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Stationary solutions and timelike dimensional reduction
The search for supergravity solutions with assumed Killing
symmetries can be recast as a Kaluza-Klein problem. Consider a
D = 4 theory with a nonlinear bosonic symmetry Ḡ (e.g. E7 for
maximal N = 8 supergravity). Scalar fields take their values in a
target space Φ̄ = Ḡ/H̄, where H̄ is the corresponding linearly
realized subgroup, generally the maximal compact subgroup of Ḡ
(e.g. SU(8) for N = 8 SG).

Searching for stationary solutions to such a theory amounts to
assuming further that a solution possesses a timelike Killing vector
field κµ(x).

• We assume that the solution spacetime is asymptotically flat
or asymptotically Taub-NUT and that there is a ‘radial’
function r which is divergent in the asymptotic region,
gµν∂µr∂νr ∼ 1 +O(r−1).

• The Killing vector κ will be assumed to have
W := −gµνκ

µκν ∼ 1 +O(r−1).
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• We also assume asymptotic hypersurface orthogonality,
κν(∂µκν − ∂νκµ) ∼ O(r−2).

• In any vielbein frame, the curvature will fall off as
Rabcd ∼ O(r−3).

• Lie derivatives with respect to κ are assumed to vanish on all
fields.

The D = 3 theory dimensionally reduced with respect to the
timelike Killing vector κ will have an Abelian principal bundle
structure, with a metric

ds2 = −W (dt + B̂idx i )2 + W−1γijdx idx j

where t is a coordinate adapted to the Killing vector κ and γ is the
metric on the 3-dimensional hypersurface Σ3 at constant t. If the
D = 4 theory has Abelian vector fields Aµ , they similarly reduce
to D = 3 as

4
√

4πGAµdxµ = U(dt + B̂idx i ) + Âidx i
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Comparison to spacelike dimensional reductions
The timelike D = 3 reduced theory will have a G/H∗ coset space
structure similar to the G/H coset space structure of a D = 3
theory similarly reduced on a spacelike Killing vector. Thus, for a
spacelike reduction of maximal supergravity one obtains an
E8/SO(16) theory continuing on in the sequence of dimensional
reductions originating in D = 11. Julia As for the analogous
spacelike reduction, the D = 3 theory has the possibility of
exchanging D = 3 Abelian vector fields for scalars by dualization,
contributing to the appearance of an enlarged D = 3 bosonic
‘duality’ symmetry. The resulting D = 3 theory contains D = 3
gravity coupled to a G/H∗ nonlinear sigma model.

I However, although the numerator group G is the same for a
timelike reduction to D = 3 as that obtained for a spacelike
reduction, the divisor group H∗ is a noncompact form of the
spacelike divisor group H. Breitenlohner, Gibbons & Maison 1988

I The origin of this H → H∗ change is the appearance of
negative-sign kinetic terms for scalars descending from D = 4
vectors under the timelike reduction. 5 / 21



Some examples of G/H∗ and G/H theories in D = 3

*

The D = 3 classification of extended supergravity stationary
solutions via timelike reduction generalizes the D = 3 supergravity
systems obtained from spacelike reduction. de Wit, Tollsten & Nicolai
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Stationary Maxwell-Einstein solutions

Consider an initial theory comprising just D = 4 gravity together
with an Abelian U(1) vector field, i.e. D = 4 Maxwell-Einstein
theory. Search for stationary spherically symmetric solutions, with
an isometry group SO(3). Using polar coordinates, the D = 3
metric on Σ3 can then be parametrized as
ds2 = γijdx idx j = dr2 + f (r)2(dϑ2 + sin2 ϑdφ2). The reduced
D = 3 equations of motion become in this case
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Equation (3.29) turns into an equation for 2, since the left-hand side vanishes 
for ~kt = hu- One finds 

102 2-  ~ = ~ (M-18eM,  M-ld~M> , 

2-- 1~2 ~-- ~ ( ( M -  lOoM , M -  aSQM> -- ( M -  lgqzM , M -  ~O~M>). 

(3.32) 

From these equations ), can be computed by a simple integration once M is known. 
The integrability conditions are satisfied if Eq. (3.30) is fulfilled. 

4. Spherically Symmetric Solutions 

The system of Eqs. (2.2-3) looks deceptively simple due to its elegant mathematical 
description. But it has to be remembered that it describes rather complex and 
complicated physical situations and mathematical structures. Most of its explicitly 
known solutions are therefore distinguished by some symmetry properties of the 
remaining 3-dimensional Riemannian space $3 and the a-model fields gbi(x) 
reducing the number of essential variables. The maximal symmetry group for S 3 is 
the 6-parameter euclidean group of motions, which singles out the trivial 
"vacuum" solution, 4-dimensional Minkowski space with vanishing vector field 
strengths and constant scalar fields. A physically more interesting class of solutions 
are the spherically symmetric solutions with an isometry group S0(3) acting on 
2-dimensional orbits. Note that if the NUT-charge is non-zero the action of S0(3) 
on the 4-dimensional space-time has 3-dimensional orbits. Using polar coordi- 
nates the metric of X3 can be parametrized as ds 2 =habdxadxb=dr2+f(r)2(dO 2 

+ sin20drp2). The Eqs. (2.2-3) become under these circumstances 

0, (4 a, 

Rrr = - 2 f  -a d2f dqbi d4J (4.1b) 
d~-=~'J(~) dr dr '  

-2 d 

The last equation has the general solution 

f(r) z = (r-- ro) 2 + c. (4.2) 

Introducing ~ ( r ) = -  ~ f-2(s)ds, which is a harmonic function on X3 equipped 
r 

with the metric hab, Eq. (4.1a) becomes 

dZq~' d~J d~k =0 (4.3) 
dz 2 + F~((o) dz dz 

with ~bi(r)=~)i(z(r)). This is the equation for a geodesic in the symmetric space G/H. 

The decomposition of q~: ~3 ~ G/H into a harmonic map z: S 3 ~ R  1 and a geodesic 
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• The third equation has the general solution
f (r)2 = (r − r0)2 + c2.
• Introducing τ(r) := −

∫∞
r f −2(s)ds, which is a harmonic

function on Σ3 equipped with the metric γij , the first equation
above becomes

310 P. Breitenlohner, D. Maison, and G. Gibbons 

Equation (3.29) turns into an equation for 2, since the left-hand side vanishes 
for ~kt = hu- One finds 

102 2-  ~ = ~ (M-18eM,  M-ld~M> , 

2-- 1~2 ~-- ~ ( ( M -  lOoM , M -  aSQM> -- ( M -  lgqzM , M -  ~O~M>). 

(3.32) 

From these equations ), can be computed by a simple integration once M is known. 
The integrability conditions are satisfied if Eq. (3.30) is fulfilled. 

4. Spherically Symmetric Solutions 

The system of Eqs. (2.2-3) looks deceptively simple due to its elegant mathematical 
description. But it has to be remembered that it describes rather complex and 
complicated physical situations and mathematical structures. Most of its explicitly 
known solutions are therefore distinguished by some symmetry properties of the 
remaining 3-dimensional Riemannian space $3 and the a-model fields gbi(x) 
reducing the number of essential variables. The maximal symmetry group for S 3 is 
the 6-parameter euclidean group of motions, which singles out the trivial 
"vacuum" solution, 4-dimensional Minkowski space with vanishing vector field 
strengths and constant scalar fields. A physically more interesting class of solutions 
are the spherically symmetric solutions with an isometry group S0(3) acting on 
2-dimensional orbits. Note that if the NUT-charge is non-zero the action of S0(3) 
on the 4-dimensional space-time has 3-dimensional orbits. Using polar coordi- 
nates the metric of X3 can be parametrized as ds 2 =habdxadxb=dr2+f(r)2(dO 2 

+ sin20drp2). The Eqs. (2.2-3) become under these circumstances 

0, (4 a, 

Rrr = - 2 f  -a d2f dqbi d4J (4.1b) 
d~-=~'J(~) dr dr '  

-2 d 

The last equation has the general solution 

f(r) z = (r-- ro) 2 + c. (4.2) 

Introducing ~ ( r ) = -  ~ f-2(s)ds, which is a harmonic function on X3 equipped 
r 

with the metric hab, Eq. (4.1a) becomes 

dZq~' d~J d~k =0 (4.3) 
dz 2 + F~((o) dz dz 

with ~bi(r)=~)i(z(r)). This is the equation for a geodesic in the symmetric space G/H. 

The decomposition of q~: ~3 ~ G/H into a harmonic map z: S 3 ~ R  1 and a geodesic 
with φ̂i (r) = φ̂i (τ(r)).
• This is the equation for a geodesic in the symmetric space

G/H∗ = SU(2, 1)/S(U(1, 1)×U(1)), with signature
(+ +−−). The decomposition of φ : Σ3 → G/H∗ into a
harmonic map τ : Σ3 → R and a geodesic φ̂ : R→ G/H∗ is
in accordance with a general theorem on harmonic maps

Eels & Sampson, 1964 according to which the composition of a
harmonic map with a totally geodesic one is again harmonic.
• Such factorization into geodesic and harmonic maps is also

characteristic of higher-dimensional p-brane supergravity
solutions. Neugebauer & Kramer 1964; Clement & Gal’tsov 1996; Gal’tsov & Rychkov 1998
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• Restricting attention to subspace of static solutions with
electric charge only (magnetic charge can be removed by a
duality transformation), the relevant sigma-model structure
simplifies to (G/H∗)st = SO(2, 1)/SO(1, 1). The line element

in this two-dimensional target space is ds2 = d∆2

2∆2 − 2dA2

∆ ,
where ∆ and A are respectively the gravitational and electric
potentials. (This is actually the metric for two-dimensional de
Sitter space.) The corresponding geodesic equations are

∆̈−∆−1∆̇2 − 2Ȧ2 = 0 Ä−∆−1∆̇Ȧ = 0 ;

these can be explicitly solved subject to the boundary
conditions ∆(0) = 1, A(0) = 0, corresponding to asymptotic
behaviour as r →∞.
• In this way, one obtains three families of Reissner-Nordstrom

solutions, with solution classes separating according to the

sign of the integration constant v2 = γij
dφ̂i

dτ
dφ̂j

dτ = −c2, which
characterizes the geodesic on SO(2, 1)/SO(1, 1) as spacelike
(v2 < 0), lightlike (v2 = 0) or timelike (v2 > 0).
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Reissner-Nordstrom solution families

312 P. Breitenlohner, D. Maison, and G. Gibbons 

The  equa t ion  

A : (A + cosh fl)2 _ sinh2 fl (4.8) 

shows tha t  the geodesics are pa rabo lae  hit t ing the axis A = 0 a t  A = s i n h / ~ -  cosh/~ 

= - q -  l ( m -  ~ . ~ )  for • = - oo respectively r = ro + ~ / ~  = m + ~ --  q2 

for the s t andard  choice r o = m. This  is the posi t ion of  the event  horizon.  The  

solut ion for v 2 = 0  is ob ta ined  letting v , / ~ 0  with their rat io tending to m. The  

result is the extreme Re i s sne r -Nords t rom solut ion (q2= m 2) given by 

A = (1 -- m J -  z,  A = mz(1 -- ray) - 1. (4.9) 

This  t ime the p a r ab o l a  A = (A + 1) z just  touches  the A = 0 axis at A = - 1 for r = %, 

the posi t ion of  the degenerate  horizon.  

The  space-like geodesics with v z < 0  are ob ta ined  by analyt ic  cont inua t ion  

f rom v z > 0 replacing v by iv and  [3 by ifl. One obta ins  the over -ex t reme solut ions 

given by  (v = ] / ~ )  sin z fl sinvz 

A -  s inZ( /~_w),  A =  s in ( /~ -w)"  (4.10) 

These  geodesics do not  reach A = 0, but  A tends to infinity for the finite value 
/ ~ - ~  

z = of  the affine parameter ,  cor responding  to  r = ro - v coth/~ = ro - m. This  is 
v 

the posi t ion of the naked  singularity. 

Since the metr ic  (4.5) is tha t  of  2-dimensional  de Sitter space we m a y  illustrate 

these facts by means  o f a  Car te r -Penrose  d i ag ram shown in Fig. 1. This  figure m a y  

be ob ta ined  by  setting 2 - 1  = A and z = 2A in Fig. 2.2b of  [13, p. 66]. In  Fig. 1 light 

rays are at 45 ° and  the dashed (dots) indicate curves of  cons tan t  A(A)  respectively. 

The  vanishing of A cor responds  to future or  pas t  t ime-like infinity. I f  v z > 0 the 

A=O A=O 

. . . .  , / / ~ o  . - \ , "  , - - .  " , .  ' .  . ~ " < " . ~  , • . . 

- - • , : .  < . .  . ,  .. - - . -  

.. . , , . .  . . : , , . .  ,, . . . , , .  .. 

A=O 

Fig. l. Carter-Penrose diagram for 2-dimensional de Sitter space. The curves a, b, c are examples of 
time-like, light-like, space-like geodesic segments respectively corresponding to the solutions 
(4.7-10) Carter-Penrose diagram for two-dimensional de Sitter space.

Curves a, b & c are examples of timelike, lightlike and spacelike
geodesics.

• The timelike geodesic with v2 > 0 corresponds to a
non-extremal Reissner-Nordstrom solution.
• The lightlike geodesic with v2 = 0 corresponds to an extremal

Reissner-Nordstrom solution.
• The spacelike geodesic with v2 > 0 corresponds to an

over-extremal Reissner-Nordstrom solution with a naked
singularity where ∆ =∞. Breitenlohner, Gibbons & Maison 1988 10 / 21



Charges
Define the Komar two-form K ≡ ∂µκνdxµ ∧ dxν . This is invariant
under the action of the timelike isometry and, by the asymptotic
hypersurface orthogonality assumption, is asymptotically
horizontal. This condition is equivalent to a requirement that the
scalar field B dual to the Kaluza-Klein vector arising by dimensional
reduction out of the metric vanish like O(r−1) as r →∞. In this
case, one can define the Komar mass and NUT charge by (where
s∗ indicates a pull-back to a section) Bossard, Nikolai & K.S.S.

m ≡ 1

8π

∫
∂Σ

s∗ ? K n ≡ 1

8π

∫
∂Σ

s∗K

The Maxwell field also defines charges. Using the Maxwell field
equation d ? F = 0, where F ≡ δL/δF is a linear combination of
the two-form field strengths F depending on the four-dimensional
scalar fields, and using the Bianchi identity dF = 0 one obtains
conserved electric and magnetic charges

q ≡ 1

2π

∫
∂Σ

s∗ ? F p ≡ 1

2π

∫
∂Σ

s∗F
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Now consider these charges from the three-dimensional point of
view in order to clarify their transformation properties under the
three dimensional duality group G (in our Maxwell-Einstein
example, G = SU(2, 1)).

The three-dimensional theory is described in terms of a coset
representative V ∈ G/H∗. The Maurer–Cartan form V−1dV
decomposes as

V−1dV = Q + P , Q ≡ Qµdxµ ∈ h∗ , P ≡ Pµdxµ ∈ g	 h∗

Then the three-dimensional equations of motion can be rewritten
as d ? VPV−1 = 0, so the g-valued Noether current is ?VPV−1.

Since the three-dimensional theory is Euclidean, one cannot
properly speak of a conserved charge. Nevertheless, since ?VPV−1

is d-closed, the integral of this 2-form on a given homology cycle
does not depend on the representative of the cycle.
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As a result, for stationary solutions, the integral of this
three-dimensional current, over any space-like closed surface
containing in its interior all the singularities and topologically
non-trivial subspaces of a solution, defines a g	 h∗-valued charge
matrix C

C ≡ 1

4π

∫
∂Σ
?VPV−1

This transforms in the adjoint representation of G according to the
standard non-linear action. For asymptotically flat solutions, V
goes to the identity matrix asymptotically and the charge matrix C
in that case is given by the asymptotic value of the one-form P:

P = C
dr

r2
+O(r−2)
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Now express this in terms suitable for more general cases than our
simple Maxwell-Einstein example.

Let g4 be the algebra of the D = 4 symmetry group G and let h4

be the algebra of the D = 4 divisor group H. sl(2,R) ∼= so(2, 1) is
the algebra of the Ehlers group (i.e. the D = 3 duality group of
pure D = 4 gravity); so(2) is the algebra of its divisor group. Let
l4 be the h4 representation carried by the electric and magnetic
charges q and p. Then C can be decomposed into three
irreducible representations with respect to so(2)⊕ h4 according to

g	 h∗ ∼=
(
sl(2,R)	 so(2)

)
⊕ l4 ⊕

(
g4 	 h4

)
The metric induced by the Cartan-Killing metric of g on this coset
is positive definite for the first and last terms, and negative definite
for l4.

One associates the sl(2,R)	 so(2) component with the Komar
mass and the Komar NUT charge, and one associates the l4
component with the electromagnetic charges. The remaining
g4 	 h4 charges come from the Noether current of the
four-dimensional theory, which transforms in the adjoint of G .
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Characteristic equation

Breitenlohner, Gibbons and Maison proved that if G is simple, all
the non-extremal single-black-hole solutions of a given theory lie
on the H∗ orbit of a Kerr solution. Moreover, all static solutions
regular outside the horizon with a charge matrix satisfying
Tr C 2 > 0 lie on the H∗-orbit of the Schwarzschild solution.
(Turning on and off angular momentum requires consideration of
the D = 2 duality group generalizing the Geroch A1

1 group, and
will be considered in future work.)

Using Weyl coordinates, the coset representative V associated to
the Schwarzschild solution with mass m can be written in terms of
the non-compact generator h of sl(2,R) only, i.e.

V = exp

(
1

2
ln

r −m

r + m
h

)
→ C = mh
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For the maximal N = 8 theory with symmetry E8(8) (and also for
the exceptional ‘magic’ N = 2 supergravity Gunaydin, Sierra & Townsend

with symmetry E8(−24)), one finds

h5 = 5h3 − 4h

I Consequently, the charge matrix C satisfies in all cases

C 5 = 5c2C 3 − 4c4C

where c2 ≡ 1
k Tr C 2 is the extremality parameter (vanishing

for extremal solutions) and k ≡ Tr h2 > 0.

I For all but the two exceptional E8 cases, a stronger constraint
is satisfied by the charge matrix C :

C 3 = c2C
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Supersymmetry ‘Dirac equation’
Extremal solutions have c2 = 0, implying that the charge matrix C
becomes nilpotent: C 5 = 0 in the E8 cases and C 3 = 0 otherwise.

For N extended supergravity theories, one finds
H∗ ∼= Spin∗(2N )× H0 and the charge matrix C transforms as a
Weyl spinor of Spin∗(2N ) valued in a representation of h0. Define
the Spin∗(2N ) fermionic oscillators

ai :=
1

2

(
Γ2i−1 + iΓ2i

)
ai ≡ (ai )

† =
1

2

(
Γ2i−1 − iΓ2i

)
for i , j , · · · = 1, . . . ,N . These obey standard anticommutation
relations

{ai , aj} = {ai , aj} = 0 , {ai , a
j} = δji

Using this oscillator basis, the charge matrix C can be represented
as a state

|C 〉 ≡
(

W + Zija
iaj + Σijkla

iajakal + · · ·
)
|0〉
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From the requirement that dilatino fields be left invariant under an
unbroken supersymmetry of a BPS solution, one derives a ‘Dirac
equation’ for the charge state vector,

(
εiαai + Ωαβε

β
i ai
)
|C 〉 = 0

where (εiα, ε
α
i ) is the asymptotic (for r →∞) value of the Killing

spinor and Ωαβ is a symplectic form on C2n for n/N preserved
supersymmetry.

This equation encapsulates all information about solutions with
residual supersymmetry and allows for a complete analysis of the
BPS sector. Analysis of the BPS conditions can now be reduced to
calculations with the fermionic oscillators.

Note that extremal and BPS are not always synonymous
conditions, although generally they coincide. c2 = 0 is a weaker
condition than the supersymmetry Dirac equation.
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Almost Iwasawa decomposition
Earlier analysis of the orbits of the D = 4 symmetry groups Ḡ

Cremmer, Lü, Pope & K.S.S. heavily used the Iwasawa decomposition

g = u(g ,Z) exp
(

lnλ(g ,Z) z
)

b(g ,Z)

with u(g ,Z) ∈ H̄ and b(g ,Z) ∈ BZ where BZ ⊂ Ḡ is the ‘parabolic’
(Borel) subgroup that leaves the charges Z invariant up to a
multiplicative factor λ(g ,Z). This multiplicative factor can be
compensated for by ‘trombone’ transformations combining Weyl
scalings with compensating dilational coordinate transformations,
leading to a formulation of ‘active’ symmetry transformations that
map solutions into other solutions with unchanged asymptotic
values of the spacetime metric and asymptotic scalar values.

I The D = 4 ‘trombone’ transformation finds a natural home in
the parabolic subgroup of the D = 3 duality group G .

I However, the D = 3 analysis is complicated by the fact that
the Iwasawa decomposition breaks down for noncompact
divisor groups H∗.
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I The Iwasawa decomposition does, however work “almost
everywhere” in the D = 3 solution space. The places where it
fails are precisely the extremal suborbits of the duality group.

I This has the consequence that G does not act transitively on
its own orbits. There are G transformations which allow one
to send c2 → 0, thus landing on an extremal (generally BPS)
suborbit. However, one cannot then invert the map and return
to a generic non-extremal solution from the extremal solution
reached on a given G trajectory.
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Conclusions
The understanding of duality group orbits for stationary
supergravity solutions has been deepened in the following ways.

I The Noether charge matrix C satisfies a characteristic
equation C 5 = 5c2C 3 − 4c4C in the maximal E8 cases and
C 3 = c2C in the non-maximal cases, where c2 ≡ 1

k Tr C 2 is
the extremality parameter.

I Extremal solutions are characterized by c2 = 0, and C
becomes nilpotent (C 5 = 0 viz. C 3 = 0) on the corresponding
suborbits.

I BPS solutions have a charge matrix C satisfying an algebraic
‘supersymmetry Dirac equation’ which encodes the general
properties of such solutions. This is a stronger condition than
the c2 = 0 extremality condition.

I The orbits of the D = 3 duality group G are not always acted
upon transitively by G . This is related to the failure of the
Iwasawa decomposition for noncompact divisor groups H∗.
The Iwasawa failure set corresponds to the extremal suborbits.
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