Modifications of gravity

Constantinos Skordis (Perimeter Institute) GGI, 4 Mar 2009

Tensor-Vector-Scalar theory

Ingredients

(Sanders 1997, Bekenstein 2004)

- Tensor field (metric) \tilde{g}_{ab}
- Unit-timelike Vector field A_a
- Scalar field ϕ

Physical metric $g_{ab} = e^{-2\phi} (\tilde{g}_{ab} + A_a A_b) - e^{2\phi} A_a A_b$

- toy-theory (phenomenological)
- gives MOND in the non-relativistic limit
- good platform for studying alternatives to ΛCDM

See topical review in CQG (C.S. on arXiv next week)

Growth of structure in CDM and TeVeS

(C.S., D. Mota, P. Ferreira, C.Boehm, 2005)

(S.Dodelson & M.Liguori, 2006)

Lessons from TeVeS

- gravity may depend on additional fields
- these fields may mimic dark matter
- however, some other effect different from dark matter may appear

example :

Both Λ CDM and TeVeS give same P(k)But $\Phi - \Psi$ is very different

Can be distinguished from combinations of other observables

How special is General Relativity?

- A principle theory (SEP, diffeo-invariance)
- Lovelock-Grigore theorem : In any dimension, the only local diffeomorphism invariant action leading to 2nd order field equations and which depends only on a metric is a linear combination of the E-H action with a cosmological constant up to a total derivative.

Any other theory must : (at least one applies)

- be non-local
- Have absolute elements
- Depend on other fields
- have higher than 2nd order field equations

- (Sousa-Woodard, Dvali-Gabadaze-Porrati, etc)
 - (stratified theories)
 - (JFBD, TeVeS, etc)
 - (Weyl gravity)

What is/not gravity?

- "f(R) and scalar-tensor theories are not modified gravity because they are equivalent to GR + scalar"
- "Scalar-tensor and TeVeS theories are not modified gravity because they depend on extra fields"
- TeVeS is not modified gravity because it can be written in a single-metric frame without coupling to matter.

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} R - \int d^4x \sqrt{-g} \ K^{abcd}(g, B_c) \nabla_a B_b \nabla_c B_d + S_m[g]$$

• "If $\Phi - \Psi
eq 0$ then we have modified gravity"

these are certainly all incorrect statements

Cosmological tests of gravity

How do we treat complicated theories of gravity? $f_{ab} \left[g_{cd}, Riem, Ric, R, \phi^A, \ldots\right] = 8\pi Gh_{ab} \left[T_{cd}, g_{cd}, Ric, R, \phi^A, \ldots\right]$ metric curvature extra fields matter

Trick : add G_{ab} to both sides add and subtract $8\pi GT_{ab}$ on RHS

Collect terms
$$G_{ab} = 8\pi G T_{ab}^{(known)} + U_{ab}$$

where $U_{ab} = 8\pi G [h_{ab} - T_{ab}] + G_{ab} - f_{ab}$

Bianchi identity : $\nabla_a U^a_{\ b} = 0 \rightarrow$ Field equations for ϕ^A

C.S. (arXiv:0806.1238)

To distinguish gravity from fluids or other forces we must specify the field content

Can we distinguish modified gravity from matter at the FRW level?

FRW
$$ds^2 = -dt^2 + a^2 d\ell_K^2$$

 $G^0_0: \quad 3H^2 + \frac{3K}{a^2} = 8\pi G \sum_i \rho_i + X$
 $G^i_i: \quad -2\frac{\ddot{a}}{a} - H^2 = 8\pi G \sum_i P_i + Y$

Bianchi identity gives $\dot{X} + 3H(X + Y) = 0$

Can we distinguish modified gravity from matter at the FRW level?

FRW
$$ds^2 = -dt^2 + a^2 d\ell_K^2$$

 $G^0_0: \quad 3H^2 + \frac{3K}{a^2} = 8\pi G \sum_i \rho_i + X$

$$G^i_i: -2\frac{a}{a} - H^2 = 8\pi G \sum_i P_i + Y$$

Bianchi identity gives $\dot{X} + 3H(X + Y) = 0$

the answer is therefore : NO

Linear perturbation level

C.S. (arXiv:0806.1238)

Metric has 4 scalar dof : Ψ , ζ , Φ , ν Given a vector field ξ^a s.t. $\xi_\mu = a(-\xi, \vec{\nabla}_i \psi)$ reduced to 2 by gauge transformations

Distinguishing gravity from fluids : field content

• Linearized equations must be gauge form-invariant.

$$\delta G^{\mu}{}_{\nu} = \sum_{i} \mathcal{O}_{i} \Delta_{i} \to \sum_{i} \mathcal{O}_{i} \Delta_{i} + [FRWeq.]\xi$$

- Holds iff background equations satisfied.
- Fixes all gauge non-invariant terms
- Bianchi identity holds (local energy conservation)

Parameterizing field equations

$$2(\vec{\nabla}^{2} + 3K)(\Phi - \vec{\nabla}^{2}\nu) - 6\frac{\dot{a}}{a}(\dot{\Phi} - \frac{1}{3}\vec{\nabla}^{2}\zeta) - 6\frac{\dot{a}^{2}}{a^{2}}\Psi = 8\pi Ga^{2}\rho\delta$$
gauge
 $transform$

$$2(\vec{\nabla}^{2} + 3K)(\Phi' - \vec{\nabla}^{2}\nu') - 6\frac{\dot{a}}{a}(\dot{\Phi}' - \frac{1}{3}\vec{\nabla}^{2}\zeta') - 6\frac{\dot{a}^{2}}{a^{2}}\Psi' = 8\pi Ga^{2}\rho\delta' + [FRWeq.]\xi$$

- Parameterizations in a fixed gauge are inconsistent
- Parameterizations using gauge invariant combinations are consistent but may be too arbitrary (from Stewart-Walker lemma)
- All parameterizations must take into account the field content.

Distinguishing gravity from fluids at the linear level

- Must specify field content
- Specify the parameterization
- Determine the force between 2 well separated masses in vacuum

This requires writing an action leading to the parameterized equations

The extended $~~\Lambda \text{CDM}$ model

C.S. (arXiv:0806.1238)

Background : <u>ACDM</u> No additional fields No higher than 2 time derivatives

→ No Gauge Non-Invariant terms allowed

 $\delta U^a{}_b$ contains Φ_{GI} Ψ_{GI} and derivatives

$$\Psi_{GI} = \Psi - \ddot{
u} - \dot{\zeta} - rac{a}{a}(\dot{
u} + \zeta)$$
 contains 2nd derivatives

$$\Phi_{GI} = \Phi + \frac{1}{3} \vec{\nabla}^2 \nu + \frac{\dot{a}}{a} (\dot{\nu} + \zeta) \quad \text{contains Ist derivatives}$$

Constructing the U-tensor

$$G_{ab} = 8\pi G T_{ab}^{(known)} + U_{ab}$$

Constraints : Ist derivatives

 $\delta U^0_{\ 0} = \mathcal{A}\Phi_{GI}$

$$\delta U^0_{\ i} = \mathcal{B}\Phi_{GI}$$

Propagation : 2nd derivatives $\delta U^{i}{}_{i} = C_{1}\Phi_{GI} + C_{2}\dot{\Phi}_{GI} + C_{3}\Psi_{GI}$ $\delta U^{i}{}_{j} - \frac{1}{3}\delta U^{k}{}_{k}\delta^{i}{}_{j} = D_{1}\Phi_{GI} + D_{2}\dot{\Phi}_{GI} + D_{3}\Psi_{GI}$

Bianchi identity gives

 $\mathcal{C}_3 = \mathcal{D}_3 = 0 \qquad \qquad \mathcal{A} = -\frac{\dot{a}}{a}\mathcal{C}_2 \qquad \qquad \mathcal{B} = \frac{1}{3}\mathcal{C}_2 + \frac{2}{3}\left(\vec{\nabla^2} + 3K\right)\mathcal{D}_2$ $\dot{\mathcal{A}} + \frac{\dot{a}}{a}\mathcal{A} - \vec{\nabla}^2\mathcal{B} + \frac{\dot{a}}{a}\mathcal{C}_1 = 0 \qquad \qquad \dot{\mathcal{B}} + 2\frac{\dot{a}}{a}\mathcal{B} - \frac{1}{3}\mathcal{C}_1 - \frac{2}{3}\left(\vec{\nabla}^2 + 3K\right)\mathcal{D}_1 = 0$

Corollary I: If $\mathcal{D}_1 = \mathcal{D}_2 = 0$ Then $U^a_{\ b} = 0$ no shear : no modification

Corollary II: If $\mathcal{A} = \mathcal{B} = 0$ Then $U^a_{\ b} = 0$ no constraints : no modification

Corollary III: If $\mathcal{D}_2 = \mathcal{B} = 0$ i.e. $\Phi_{GI} - \Phi_{GI} = \mathcal{D}_1 \Phi_{GI}$ Then $U^a_{\ b} = 0$ no modification

A simple model : $\Phi_{GI} - \Psi_{GI} = \mathcal{D}_2 \dot{\Phi}_{GI}$

Further consistency requirements

(in progress)

- Action for parameterized perturbed cosmological equations
- Quantize on de Sitter
- Eliminate ghosts : Should impose further constraints on the allowed terms
- Initial conditions : e.g. Inflation
- Modified gravity at the non-linear level (non-linear completion)

The end

- Detecting $\Phi \Psi \neq 0$ not enough
- Parametrizing only in terms of the potentials can ignore important physics. Gravity may depend on additional fields.
- Constraints depend on the field content
- Field content important for distinguishing gravity from fluids.