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AdS cosmology: basic idea

Hertog, Horowitz

Starting point: supergravity solutions in which

smooth, asymptotically AdS initial data evolve

to a big crunch singularity in the future.

Can a dual gauge theory be used to study this

process in quantum gravity?
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AdS cosmologies: basic idea

Hertog, Horowitz

• AdS: boundary conditions required

• Usual supersymmetric boundary conditions: stable

• Modified boundary conditions: smooth initial data 

that evolve into big crunch (which extends to the 

boundary of AdS in finite time)

• AdS/CFT relates quantum gravity in AdS to field 

theory on its conformal boundary

• Modified boundary conditions � potential 

unbounded below in boundary field theory; scalar 

field reaches infinity in finite time

• Goal: learn something about cosmological 

singularities (in the bulk theory) by studying 

unbounded potentials (in the boundary theory) 
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AdS cosmology: the bulk theory

Compactify 11d sugra on S7 and truncate (consistently) to

This describes a scalar whose mass squared is negative but above the BF bound.

In all solutions asymptotic to the AdS4 metric

the scalar field decays at large radius as

Consider AdS invariant boundary conditions

de Wit, Nicolai

Duff, Liu

Hertog, Maeda

S =

∫
d4x

√−g
[

1

2
R− 1

2
(∇ϕ)2 +

1

R2AdS
(
2 + cosh(

√
2ϕ)

)

]

ds2 = R2AdS

(
−(1 + r2)dt2 +

dr2

1 + r2
+ r2dΩ2

)

ϕ(r) ∼ α(t,Ω)

r
+

β(t,Ω)

r2

β = −hα2
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AdS cosmology: bulk solution

Hertog, Horowitz

For              , there exist smooth asymptotically AdS initial data that evolve to a singularity that

reaches the boundary of AdS in finite global time.

Standard supersymmetric boundary conditions:

Example: analytic continuation of Euclidean instanton

leads to Lorentzian cosmology:

• inside the lightcone (corresponding to the origin of the Euclidean

instanton): open FRW universe with scale factor that vanishes at

some finite time                  . 

• outside the lightcone: asymptotic behavior

ds2 =
dρ2

b2(ρ)
+ ρ2dΩ3 with

t = π/2

α(t) =
α(0)

cos t
with

β = −hα2

h = 0

h �= 0

ϕ(r) ∼ α

r
+

β

r2

ϕ(ρ) ∼ α

ρ
+

β

ρ2

ϕ ∼ α(t)

r
− hα2(t)

r2
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AdS cosmology: dual field theory

M-theory on AdS4 x S7 dual M2-brane CFT on 

• With usual boundary conditions             , the scalar field  is dual to a dimension 1 operatorβ = 0 φ

α↔ 〈O〉The expectation value of       is determined by the asymptotic behavior of    :O φ

• Boundary conditions with              correspond to deforming the CFT by a triple trace operator:

This corresponds to a potential that is unbounded from below, and         becomes infinite in

finite time:

〈O〉

〈O〉 = α(t) =
α(0)

cos t

Aharony, Oz, Yin

Witten; Berkooz, Sever, Shomer; 

Hertog, Maeda

Maldacena

R× S2

ϕ(r) ∼ α

r
+

β

r2

O =
1

N
TrTijφ

iφj

β = −hα2

h �= 0

S → S +
h

3

∫
O3

Hertog, Horowitz



7

AdS cosmology: toy model for the boundary theory

Hertog, Horowitz

Ignore the non-abelian structure in                                        and replace by the square of a

single scalar field:
O

We find a scalar field theory with standard kinetic term and potential

The quadratic term corresponds to the conformal coupling to the curvature of the S2.

V

O =
1

N
TrTijφ

iφj

O → φ2

φ

V =
1

8
φ2 − h

3
φ6
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AdS cosmology: what happens when the field reaches infinity?

Hertog, Horowitz;   Elitzur, Giveon, Porrati, Rabinovici;   Banks, Fischler

V• Classical solution:

Field reaches infinity at finite time

• Semiclassically: field tunnels out of metastable

minimum and reaches infinity at finite time.

• Quantum mechanics of the homogeneous mode:

theory of quantum mechanics with unbounded

potentials.

Self-adjoint extensions of Hamiltonian: field bounces

back from infinity.

• Quantum field theory with unbounded potentials: 

not much known. Particle creation may be important.

• Regularization by adding irrelevant operator           to potential: big crunch replaced by

large black hole. Thermalization?

t = π/2 φ

φ8

M

V =
1

8
φ2 − h

3
φ6

φ =
(3/8h)1/4

cos1/2 t
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AdS cosmology: questions

V

• Can we perform computations in M2-brane theory?

• How can we interpret the unstable potential?

� Brane nucleation

• Do self-adjoint extensions make sense in field theory?

• If so, how does a wavepacket evolve after it reaches

infinity?

• If so, what is the bulk interpretation?

φ

Bernamonti, BC
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Plan

• AdS cosmology: review of basic idea

• ABJM theory and an unstable triple trace deformation

• Beyond the singularity? Self-adjoint extensions

• Summary and outlook



11

ABJM theory: action

S =

∫
d3x

[
k

4π
ǫµνλTr(Aµ∂νAλ +

2i

3
AµAνAλ − Âµ∂νÂλ −

2i

3
ÂµÂνÂλ)

Tr(DµY
A)†DµY A + Vbos + terms with fermions

]

Vbos = −4π2

3k2
Tr
[
Y AY †

AY
BY †

BY
CY †

C + Y †
AY

AY †
BY

BY †
CY

C

+4Y AY †
BY

CY †
AY

BY †
C − 6Y AY †

BY
BY †

AY
CY †

C

]

N = 6 superconformal U(N) x U(N) Chern-Simons-matter theory with levels k and -k

• Gauge fields         and

• Scalar fields                                   in fundamental of                   and in               of gauge group

Aµ Âµ

Y A, A = 1, . . . 4 SU(4)R (N, N̄)

Aharony, Bergman, Jafferis, Maldacena
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ABJM theory: brane interpretation and gravity dual

ABJM theory is worldvolume action of N coincident M2-branes on        orbifold of

ds2 =
R2

4
ds2AdS4 + R2ds2S7

yA → exp(2πi/k)yA

F4 ∼ N ′ǫ4

R

lp
= (32π2N ′)1/6

Zk C
4

Zk :

Coupling constant of ABJM theory is 1/k  � “’t Hooft” limit:  large N with N/k fixed. 

Gravity dual:          orbifold of                        :Zk AdS4 × S7

Can write

Orbifold identification makes      periodicity        .  In ’t Hooft limit: weakly coupled IIA string theory.χ

ds2S7 = (dχ + ω)2 + ds2
CP 3

Aharony, Bergman, Jafferis, Maldacena

(N ′ = kN)

2π

k
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A triple trace deformation of ABJM theory

O =
1

N2
Tr(Y 1Y †

1
− Y 2Y †

2
)

V = − f

N4

[
Tr(Y 1Y †

1
− Y 2Y †

2
)
]3

Scalar field      of consistent truncation of sugra survives        quotient

� Bulk analysis extends to k>1.  Will study ’t Hooft limit  (large N with N/k fixed).

ϕ Zk

Dimension 1 chiral primary operator with same symmetry properties as      under   :ϕ SU(4)R

Triple trace deformation:

Vertex in double line notation:

Will find beta function at order 1/N2

BC, Hertog, Turok

Quantum corrections: is effective potential truly unbounded below?

� Sensitive to UV behavior! (Does one need to turn on irrelevant operators?)

Elitzur, Giveon, Porrati, Rabinovici
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Warm-up: O(N) vector model

S =

∫
d3x

(
−∂µ&φ · ∂µ&φ−

λ

N2

(
&φ · &φ

)3)

β(λ) =
9λ2

π2N
− 9λ3

32π2N

λ∗ = 32

λc =
8π2

3
< λ∗

Perturbative beta function up to order 1/N:

• Perturbative UV fixed point:

• Non-perturbatively: UV fixed point at                                     (for    )

“instability” for                     (masses of order the cutoff)

Positive coupling :(λ > 0)

N = ∞
λ > λc

Negative coupling :(λ < 0)

• UV fixed point at               � asymptotic freedom, effective potential truly unbounded belowλ = 0

Stephen, McCauley; Stephen; Lewis, Adams; Pisarski

Coleman, Gross

Bardeen, Moshe, Bander
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Renormalization of triple trace deformation of ABJM theory: simplified

Consider simplified potential                                   with f > 0

Beta function β(−f) =
9f2

4π2N2
+ . . .

Callan-Symanzik:

Solution:

Coleman-Weinberg potential:

fµ =
8π2N2

9 ln(µ2/M2)

µ
df

dµ
= − 9f2

4π2N2

� Reliable for large Tr(Y Y †)

V = − f

N4

[
Tr(Y Y †)

]3

V (Y ) = − 8π2

9N2 ln[Tr(Y Y †)/M2]

[
Tr(Y Y †)

]3

Question: is this also true for                                 ?V = − f

N4

[
Tr(Y 1Y †

1
− Y 2Y †

2
)
]3



16

Warm-up: O(N) x O(N) vector model

S =

∫
d3x

[
−∂µ&φ1 · ∂µ&φ1 − ∂µ&φ2 · ∂µ&φ2 −

λ111
N2

(
&φ1 · &φ1

)3
− λ222

N2

(
&φ2 · &φ2

)3

−λ112
N2

(
&φ1 · &φ1

)2 (
&φ2 · &φ2

)
− λ122

N2

(
&φ1 · &φ1

)(
&φ2 · &φ2

)2]

Rabinovici, Saering, Bardeen
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Warm-up: O(N) x O(N) vector model

S =

∫
d3x

[
−∂µ&φ1 · ∂µ&φ1 − ∂µ&φ2 · ∂µ&φ2 −

λ111
N2

(
&φ1 · &φ1

)3
− λ222

N2

(
&φ2 · &φ2

)3

−λ112
N2

(
&φ1 · &φ1

)2 (
&φ2 · &φ2

)
− λ122

N2

(
&φ1 · &φ1

)(
&φ2 · &φ2

)2]

BC, Hertog, Turok

Rabinovici, Saering, Bardeen
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Warm-up: O(N) x O(N) vector model

S =

∫
d3x

[
−∂µ&φ1 · ∂µ&φ1 − ∂µ&φ2 · ∂µ&φ2 −

λ111
N2

(
&φ1 · &φ1

)3
− λ222

N2

(
&φ2 · &φ2

)3

−λ112
N2

(
&φ1 · &φ1

)2 (
&φ2 · &φ2

)
− λ122

N2

(
&φ1 · &φ1

)(
&φ2 · &φ2

)2]

BC, Hertog, Turok

Perturbative fixed points:

•

•

λ112 = λ122 = 3λ111 = 3λ222 = 3λ∗

λ222 = λ∗, λ112 = λ122 = λ111 = 0

Starting from                                                   at some scale          and running towards 

the UV, do we end up at one of these fixed points?

� Use beta functions to compute couplings as function of

V =
λ

N2

(
&φ1 · &φ1 − &φ2 · &φ2

)3
M0

t ≡ ln(M/M0)
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Perturbative UV fixed point in O(N) x O(N) vector model

λ222 = λ∗, λ112 = λ122 = λ111 = 0

Starting from                                                   , in the UV one reaches the fixed pointV =
λ

N2

(
&φ1 · &φ1 − &φ2 · &φ2

)3

BC, Hertog, Turok
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Non-perturbative effects in O(N) x O(N) vector model and deformed ABJM

• Perturbative analysis suggests that theory can be defined without UV cutoff

� no cutoff-suppressed irrrelevant operators that could stabilize the potential

• Perturbative analysis for deformed ABJM theory: similar but not completely carried out

• Non-perturbatively: regions of stability/instability identified for O(N) x O(N) vector model

at 

• Non-perturbative analysis not yet carried out for deformed ABJM theory; probably not very 

important for our purposes  (in progress…)  

N = ∞ Rabinovici, Saering, Bardeen

BC, Hertog, Turok
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Plan

• AdS cosmology: review of basic idea
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The homogeneous mode is a quantum mechanical variable

Boundary field theory lives on

time finite volume 

space

φ(t,x) = φ̄(t) + δφ(t,x)Decompose

First ignore inhomogeneous modes                , 

which start out in ground state. 
δφ(t,x)

Kinetic term for homogeneous mode: V3

∫
dt

1

2
˙̄φ2

finite “mass”

Wave function will undergo quantum spreading. This will give rise to UV cutoff on creation

of inhomogeneous modes.

BC, Hertog, Turok

R× S2



23

Quantum mechanics with unbounded potentials

Ĥ = − d2

dx2
+ V (x)

(Ĥφ1, φ2) = (φ1, Ĥφ2)

[
dφ∗

1

dx
φ2 − φ∗1

dφ2
dx

]

x=∞

= 0

with                  for               and                        for   .

For such potentials, classical trajectories can reach infinity in finite time. So do quantum 

mechanical wavepackets, which would seem to lead to loss of probability/unitarity. 

Unitarity can be restored by restricting the domain of allowed wavefunctions such that the 

Hamiltonian is self-adjoint (“self-adjoint extension”):

↔

The WKB energy eigenfunctions

are an increasingly good approximation for large x. Unitarity can be achieved by only allowing the

linear combination that for large x behaves as

x > 0

Reed, Simon

arbitrary phase

x < 0V (x) = 0

[2(E + x4)]−1/4 exp

(
±i
∫ x

0

√
2(E + y4)dy

)

ψαE(x) ∼ 1

x
cos

(√
2x3

3
+ α

)

V (x) = −x4
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Interpretation of the self-adjoint extensions

x

V

Rightmoving wavepacket disappearing

at infinity is always accompanied by

leftmoving wavepacket appearing at

infinity (think of brick wall at infinity)

Energy spectrum consists of bound states

(energy levels depend on phase     and 

are unbounded from below) as well as 

scattering states (if potential is bounded 

from above)

α

Carreau, Farhi, Gutmann, Mende
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Self-adjoint extensions for potential unbounded on two sides 

x

V

Self-adjoint extension has 4 parameters

Reed, Simon
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Self-adjoint extensions in 2d quantum mechanics

H = − d2

dx2
− d2

dy2
− (x2 + y2)2

• SA extensions labeled by arbitrary function

subject to

(infinite number of parameters) 

• If rotational invariance imposed:

• If local probability conservation is imposed:

g(θ, θ′) g(θ, θ′) = g∗(θ′, θ)

g(θ − θ′)

αδ(θ − θ′)

one parameter

Carreau, Farhi, Gutmann, Mende
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Self-adjoint extensions in quantum field theory

Main observation: spatial gradients become unimportant near the singularity

� evolution becomes ultralocal

Different spatial points decouple, and we can try to define a self-adjoint extension point by point

∂2φ = −λφ3 +
1

6
R(S3)φEquation of motion:

Ricci scalar; ignore for large φ

Homogeneous background solution:                                .φ =
√

(2/λ) t−1

Can construct generic, spatially inhomogeneous solution to e.o.m. in expansion around 

space-like singular surface                            where      is infinite:

V = −λ

4
φ4

χ = (2/λ)1/2φ−1Define                                    .

time delay

energy perturbation

(non-linear in          )

φ

χ(t,x) = −t + ts(x) +
1

6
t2∇2ts −

1

24
t4(∇4ts) + . . .

ts, ρ−λρ(x)

10
t5 + · · ·+

x

t

Σ : t = ts(x)

Σ : t = ts(x)

BC, Hertog, Turok
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Simplified model: two lattice points

H =
1

2
(π21 + π22)− λ

4
(φ41 + φ42) + k2(φ1 − φ2)

2

cf. two particles connected by spring in           potential−x4

V

φφ1φ2

Suppose       hits infinity first:

φ̈2 ≈
2k2

|t|Then (because of                       coupling), leading to divergent acceleration

φ1

φ1 ≈
√

2

λ

1

|t| (t ↑ 0)

and velocity as           , but finite displacement:t ↑ 0 φ1 ≈
√

2

λ

1

|t| , φ2 ≈ const (t ↑ 0)

� effect of gradient interaction is small � ultralocality

However: complications start just after        has hit infinity…φ1

−2k2φ1φ2

BC, Hertog, Turok
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Simplified model: two lattice points

H =
1

2
(π21 + π22)− λ

4
(φ41 + φ42) + k2(φ1 − φ2)

2

V

φφ1φ2

φ1 ≈
√

2

λ

1

|t| (t ↑ 0)

At            , particle 2 has infinite velocity

� immediately hits infinity � model degenerates

t = 0

Cure:  Do not put brick wall.  Rather, let        reappear at   after disappearing at

BC, Hertog, Turok

φ1 −∞ +∞
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Summary

• AdS cosmology: study cosmological singularity by studying field theories with potentials 

unbounded below

• Specific case: ABJM theory with unstable triple trace deformation.  Studied quantum effective

potential and found perturbative UV fixed point in closely related model

• Self-adjoint extensions: prescriptions to continue time evolution beyond the singularity. Subtle 

in QFT, but concrete proposal is being developed 
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Outlook: big crunch/big bang cosmology?

• Take a state in the bulk theory (with modified boundary conditions)

• Translate to state in dual boundary theory (with unbounded potential)

• Evolve state through singularity using self-adjoint extension

• Translate evolved state back to state in bulk theory and see what it looks like

Program (in principle):

� If only homogeneous mode in boundary theory: final state would roughly resemble initial state.

� Inhomogeneous modes � particle creation: potentially attractive for cosmology, but need to 

make sure backreaction is small enough

� Deformed ABJM theory: number of created particles suppressed by inverse power of N 

� preliminary result: large probability to bounce

(Unlike related                SYM model)N = 4

BC, Hertog, Turok


