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AdS/CFT:
progress largely using limited tools
of supergravity + probe actions
Need to understand quantum AdS5 × S5 string theory

Problems for string theory:

• spectrum of states (energies/dimensions as functions of λ)

• construction of vertex operators: closed and open (?) string
ones

• computation of their correlation functions

• expectation values of various Wilson loops

• gluon scattering amplitudes (?)

• generalizations to simplest less supersymmetric cases

............



AdS5 × S5

Recent remarkable progress in quantitative understanding
interpolation from weak to strong ‘t Hooft coupling
based on/checked by perturbative gauge theory (4-loop in λ)
and perturbative string theory (2-loop in 1√

λ
) “data”

and assumption of exact integrability
string energies = dimensions of gauge-invariant operators

E(
√
λ,C,m, ...) = ∆(λ,C,m, ...)

C - “charges” of SO(2, 4)× SO(6): S1, S2; J1, J2, J3

m - windings, folds, cusps, oscillation numbers, ...
Operators: Tr(ΦJ1

1 ΦJ2
2 ΦJ3

3 DS1
+ DS2

⊥ ...Fmn...Ψ...)

Solve susy 4-d CFT
= Solve superstring in R-R background (2-d CFT):
compute E = ∆ for any λ (and C,m)



Perturbative expansions are opposite:
λ� 1 in perturbative string theory
λ� 1 in perturbative planar gauge theory
Last 7 years – remarkable progress:
“semiclassical” string states with large quantum numbers

dual to “long” gauge operators (BMN, GKP, ...)
E = ∆ – same (in some cases !) dependence on C,m, ...

coefficients = interpolating functions of λ

Current status:
1. “Long” operators = strings with large quantum numbers:
asymptotic Bethe Ansatz (ABA) [Beisert, Eden, Staudacher 06]
firmly established (including non-trivial phase factor)
2. “Short” operators = general quantum string states
Partial progress based on impriving ABA by
“Luscher corrections” [Janik et al]
Attempts to generalize ABA to TBA [Arutyunov, Frolov 08]



Very recent (complete ?) proposal for underlying “Y-system”
[Gromov, Kazakov, Vieira 09]

To justify need first-principles understanding of quantum
AdS5 × S5 superstring theory:
1. Solve string theory in AdS5 × S5 on R1,1

→ relativistic 2d S-matrix (including dressing phase if needed);
asymptotic BA for the spectrum
2. Generalize to finite-energy closed strings – theory on R× S1

→ TBA as for standard sigma models

Reformulation in terms of currents with Virasoro conditions solved
(“Pohlmeyer reduction”) seems promising approach
[Grigoriev, AT]



String Theory in AdS5 × S5

bosonic coset SO(2,4)
SO(1,4) ×

SO(6)
SO(5)

generalized to supercoset PSU(2,2|4)
SO(1,4)×SO(5) [Metsaev, AT 98]

S = T

∫
d2σ
[
Gmn(x)∂xm∂xn + θ̄(D + F5)θ∂x

+ θ̄θθ̄θ∂x∂x+ ...
]

tension T = R2

2πα′ =
√
λ

2π

Conformal invariance: βmn = Rmn − (F5)2
mn = 0

Classical integrability of coset σ-model (Luscher-Pohlmeyer 76)
also for AdS5 × S5 superstring (Bena, Polchinski, Roiban 02)
Progress in understanding of implications of (semi)classical
integrability (Kazakov, Marshakov, Minahan, Zarembo 04,...)
Computation of 1-loop quantum superstring corrections
(Frolov, AT; Park, Tirziu, AT, 02-04, ...)



Quantum string results were used as input for 1-loop term
in strong-coupling expansion of the phase θ in BA
(Beisert, AT 05; Hernandez, Lopez 06)

Tree-level S-matrix of BMN states from AdS5 × S5 GS string
agrees with limit of elementary magnon S-matrix
(Klose, McLoughlin, Roiban, Zarembo 06)

2-loop string corrections (Roiban, Tirziu, AT; Roiban, AT 07)
2-loop check of finiteness of the GS superstring;
agreement with BA
– implicit check of integrability of quantum string theory
– non-trivial confirmation of BES exact phase in BA
(Basso, Korchemsky, Kotansky 07)



Key example of weak-strong coupling interpolation:
Spinning string in AdS5

Folded spinning string in flat space:
X1 = ε sinσ cos τ, X2 = ε sinσ sin τ

ds2 = −dt2 + dρ2 + ρ2dφ2 = −dt2 + dXidXi

t = ετ , ρ = ε sinσ , φ = τ

If tension T = 1
2πα′ ≡

√
λ

2π

energy E = ε
√
λ and spin S = ε2

2

√
λ satisfy Regge relation:

E =
√

2
√
λS

AdS5:
(de Vega, Egusquiza 96; Gubser, Klebanov, Polyakov 02)

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dφ2

t = κτ, φ = wτ, ρ = ρ(σ)



ρ′2 = κ2 cosh2 ρ− w2 sinh2 ρ, 0 < ρ < ρmax

coth ρmax =
w

κ
≡
√

1 +
1
ε2

ε measures length of the string

sinh ρ = ε sn(κε−1σ, −ε2)

periodicity in 0 6σ < 2π

κ = ε 2F1(
1
2
,

1
2

; 1;−ε2)

classical energy E0 =
√
λE0 and spin S =

√
λS

E0 = ε 2F1(−1
2
,

1
2

; 1;−ε2), S =
ε2
√

1 + ε2

2 2F1(
1
2
,

3
2

; 2;−ε2)

solve for ε as in flat space – get analog of Regge relation

E0 = E0(S) , E0 =
√
λ E0(

S√
λ

)



Flat space – AdS interpolation:
E0 ∼

√
S at S � 1 , E0 ∼ S at S � 1

Novel AdS “Long string” limit: ε� 1, i.e. S � 1

E0 = S +
1
π

lnS + ...

S → ∞: ends of string reach the boundary (ρ =∞)
solution drastically simplifies

t = κτ, φ ≈ κτ, ρ ≈ κσ , κ ∼ ε ∼ lnS → ∞

string length is infinite, R×R effective world sheet
E = S from massless end points at AdS boundary (null geodesic)

E − S =
√
λ
π lnS from tension/stretching of the string

ρ = κσ + ..., S ∼ e2κ,
κ ∼ lnS=length of the string:
1
Sn ∼ e

nκ – finite size corrections



For S → ∞ can compute quantum superstring corrections to E
remarkably, they respect the S + lnS structure:
string solution is homogeneous→ const coeffs
κ ∼ lnS → ∞ is “volume factor”
Semiclassical string theory limit

1. λ� 1 , S =
S√
λ

= fixed, 2. S � 1

E = S + f(λ) lnS + ... ,

f(λ� 1) =

√
λ

π

[
1 +

a1√
λ

+
a2

(
√
λ)2

+ ...
]

an–Feynmann graphs of 2d CFT – AdS5 × S5 superstring
a1 = −3 ln 2: Frolov, AT 02
a2 = −K: Roiban, AT 07

K =
∑∞
k=0

(−1)k

(2k+1)2 = 0.915 (2-loop σ-model integrals)



Gauge theory: dual operators – minimal twist ones
Tr(ΦDS

+Φ), ∆− S − 2 = O(λ)
Remarkably, same lnS asymptotics of anomalous dimensions
on gauge theory side [symmetry argument: Alday, Maldacena]
Perturbative gauge theory limit:

1. λ� 1 , S = fixed; 2. S � 1

∆− S − 2 = f(λ) lnS + ...

f(λ� 1) = c1λ+ c2λ
2 + c3λ

3 + c4λ
4 + ...

=
1

2π2

[
λ− λ2

48
+

11λ3

28 × 45
− (

73
630

+
4(ζ(3))2

π6
)
λ4

27
+ ...

]
cn are given by Feynmann graphs of 4d CFT – N=4 SYM
c3: Kotikov, Lipatov, et al 03;
c4: Bern, Czakon, Dixon, Kosower, Smirnov 06;



The two limits are formally different
but for leading lnS term that does not appear to matter→
single f(λ) provides smooth interpolation
from weak to strong coupling

remarkably, both expansions are reproduced from one
Beisert-Eden-Staudacher integral equation for f(λ)
[strong coupling expansion:
numerical – Benna, Benvenuti, Klebanov, Scardicchio 07;
analytic – Basso, Korchemsky, Kotansky 07;
Kostov, Serban, Volin 08]

exact expression for f(λ) from BES equation?

true meaning of non-perturbative e−
1
2

√
λ terms

in strong-coupling expansion?



One direction: study in detail semiclassical string states
for various values of parameters including α′ ∼ 1√

λ
corrections

Principles of comparison: gauge states vs string states
1. look at states with same global SO(2, 4)× SO(6) charges
e.g., (S, J) – “SL(2) sector” – Tr(DS

+ΦJ)
J=twist=spin-chain length
2. assume no “level crosing” while changing λ
min/max energy (S, J) states should be in correspondence

Gauge theory:
∆ ≡ E = S + J + γ(S, J,m, λ) , γ =

∑∞
k=1 λ

kγk(S, J,m)
m stands for other conserved charges labelling states
(e.g., winding in S1 ⊂ S5 or number of spikes in AdS5)
fix S, J, ... and expand in λ; may then expand in large/small S, J, ...

String theory:
E = S + J + γ(S,J ,m,

√
λ) ,



γ =
∑∞
k=−1

1
(
√
λ)k

γ̃k(S,J ,m)

S = S√
λ
, J = J√

λ
, m

- semiclassical parameters fixed in the 1√
λ

expansion

Various possible limits:
(i) BMN-like “fast-string” limit – “locally-BPS” long oprators
GT: J � 1, S

J =fixed, m=fixed

ST: J � 1, S
J =fixed, m=fixed

direct agreement of first few orders in 1
J

(including 1- and 2-loop string corrections)
to 1- and 2-loop gauge theory spin chain results
including 1/J and 1/J2 finite size corrections
(Frolov, AT 03; Beisert, Minahan, Staudacher, Zarembo 03; ...)
“non-renormalization” due to susy (and structure)
no interpolation functions of λ, no need to resum J dependence

E = S + J + λ
J

[
h1(SJ ,m) + 1

J h2(SJ ,m) + ...
]

+ ...



captured by effective Landau-Lifshitz model
on both string and spin chain side
need interpolation functions at higher orders (dressing phase)

(ii) “Slow Long strings” – long non-BPS operators like Tr(ΦDS
+Φ)

GT: lnS � J � 1
ST: lnS � J , J = 0 or J =fixed
E = S + f(λ) lnS + ...

S dependence is same but need an interpolatig function
f(λ� 1) = a1

√
λ+ ... , f(λ� 1) = c1λ+ ...

(iii) “Fast Long strings”
GT: S � J � 1, j ≡ J

lnS=fixed

ST: S � J � 1, ` ≡ J
lnS =fixed = j√

λ

GT: E = S + f(j, λ) lnS + ...

f = a1(λ)j + a2(λ)j3 + ...



ST: E = S + f(`,
√
λ) lnS + ...

f =
√
λ
√

1 + `2 +(c1 +c2`
2 ln `+ ...)+ 1√

λ
(c3`2 ln2 `+ ...)+ ...

[Belitsky, Gorsky, Korchemsky 06; Frolov, Tirziu, AT 06;
Alday, Maldacena 07, Freyhult, Rej, Staudacher 07;
Roiban, AT 07; Kostov, Serban, Volin 08; Basso, Korchemsky 08;
Gromov 08, Fioravanti et al 08, ...]
need a resummation in both λ and ` (or j) to match
general situation – G and S limits do not commute



Large S expansion for spinning string:
1. subleading terms in large-spin expansion?
compare to gauge theory – also partially controlled by
functional relation and reciprocity?
2. dependence on spin parameter is same (i.e. coefficients are
interpolating functions as in cusp anomaly case) or we
do need to resum also the spin dependence to compare?
3. formal small-spin limit – may shed light on dimensions of short
operators at strong coupling if (?) limits commute
[Beccaria, Forini, Tirziu, AT 08; Tirziu, AT 08]

Subleading terms in large S expansion
string has large but finite length: does not reach boundary
E0 =

√
λ E(S): expand in large S

E0(S � 1) = S + a0 lnS + a1 +
1
S

(a2 lnS + a3)



+
1
S2

(a4 ln2 S + a5 lnS + a6) +O(
ln3 S
S3

)

a0 =
√
λ
π , a1 =

√
λ
π ln(8π)− 1, ....

Coefficients of lnk S
Sk terms happen to be related

to coefficient of lnS as suggested by
“functional relation” (Basso, Korchemsky 06)

E − S = f(E + S) = a0 ln(S +
1
2
a0 lnS + ...) + ...

a2 =
1
2
a2

0, a4 = −1
8
a3

0, ...

Simple explanation:
look at near boundary limit where for large S
string end moves moves along nearly null line at the boundary:
pp-wave limit: cusp anomaly as “pp-wave” anomaly
(Kruczenski, AT 08)



pp-wave limit effectively establishes contact with
collinear conformal group in the boundary theory
(Ishizeki, Kruczenski, Titziu, AT 08)

Some of coefficients in large S expansion are related
due to reciprocity property in gauge theory
true also at strong coupling
(Basso, Korchemski 06; Beccaria, Forini, Tirziu, AT 08)



Dimensions of short operators = quantum string states:

progress in understanding spectrum of conformal dimensions
of planar N = 4 SYM or spectrum of strings in AdS5 × S5

based on (partly proved/checked) assumption of
quantum integrability
Spectrum of states with large quantum numbers –
solution of ABA equations
key example: cusp anomaly function
Recent proposal of how to extend this to “short” states
with any quantum numbers – TBA or “Y-system” approach
so far not checked/compared to direct quantum string results

Aim: compute leading α′ ∼ 1√
λ

correction to dimension of

“lightest” massive string state
dual to Konishi operator in SYM theory
– data for checking future (numerical) prediction of “Y-system”



Konishi operator:
a family of operators related by susy – same anomalous dimension
lowest canonical dimension examples:
Tr(Φ̄iΦi), i = 1, 2, 3, ∆ = 2 + γ , γ = O(λ)
Tr([Φ1,Φ2]2) in su(2) sector ∆ = 4 + γ

TrΦ1D
2
+Φ1 in sl(2) sector ∆ = 4 + γ

special case:
does not mix with others, eigen-state of anom. dim. matrix
with lowest eigenvalue
Weak coupling expansion: g2 = λ

(4π2) , λ = g2
YM
Nc

γ = 12g2− 48g4 + 336g6 + [−2496 + 576ζ(3)− 1440ζ(5)]g8 + ....

[4-loop results with wrapping:
Fiamberti, Santambrogio, Sieg, Zanon 08;
Bajnok, Janik; Velizhanin 08]



Finite radius of convergence (Nc =∞) – if we could sum up
and then re-expand at large λ – what to expect?

As discussed below:

λ� 1 : ∆(∆− 4) = 4
√
λ+ a+O( 1√

λ
)

∆ = 2 + 2
√√

λ
[
1 +

a+ 4
8
√
λ

+O( 1
(
√
λ)2

)
]

a = first correction to mass of string state

weak coupling = perturbative gauge theory:
operators built out of free fields, canonical dimension
(and susy) – constraints on mixing
operators of different canonical dimension do not mix
in gauge perturbation theory;
strong coupling = perturbative string theory:
string states built out of “flat-string” oscillators



large degeneracy of mass spectrum
how one interpolates from small to large λ ?
states from different flat-space levels do not mix in string pert.theory

AdS/CFT duality suggests that dual string state is
“lightest” massive type IIB string state

at large
√
λ = R2

α′

– small string at the center of AdS5 – nearly flat space
flat case: α′m2 = 4(n− 1), n = 1

2 (N + N̄) = 1, 2, ...
n = 1 massless (supergravity = BPS) level
n = 2 is the first massive level (many states, highly degenerate)
l.c. vacuum |0 >: (8 + 8)2 = 256 states
first excited level [(ai−1 + Sa−1)|0 >]2 = [(8 + 8)× (8 + 8)]2

in SO(9) reps:
([2, 0, 0, 0] + [0, 0, 1, 0] + [1, 0, 0, 1])2 = (44 + 84 + 128)2

curved background will lift degeneracy in mass



state with lightest mass at 1-st excited level
should correspond to Konishi op. (and its susy descendents)

Strategy: collect information about mass shifts of
different states at first massive string level

dimension of such state in AdS5 (with fixed n)
[−∇2 +m2]Φ + ... = 0

∆(∆− 4) = (mR)2 +O(α′) = 4(n− 1)R2

α′ +O(α′)

∆ = 2 +
√

(mR)2 + 4 +O(α′)

∆(λ� 1) =
√

4(n− 1)
√
λ+ ...

[Gubser, Klebanov, Polyakov 98]
first massive level:
n = 2 : ∆ = 2

√√
λ+ ...



How to compute strong-coupling corrections for short strings?

strong-coupling expansion for massive string states:
can use near-flat-space expansion
label states as in flat space: discrete set of oscillator states
“non-intersection principle” (Polyakov 01):
no level crossing for states with same quantum numbers
as λ changes from strong to weak coupling



Possible approaches:

(i) semiclassical approach:
identify short string state as a small-spin limit of
semiclassical string state
– reproduce the structure of strong-coupling corrections
to short operators
[Gubser,Klebanov,Polyakov 02; Frolov,AT 02,03;Tirziu,AT 08]

(ii) vertex operator approach:
use AdS5 × S5 string sigma model perturbation theory to find
leading terms in anomalous dimension of corresponding
vertex operator
[Polyakov 01; AT 03]



(iii) space-time effective action approach:
use near flat space expansion and NSR vertex operators
to reconstruct α′ corrections to corresponding
massive string state equation of motion
[Burrington, Liu 05]

(iv) “light-cone” quantization approach:
start with light-cone gauge AdS5 × S5 string action
and compute corrections to energy of
corresponding flat-space oscillator string state
[Metsaev, Thorn, AT 00; Roiban, AT ]



Semiclassical expansion: spinning strings

classical string solution with energy E and charge (spin) J
expand E in α′ → 0 or large

√
λ with J = J√

λ
kept fixed

E = E(
J√
λ
,
√
λ) =

√
λE0(J ) + E1(J ) +

1√
λ
E2(J ) + ...

in “short” string limit J � 1

En =
√
c0J (a0n + a1nJ + a2nJ 2 + ...)

expansion valid for
√
λ� 1 andJ = J√

λ
fixed, i.e. J ∼

√
λ� 1

imagine we knew all terms in this expansion – could express J
in terms of J , fix J to finite value and re-expand in

√
λ

E =
√
c0
√
λJ
[
a00 +

a10J + a01√
λ

+
a20J

2 + a11J + a02

(
√
λ)2

+ ...
]



akn coefficients of n-loop string corrections
If set J to finite value to trust the coefficient of 1

(
√
λ)n

need to know the coefficients of up to n-loop terms
knowledge of classical a10 and 1-loop a01 coefficient
is sufficient to fix 1√

λ
term E

but to fix the 1
(
√
λ)2

term need also 2-loop coefficient a02

[cf. “long/fast string” expansion J � 1 [Frolov, AT 03]:
for fixed J the tension

√
λ appeared in positive powers –

strong coup. expansion at fixed J – need to resum the series]
Example 1: short folded string in AdS5

(J → S =spin in AdS5) [Tirziu, AT 08]

c0 = 2, a00 = 1, a10 =
3
8
, a01 = 0.227(?)

a20 = − 21
128

, a11 = −1219
576

+
3
2

ln 2− 3
4
ζ(3), ...

[ a01 = −0.25... (numerical result of Gromov 08), =- 1/4 ]



Example 2: small circular string in S5 with J1 = J2 = J :
[Frolov, AT 03]
remarkable feature: classical energy same as in flat space:
a01 = a02 = ... = a0k = 0

c0 = 4, a00 = 1, a10 = 0, a01 = −1
2

a20 = 0 , a02 = 0, a11 = −3
4
− 3

2
ζ(3), ...

knowledge of 1-loop semiclassical string correction –
allows to predict leading strong-coupling correction
to energy for finite J

E = 2
√√

λJ
[
1− 1

2
√
λ

+O( 1
(
√
λ)2

)
]

not quite right at any J – misses possible finite integer shift
of J (and of E) due to exact zero-mode quantization
– will need to compare this with vertex operator approach



Some details:
Konishi state: J1 = J2 = 2
try represent it by “short” classical string with same charges
flat space Rt ×R4: circular string solution (σ ∈ (0, 2π))

x1 + ix2 = a ein(τ+σ) , x3 + ix4 = a ein(τ−σ)

E =
√

4
α′nJ, J = na2

α′

this solution can be directly embedded into
Rt × S5 in AdS5 × S5: [Frolov, AT 03]
string is on small sphere inside S5 X2

1 + ...+X2
6 = 1 (e.g. n = 1)

t = κτ , X1 + iX2 = sin γ0√
2
ei(τ+σ),

X3 + iX4 = sin γ0√
2
ei(τ−σ) , X5 + iX6 = cos γ0

J = J1 = J2 = 1
2 sin2 γ0 , E2 = κ2 = 2 sin2 γ0 = 4J



Remarkably, as in flat space

E =
√
λE =

√
4
√
λJ , J =

√
λJ

[cf. another (unstable) branch of J1 = J2 solution with J > 1
2 :

E0 =
√
J2 + λ =

√
λ(1 + J2

2
√
λ

+ ...) ]

1-loop quantum string correction to the energy:
sum of bosonic and fermionic fluctuation frequencies (n = 0, 1, 2, ...)
Bosons (2 massless + massive):

AdS5 : 4× ω2
n = n2 + 4J

S5 : 2× ω2
n± = n2 + 4(1− J )± 2

√
4(1− J )n2 + 4J 2

Fermions:

4× ω2
n
f
± = n2 + 1 + J ±

√
4(1− J )n2 + 4J

E1 =
1

2κ

∞∑
n=−∞

[
4ωn + 2(ωn+ + ωn−)− 4(ωn

f
+ + ωn

f
−)
]



expand in small J and do sums –
compute finite coefficients (UV divergences cancel)
normalize to flat space result in the J → 0 limit:
in flat space theory is gaussian – trivial 1-loop correction

E1 =
1√
J

[
− J − 3

2
(1 + 2ζ(3))J 2 − 1

4
(
5 + 6ζ(3) + 30ζ(5)

)
J 3 + . . .

]
E = E0 + E1 = 2

√√
λJ
[
1− 1

2
√
λ
− 3J

4λ
(1 + 2ζ(3)) + ...

]
If we could interpolate to J1 = J2 = 2 that would suggest
for Konishi state (2J = J1 + J2 → J1 + J2 − 2 = 2)

E = 2
√√

λ
[
1− 1

2
√
λ

+O( 1
(
√
λ)2

)
]

Similar expressions found for short folded string in AdS5

[Tirziu,AT 08; Gromov 08]

E =
√

2
√
λS
[
1 +

a0S + a1√
λ

+ ...
]
, a0 =

3
8
, a1 = −1

4



and for folded string with J1 = J2 in S5:
[Beccaria, Tirziu, AT 08]

E =
√

4
√
λJ
[
1 +

a0J + a1√
λ

+ ...
]
, a0 =

3
8
, ...

Aim:
compare this with dimensions of the corresponding quantum states
(eigen-states, not coherent states)



Dimensions of quantum string states
from target space anomalous dimension operator

Flat space: k2 = m2 = 4(n−1)
α′

e.g. leading Regge trajectory
(a†1ā

†
1)S/2|0 > or (∂x∂̄x)S/2eikx, n = S/2

Mass spectrum in (weakly) curved background?
solve marginality (1,1) conditions on vertex operators
deformed by curved background: determine anomalous
dimension operator (L0 + L̄0) and diagonalize it

Example of scalar anomalous dimension operator γ̂(G,B):
acts on T (x) =

∑
cn...mx

n...xm or on coefficients cn...m
differential operator in target space
found from β-function for the corresponding perturbation



I =
1

4πα′

∫
d2z[(Gmn +Bmn)(x)∂xm∂̄xn + T (x)]

βT = −2T − α′

2 γ̂ T +O(T 2)
γ̂ = ΩmnDmDn + ...+ Ωm...kDm...Dk + ...
Ωmn = Gmn + p1α

′Rmn + p2α
′Hm

klH
nkl +O(α′3)

p1 = 0, p2 = − 1
4 in DR with minimal subtraction

Ω.... ∼ α′nRp....Hq
...

for Hmnk = 0: to 3-loop order γ̂ = D2 + ...

Solve

− γ̂ T +m2T = 0, m2 = − 4
α′

i.e. diagonalize γ̂ – find anomalous dimension spectrum:
generalization of α′k2 = −4 in flat space

similar approach for massless (graviton, ...) and massive states



e.g. βGmn = α′Rmn + ...

gives Lichnerowitz operator as anomalous dimension operator

Rmn(G+ h) = Rmn +
1
2
γ̂klmnhkl +O(h2)

(γ̂h)mn = −D2hmn + 2Rmknlhkl − 2Rk(mh
k
n)

Equivalent approach to find γ̂:
reconstruct quadratic in T effective action in curved background
from tachyon-graviton amplitudes in flat space∫
dDx[T (m2−∂2)T+hT∂∂T+...]→

∫
dDx[T (m2−D2)T+...]

Effective superstring action for graviton

S =
∫
dDx
√
g[R+ α′3RRRR+ ...]



(γ̂h)mn = −D2hmn + 2Rmknlhkl +O(α′3)

Massive string states in curved background:∫
dDx
√
g[Φ...(m2 −D2 +X)Φ... + ...]

m2 = 4
α′ (n− 1) , X = R.... +O(α′)

strategy: reconstruct from string scattering amplitudes
using known vertex operators in flat space

Apply this to the case of AdS5 × S5 background

Rmn − 1
96 (F5F5)mn = 0, R = 0 , FmnklpF

mnklp = 0

leading-order term in X should vanish for scalar state
prediction – leading α′ correction to scalar string mass =0 (?!)
i.e. for a scalar (singlet) state should have

[−D2 +m2 +O( 1√
λ

)]Φ = 0 ,



∆(n) = 2 +
√

4(n− 1) + 4 +O( 1√
λ

)

∆(n=2) = 2 + 2
√√

λ
[
1 +

1
2
√
λ

+O( 1
(
√
λ)2

)
]

natural guess for the leading terms in strong-coupling expansion
of singlet Konishi state dimension
What about non-singlet Konishi states ?
– they should have the same dimension
Tr[Φ1,Φ2]2 corresponds to SO(6) (2,2,0) state J1 = J2 = 2
tensor wave function Φmn;kl

or vertex operator like (see below)
∼ N−∆

+ ∂nx∂̄nx∂ny∂̄ny
S5: nana = 1, nx = n1 + in2, ny = n3 + in4

AdS5: N+ = N0 + iN5, N+N− −NkNk = 1
Tr(Φ1D

2
+Φ1) should correspond to state with spins S = J = 2

In more detail:



Effective action approach
derive equation of motion for a massive string field
in a background from quadratic effective action S
reconstructed from flat-space S-matrix
Example: totally symmetric NS-NS 10-d tensor state
corresponding to leading Regge trajectory in flat space

generic weakly curved background with 5-form flux
find quadratic terms in S
from correlators of flat-space NSR vertex operators
[Burrington, Liu 05]

symmetric massive string field Φµ1...µ2n in metric+RR background

L = [R− 1
2·5!F

2
5 +O(α′3)]

− 1
2 (DµΦDµΦ +m2Φ2) +

∑
k≥1

(α′)k−1ΦXk(R,F 2
(5), D

2)Φ + ...



assumption: α′nR� 1, i.e. n�
√
λ

small massive string in the middle of AdS5:
near-flat-space expansion should be applicable

Xk in general is mixing matrix
assume that totatlly symmetric tracells transverse Φ
does not mix with other states at same level
(justified at least for AdS5 × S5 background)
minimal S reproducing on-shell eqs. for Φ to leading α′ order

[−D2 +m2 +X1 +O(α′)]Φµ1···µ2n = 0

ignore terms vanishing on-shell :
Rµν ∼ (F5F5)µν , F5F5 = 0, R = 0
Then:

ΦX1Φ = c1Φµ1µ2···µ2nR
µ1ν1µ2ν2Φν1ν2

µ3···µ2n

+c2Φµ1···µ2nF
µ1ν1α3···α5Fµ2ν2

α3···α5Φν1ν2
µ3···µ2n

+c3Φµ1µ2···µ2nF
µ1α2···α5F ν1α2···α5Φν1

µ2···µ2n



ci = ci(n) =?

to fix X1 compute interactions of Φ with graviton and RR field:
3-point NS-NS scattering amplitude to fix ΦR....Φ
4-point NS-RR scattering amplitude to fix ΦF5F5Φ

in flat space:
states on leading Regge trajectory in type IIB NS-NS sector
α′m2 = 4(n− 1) and spin S = 2n

V = ζµ1···µ2n(∂Xµ1 · · · ∂Xµn ∂̄Xµn+1 · · · ∂̄Xµ2n + fermions) eik·X

Φ-hµν-Φ function: [Giannakis, Liu, Porrati, 98]
closed string vertex= (left) x (right) parts (in -1 picture)

−k2 = m2 = 4(n−1)
α′

V−1 = ζµ1···µne
−φψµ1∂Xµ2 · · · ∂Xµneik·X , V0 = ξµ

(
∂Xµ1 + iα

′

2 ψ
µ1k · ψ

)
eik·X

ζµ1······µn = tot.symm., kµiζµ1···µi···µn = 0, ηµiµjζµ1···µi···µj ···µn = 0



result:
c1 = n2

n = 1: agrees with Lichnerowitz operator

Φ-F5-F5-Φ function [Burrinton, Liu 05]
Ramond-Ramond vertex: in - 1/2 picture (left half)

V−1/2 = uα̇S
α̇
−1/2e

ik·X ,

V1/2 = [∂Xµ + iα
′

2 k · ψψ
µ]uα̇Γµα̇βS

β
1/2e

ik·X

extract leading-order part in α′: 0-momentum part in F5

subtract massless exchanges, extract contact terms
assume Φ does not mix with massive RR fields
result:

c2 = − 1
4!
, c3 = − 1

4× 4!

check: reproduces eq for graviton perturbation around
Rµν − 1

4×4! (F5F5)µν = 0



c3F5F5 term appears from Rµν term in Lichnerowitz operator

Rmn(g + h) = −1
2

(∆Lh)mn +O(h2)

(∆Lh)mn = −D2hmn + 2Rmanbhab − 2Ra(mh
a
n)

c3 term actually cancels against c2 term

AdS5 × S5 background

let M,N, . . . = 0, 1, ...9, µ, ν . . . in AdS5 and m,n, . . . in S5

Rµν = − 4
R2

gµν , Rmn =
4

R2
gmn,

Fµνρλσ =
4
R
εµνρλσ, Fmnpqr =

4
R
εmnpqr,

Rµνρσ = − 1
R2

(gµρgνσ − gµσgνρ), Rmnpq =
1

R2
(gmpgnq − gmqgnp)

the two F5F5 terms cancels against each other
only the full Riemann tensor term survives



i.e. Φ-F5-F5-Φ contact terms do not contribute
to the leading mass shift in a maximally symmetric background:

FMN ···FPQ··· + 1
4F

M ···FP ··· ≡ T MNPQ + 1
4g
PQT MLN

L

vanishes for TMNPQ ∼ gMP gNQ − gMQgNP

contracted between symmetric tracefree fields Φ:
i.e. Ramond-Ramond background can be essentially ignored...
suggests that to this order fermions are not relevant
apart from making AdS5 × S5 background consistent solution
(e.g., satisfaction of BPS conditions)

L = 1
2ΦM1···M2n(−D2 +m2)ΦM1···M2n

+
n2

R2

(
Φµ1µ2M3···M2nΦµ1µ2M3···M2n − Φm1m2M3···M2nΦm1m2M3···M2n

)
+ ...

background is direct product – can consider a particular tensor
with S indices in AdS5 and K indices in S5:



end up with anomalous dimension operator

[−D2 + (m2 +
K2 − S2

2R2
)]Φ = 0 , D2 = D2

AdS5
+D2

S5

m2 = 4
α′ (n− 1) = 2

α′ (S +K − 2), 2n = S +K

symmetric transverse traceless tensors – highest-weight state –
in terms of Young labels (∆, S, 0; J,K, 0), J >K

extract AdS5 radius and set
√
λ = R2

α′

[−D2
AdS5

+M2]Φ = 0

M2 = 2
√
λ(S +K − 2) +

1
2

(K2 − S2) + J(J + 4)−K

For symmetric traceless rank S tensor in AdS5:
same by analytic continuation from SO(6) [Metsaev 98]

−D2
AdS5

+M2 → −∆(∆− 4) +M2 + S

∆ = 2 +
√
M2 + S + 4

= 2 +

√
2
√
λ(S +K − 2) +

1
2

(S +K − 2)(K − S) + J(J + 4) + 4 +O( 1√
λ

)



BPS cases: J = K + J ′, J ′ = 0, 1, 2, ...
S = 2,K = 0, ∆ = 4 + J ′;
K = 2, S = 0, J = 2 + J ′, ∆ = 6 + J ′

S = K = 1, ∆ = 5 + J ′

[generalizations: Bianchi, Morales, Samtleben 03]

S = 0, J = K case: (J, J, 0) state

∆ = 2 +

√
2
√
λ(J − 2) +

3
2
J2 + 3J + 4

large J limit:

∆J�1 =
√

2
√
λJ (1 +

3
8
J√
λ

+ ...)

agrees with expansion of energy of
classical folded string on S5 with J1 = J2 = K � 1



K = 0, S 6= 0 case:

∆ = 2 +

√
2
√
λ(S − 2)− 1

2
S(S − 2) + 4 +O( 1√

λ
)

for large S

∆ = 2 +
√

2
√
λ(1− S

8
√
λ

+ ...)

[does not match folded string expression

E =
√

2
√
λ(1 + 3

8
S√
λ

+ ...)

folded string in AdS5 is represented by a different state ?]



To summarize: string states in AdS5 × S5 labeled by
SU(2, 2|4) ⊃ SO(2, 4)×SO(6) quantum numbers (E,S1, S2; J1, J2, J3)
condition of marginality of corresponding (1,1) operator

0 = −
√
λ(S +K − 2)

+
1
2

[∆(∆− 4) +
1
2
S(S − 2)− 1

2
K(K − 2)− J(J + 4)] +O( 1√

λ
)

symmetry: analytic continuation between AdS5 and S5

∆↔ −J, K ↔ S

Implications for Konishi state dimension ?
states from same first massive level
S = 0, K = 4:

∆ = 2 + 2
√√

λ+ 10 +O( 1√
λ

) = 2 + 2
√√

λ(1 +
5√
λ

+O( 1
(
√
λ)2

))



S = 1, K = 3:

∆ = 2 + 2
√√

λ+ 27
4 +O( 1√

λ
) = 2 + 2

√√
λ(1 +

27
8
√
λ

+O( 1
(
√
λ)2

))

S = 2, K = J = 2:

∆ = 2 + 2
√√

λ+ 4 +O( 1√
λ

) = 2 + 2
√√

λ(1 +
2√
λ

+O( 1
(
√
λ)2

))

Konishi operator should have lowest dimension...
S = 4, K = J = 0:

∆ = 2 + 2
√√

λ+O( 1√
λ

) = 2 + 2
√√

λ(1 +O( 1
(
√
λ)2

))

cf. a scalar state at level 2 that gets no leading correction to mass

∆ = 2 +
√

4
√
λ+ 4 +O( 1√

λ
) = 2 + 2

√√
λ(1 +

1
2
√
λ

+O( 1
(
√
λ)2

))

how to reproduce same dim. for other states in Konishi multiplet?



Vertex operator approach
[Polyakov 01; AT 03]

superstring theory in AdS5 × S5 :

I =

√
λ

4π

∫
d2σ[∂Na∂̄Na + ∂nk∂̄nk + fermions ]

N+N− −NuN∗u −NvN∗v = 1 , nxn
∗
x + nyn

∗
y + nzn

∗
z = 1

N± = N0 ± iN5, Nu = N1 + iN2, ..., nx = n1 + in2, ...

construct marginal (1,1) operatots in terms of Na and nk
Scalar vertex operators in Poincare patch:
(−D2 +m2)T = 0, V̂ =

∫
d2ξ T (x̂(ξ))

T (x̂) =
∫
d4x′ K(x̂, x′)T0(x′) , x̂ = (z, x), ds2 = dz2+dxµdxµ

z2

T0(x) – “source” function at the boundary of AdS
K = Dirichlet bulk-to-boundary propagator,

K = c(∆)[
z

z2 + (x− x′)2
]∆ , Kz→0 → δ(4)(x− x′)



∆ is determined from 0 = γ = − 1
2α
′m2 + 1

2
√
λ

∆(∆− 4) + ....

vertex operator that enters correlation functions –
integrated over world sheet and depending on bndry point

V̂ (x) =
∫
d2ξ V(ξ), V = K(x̂(ξ), x), V̂ (T0) =

∫
d4x V̂ (x) T0(x)

AdS/CFT correspondence:
string generating functional Z[T0(x)]

= gauge-theory generating functional < e
∫
d4x T0(x)O(x) >,

O(x) = gauge operator with same quant. numbers and dim.

vertex operator for dilaton-type sugra mode (chiral primary)

VJ(ξ) = (N+)−∆ (nx)J (−∂NM ∂̄NM + ∂nk∂̄nk + fermions)

N+ ≡ N0 + iN5 = 1
z (z2 + xmxm) ∼ eit

nx ≡ n1 + in2 ∼ eiϕ

rotation along the big circle of S5



localize at the boundary – form linear superposition:

V̂J(x) =
∫
d2ξ VJ(x(ξ)− x, z(ξ), ϕ(ξ))

arbitrary x or 4-momentum

< V̂J(x)V̂−J(x′) > ∼ |x− x′|−∆

determine ∆ = ∆(J) in expansion in inverse string tension

0 = γ = 2− 2 +
1

2
√
λ

[∆(∆− 4)− J(J + 4)] +O( 1
(
√
λ)2

)

∆ = 4 + J +O( 1√
λ

)

should be no corrections to all orders – BPS state

cf. vertex operator for bosonic string state
on leading Regge trajectory in flat space

VS(ξ) = e−iEt
(
∂X∂̄X

)S/2



X = x1 + ix2, X̄ = x1 − ix2

marginality condition

γ = 0 = 2− S − 1
2
α′E2 = 0 , i.e. α′E2 = 2(S − 2)

candidate operators for states on leading Regge trajectory:

VJ(ξ) = (N+)−∆
(
∂nx∂̄nx

)J/2
, nx ≡ n1 + in2

VS(ξ) = (N+)−∆
(
∂Nu∂̄Nu

)S/2
, Nu ≡ N1 + iN2

+ fermionic terms
+ α′ ∼ 1√

λ
terms from diagonalization of anom. dim. op.

How these mix with operators with same
quantum numbers and canonical dimension?

in general
(
∂nx∂̄nx

)J/2
mixes with

(nx)2p+2q(∂nx)J/2−2p(∂̄nx)J/2−2q(∂nm∂nm)p(∂̄nk∂nk)q



p, q = 0, ..., J/4 , m, k = 1, ..., 6

(N+)−∆
(
∂Nu∂̄Nu

)S/2
mixes with

N−∆−p−q
+ Np+q

x (∂N+)p(∂Nx)S/2−p(∂̄N+)q(∂̄Nx)S/2−q+O(∂Na∂Na∂̄Nb∂̄Nb)

p, q = 0, ..., S/4 , a, b = 0, 1, ...5
true vertex operators = eigenstates of anomalous dimension matrix
are particular linear combinations
Recall:

in general S = 1
πα′

∫
d2ξ Gmn(x)∂xm∂̄xn perturbed by

V (f) = fm1...mJ (x)∂k1xm1 ....∂̄khxmJ

compute the renormalization of fm1...mj and set βf = γ̂f + ...=0
γ̂f = [2− J + 1

2α
′D2 +

∑
ckα
′k(R....)n...Dp]f = 0

diagonalize “anomalous dimension” operator

Solving for f = finding eigenvalues and eigen-vectors
of anomalous dimension operator



but form of γ̂ for generic f and G is not known
even to leading (1-loop) order in α′

(with exceptions of WZW models or plane-wave models)
not able to use universal expression for γ̂ –
need to calculate anomalous dimensions from “first principles”.

use global coordinates with linearly realized symmetry:
e.g. for S5 = SO(6)/SO(5)

S =

√
λ

π

∫
d2ξ ∂nm∂̄nm , nmnm = 1

ġ = −εg + 4g2 + 4g3 + ... , g ≡ 1√
λ

=
α′

R2
, ε = d− 2

running is cancelled if embedded into AdS5 × S5 string theory
for states on leading Regge trajectory (no ∂kn, k > 1)

O`,s = fk1...k`m1...m2snk1 ...nk`∂nm1 ∂̄nm2 ...∂nm2s−1 ∂̄nm2s



their renormalization studied before [Wegner 90]

renormalization of composite operators to leading order in 1√
λ

use “pairing rules” (and ignore “on-shell” operators):
< AB >=< A > B +A < B > + < A,B >

< A,B >=
∫
d2ξd2ξ′ < nk(ξ), nm(ξ′) > δA

δnk(ξ)
δB

δnm(ξ′)

< A(n) >= 1
2

∫
d2ξd2ξ′ < nk(ξ), nm(ξ′) > δ2A

δnk(ξ)δnm(ξ′) , etc.

< nk >= − 5
2Ink , < nk, nl >= −I(nknl−δkl) , I = − 1

2πε →∞

< nk, ∂nl >= −I∂nknl , < nk, ∂̄nl >= −I∂̄nknl ,

< ∂nk, ∂nl >= Inknl∂nm∂nm , < ∂̄nk, ∂̄nl >= Inknl∂̄nm∂̄nm ,

< ∂nk, ∂̄nl >= −I(∂̄nk∂nl − δkl∂nm∂̄nm)

< (∂nk∂̄nk) >= 0, < (∂nk∂nk) >= −4I∂nk∂nk , < (∂̄nk∂̄nk) >= −4I∂̄nk∂̄nk



simplest case:
fk1...k`nk1 ...nk` with traceless fk1...k` – mapped into itself
has same anom. dim. γ as its highest-weight representative

VJ = (nx)J

γ = 2− 1
2
√
λ

[5J+J(J−1)]+O( 1
(
√
λ)2

) = 2− 1
2
√
λ
J(J+4)+O( 1

(
√
λ)2

)

scalar spherical harmonic that solves Laplace eq. on S5

similar for AdS5 or SO(2, 4) model:
replacing nJx and ∂nm∂̄nm with N−∆

+ and ∂Na∂̄Na, with
J = −∆ and g = 1√

λ
→ − 1√

λ

e.g. dimension of nJx∂nm∂̄nm: γ = − 1
2
√
λ
J(J + 4) +O( 1

(
√
λ)2

)

dimension of N−∆
+ ∂Na∂̄Na: γ = 1

2
√
λ

∆(∆− 4) +O( 1
(
√
λ)2

).



the number of ∂nk∂̄nk factors never increases
can be used as quantum number
to characterise leading term in eigen-operator
example of scalar higher-level operator:

N−∆
+ [(∂nk∂̄nk)r + ...]

[Kravtsov, Lerner, Yudson 89; Castilla, Chakravarty 96]

γ = −2(r − 1) +
1

2
√
λ

[∆(∆− 4) + 2r(r − 1)]

+
1

(
√
λ)2

[ 2
3r(r − 1)(r − 7

2 ) + 4r] + ...

r = 1 is BPS:
fermionic contributions should make r = 1 exact zero of γ
r = 2: 1-st massive level – candidate for Konishi state

∆(∆−4) = 4
√
λ−4 +O( 1√

λ
) , ∆ = 2 + 2

√√
λ [1 +O( 1

(
√
λ)2

)]



same as S = 4,K = 0 state above (!)

still for a scalar operator expect no
leading correction to γ̂ = − 1

2D
2

fermionic contribution should cancel 1-loop mass shift r(r− 1)?!
if that happens

∆(∆−4) = 4
√
λ+O( 1√

λ
) , ∆ = 2+2

√√
λ [1+

1
2
√
λ

+O( 1
(
√
λ)2

)]

states of higher dimension:

(∂nk∂nk∂̄nm∂̄nm)r/2 : γ = 2− 2r − 4r√
λ

+O( 1
(
√
λ)2

)

r = 2 – first massive level – gives positive shift
of string mass (above candidate Konishi value)



Examples of operators with spin in S5:

N−∆
+ [(∂nx∂̄nx)J/2 + ...]

γ(∆, J) = 2− J +
1

2
√
λ

[∆(∆− 4)− 1
2
J(J + 10)] +O( 1

(
√
λ)2

)

inclusion of fermions should shift J(J + 10)→ J(J − 2)

two spins J,K in S5:

OK,J = N−∆
+

K/2∑
u,v=0

cuvMuv

Muv ≡ nJ−u−vy nu+v
x (∂ny)u(∂nx)K/2−u(∂̄ny)v(∂̄nx)K/2−v

highest and lowest eigen-values of 1-loop anom. dim. matrix

γmin = 2−K +
1

2
√
λ

[∆(∆− 4)− 1
2
K(K + 10)− J(J + 4)− 2JK] +O( 1

(
√
λ)2

)

γmax = 2−K +
1

2
√
λ

[∆(∆− 4)− 1
2
K(K + 6)− J(J + 4)] +O( 1

(
√
λ)2

)



fermions may again alter terms linear in K
to make K = 2 the zero of γ (BPS)

K = 4: same level as Konishi state
– identify operators with right representations
[R.Roiban, AT, in progress]



Light-cone quantization approach
may be next time...


