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Old story (1995):

N = 2 supersymmetric Yang-Mills theory = Yang-Mills-Higgs

system plus fermions:

• Higgs field falls into condensate 〈Φ〉 ∈ h, and breaks the

gauge group up to maximal torus (in general position);

• supersymmetry ensures (partial) cancelation of perturba-

tive corrections, and existence of light BPS states, with

masses ∼ |q ·a+ g ·aD|, (q, g) - set of electric and magnetic

charges.



One may speak on moduli space of the theory: u ∼ 〈TrΦ2〉,
or generally the set coefficients of

P (z) = 〈det(z −Φ)〉 (1)

Classical moduli space: singular point at the origin u = 0,

where the gauge group restores, and nothing interesting ...

but this is in domain of strong coupling, where quasiclassics

does not work.



Quantum moduli space
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u
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a  =0

Gauge group never restores, but there are singularities where

BPS states become massless: e.g. the monopole at aD = 0

and dyon at a + aD = 0.



Seiberg-Witten theory: N = 2 supersymmetric Yang-Mills the-

ory (U(Nc) gauge group)

L0 =
1

g2
0

Tr
(
F2

µν + |DµΦ|2 + [Φ, Φ̄]2 + . . .
)

(2)

so that [Φ, Φ̄] = 0 ⇒ Φ = diag(a1, . . . , aNc), and DµΦ ⇒
[Aµ,Φ]ij = A

ij
µ (ai−aj), so that only Aii

µ ≡ Ai
µ remain massless.

SW theory gives a set of effective couplings Tij(a) in the low-

energy N = 2 SUSY Abelian U(1)rank gauge theory.

Leff = Im Tij(a) F i
µνF j

µν + . . . (3)

with Tij →
weak coupling

log
ai−aj

Λ + O

((
Λ
a

)2Nc
)
.



N = 2 kinematics encodes nontrivial information in holomor-

phic prepotential Tij = ∂2F
∂ai∂aj

(effective action is Im
∫

d4θF(Φ)).

The prepotential itself is determined by: Σ of genus=rank,

with a meromorphic differential dSSW such that

δdSSW ' holomorphic (4)

or by an integrable system.

Period variables {ai =
∮
Ai

dSSW} and F are introduced by

aD
i =

∮

Bi

dSSW =
∂F
∂ai

(5)

consistent by symmetricity of ∂2F
∂ai∂aj

= Tij(a) period matrix of

Σ (integrability from Riemann bilinear identities).



Famous example of Σ: let PNc(z) = 〈det(z −Φ)〉, then

w +
Λ2Nc

w
= PNc(z) =

Nc∏

i=1

(z − vi)

dSSW ' z
dw

w

(6)

Integrable system is Nc-periodic Toda chain.

Simplest possible(?) example Nc = 2, z → momentum, logw →
coordinate, the curve Σ and dSSW turn into the Hamiltonian

and Jacobi form of physical pendulum or the 1d “sine-Gordon”

(Λ → 0: Liouville) system

w +
Λ4

w
= z2 − u



In fact the simplest possible example is Nc = 1 (U(1) N = 2

supersymmetric gauge theory?)

Λ
(
w +

1

w

)
= z − v (7)

giving rise to F = 1
2a2t1 + et1, with Λ2 = et1, a =

∮
zdw

w = v.

Indeed, the Toda “chain” (dispersionless limit):

∂2F
∂t21

= exp
∂2F
∂a2

Stringy solution F = 1
2a2t1 + et1: a system of particles

aD = ∂F
∂a = at1 with constant velocity = number = a.



Topological A-string on P1 with quantum cohomology OPE:

$ ·$ ' et11, primary operators t1 ↔ $, a ↔ 1:

F ∼ 〈exp (a1 + t1$)〉 is a truncated generation function.

Toda hierarchy - the descendants: tk+1 ↔ σk($), Tn ↔ σn(1),

(a ≡ −T0) then

F =
a2t1
2

+ et1 ⇒ F(t, a) ⇒ F(t,T) (8)

being still a solution to the Toda equation

∂2F
∂t21

= exp
∂2F
∂a2



Solution is found via dual “Landau-Ginzburg” B-model (the

Nc = 1 SW curve)

z = v + Λ
(
w +

1

w

)
(9)

by construction of a function with asymptotics,

S(z) =
z→∞

∑

k>0

tkzk − 2
∑

n>0

Tnzn(log z − cn)+

+2a log z − ∂F
∂a

− 2
∑

k>0

1

kzk

∂F
∂tk

(10)

(ck =
∑k

i=1
1
i ), whose “tail” defines the gradients of prepoten-

tial (analogs of the dual periods), e.g.

∂F
∂a

∼
∫

B
z
dw

w
∼ [S]0
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Smooth Riemann surface (of genus 3)
with fixed A- and B-cycles.
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Cylinder z = v + Λ
(
w + 1

w

)

with degenerate B- cycle.



What is the sense of this oversimplified example?

Topological A-string: the prepotential counts asymptotics of

the Hurwirz numbers, number of ramified covers by string

world-sheets of the (target!) P1.

Gauge-string duality: sum over partitions ≡ summing instan-

tons in 4D N = 2 SUSY gauge theory (Nekrasov partition

function).

U(1) gauge theory: non-commutative instantons, Toda hier-

archy - the deformation of the UV prepotential

FUV,0 = 1
2τΦ2 → FUV =

∑

k>0

tk
k + 1

Φk

with τ = t1 ∼ logΛ.



Partition function in deformed gauge theory (at Tn = δn,1)

Z(a, t; ~) =
∑

k

m2
k

(−~2)|k| e
1
~2

∑
k>0

tk
k+1chk+1(a,k,~) ∼

∼ exp
(

1

~2
F(a, t) + . . .

) (11)

is some over set of partitions k = k1 ≥ k2 ≥ . . . with the
Plancherel measure

mk =
∏

i<j

ki − kj + j − i

j − i
=

∏
1≤i<j≤`k

(ki − kj + j − i)
∏`k

i=1(`k + ki − i)!
(12)

and particular (Chern) polynomials

ch0(a,k) = 1, ch1(a,k) = a, ch2(a,k) = a2 + 2~2|k|
ch3(a,k) = a3 + 6~2a|k|+ 3~3

∑

i

ki(ki + 1− 2i)

. . .

(13)



or
(
e
~u
2 − e−

~u
2

) ∞∑

i=1

eu(a+~(12−i+ki)) =
∞∑

l=0

ul

l!
chl(a,k, ~) (14)

coming from the Chern classes of the universal bundle over

the instanton moduli space.

The T-dependence Z(a, t) → Z(a, t,T) is restored from the

Virasoro constraints

Ln(t,T; ∂t, ∂T; ∂2
t )Z(a, t,T; ~) = 0, n ≥ −1 (15)



Non Abelian theory: U(Nc) gauge group, nontrivial SW theory.

Partition function more complicated, but quasiclassics always

given by solution to the same functional problem:

F =
∫

dxf ′′(x)FUV (x)− 1
2

∫

x>x̃
dxdx̃f ′′(x)f ′′(x̃)F (x− x̃)+

+
Nc∑

i=1

aD
i

(
ai − 1

2

∫
dx xf ′′(x)

)

(16)

with FUV (x) =
∑

k>0 tk
xk+1

k+1 , and

logm2
k → F (x) ∝ x2

(
logx− 3

2

)

when integrated with (double derivative of the) shape function



a

f(x)

Shape function for partitions (Young diagrams)

f(x) = |x− a|+ ∆f(x)

extf

a

Extremal shape for large partition



a
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a

Non-Abelian theory: extremal shape for Nc = 2



From the functional one gets for S(z) = d
dz

δF
δf ′′(z)

S(z) =
∑

k>0

tkzk −
∫

dxf ′′(x)(z − x) (log(z − x)− 1)− aD

(17)
with vanishing real part

Re S(x) = 1
2 (S(x + i0) + S(x− i0)) = 0 (18)

on the cut, where ∆f(x) 6= 0. On the double cover

y2 =
Nc∏

i=1

(z − x+
i )(z − x−i ) (19)

S is odd under y ↔ −y, then f ′(x) ∼ jump
(
Φ(x) = dS

dx

)
, and

dΦ = ± s(z)dz√∏Nc
i=1(z − x+

i )(z − x−i )
(20)



If all tk = 0, for k > 1, t1 = logΛNc, Tn = δn,1:

Φ =
P→P±

∓2Nc log z ± 2Nc logΛ + O(z−1) (21)

and there exists a meromorphic function w = ΛNc exp (−Φ),

satisfying

w +
Λ2Nc

w
= PNc(z) =

Nc∏

i=1

(z − vi) (22)

which restores the SW curve.



To restore the dependence on descendants σn(1) quasiclassi-
cally (influenced by Saito formula)

∂F
∂Tn

∣∣∣∣
t
= (−)nn! (Sn)0 (23)

where
dnSn

dzn
= S, n ≥ 0 (24)

or Sn is the n-th primitive (odd under w ↔ 1
w).

For higher tk 6= 0, exp (−Φ) has an essential singularity and
cannot be described algebraically. Implicitly it is fixed by

∮

Aj

dΦ = −iπ
∫

Ij
f ′′(x)dx = −2πi,

resP±dΦ = ∓2Nc,
∮

Bj

dΦ = 0
(25)



Instanton expansion in 4d gauge theory F =
∑

d≥0 qdFd,

q ∼ Λ2Nc, logΛ ∼ t1.

Topological string expansion: ~ is background parameter (IR

cutoff) in 4d gauge theory.

Topological string condensate: 〈σ1(1)〉 6= 0, Tn = δn,1 is the

simplest possible background, while a ∼ T0 is the gauge theory

condensate itself.



In the pertirbative limit Λ → 0 cuts shrink to the points z = aj,

j = 1, . . . , Nc: the curve is

wpert = PNc(z) =
Nc∏

i=1

(z − vi) (26)

endowed with (t(z) ≡ ∑
k>0 tkzk; T (x) ≡ ∑

n>0 Tnxn)

S(z) = −2
Nc∑

j=1

σ(z; vj) + t′(z)

σ(z;x) =
∑

k>0

T (k)(x)

k!
(z − x)k(log(z − x)− ck)

(27)



Logic:

• restrict to the N-th class of backgrounds, with only T1, . . . , TN 6=
0;

• the “minimal” theory was with Tn = δn,1 and F = F(a, t);

T1 = 1 corresponds to the condensate 〈σ1($)〉 6= 0;

• N + 1-th derivative of S becomes single-valued.



Perturbative solution:

aD
i = S(vi) =

∂Fpert

∂ai
(28)

gives rise to

Fpert(a1, . . . , aNc; t,T) =
Nc∑

j=1

FUV (aj; t,T)+

+
∑

i6=j

F (ai, aj;T)

aj = T (vj), j = 1, . . . , Nc

(29)



Result: the full functional F(a, t,T) is given by solution to:

F = −1
2

∫

x1>x2

dx1dx2f ′′(x1)f
′′(x2)F (x1, x2;T)+

+
∫

dxf ′′(x)FUV (x; t,T)+

+
∑

i

aD
i

(
ai − 1

2

∫
dx xf ′′(x)

)
(30)

with

FUV (x; t,T) =
∫ x

0
t′(x)dT (x) (31)

and the kernel

∂2F (x1, x2;T)

∂x1∂x2
= T ′(x1)T

′(x2) log(x1 − x2) (32)



Nonabelian theory: solve the variational equation

t′(z)−
∫

dxf ′′(x)σ(z;x) = aD, z ∈ I (33)

with I =
⋃

cuts. The integral

S(z) = t′(z)− aD −
∫

dxf ′′(x)σ(z;x) (34)

is multivalued, due to the logarithms in σ(z;x), but its N+1-th
derivative

dΦ(N−1) = d

(
dNS

dzN

)
(35)

can be already decomposed over abelian differentials.

It is determined by singularities at z(P±) = ∞ and at the
branch points {xj}, j = 1, . . . ,2Nc, where it has poles due
to f ′′(x) ∼ (x − xj)

−1/2 (cf. with matrix models!). In fact
Φ′, . . . ,Φ(N−1) are regular 2−, . . . , N− differentials on the curve.



One writes

dΦ(N−1) =
φ(z)dz

y
+

dz

y

2Nc∑

j=1

N−1∑

k=1


 qk

j

(z − xj)k


 (36)

fix the periods of dΦ(N−2), . . . , dΦ′ by 2Nc constraints, ending

up, therefore with

(2N + 1)Nc − 2Nc ·N = Nc (37)

variables, to be absorbed by the Seiberg-Witten periods

aj =
1

4πi

∮

Aj

zN

N !
dΦ(N−1), j = 1, . . . , Nc (38)

and define the prepotential by

aD
j = 1

2

∮

Bj

zN

N !
dΦ(N−1) =

∂F
∂aj

, j = 1, . . . , Nc (39)



The Meissner mechanism in superconductor: condensation of
electric charge kills magnetic field except for a thin tube, en-
suring confinement of magnetic monopoles, if they exist !

To turn into problem of mathematical physics one needs:

• condensates,

• duality between electric and magnetic charges.



• Effective theory near N = 2 singularity or N = 1 vacuum;

• Supersymmetric QCD with large fundamental masses: weak

coupling m À Λ and confinement of monopoles by ANO

strings.

• Towards strong coupling: regime of dual theory,

m ¿ Λ, change of quantum numbers, but still confinement

of monopoles!



New integrable structures:

• Monodromies in “mass moduli space” and KZ equation;

• World-sheet sigma model for ANO string: integrable struc-

ture, describing the space of vacua, or quantum numbers

in 4d gauge theory!


