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Introduction

Main topic – HS gauge fields

Generalization to higher tensor gauge fields of

SPIN 1 Y-M gauge potential An :

SPIN 2 metric field gnm :

SPIN 3
2 gravitino ψnα:

Goal: non-Abelian HS gauge symmetries

= nonlinear HS gauge interactions
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Gauge symmetries guarantee consistency both for massless and massive

theories like HS gauge theory and String Theory

String theory via spontaneous breaking of HS gauge symmetries!?

HS Theory evolves to a nonlocal theory with emergent concepts of

space-time dimension, metric and local event

Example: 4d massless fields live on a delocalized 3-brane in ten dimen-

sions
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HS fields

Symmetric massless HS fields - main subject of these lectures

• m 6= 0 symmetric fields of any spin: Singh-Hagen (1974)

Traceless symmetric tensors φn1...ns, φn1...ns−2, φn1...ns−3 , . . . , φ︸ ︷︷ ︸
supplementary fields

• m = 0 symmetric fields of any spin: Fronsdal (1978)

φn1...ns , φn1...ns−2 ∼ ϕn1...ns double traceless ηn1n2ηn3n4ϕn1...ns = 0

Mixed symmetry fields

• m = 0 of any symmetry in flat space Labastida (1989), Skvortsov (2008),

Campoleony, Francia, Mourad, Sagnotti (2008)

• m = 0 of any symmetry in AdS Brink, Metsaev, MV (2000), Alkalaev,

Shaynkman, MV (2003) , N.Boulanger,C.Iazeolla and P.Sundell (2008) , Skvortsov

(2009)

A lot of particular examples in the literature
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String

String Field Theory:

Massive fields of all symmetry types

|Ψ〉 =
∑

ψm1...ms1
, n1...ns2

, ...a
m1
−1 . . . a

ms1
−1 a

n1
−2 . . . a

ns2
−2 . . . |0〉

Q|Ψ〉 = 0 equations + constraints

δ|ψ〉 = Q|ε〉 gauge symmetries: true+Stueckelberg

Mass scale m2 ∼ 1/α′

Tensionless limit α′ →∞ : All fields become massless

High-energy symmetries?!

A HS symmetric String Theory = HS gauge theory
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Fronsdal theory

ϕn1...ns - rank s double traceless symmetric tensor

Gauge transformation:

δϕk1...ks = ∂(k1εk2...ks) , εmmk3...ks−1
= 0

(. . . )- symmetrization: A((a1...an))
= A(a1...an)

.

εk1...ks−1
is symmetric traceless

Comment : δϕnnmmk5...ks = 0

Field equations

Gk1...ks(x) = 0 ,

Gk1...ks(x) = �ϕk1...ks(x)− s∂(k1∂
nϕk2...ksn)(x) +

s(s− 1)

2
∂(k1∂k2ϕ

n
k3...ksn)

(x)

Problem1.1. Check that Gk1...ks is gauge invariant.
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Analysis of Fronsdal equations

δϕn
nm1...ms−2 ∼ ∂nε

nm1...ms−2

choose a partial gauge

ϕn
nm1...ms−2 = 0 ∂nε

nm1...ms−2 = 0

By field equation: ∂n∂mϕnm... = 0

Taking into account δ∂nϕnm1...ms−1 = �εm1...ms−1

choose the gauge ∂nϕnm1...ms−1 = 0

Leftover gauge symmetry parameter εm1...ms−1 satisfies

�εm1...ms−1 = 0 ∂m1ε
m1...ms−1 = 0 εnnm1...ms−3 = 0.

Field equations

�ϕm1...ms = 0 ϕnnm1...ms−2 = 0 ∂nϕ
nm1...ms−1 = 0 .
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Fronsdal action

S =
∫
Md

(
1

2
ϕm1...msGm1...ms(ϕ)−

1

8
s(s− 1)ϕn

nm3...msGppm3...ms(ϕ)
)

Important property ∀ϕ , δϕ:

δS =
∫
Md

(
δϕm1...msGm1...ms(ϕ)−

1

4
s(s− 1)δϕn

nm3...msGppm3...ms(ϕ)
)

=
∫
Md

(
ϕm1...msGm1...ms(δϕ)−

1

4
s(s− 1)ϕn

nm3...msGppm3...ms(δϕ
)

Problem1.2. prove

Gauge variation δS = 0 because δGnm = 0.

s = 0 ϕ scalar

s = 1 ϕn Maxwell potential

s = 2 ϕnm linearized metric
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Various formulations of massless fields:

frame-like,

unrestricted,

BRST,

etc,

differ by

adding auxiliary fields that are expressed algebraically by their field equa-

tions via derivatives of dynamical fields

and/or Stueckelberg fields along with Stueckelberg shift gauge symme-

tries.

Interactions as the most crucial test: frame-like formulation
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Yang-Mills theory

Anij -elements of a Lie algebra l

Gnm = ∂nAm − ∂mAn + g[An, Am],

δAn = ∂nε+ g[An, ε] , δGnm = g[Gnm, ε], εij(x) ∈ l.

Yang-Mills Action

S = −
1

4

∫
tr(GmnG

mn) , S = SMaxw + g
∫
A2∂A+ g2

∫
A4 ,

δS = −
1

4
g
∫
tr[GmnG

mn, ε] = 0.
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• The coupling constants are fine tuned

• field spectra are distinguished: Aij− elements of a Lie algebra: not

any set of fields An is allowed

• interactions to other fields are restricted, requiring covariant deriva-

tives ∂nχα → Dnχα = ∂nχi +Anαβχ
β

χα –some l-module

• Cubic vertex contains one derivative
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Gravity

Spin 2: gnm – gauge field

Riemann tensor Rnm, kl transforms homogeneously under diffeomorphisms

δgnm = ∂n(ξ
k(x))gkm + ∂m(ξk(x))gkn + ξk(x)∂kgnm

for gnm = ηnm + κϕnm diffeomorphisms provide a nonlinear deformation

of the Fronsdal transformation δϕnm

Einstein action S = − 1
4κ2

∫ √
g R is a nonliner deformation of the

Fronsdal action for spin two.

Highly restricted field spectrum: only one spin-2 field.

Two derivatives in interactions.

Interactions via covariant derivatives.

∂ → D = ∂ − Γ − Christoffel connection
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Goal

To find a nonlinear HS theory such that

(i) Fronsdal (or Labastuda) theory in the free field limit

(ii) HS gauge symmetries related to HS parameters εm1...ms−1 deform to

non-Abelian

These conditions were believed for a long time to admit no solution.

S− matrix argument Coleman, Mandula (1967)

If symmetry is larger than usual (super)symmetries in Minkowski space-

time + inner symmetries the scattering is trivial: no interaction.
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HS Problem

HS-gravity interaction problem Aragone, Deser (1979)

∂n → Dn = ∂n − Γn [DnDm] = Rnm . . .

Riemann tensor Rnm,kl 6= 0 in a curved background.

δϕnm... → Dnεm...

δScovs =
∫
R...(ε...Dϕ...) 6= 0 ?!
↑

Weyl tensor for s > 2

For s ≤ 2, δScovs contains only the Ricci tensor to be compensated by

the variation of the Einstein action, allowing nonlinear gravity and su-

pergravity.

For s > 2, Weyl tensor contributes to δScovs : difficult to achieve HS gauge

symmetry at the nonlinear level.
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Higher Derivatives in HS Interactions
A.Bengtsson, I.Bengtsson, Brink (1983)

Berends, Burgers, van Dam (1984)

S = S2 + S3 + . . .

S3 =
∑
p,q,r

(Dpϕ)(Dqϕ)(Drϕ)ρp+q+r+1
2d−3

String: ρ ∼
√
α′

HS Gauge Theories (m = 0): Fradkin, M.V. (1987)

AdSd : (X0)2 + (Xd)2 − (X1)2 − . . .− (Xd−1)2 = ρ2 , ρ = λ−1

[Dn, Dm] ∼ ρ−2 = λ2

The ρ → ∞ limit is ill-defined at the interaction level both in string

theory and in HS gauge theory
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HS Fields in AdS Background

Anti-de Sitter space:

Rmn,kl = 0 , Rmn,kl = Rmn,kl − λ2(gmkgnl − gmlgnk)

ρ = λ−1 is AdSd radius.

Symmetry: o(2, d− 1)

To preserve HS gauge symmetries of massless fields, mass-like terms

have to be adjusted in terms of λ

Lflat = ∂ϕ∂ϕ→ LAdS = DϕDϕ+ λ2ϕϕ

For general mixed symmetry fields it is impossible to keep all flat space

HS gauge symmetries unbroken in AdS background

Metsaev (1995), Brink, Metsaev, M.V. (2000)
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Role of AdS Background in HS Theories

Near AdS: expansion in powers of the shifted Riemann tensor Rmn,kl

(which is zero in the AdS space) rather than in powers of the Riemann

tensor R

[Dn, Dm] ∼ λ2 ∼ O(1) +O(R).

The action is modified by cubic terms

Sint =
∫
M4

∑
p,q
λ−(p+q)Dp(ϕ)Dq(ϕ)R

which contain higher derivatives along with negative powers of λ.

There exists such Sint that its HS gauge variation compensates the

nonzero gauge variation of the free covariantized action. (Fradkin, M.V.

(1987))

For given spin, a highest order of derivatives in a vertex is finite increas-

ing linearly with spin.
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Spin 3 example

MV ((≤ 1986)), unpublished , Zinoviev (2008)

δϕmnk = D(mεnk) + . . .

S33 =
∫

(DϕDϕ+ λ2ϕ2)

S332 = λ−2S2
332 + S0

332

S2
332 =

∫
D2(ϕϕR) , S0

332 =
∫
ϕϕR

δS2
332 =

∫ (
[D,D]D(ϕεR) ∼ λ2D(ϕεR)

)
[Dn, Dm] ∼ λ2 ∼ O(1) +O(R)

λ−2δS2
332 compensates δS33 + δS0

332

For analogous analysis for s = 5/2 see Sorokin (2004)
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Compensation mechanism

Sint =
s−1∑
k=0

Sintk , Sintk = λ−2k
∫
M4

∑
p+q=2k

Dp(ϕ)Dq(ϕ)R

The highest derivative term Sints−1 is gauge invariant in the flat limit.

Since [Dn, Dm] ∼ λ2 ∼ O(1) +O(R) its variation with λ 6= 0 gives

δSints−1 = λ2(1−k)
∫
M4

∑
p+q=2s−3

Dp(ϕ)Dq(ε)R

This term compensates δSints−2 modulo terms of order λ−(2s−6).

The process goes on unless one is left with the λ-independent terms

δSint =
∫
M4

∑
p+q=1

Dp(ϕ)Dq(ε)R

which just compensates the variation of the covariantized free action

δScov + δSint = 0 . To understand miraculous cancellations:

Geometric approach
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Nonlinear HS gauge theories
• Full nonlinear equations of motion are known in any d for symmetric

boson HS fields (2003) and in 4d for supersymmetric systems of HS fields

(1990)

• Once a spin s > 2 field appears, a consistent HS theory contains an

infinite set of HS fields with infinitely increasing spins

• Different spin one Yang-Mils symmetries g = u(n), o(n) or usp(2n).

Odd spins: adjoint representation of g.

Even spins: the opposite symmetry second rank representation of g,

that contains a singlet for a colorless graviton

o(1): s = 0,2,4,6, . . . , u(1): s = 0,1,2,3 . . .

Fermions: bifundamental.
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Cubic actions

in 4d Fradkin, MV (1987), d = 5 MV (2001), Alkalaev, MV (2002);

particular spins in d > 4 Beckaert, Boulanger, Cnockaert (2005), Fotopoulos,

Irges, Petkou, Tsulaia (2007), Boulanger, Leclercq, Sundell (2008).

partially gauge fixed approach Metsaev (2005,2007)
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Cartan formulation of gravity

Diffeomorphisms without a distinguished spin two metric tensor:

exterior algebra calculus

gmn ,Γp,mn → ean , ωn
ab , gmn = eamena ,

ea = dxnean frame one-form (vielbein)

ωab = dxnωnab Lorentz connection

a, b . . . = 0,1 . . . d− 1 ‘flat’ tangent space indices.

Extra d(d−1)
2 components in ean are compensated by the o(d − 1,1) local

Lorentz symmetry

δea(x) = εab(x)eb(x) εab(x) = −εba(x) , δgmn(x) = 0 .
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Gravity as a gauge theory

ea, ωab are gauge fields of AdS algebra o(d−1,2) or its Poincarè contraction

iso(d− 1,1)

W = eaPa +
1

2
ωabMab

The YM curvature two-form is

R = dW +W ∧W ≡ T aPa +
1

2
R abMab ,

T a = DLea ≡ dea + ωab ∧ eb ,

R ab = R ab − λ2ea ∧ eb , R ab = dωab + ω a
c ∧ ω cb

λ−1 = ρ is the AdS radius. Flat limit: λ→ 0
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Zero torsion condition

T a = 0 → ω = ω(e, ∂e)

Rmn,kl = eake
b
lRmn ,ab(ω(e), e) is Riemann tensor for T a = 0.

AdSd : Rab = 0 , Ra = 0 .

Minkowski: Rmn,kl = 0, Ra = 0

27



MacDowell – Mansouri Action

SMM [ e, ω] = −
1

4κ2λ2

∫
M4

Ra1a2 ∧Ra3a4εa1a2a3a4 , R ab = R ab − λ2ea ∧ eb

Three terms:

R∧ e ∧ e: Einstein action without cosmological constant,

e ∧ e ∧ e ∧ e: cosmological term,

R∧R: Gauss-Bonnet term that contains higher derivatives but does not

contribute to the equations of motion

δ
∫
M4

Ra1a2 ∧Ra3a4εa1a2a3a4 ≡ 0

Problem1.1. Prove
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Vacuum Global Symmetry

Any solution of

T a(W0) = 0 , Rab(W0) = 0 , rank(ean) = d

describes local AdSd geometry. W0 satisfies the equations of motion of

the MM action.

To describe a gauge model that has a global symmetry h it is useful to

reformulate it in terms of the gauge connections W and curvatures R of

h in such a way that the zero curvature condition R(W0) = 0 solves the

field equations providing a h-symmetric vacuum solution W0.

Other way around: if a symmetry h is not known, reformulate dynam-

ics à la MacDowell-Mansouri to guess the structure of an appropriate

curvature R and thereby the nonAbelian algebra h.
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Frame-like formulation of HS fields
gnm −→ ean −→ {ean, ωabn }

admits a natural generalization to s ≥ 2

ϕn1...ns → ena1...as−1 → {ena1...as−1 , ωna1...as−1,b1...bt}

A set of HS 1–form connections labeled by the index 0 ≤ t ≤ s− 1 for a

spin s

ωa1...as−1 ,b1...bt = dxmωm
a1...as−1, b1...bt , (ω|t=0 = e)

symmetric in the fiber indices ai and (separately) in bj and satisfy the

(anti)symmetry condition

ω(a1...as−1 ,as) b2...bt = 0 :
s− 1

t

ω a1...as−1, b1...bt is traceless in a and b.

Identification

ϕn1...ns = e(n1;n2...ns)
−→ ϕklkln5...ns = 0
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Higher spin curvatures

Ra1...as−1, b1...bt = (Dad
Mω)a1...as−1, b1...bt = dωa1...as−1, b1...bt − hq ωa1...as−1, b1...bt q

are invariant under the gauge transformation

δωa1...as−1, b1...bt = Dad
M εa1...as−1, b1...bt ,

(
Dad
M

)2
= 0.

Additional components in

en;a1...as−1 : ⊗
s− 1

=
s

+
s− 2

+
s− 1

are gauged away by the generalized HS Lorentz gauge parameter ξa1...as−1,b

in

δema1...as−1 = ∂mξa1...as−1 − δbmξa1...as−1,b , δbm : flat frame

ξa1...as−1,b is a traceless tensor of the symmetry
s− 1

: ξ(a1...as−1,a)
=

0.

ξa1...as−1 : symmetric traceless parameter of the Fronsdal theory
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Free Action in Minkowski Space

S=
∫
Md

Epqr(d e
n1...ns−2p −

1

2
dxm ω

n1...ns−2p,m)ωn1...ns−2
q,r .

Epqr = dxa1 . . . dxad−3εa1...ad−3pqr

Important property that makes HS gauge symmetry manifest

Epqrdxm ω
n1...ns−2p,m δωn1...ns−2

q,r = Epqrdxm δω
n1...ns−2p,m ωn1...ns−2

q,r

since it implies that

δS=
∫
Md

Epqr(δR
n1...ns−2p ωn1...ns−2

q,r + en1...ns−2p δRn1...ns−2
q,r)

Problem2.1. Prove

Problem2.2. Prove that

δS=
∫
Md

Epqr (Rn1...ns−2p δω
n1...ns−2q,r − δen1...ns−2pR

n1...ns−2q,r)
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EOM for ω,

Rn1...ns−1 = den1...ns−1 − dxm ω
n1...ns−1,m = 0

expresses ω in terms of derivatives of e modulo a pure gauge part

Problem2.3. Prove and find ωn1...ns−1,m(e).

EOM for e is

dxmEqr
(pRn1...ns−2)q, r = 0 ,

or in the Einstein–like form

Rm(n1;n2...ns−1)
[p,m] = 0

Gauge invariance implies equivalence to the Fronsdal action
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ωa1...as−1 ,b1...bt different t : different dynamical roles

t = 0: frame-like HS field

t = 1: Lorentz connection-like auxiliary field

t > 1: extra fields appear for s > 2

By virtue of constraints t is an order of derivatives

ωa1...as−1 ,b1...bt = Π
(
∂b1 . . . ∂btea1...as−1

)
Extra field decoupling condition:

independence of the free action of extra fields = absence of higher

derivatives.

Extra fields do contribute at the interaction level : should be expressed

in terms of the dynamical fields (modulo pure gauge degrees of free-

dom) by constraints (Lopatin, M.V. (1988))
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First On-shell Theorem

by virtue of constraints and field equations, most of the HS field strengths

are zero

R1
a1...as−1, b1...bt = Xa1...as−1,b1...bt

(
δSs

2

δωdyn

)
, t < s− 1

R1
a1...as−1, b1...bs−1 = hc ∧ hdCa1...as−1 c, b1...bs−1 d+Xa1...as−1,b1...bs−1

(
δSs2
δωdyn

)

Xa1...as−1,b1...bt

(
δSs2
δωdyn

)
= 0 by field equations.

The generalized Weyl tensor Ca1...as,b1...bs

C{a1...as,as+1}b2...bs = 0 , Ca1...as−2cd,b1...bs ηcd = 0 ,
s

parametrizes on-shell nontrivial components of the HS field strengths.

For s = 2 it parametrizes the on-shell nonzero components of the Rie-

mann tensor, i.e. the Weyl tensor.
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Spin two

Fields: ea and ωab.

Zero-torsion constraint and Einstein equations

T a = 0 , Rab = ec ∧ edCac, bd

Cac, bd is the Weyl tensor in the symmetric basis

Cac, bd = C
[ab], [cd]
W + C

[cb], [ad]
W , C(ac, b)d = 0 , ηacC

ac, bd = 0

The restrictions on the derivatives of Cac, bd result from the Bianchi

identities

DLRab ≡ 0 ⇒ ec ∧ ed ∧ (DLCac, bd) = 0 , ⇒ DLCac, bd = efC
acf , bd

where DL is Lorentz covariant derivative and

C(abc, d)f = 0 , ηabC
abc, de = 0
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The process goes on by analyzing Bianchi.

For simplicity, Minkowski background: ha = dxa, , ωab = 0

dCac, bd = hfC
acf , bd ⇒

dCabf , cd = hg(3C
abfg, cd + Cabfc, gd + Cabfd, gc)

Continuation gives

dCa1...a2+k, b1b2 = hc((2 + k)Ca1...a2+k c, b1b2 + 2Ca1...a2+k (b1, c b2))

Combined with linearized Einstein equations gives unfolded spin two

equations

Analogously for any spin
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Central On-Shell Theorem
0 ≤ t ≤ s , δ(n) = 1(0) n = ( 6=)0

R1
a1...as−1, b1...bt = δ(t− (s− 1))hc ∧ hdCa1...as−1 c, b1...bs−1 d

s− 1
t

D̃Ca1...as+k, b1...bs = 0 s+ k
s

0 ≤ k ≤ ∞

D̃Ca1...as+k, b1...bs = hc

(
(2+k)Ca1...as+kc, b1...bs + sCa1...as+kb1, b2...bs c+λ2ha . . . C . . .

)
D̃2 = 0

Infinite set of 0−forms Ca1...as+k, b1...bs describe all gauge invariant on-

shell nontrivial derivatives for a massless field of spin s.
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Klein-Gordon equation

Minkowski space in Cartesian coordinates: ham = δam

To unfold spin-0 massless field, introduce infinite set of 0-forms
n

Ca1...an = C(a1...an)
, ηbcCbca3...an = 0 .

Unfolded KG equation

dCa1...an = hbCa1...anb

This system is consistent: since hb ∧ hc = −hc ∧ hb

d2Ca1...an = −hb ∧ hcCa1...anbc = 0 (n = 0,1, . . .)

The first two equations

∂nC = Cn , ∂nCm = Cmn ,

imply Cnm = ∂n∂mC.
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Tracelessness of Cnm :

�C(x) = 0.

All other equations:

Ca1...an = ∂a1 . . . ∂anC

Ca1...an: set of all on-mass-shell nontrivial derivatives of C(x).

d = 1 : two independent components q(t) = C(t), p(t) = Cn(t)

rank r > 1 traceless tensors are zero

Any coordinates in Minkowski space

d→ D0 = d+ ω0 , D2
0 = 0 , D0(h) = 0 .
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