case G = SU(2):

j ⊗ j′ = |j − j′| ⊕ · · · ⊕max(j + j′, k − j − j′) .

This can be verified explicitly from the above, and follows also from more formal

arguments of Petkova + Zuber, or by lifting to a TFT in 3D (Fröhlich, Fuchs,

Runkel + Schweigert) .

At level k = 1, the j = 0 and j = 1/2 Cardy branes are the D0 and D1 branes

on the r = 1 circle. The j = 1/2 defect is in this case a symmetry transformation

that maps one D-brane to the other.

NB1: The topological defects constructed here are central elements in the

envelopping current algebra. Their existence to all higher orders (an open

mathematical problem) has been proved recently by Alekseev + Monnier ’07.
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NB2: A nice alternative argument showing that λ−1 = k+ 2 is a fixed point is

due to Affleck: the impurity Hamiltonian can in this case be absorbed through the

redefinition Jan → Jan + ta, which preserves the current algebra.

NB3: According to the semiclassical argument, WZW models also have conformal

but not topological defects. The leading-order renormalizations in the general case

can be computed in the same way as above:

λeff = λ+
1

2
ξ
(
λ2 + κ(λ3 + λ λ̄2)

)
+ · · ·

λ̄eff = λ̄+
1

2
ξ
(
λ̄2 + κ(λ̄3 + λ̄ λ2)

)
+ · · · .

and lead to the following flow diagram:
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The conformal defect respecting the diagonal-current symmetry can be seen

to be an unstable fixed point :

NB: Its action on the WZW branes is not known.
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• As another non-trivial example, consider the decay of an unstable Dp-brane

to a D(p-1)-brane in the bosonic string. According to Sen this is described by

a tachyon-lump background on the Dp-brane. Alternatively, he described it by

the following sequence of marginal bulk and boundary transformations [only one

coordinate plays here a role]:

• Change the radius r → 1

• SU(2)-rotate the Neumann to the Dirichlet brane

• Change back the radius 1 → r

This suggests the following composition of conformal interfaces and defects:

Olump = O(r,1)×Ochir(j = 1/2)×O(1, r) .

The product is here formal, since the fusion of general conformal defects is

singular. It should be understood in a similar way as the OPE of local operators.

Defining these singular products is a very interesting open problem [see also

Kapustin + Witten ’06].
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In the simplest case of O(r1, r2)×O(r2, r1) the leading term in the product can be

extracted from the ‘striped’ torus amplitude:

CB, de Boer, Dijkgraaf, Ooguri

N 2
∞∏
n=1

[1− (q2n1 + q2n2 )cos22θ − 2qn1q
n
2 sin22θ+ q2n1 q2n2 ]−1

where tanθ = r1/r2, q1 = e−2πd/T and q2 = e−2π(L−d)/T . In the limit d→ 0 (when

the two interfaces collapse) the result reads:

N 2
∞∏
n=1

sin22θ(1− qn2)
−2

which is the expected (closed-string) torus amplitude, up to a (vanishingly small)

normalization constant. ζ-function regularization gives:

O(r1, r2)×O(r2, r1) ' (sin22θ)ζ(0) 1 + · · ·
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Summary

• Conformal defects and interfaces have the potential to unify all

symmetry tranformations of the field equations for open strings.

• They also have a plethora of condensed-matter-physics applications.

• Their fusion rules and their realization in open-string field theory

deserve, further study.
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