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1 Introduction

These notes will provide a brief overview of string inflation. After a motiva-
tion for inflation in the context of string theory, we will start out by reviewing
inflation. Then we will discuss warped D-brane inflation and conclude with a
few comments about DBI-inflation. Throughout the notes we will give only
very few references and refer the reader to previous review articles about
string cosmology [1, 2, 3, 4, 5, 6, 7] and the references therein. Appendix A
summarizes conventions and notation.

2 Motivation

String theory is the best understood candidate for a UV completion of grav-
ity. It therefore should become relevant at energies of the order of the Planck
mass Mp. While it is virtually impossible to directly test this energy scale, one
might hope that cosmological observation might provide some insight. As we
will see in more detail below, inflationary models are UV sensitive. Although
it is unlikely that we can make direct tests of string theory through cosmolog-
ical observations, measurements of the cosmic microwave background (CMB)
can exclude certain string inflation models and can rule out part of the land-
scape.
To further motivate the relevance of string theory for inflation let us look at
three examples:

Example 1:
For inflation to last sufficiently long (see below) we need generically that the
two slow-roll parameters

ε =
1

2
M2

p

(
V ′

V

)2

, η = M2
p

V ′′

V
(1)

are sufficiently small (ε, |η| ¿ 1). As will be elaborated below, corrections
to the inflaton potential up to dimension 6 lead to order 1 corrections to the
η parameter since they are of the form δV = V

M2
p
φ2. Therefore, a theory of

inflation needs to know about at least dimension 6 terms in the potential.
Calculating such Planck suppressed corrections requires a theory of quantum
gravity whose prime candidate is string theory.
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Example 2:
As we will see below an epoch of inflation will generate scalar and tensor
perturbations whose ratio we denote by r. Lyth [8] derived a lower bound on
the variation in the inflaton field during inflation known as the Lyth Bound

∆φ

Mp

=

√
r

.01
O(1), (2)

Future experiment are sensitive to values of r for which
√

r
.01
∼ 1. If they

would detect tensor fluctuations of this magnitude, then from the expansion
of the inflaton potential

V (φ) = Vrenormalizable + φ4

∞∑
n=1

cn

(
φ

Mp

)n

(3)

we see that we not only need to know the renormalizable part of the potential
but also infinitely many other terms. To argue for the absence of this terms
would require a fine tuning of infinitely many terms. String theory, however,
could allow one to calculate these terms or might provide a symmetry that
leads to their absence.

Example 3:
Future experiments like the recently started Planck satellite are also search-
ing for non-Gaussianity in the density fluctuations generated by quantum
fluctuations in the inflaton field. Those can be generated from higher deriva-
tive corrections to the action which we can write as

S =

∫
d4x

√−g

(
1

2
M2

p R + P (X,φ)

)
, (4)

where P (X,φ) is a polynomial in X = −1
2
gµν∂µφ∂νφ and φ. Again we need

string theory to determine the form of the polynomial P . One particular
example of higher derivative corrections that can be nicely summed up to a
closed form is the DBI action that can be used for DBI inflation as sketched
at the end of these notes.
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3 Review of inflation

3.1 Slow-roll inflation

The precise definition of inflation is

Inflation ⇐⇒ d

dt

1

aH
< 0. (5)

Because 1
aH

is the comoving Hubble length, the condition for inflation is
that the comoving Hubble length is decreasing with time. This means that
in coordinates fixed with the expansion, the observable universe actually
becomes smaller during inflation.
An alternative definition (for an expanding universe i.e. for ȧ > 0) is simply
an epoch during which the scale factor of the universe is accelerating

Inflation ⇐⇒ ä > 0. (6)

If we use the Raychaudhuri equation

ä

a
= − 1

6M2
p

(ρ + 3p), (7)

which can be derived from Einstein’s equations for the Robertson-Walker
metric (60), we find

Inflation ⇐⇒ ρ + 3p < 0. (8)

Because we always assume that the energy density ρ is positive, it is necessary
for the pressure p to be negative.
This condition can be fulfilled by a scalar field with Lagrangian1

L = −1
2
gµν∂µφ∂νφ− V (φ). (9)

From

T µν = ∂µφ∂νφ + gµνL
= ∂µφ∂νφ + gµν(−1

2
gρσ∂ρφ∂σφ− V (φ)),

(10)

1Although inflation is an intrinsically quantum mechanical process, we are treating
the scalar field classically, i.e. consider the expectation value 〈φ〉. Quantum effects are
negligible if we demand that V ¿ M4

p .
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we can read off

ρ = T 00 =
1

2
φ̇2 +

1

2a2
(∇φ)2 + V (φ) and (11)

p =
a2

3

∑
i

T ii =
1

2
φ̇2 − 1

6a2
(∇φ)2 − V (φ). (12)

If the spatial inhomogeneities in the inflaton field φ are small and the poten-
tial V (φ) is much bigger than the square of the time derivative of the inflaton
field, i.e.

1

a2
(∇φ)2 ' 0 and (13)

V (φ) À φ̇2, (14)

we have the condition
ρ = −p (15)

and the universe is in accordance with (8) in an inflationary phase.
The standard technique for analyzing inflation is the slow-roll approximation,
from which we obtain some restrictions on the potential V (φ).

From the Euler-Lagrange Equation ∂µ
∂
√
|det g|L

∂(∂µφ)
=

∂
√
|det g|L
∂φ

we can derive

the equation of motion for φ

−∂µ[
√
| det g|gµν∂νφ] = −

√
| det g|V ′(φ)

∂t[a
3(t)φ̇]− a(t)∇2φ = −a3(t)V ′(φ)

φ̈ + 3
ȧ

a
φ̇− 1

a2
∇2φ

︸ ︷︷ ︸
'0

= −V ′(φ)

φ̈ + 3Hφ̇ + V ′(φ) = 0. (16)

We now make the slow-roll approximation that |φ̈| is negligible in comparison
with |3Hφ̇| and |V ′(φ)|. This step is required in order that inflation can
happen2 and leads to the slow-rolling form for the equation of motion

3Hφ̇ ' −V ′(φ). (17)

2If |φ̈| is comparable to |3Hφ̇|, φ̇ would change considerably and condition (14) is not
satisfied. If we assume that there is a characteristic temporal scale T for the inflaton field,
we get from V (φ) À φ̇2 ∼ φ2/T 2 that dV/dφ ∼ V/φ À φ/T 2 ∼ φ̈.
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From the Friedman equation that follows from Einstein’s equations for the
Robertson-Walker metric and using (11) we find

H2 =
ρ

3M2
p

− κ

a2
' V

3M2
p

. (18)

Thus, we can rewrite the condition (14) in form of two dimensionless param-
eters

ε ≡ 1

2
M2

p

(
V ′

V

)2

¿ 1 (19)

η ≡ M2
p

(
V ′′

V

)
¿ 1, (20)

where we have differentiated the expression for ε

Mp|V ′′| ¿ |V ′| ¿ 1

Mp

|V | (21)

to get η.
These two criteria make perfect intuitive sense: the potential must be flat in
the sense of having small derivatives, if the field is to roll slowly enough for
inflation to be possible.
Similar arguments could be made for the spacial part. However, they are less
critical. Since a(t) increases very rapidly, spacial perturbations are damped
away: assuming V is large enough for inflation to start in the first place,
inhomogeneities rapidly become negligible.
As we argued above, spatial derivatives of the inflaton field can be neglected.
This is not always true for time derivatives. Although they may be negligible
initially, the relative importance of time derivatives increases as φ rolls down
the potential and V approaches zero3. Even if the potential does not steepen,
sooner or later we will have ε ' 1 or |η| ' 1 and the inflationary phase
will cease. Instead of rolling slowly ’downhill’, the field will oscillate about
the bottom of the potential. Due to the coupling of the inflaton field to
matter fields, which we have neglected so far, the rapid oscillatory phase will
produce particles, leading to the reheating of the universe. Thus, even if the

3We are leaving aside the subtle question why the potential minimum is so close to
zero. Note however that if the minimum would not be close to zero, the universe would
continue to inflate without end and not be able to bear life.
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minimum of V is at V = 0, the universe is left containing roughly the same
energy density as it started with, but now in the form of normal matter and
radiation - which starts the usual FRW phase, albeit with desired special
initial conditions, as we will see now.

3.2 Inflation solves three problems

The very attracting feature of inflation is that a certain amount of inflation
solves the most serious problems of the standard cosmology. This leads to a
lower bound on the number of e-foldings the universe had to expand during
the inflationary phase.

3.2.1 The flatness problem

We can rewrite the Friedmann equation as an equation for the density pa-
rameter

Ω− 1 =
κ

a2H2
, (22)

where the cosmological constant is included in Ω.
The density parameter therefore evolves. During the matter dominated era
we have a2H2 ∼ t−2/3. During the radiation dominated era we have a2H2 ∼
1/t. From observation we know that, at present, |Ω0 − 1| ∼ 10%. This
requires that for example at nucleosynthesis (M ' 10 MeV) we had

∣∣∣∣
k

a2H2

∣∣∣∣ < 10−16. (23)

The flatness problem states that such finely tuned initial conditions seem ex-
tremely unlikely. Almost all initial conditions lead either to a closed universe
that recollapses almost immediately, or to an open universe that very quickly
enters the curvature dominated regime and cools below 3 K within the first
second of its existence.
Inflation solves the flatness problem because during inflation a(t) increases
by a very large factor and the Hubble constant during inflation, HI , is ap-
proximately constant. At the GUT scale MGUT ∼ 1015 GeV we have the
requirement

∣∣ k
a2H2

∣∣ < 10−52 from which we get exp (2HItinf ) & 1052 and
therefore

Ninf = HItinf & 60, (24)

where tinf denotes the duration of inflation and Ninf the number of e-foldings.

6



3.2.2 The horizon problem

Standard cosmology contains a particle horizon radius

dH(t) = a(t)

∫ t

0

dt′

a(t′)
, (25)

which converges because a(t) ∝ t1/2 in the early radiation-dominated phase.
The particle horizon is the distance over which causal interaction can occur.
We want to compare this with the corresponding angular size dA at the
time of last scattering (tL = 3 × 105 yr) when the microwave background is
released.
If we make the very good approximation of a matter-dominated epoch back
to the Big Bang, we get

dH(tL) = t
2/3
L

∫ tL

0

dt t−2/3 = 3tL = 3

(
a(tL)

a(t0)

)3/2

t0 =
2

(1 + zL)3/2

1

H0

. (26)

From the definition of dA

dA(tL) ≡ a(t0)r(tL)

1 + zL

, with

r(tL) = S

[
1

a(t0)H0

∫ 1

1
1+zL

dx√
ΩR + ΩMx + Ωkx2 + ΩΛx4

]
, where

S[y] =





sin (y) for κ = +1

y for κ = 0

sinh (y) for κ = −1

,

(27)

we get the approximation

r(tL) ' 1

a(t0)H0

⇒ dA(tL) ' 1

(1 + zL)H0

, (28)

where the error is of order O(1).
Thus the angle subtended at last scattering is

θ =
dH

dA

' 1√
1 + zL

=
1√
1100

' 1.7◦. (29)
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The horizon problem is that all the causally disconnected region we see on
the microwave sky are at the same temperature and the homogeneity of our
universe must form part of the initial conditions.
This problem can again be solved by inflation, which could enlarge a small
causally connected part to the size of the angular diameter at last scattering,
so that dH(tL) & dA(tL).
From our calculation above we know that this means that the contribution
from the inflationary phase to dH has to be bigger than or equal to dA(tL).
If we take t = 0 to be the beginning of inflation, we get

dH(tL) = a(tL)

∫ tinf

0

dt

a(0) exp (HIt)
=

a(tL)

a(0)

[
1

HI

(1− e−HI tinf )

]

=
a(tL)

a(tinf )

[
1

HI

(eHI tinf − 1)

]
' a(tL)

a(tinf )

eHI tinf

HI

.

(30)

It follows from the requirement, that the cosmological scale factor is contin-
uous at the transition between the different epochs, that

a(tL)

a(tinf )
=

(
teq
tinf

)1/2 (
tL
teq

)2/3

, (31)
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where teq ∼ tL
4 is the time of matter-radiation equality. We can now derive

the lower limit for the duration of inflation

dH(tL) & dA(tL)

(
tL
tinf

)1/2
eHI tinf

HI

& 1

(1 + zL)H0

tLH0︸ ︷︷ ︸
' tL

t0
=(1+zL)−3/2

t
1/2
inf

t
1/2
L

eHI tinf

HItinf

& 1

(1 + zL)

t
1/2
inf

t
1/2
L︸︷︷︸

' 103K
1028K

=10−25

eHI tinf

HItinf

&
√

1 + zL ' 33

eHI tinf

HItinf

& 1026

Ninf = HItinf & 64. (32)

This is the most important constrain that should be fulfilled by every inflation
model.

3.2.3 Unwanted relict particles

If we have a GUT with a unified group like for example SO(10) or SU(5)
which is spontaneously broken to SU(3)× SU(2)×U(1), we get topological
stable solution like magnetic monopoles. Their number density is of the same

order as the baryonic number density, i.e.
nm

nb

∼ 1. However, we know from

observations that
nm

nb

≤ 10−30. If we assume that no magnetic monopoles

were produced after inflation we get an estimation for the duration of inflation
by the requirement that the abundance is decreased by a factor of at least
10−30

n ∼ 1

a3
⇒ exp (HItinf ) & 3

√
1030 = 1010

4 tL

teq
=

(
a(tL)
a(teq)

)3/2

' (
4
3

)3/2.
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Ninf = HItinf & 23. (33)

Similarly the problem of the high abundance of gravitinos and some scalar
particles, which are predicted in supergravity and superstring theories and
would upset nucleosynthesis, could be solved by an inflationary phase.

3.3 Quantum fluctuations

The outstanding feature of inflation is that it not only provides solutions to
the problems mentioned above but also predicts that quantum fluctuation
can be the seeds for what eventually become galaxies and clusters!
We can see this as follows:
During inflation the universe is in an (almost) de Sitter (dS) phase5 (a(t) ∝
eHI t) and we have an event horizon, in that the comoving distance that
particles can travel between a time t1 and t = ∞ is finite,

rEH(t1) =

∫ ∞

t1

dt

a(t)
=

1

a(t1)HI

. (34)

Hence, we have an event horizon of proper radius a(t1)rEH(t1) = H−1
I .

5There are some inflationary models in which the universe is not in a de Sitter phase
during inflation. One example is power-law inflation a(t) ∝ tp. Because (6) is necessary
for inflation, we get p > 1 and have therefore also a finite event horizon. This is the
only necessary condition for the idea outlined above. However, for simplicity we restrict
ourselves to a de Sitter phase.
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Waves well inside the horizon (λ ¿

r = H
I

-1

Figure 1: The comoving wavelength
of quantum fluctuations are expanded
to sizes λ À H−1

I so that they become
frozen.

H−1
I ) effectively occupy flat space, and

so undergo the normal quantum fluctu-
ations for a vacuum state. These modes
of fixed comoving wavelength are ex-
panded to sizes λ À H−1

I during infla-
tion. Because points that are separated
by distances larger than H−1

I can never
communicate with each other, causal-
ity forces the quantum fluctuations to
become frozen as classical fluctuations
(Figure (1)). During either reheating,
radiation-dominated, or matter-domi-
nated phases the modes begin to be-
have as non-relativistic matter with den-
sity fluctuations that can seed large-
scale structures like the galaxies. They
also lead to the small fluctuations in
the cosmic microwave background (CMB). In this subsection we will study
small fluctuations in the dilaton and the metric.
We expand the metric and the inflaton around their background values

gµν = g0
µν + hµν(τ, ~x), (35)

φ = φ0 + δφ(τ, ~x), (36)

where we used conformal time τ . The equation of motion for the inflaton
fluctuations are

δφ′′k +
2a′

a
δφ′k + k2δφk = 0, (37)

which in terms of µk = aφk becomes

µ′′k +

(
k2 − a′′

a

)
µk = 0. (38)

In the regime where k2 À a′′
a

the solutions are plane waves e±ikτ while for

k2 ¿ a′′
a

we find µk ∼ a. If we define the scaling of a with τ in terms of the

constant ν by a ∼ τ
1
2
−ν then the equation (38) becomes

µ′′k +

(
k2 − 1

τ 2

(
ν2 − 1

4

))
µk = 0 (39)
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and can be solved in terms of Hankel functions. A solution to the above
equation is given by fk(τ)

fk(τ) =

√−τπ

2

(
c1(k)H(1)

ν (−kτ) + c2(k)H(2)
ν (−kτ)

)
. (40)

We can now canonically quantize µk and its conjugate momentum πk which
satisfy the commutation relation [µk, πk] = i and write

µk =
1√
2k

(
ak(τ) + a†−k(τ)

)
, (41)

πk = −i

√
k

2

(
ak(τ)− a†−k(τ)

)
. (42)

Since the solution to the equation (39) is given by fk(τ) (cf. (40)) µk has to
take the form

µk = fk(τ)ak(τin) + f ∗k (τ)a†−k(τin)), (43)

where τin is an initial time. The so called Bunch-Davies vacuum is defined by
lim

τin→−∞
ak(τ0)|0, τ0 >= 0 but the exact definition of a vacuum is not relevant

for us since inflation will wash out the difference between different vacuum
states (cf. [9] for more details).

The Hankel functions simplify for τ0 → −∞ so that H
(1)
ν (−kτ) ∼

√
2

−kτπ
e−ikτ

and H
(2)
ν = H

(1)∗
ν . Therefore, we can set |c1| = 1 and c2 = 0. Then we only

have to consider H
(1)
ν which for τ → 0 behaves as H

(1)
ν ∼ (−kτ)−ν .

We define the power spectrum and find

P(k) =
4πk3

(2π)3
< δφk δφ−k >∼ k3−2ν . (44)

We see that for the special value of ν = 3
2

the k dependence drops out an we
have a scale invariant power spectrum. For an inflationary phase, we have
a ∼ eHt ∼ − 1

Hτ
and therefore ν = 3

2
. This shows that inflation predicts

an (almost) scale invariant power spectrum. Doing the calculation more
carefully and including tensor modes arising from the metric6 one finds the

6There are also vector modes arising from fluctuations of the metric. Those are however
not sourced during inflation and decay very rapidly in an expanding universe.
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following dimensionless power spectrum for scalar and tensor modes

Ps(k) =

(
H

φ̇

)2 (
H

2π

)2

=
1

2M2
p ε

(
H

2π

)2

, (45)

Pt(k) =
8

M2
p

(
H

2π

)2

. (46)

We see that for φ̇ ¿ 1 we have Ps(k) À Pt(k). We also find that the ratio
between the two is

r =
Pt(k)

Ps(k)
= 16ε. (47)

Since the fluctuations in the inflaton field are very weakly coupled to one
another, one expects that the late time density fluctuations obey Gaussian
statistics. This means that the n-point functions < δφk1δφk2 . . . δφkn > are
determined by the 2-point function. So far no non-Gaussian correlations have
been observed.

4 Inflation in string theory

Considering inflation in string theory one might ask how natural it is for
inflation to arise in string theory. Since we have to demand that for example
φ̇ ¿ V (φ) it is likely that there is some fine tuning involved, if one tries to
realize inflation in string theory. However, this question is hard to answer
since we don’t have a very good understanding of the string landscape. An
easier question is whether we can realize inflation and the necessary initial
conditions in string theory and what the potential problems are.
As we have already seen in the introduction, integrating out very heavy
massive fields with m > M = Mp or Ms leads to corrections to the potential
δV = Ok

Mk−4 , where Ok is a dimension k operator. In particular for large field
inflation with ∆φ > M we need to know correction for all k withOk = (∆φ)k.
For these models it might still be possible to use an effective field theory
(and neglect effects of quantum gravity), if the energy-density remains below
Mp. In the next section we will discuss a particular problem that arise from
integrating out fields. We will study it in the context of supergravity.
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4.1 The η problem in supergravity

In N = 1 supergravity the Lagrangian is

L = −Kϕϕ̄∂ϕ∂ϕ̄ + VF , (48)

where the scalar potential is

VF = eK/M2
p

[
Kϕϕ̄DϕWDϕW − 3

M2
p

|W |2
]

, (49)

and Dϕ = ∂ϕW + 1
M2

p
∂ϕK. Expanding the Kähler potential around ϕ = 0

K(ϕ, ϕ̄) = K0 + Kϕϕ̄ϕϕ̄ + . . . (50)

the Lagrangian becomes

L ≈ −Kϕϕ̄∂ϕ∂ϕ̄− V0

(
1 + Kϕϕ̄|ϕ=0

ϕϕ̄

M2
p

+ . . .

)
(51)

= −∂φ∂φ̄− V0

(
1 +

φφ̄

M2
p

+ . . .

)
, (52)

where . . . denotes model dependent terms that are of the same order as
the terms we wrote down and in the second line we have introduced the
canonically normalized inflaton fields φ. The problem is that we have found
a model independent correction to the potential that is δV = V0

φφ̄
M2

p
and

which leads to

∆η = M2
p

∆V ′′

V0

= 1. (53)

This is the so called η problem that one generically faces. One option to
deal with it is to fine tune it away by having a model that leads to further
corrections that compensate the model independent contribution. Another
approach is that the inflation is not in VF like for example an axion that has
no classical potential due to its shift symmetry.
We will now study in detail so called warped D-brane inflation, where the η
problem can in principle be avoided by having model dependent corrections
to V that cancel the universal contributions.
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4.2 Warped D-brane inflation

In string theory one can consider cases where the modulus that corresponds to
the distance between a D3 brane and an anti-D3 brane gives rise to inflation.
However, in order for the resulting Coulomb potential to be shallow enough
for slow-roll inflation, the distance between the two branes needs to be bigger
than the size of the compact space they move in. To avoid this generic
problem, KKLMMT [10] placed the two branes into a warped throat. The
warping had the effect that one can realize slow-roll since the attractive force
is effectively reduced by the warping. As was previous shown by KKLT [11]
it is also possible in this setup to stabilize all closed string moduli that might
spoil inflation if left unstabilized. In this setup it is possible to investigate
corrections that arise and check whether it might be possible to avoid the η
problem discussed above [12].
The background in which the D3 brane moves is taken to be a warped throat
at which tip an anti-D3 brane sits. The throat is connected to a compact
Calabi-Yau (CY) space. The metric is

ds2 = e2A(y)ηµνdxµdxν + e−2A(y)gmndymdyn, (54)

where gmn is the generically unknown CY metric. Since we are only interest
in the movement of the D3 brane this is no problem. We take the D3 brane
to move in the interval rIR ≤ r ≤ rUV where rIR is a lower cut-off close to the
tip of the throat and rUV is close to the end of the throat were it is connected
to the compact CY. For concreteness we take the Klebanov-Strassler (KS)
throat

gmndymdyn = dr2 + r2ds2
X5

, (55)

with X5 = SU(2)×SU(2)
U(1)

= T 1,1. Then we can expand the DBI action for
the D3-brane to obtained the normalization of the inflaton field φ and find
φ2 = T3r

2, where the tension of the D3-brane is T3 = [(2π)3gsα
′]−1

. Next
one can calculate the resulting inflaton potential

V (φ) = V0(φ) + H2φ2 + ∆V (φ), (56)

where V0(φ) is the Coulomb potential, H2φ2 is the universal contribution we
have calculated above and ∆V (φ) are model dependent contributions. This
leads to and η parameter

η = η0 +
2

3
+ ∆η. (57)
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The warping leads to a sufficiently shallow Coulomb potential and therefore
to a small η0. We therefore need to calculate ∆η and hope that it can
compensate the large factor of 2

3
.

A systematic approach to study such corrections was made in [12], where the
authors made use of the gauge/gravity corresponds and studied corrections
of the field theory dual to the KS throat. They were able to provide an
explicit mapping between corrections arising on the field theory and gravity
side. They found that the corrections are generically of the form

∆V (φ) = a 3
2
φ

3
2 + a2φ

2. (58)

The authors showed that in throat dual to chiral gauge theories a 3
2

= 0 and
that even in the case dual to non-chiral gauge theories it is possible that
discrete symmetries can lead to a 3

2
= 0. In this case the total potential takes

the form
V (φ) = V0(φ) + βH2φ2, (59)

and it is possible to fine tune the parameter β by varying the strength of the
UV perturbation arising from coupling the throat to a compact CY. There
it is possible to obtain models that do not suffer from the η problem.

4.3 DBI-Inflation

Another inflationary model obtained from string theory is the so called DBI-
inflation where one uses the DBI-action of a Dp brane to derive the inflaton
potential. This case is different from the previous one since it is not relying
on the slow-roll approximation. It therefore also has somewhat different
observational signature in the sense that it predicts larger non-Gaussianities.
For DBI-inflation one imagines a D3 brane moving down a throat towards and
anti-D3 brane at the tip of the throat similar to the case above. This motion,
however, is to be taken to be relativistic rather than slow. Surprisingly, this
can also lead to an inflationary phase. Since the slow-roll conditions are not
applicable there is no η problem.

A Conventions and notation

We will work in units where c = ~ = kB = 1.
The gravitational constant is denoted by G and defines the Planck mass
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squared M2
p = 1

8πG
.

A dot over a quantity denotes the time-derivative of that quantity, while a
prime generally denotes the derivative for functions of a single variable, e.g.
V ′(φ) = ∂V

∂φ
.

We will consider the Robertson-Walker metric for which the line element is

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dθ2 + r2sin2θdφ2

]
(60)

where a(t) is the cosmic scale factor and κ = −1, 0, 1 depending on whether
spacial slices of the universe are hyperbolic surfaces (κ = −1), flat (κ = 0)
or three spheres (κ = 1). We will also use the conformal time τ defined by
dt = a(τ)dτ .

The redshift for light emitted at t1 is z1 = a(t0)
a(t1)

− 1, where the subscript 0
always refers to the present time.
The density parameter is denoted Ω and is given by the energy density ρ
divided by the critical energy density ρc i.e. Ω = ρ

ρc
subscripts R, M, Λ

mean the contribution from radiation, matter or vacuum. We will also use
Ωk = − k

a2H2 .
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