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Spinorial and tensorial HS models

Tensorial HS models in any dimension:

HS fields are realized as forms carrying tensor indices.

Spinorial 3d and 4d HS models:

HS fields are realized as forms carrying spinor indices.
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The case of four dimensions

Key fact 2× 2 = 4

Minkowski coordinates as 2× 2 hermitian matrices

xn ⇒ xαα̇ =
3∑

n=0

xnσαα̇n , σαα̇n = (Iαα̇,−→σ αα̇k )

Iαα̇: unit matrix

−→σ αα̇k , k = 1,2,3: Pauli matrices

α, β, . . . = 1,2, α̇, β̇, . . . = 1,2 two-component spinor indices

det |xαα̇| = (x0)2 − (x1)2 − (x2)2 − (x3)2

Lorentz symmetry: sl(2,C) ∼ o(3,1).

3



Two-component spinors

Two-component indices are contracted by the antisymmetric 2×2 matrix

εαβ : ε12 = ε12 = 1 , εαγε
βγ = δβα , ψα = εαβψβ , ψα = ψβεβα

Lorentz invariants ψαχα : Lorentz Symmetry: sl2(C) ∼ o(3,1).

Dictionary between tensors and multispinors by:

σaαα̇ , σabαβ = σ
[a
αα̇σ

b]
β
β̇ , σ̄ab

α̇β̇
= σ

[a
αα̇σ

b]α
β̇

Pair of dotted and undotted indices: vector

Pairs of symmetrized indices of the same type: antisymmetric tensors

Irreducible representations of the Lorentz group: symmetric multispinors

Aα1...αn ,β̇1...β̇m
⊕Aβ1...βm ,α̇1...α̇n ∼ ωa1...ap ,b1...bq , p = |n+m|/2 , q = |n−m|/2

Irreducibility: A(a1...ap ,ap+1)b2...bq
= 0 :

p

q

, Aa1...ap ,b1...bqη
a1a2 = 0 .
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Gauge connections

Gauge 1-forms ωα1...αn ,β̇1...β̇m
, n+m = 2(s− 1)

s = 1 : ω(x) = dxnωn(x)

s = 2 : ωαβ̇(x) , ωαβ(x) , ω̄α̇β̇(x)

s = 3/2 : ωα(x) , ω̄α̇(x)

Frame-like fields: |n−m| = 0 (bosons) or |n−m| = 1 fermions

Auxiliary Lorentz-like fields: |n−m| = 2 (bosons)

Extra fields: |n−m| > 2
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Gauge invariant field strengths

0-forms Cα1...αn ,β̇1...β̇m
, |n−m| = 2s

(Anti)selfdual Weyl tensors carry only (dotted)undotted spinor indices

s = 0 : C(x)

s = 1/2 : Cα(x) , C̄α̇(x)

s = 1 : Cαβ , C̄α̇β̇

s = 3/2 : Cαβγ , C̄α̇β̇γ̇

s = 2 : Cα1...α4 , C̄α̇1...α̇4
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HS multiplets

Infinite set of spins s = 0,1/2,1,3/2,2 . . .

ωα1...αn ,β̇1...β̇m
and Cα1...αn ,β̇1...β̇m

with all n ≥ 0 and m ≥ 0.

Generating functions ω(Y |x) and C(Y |x): Unrestricted functions of com-

muting spinor (twistor) variables Y = (yα, ȳα̇)

A(Y |x) =
∞∑

n,m=0

1

2n!m!
Aα1...αn ,α̇1...α̇my

α1 . . . yαnȳα̇1 . . . ȳα̇m

Fermions require doubling of fields

ωii(y, ȳ | x) , Ci1−i(y, ȳ | x) , i = 0,1 ,

ω̄ii(y, ȳ | x) = ωii(ȳ, y | x) , C̄i1−i(y, ȳ | x) = C1−i i(ȳ, y | x) .
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Twistor Central On-shell theorem

The full unfolded system for the doubled sets of free fields is

Rii1(y, y | x) = H
α̇β̇ ∂2

∂yα̇∂yβ̇
C1−i i(0, y | x) +Hαβ ∂2

∂yα∂yβ
Ci1−i(y,0 | x) ,

D̃0C
i1−i(y, y | x) = 0 ,

where

Hαβ = hαα̇ ∧ hβα̇ , H
α̇β̇ = hα

α̇ ∧ hαβ̇ ,

R1(y, ȳ | x) = Dadω(y, ȳ | x)

Dadω = DL − λhαβ̇
(
yα

∂

∂ȳβ̇
+

∂

∂yα
ȳβ̇

)
, D̃ = DL + λhαβ̇

(
yαȳβ̇ +

∂2

∂yα∂ȳβ̇

)
,

DLA = dx −
(
ωαβyα

∂

∂yβ
+ ω̄α̇β̇ȳα̇

∂

∂ȳβ̇

)
.

NonAbelian generalization via star-product algebra
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Weyl algebra

Weyl algebra An: associative algebra of functions f(Ŷ ) of n pairs of

oscillators

[Ŷµ , Ŷν] = 2iCµν , µ, ν = 1, . . .2n .

Different types of orderings are equivalent for polynomial f(Ŷ ) because

commutators of oscillators decrease an order of polynomial.

Weyl ordering: totally symmetric

f(Ŷ ) =
∞∑
p=0

fµ1...µpŶµ1 . . . Ŷµp ,

fµ1...µp totally symmetric

Wick (normal) ordering [â−i , â
+j] = δ

j
i

f(â±) =
∞∑

p,q=0

χ
i1...ip
j1...jq

â+j1 . . . â+jqâ−i1 . . . â
−
iq
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Star Product
Weyl symbol f(Y ) of the operator f̂(Ŷ ) is a function of commuting

variables Yµ that has the same expansion

f(Y ) =
∞∑
p=0

fµ1...µpYµ1 . . . Yµp

Yν is the Weyl symbol of Ŷν.

Wick symbol f(a±) of the operator f̂(â±) is a function of commuting

variables a± that has the same expansion

f(a±) =
∞∑

p,q=0

χ
i1...ip
j1...jq

a+j1 . . . a+jqa−i1 . . . a
−
iq

Star–product algebra is defined by the rule

Weyl star-product (f ∗ g)(Y ) is a symbol of f̂(Ŷ )ĝ(Ŷ ) . In particular,

[Yν, Yµ]∗ = 2iCνµ , [a , b]∗ = a ∗ b− b ∗ a

Wick star-product (f ? g)(a±) is a symbol of f̂(â±)ĝ(â±) .
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Examples

Yµ ∗ Yν = Y(µYν) + iCµν

a+j ? a−i = a+ja−i , a−i ? a
+j = a+ja−i + δ

j
i

Problem2.1. Prove

[Yν , f(Y )]∗ = 2i
∂

∂Y ν
f(Y ) , Y ν = CνµYµ

{Yν , f(Y )}∗ = 2Yνf(Y )

a+i ? f(a±) = a+if(a±) , f(a±) ? a−j = f(a±)a−j

a−i ? f(a
±) =

(
a−i +

∂

∂a+i

)
f(a±) , f(a±) ? a+ =

(
a+j +

∂

∂a−j

)
f(a±)
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Weyl-Moyal star-product

For the Weyl ordering, star–product is given by the Weyl-Moyal formula

(f1 ∗ f2)(Y ) = f1(Y ) exp [i
←−
∂ν
−→
∂µCνµ] f2(Y ) , ∂µ ≡

∂

∂Yµ

Problem2.2. Prove using Campbell-Hausdorf formula for exponentials exp JνŶν

Important properties

• associativity: (f ∗ g) ∗ h = f ∗ (g ∗ h)

• regularity: star product of any two polynomials of Y is a polynomial

The Weyl-Moyal star product has integral representation

(f1 ∗ f2)(Y ) =
1

π2M

∫
dSdT exp(−iSµTνCµν)f1(Y + S) f2(Y + T )
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Supertrace

str(f(Y )) = f(0)

Boson-fermion parity for spinorial Yν

f(Y ) = (−1)π(f)f(−Y )

str(f(Y ) ∗ g(Y )) = (−1)π(f)str(g(Y ) ∗ f(Y )) = (−1)π(g)str(g(Y ) ∗ f(Y ))

Bilinear form str(f ∗g) is invariant under δf = [ε , f ]∗ provided that fermion

fields carry additional Grassmann parity

In components

str(A ∗B) =
∞∑

n,m=0

in+m−1

n!m!
Aα1...αn, β̇1...β̇m

∧Bα1...αn,β̇1... ˙βm ,

for

A(Y ) =
∞∑

n,m=0

1

2n!m!
Aα1...αn ,α̇1...α̇my

α1 . . . yαnȳα̇1 . . . ȳα̇m
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NonAbelian HS Algebra

R(Y |x) = dω(Y |x) + ω(Y |x) ∗ ∧ω(Y |x)

ω = ω0 + ω1 , ω0 =
1

4i
(ωαβ0 yαyβ + ω̄

α̇β̇
0 ȳα̇ȳβ̇ + 2λhαβ̇yαȳβ̇)

R0 = 0 , R1 = D0ω1 = dω1 + [ω0 , ω1]∗

HS gauge transformation

δω(Y |x) = Dε(Y |x) = dε(Y |x) + [ω(Y |x) , ε(Y |x)]∗

• The simplest 4d HS algebra hu(1,0|4) is the infinite-dimensional Lie

algebra of even polynomials f(−Y ) = f(Y ) with star-commutator [f , g]∗

as Lie product
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• T νµ - generators of sp(4) ∼ (3,2) ⊂ hu(1,0|4) : bilinears of Y .

Y µ independent generators correspond to spin one

spin s generators are homogeneous Weyl symbols

ωs(νY |x) = ν2(s−1)ω(Y |x) .

hu(1,0|4) is a global symmetry algebra of the most symmetric vacuum

solution of the nonlinear bosonic HS theory

• HS algebras possess extensions to superalgebras hu(n,m|2M), ho(n,m|2M),

husp(2n,2m|2M) with fermions and non-Abelian spin one YM gauge al-

gebras u(n)⊕ u(m), o(n)⊕ o(m), usp(2n)⊕ usp(2m)

The construction of HS gauge symmetries is analogous Chan-Paton

construction in String Theory

Orthogonal and symplectic gauge symmetry result from the construc-

tion analogous to orientifolds (Pradisi, Sagnotti) but in the space of

auxiliary oscillators rather than in space-time
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Properties of HS algebras

Let Ts1 be homogeneous polynomial of degree 2(s− 1)

[Ts1 , Ts2] = Ts1+s2−2m = Ts1+s2−2 + Ts1+s2−4 + . . .+ T|s1−s2|+2 .

Once a gauge field of spin s > 2 appears, the HS symmetry algebra

requires an infinite tower of HS gauge fields together with gravity: [Ts, Ts]

gives rise to generators T2s−2, of a gauge field of spin s′ = 2s− 2 > s and

also gives rise to generators T2 of o(3,2) ∼ sp(4).

The spin-2 barrier separates theories with usual finite-dimensional lower-

spin symmetries from those with infinite-dimensional HS symmetries.

The maximal finite-dimensional subalgebra of hu(1,0|4) is: u(1)⊕ o(3,2),

where u(1) is associated with the unit element.

Even spin generators T2p span a proper subalgebra ho(1,0|4).
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Singletons and AdS/CFT

Representations of HS symmetries: HS multiplets

HS algebras in AdS4 are conformal HS symmetries of

3d massless scalar S and spinor F

Flato-Fronsdal theorem:

B ⊗B and F ⊗ F : m = 0, s = 0,1,2, . . .∞ in AdS4

B ⊗ F : m = 0, s = 1/2,3/2,5/2 . . .∞ in AdS4

global HS symmetries are symmetries of free 3d and 4d fields.

Interactions deform symmetries by field-dependent corrections

Klebanov-Polyakov conjecture: AdS/CFT duality between N →∞ 3d O(N)

sigma-model and 4d HS gauge theory

Bianchi, Heslop, Riccioni conjecture: states of String Theory arrange

into modules of HS algebras
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Cubic Actions

HS generalizations of the MacDowell-Mansouri action for gravity

S = −
1

4κ2

∞∑
n,m=0

in+m−1

n!m!
ε(n−m)

∫
M4

Rα1...αn, β̇1...β̇m
(x) ∧Rα1...αn,β̇1... ˙βm(x) ,

Rα1...αn,β̇1... ˙βm(x) are components of the HS curvature tensor

R(Y |x) = dω(Y |x) + ω(Y |x) exp [i
←−
∂ν
−→
∂µCνµ] ∧ ω(Y |x)

ε(−n) = −ε(n) , ε(n) = 1 n > 0 .

S(ε(n−m)→ 1) = Stop = −
1

4κ2

∫
M4

str(R ∧ ∗R) , δStop = 0 .
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Free Action in AdS4

The quadratic part S2 with R→ R1 is manifestly gauge invariant.

Extra field decoupling condition

δS2

δωα1...αn ,α̇1...α̇m
≡ 0 , |n−m| > 2

S2 is the free action for all spin s > 1 massless fields.

Free massless equations of motion

h(α1
β̇ ∧R

α2...αs−1),α̇1...α̇s−1β̇ − hγ(α̇1 ∧Rα1...αs−1γ,α̇2...α̇s−1) = 0

in the bosonic case and

hγ1
α̇1 ∧Rα1...αs−3/2γ,α̇2...α̇s−1/2 = 0 ,

and complex conjugated in the fermionic case.

EOM for the Lorentz-like auxiliary fields: HS ”zero-torsion” constraint

Rα1...αs−1,α̇1...α̇s−1
= 0 .
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Constraints and Cubic Interactions

Extra fields that contribute beyond quadratic approximation have to be

expressed via derivatives of the frame-like field by the constraints

h(α
γ̇∧Rα1...αn)α ,β̇1...β̇mγ̇

= 0 n > m ≥ 0 , hγ(β̇∧Rα1...αnγ ,β̇1...β̇m)β̇
= 0 m > n ≥ 0 ,

To prove HS gauge invariance in the cubic order it suffices to prove

that

δS =

(
δSs2
δωdyn

∆(ωdynε)

)
since such terms can be compensated by a modification of the trans-

formation law

δ′ωdyn = δ′ωdyn −∆(ωdynε)

Use first on-shell theorem which contains the constraints

R1(y, y | x) ∼ H
α̇β̇ ∂2

∂yα̇∂yβ̇
C(0, y | x) +Hαβ ∂2

∂yα∂yβ
C(y,0 | x)
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HS gauge invariance of the cubic HS action

δS = −
1

2κ2

∞∑
n,m=0

in+m−1

n!m!
ε(n−m)

∫
M4

[ε , R]∗α1...αn, β̇1...β̇m
(x) ∧Rα1...αn,β̇1... ˙βm(x) ,

By Central On-Shell Theorem leaves three options

• holomorphic: Rα1...αn ∧Rβ1...βmε
α1...αn,β1...βm

• antiholomorphic: Rα̇1...α̇n ∧Rβ̇1...β̇mε
α̇1...α̇n,β̇1...β̇m

• mixed: Rα1...αn ∧Rβ̇1...β̇mε
α1...α̇n,β1...β̇m

Holomorphic and antiholomorphic terms vanish because ε(n−m) = ±1.

The mixed terms vanish because

Hαβ ∧ H̄α̇β̇ ≡ hαγ̇ ∧ hβγ̇ ∧ hγα̇ ∧ hγβ̇ ≡ 0

in

R(y,0)×R(0, ȳ) = H
α̇β̇ ∂2

∂yα̇∂yβ̇
C1−i i(0, y | x) ∧Hαβ ∂2

∂yα∂yβ
Ci1−i(y,0 | x)
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Central On-Shell Theorem
and unfolded dynamics

Rii(y, y | x) = H
α̇β̇ ∂2

∂yα̇∂yβ̇
C1−i i(0, y | x) +Hαβ ∂2

∂yα∂yβ
Ci1−i(y,0 | x) + . . .

D̃Ci1−i(y, y | x) + . . . , . . . = O(C,ω1)

R(y, y | x) = dω(y, y | x) + ω(y, y | x) ∗ ω(y, y | x)

D̃C(y, y | x) = dC(y, y | x) + ω(y, y | x) ∗ C(y, y | x)− C(y, y | x) ∗ ω(y,−y | x)

Such field equations are unfolded: exterior differential of any of the

differential form field is expressed via the fields themselves

Problem: find nonlinear corrections that guarantee formal consistency

= gauge invariance of the system
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Unfolded Dynamics

First-order form of differential equations

q̇i(t) = ϕi(q(t)) initial values: qi(t0)

# degrees of freedom = # of dynamical variables

Field theory: infinite number of degrees of freedom = spaces of func-

tions

Maxwell q ∼
−→
A(x), p ∼

−→
E (x).

Dirac approach is nice and efficient but noncovariant.

Covariant extension t→ xn ?

Unfolded dynamics: multidimensional generalization

∂

∂t
→ d , qi(t)→Wα(x) = dxn1 ∧ . . . ∧ dxnpWα

n1...np
(x)

a set of differential forms
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Unfolded equations

dWα(x) = Gα(W (x)) , d = dxn∂n

Gα(W ) : function of “supercoordinates” Wα

Gα(W ) =
∞∑
n=1

fαβ1...βnW
β1 ∧ . . . ∧Wβn

Covariant first-order differential equations

d > 1: Nontrivial compatibility conditions

Gβ(W ) ∧
∂Gα(W )

∂Wβ
≡ 0

equivalent to the generalized Jacobi identities

m∑
n=0

(n+ 1)fγ[β1...βm−nf
α
γβm−n+1...βm} = 0
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Any solution to generalized Jacobi identities: FDA (Sullivan (1968))

FDA is universal if the generalized Jacobi identity holds independently

of space-time dimension. The HS FDAs are universal.

Every universal FDA = some L∞ algebra

Universal unfolded systems are analogues of one-dimensional Hamil-

tonian systems

The unfolded equation is invariant under the gauge transformation

δWα = dεα + εβ
∂Gα(W )

∂Wβ
,

where the gauge parameter εα(x) is a (pα − 1)-form.

(No gauge parameters for 0-forms Wα)
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Properties

• General applicability

• Manifest (HS) gauge invariance

• Invariance under diffeomorphisms

Exterior algebra formalism

• Interactions: nonlinear deformation of Gα(W )

• Degrees of freedom are in 0-forms Ci(x0) at any x = x0 (as q(t0))

infinite-dimensional module dual to the space of single-particle states

realized as a space of functions of auxiliary variables (like C(y, ȳ) instead

of phase space coordinates in the Hamiltonian approach

• Natural realization of infinite symmetries with higher derivatives

• Independence of ambient space-time

Geometry is encoded by Gα(W )

• Lie algebra cohomology interpretation: σ− cohomology
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Unfolding as a covariant twistor transform

Twistor transform

@
@

@
@R

�
�

�
�	

C(Y |x)

M(x) T (Y ) .

η ν

Wα(Y |x) are functions on the “correspondence space” C.

Space-time M : coordinates x. Twistor space T : coordinates Y .

Unfolded equations describe the Penrose transform by mapping func-

tions on T to solutions of field equations in M .

Effective (spinorial HS models):

Wα(Y |x) are unrestricted functions on T = Rn or some projective space.

Ineffective (tensorial HS models):

Wα(Y |x) are subject to differential conditions in T . The unfolded field

equations are still useful to describe interactions
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Idea of Nonlinear Construction

Being possible in a few first orders, straightforward construction of

nonlinear deformation quickly gets very complicated.

•Trick: to find a larger algebra g′ such that the substitution

? ω →W = ω+ ωC + ωC2 + . . .

into g′ reconstructs nonlinear equations via a zero-curvature condition

dW +W ∧W = 0

To find restrictions on W that reconstructs ? in all orders

Result: no interaction ambiguity modulo field redefinitions in the ten-

sorial models and one arbitrary function in the 4d spinorial model.

YM constant g2 = |Λ|
d−2
2 κ2 can be rescaled away in the classical HS

model
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Doubling of spinors and Klein operators
ω(Y |x) −→W (Z;Y ;K|x) , C(Y |x) −→ B(Z;Y ;K|x)

to be accompanied by equations that determine the dependence on the

additional variables Zν in terms of “initial data”

ω(Y ;K|x) = W (0;Y ;K|x) =
∑2
ij=1 k

ik̄jωij(Y |x)

C(Y ;K|x) = B(0;Y ;K|x) =
∑2
ij=1 k

ik̄jωij(Y |x) .

S(Z, Y,K|x) = dZνSν is connection along Zν

Klein operators K = (k, k̄) generate chirality automorphisms

kf(A) = f(Ã)k , k̄f(A) = f(−Ã)k̄ , A = (aα , āα̇) : Ã = A = (−aα , āα̇)

kk̄ is boson-fermion parity generator: kk̄f(Y ) = f(−Y )kk̄.

P (Y ) = Pαα̇yαȳα̇ −→ P̃ (Y ) = −P (Y ) , M̃(Y ) = M(Y ) .
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HS star product

(f ? g)(Z, Y ) =
∫
dSdTf(Z + S, Y + S)g(Z − T, Y + T ) exp−iSνT ν

[Yν, Yµ]? = −[Zν, Zµ]? = 2iCνµ , Z − Y : Z + Y normal ordering

Inner Klein operators:

κ = exp izαyα , κ̄ = exp izα̇y
α̇ , κ ? f = f̃ ? κ , κ ? κ = 1
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Nonlinear HS Equations

W ?W = i(dZνdZν+dzαdzαF (B)?k ?κ+dz̄α̇dz̄α̇F̄ (B)? k̄ ? κ̄) , W ?B = B?W

Manifest gauge invariance

δW = [ε,W]? , δB = ε ? B −B ? ε , ε = ε(Z;Y ;K|x)

x− z decomposition

dW +W ?W = 0
dB +W ? B −B ?W = 0
dS +W ? S + S ?W = 0
S ? B −B ? S = 0
S ? S = i(dZνdZν + dzαdzαF (B) ? k ? κ+ dz̄α̇dz̄α̇F̄ (B) ? k̄ ? κ̄)

Nontrivial equations are free of space-time differential d.

HS equations describe two dimensional fuzzy hyperboloid in noncom-

mutative space of Yµ and Zµ. Its radius depends on HS curvature B(x).
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Consistency

I. Compatibility with

a. d2 = 0

d2W = d(W ?W ) = (W ?W ) ? W −W ? (W ?W ) = 0

b. (f ? g) ? h = f ? (h ? g)

(S ? S) ? S = S ? (S ? S)

is elementary. The term with B may look problematic because S does

not commute with the B-dependent terms but it is zero because

(dzα)3 = 0 and (δz̄α̇)3 = 0.

II. No divergences despite non-polynomial inner Klein operators ele-

ments: κ = exp izαyα and κ̄ = exp iz̄α̇ȳ
α̇

Less trivial but still elementary

A particular form of star product plays crucial role
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Perturbative analysis

Vacuum solution

B0 = 0 , S0 = dZνZν , W0 =
1

2
ω
µν
0 (x)YµYν

dW0 +W0 ? W0 = 0

ω
µν
0 (x): describes AdSd.

First-order fluctuations

B1 = C , S = S0 + S1 , W = W0 +W1

[S0 , f ]? = −2idzf , dz = dZν
∂

∂Zν
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Central On-Shell Theorem

is reproduced in the lowest order in a few steps:

1. [S ,B]? = 0 implies dzB(Z;Y ;K|x) = 0 and hence

B(Z;Y ;K|x) = C(Y ;K|x) + . . .

2. dB +W0 ? B −B ?W0 = 0 implies

D̃0C = 0

3. S?S = idzαdzαF (B) implies in the lowest order {dz , S1}? = −1
2F (C)dzαdzα

and hence reconstructs S1 via C up to Z-exact terms

S1 = S1(C) + dzε(Z;Y ;K|x)
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4. ε(Z;Y ;K|x) represents infinitesimal HS gauge transformations δW =

[ε,W]?. Fixing the gauge ambiguity by setting dzε(Z;Y ;K|x) = 0 leaves

leftover symmetry with

ε(Z;Y ;K|x) = ε(Y ;K|x)

where ε(Y ;K|x) is the HS gauge parameter of the original formulation.

5. Solving dx+W?S+S?W = 0 implies in the lowest order D0(S1) = 2idzW1.

This gives

W1 = ω(Y ;K|x) +W1(W0, C)

where ω(Y ;K|x) is an arbitrary function of its arguments to be identified

with the original HS gauge field in the frame-like formalism

6. Substitution of W1 into the zero-curvature equation dW +W ?W = 0

gives the equation

R = hhC

of the Central-On-Shell theorem
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HS theory in any dimension

Yν → Y Ai , Cνµ → εijη
AB , i, j = 1,2 , A,B = 0,1, . . . d

εij = −εj i, ε12 = ε12 = 1: sp(2) symplectic form

ηAB = ηBA: o(d− 1,2) invariant metric

AA = ηABAB , ai = εijaj , ai = ajεji

Star-product algebra

[Y Ai , Y
B
j ]∗ = εij η

AB

TAB rotates o(d− 1,2) vector indices

[TAB , Y Ci ]∗ =
1

2

(
Y Ai η

BC − Y Bi η
AB

)
tij = Y Ai Y

B
j ηAB rotate sp(2) indices

[tij , Y
A
k ]∗ = εjkY

A
i + εikY

A
j
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TAB and tij form a Howe dual pair o(d− 1,2)⊕ sp(2)

[TAB, tij]∗ = 0

S subalgebra of the Weyl algebra spanned by sp(2) singlets f(Y )

S : [f(Y ), tij]∗ = 0

S is not simple: two-sided ideal

g ∈ I : g = tij ∗ gij = gij ∗ tij .

Since

tij = Y Ai Y
B
j ηAB

I contains traces:, A = S/I consists of traceless tensors {Ts} described

by two-row rectangular tableaux.

HS algebra results from A
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Invariant functionals via Q–cohomology

Equivalent form of compatibility condition

Q2 = 0 , Q = Gα(W )
∂

∂Wα

Q-manifolds

Hamiltonian-like form of the unfolded equations

dF (W (x)) = Q(F (W (x)) , ∀F (W ) .

Action in unfolded dynamics approach

S =
∫
L(W (x)) , QL = 0 (2005)

L = QM : total derivatives

Actions and conserved charges: Q cohomology

for off-shell and on-shell unfolded systems, respectively
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Nonlocality of HS Gauge Theory

Having infinitely many HS fields with higher derivatives in interactions,

the HS Gauge Theory is nonlocal:

λ−1D ∼ 1

since

[λ−1D ,λ−1D] ∼ 1

A different mass scale parameter like α′ is needed for a low-energy

expansion
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4d massless fields in ten dimensions

To describe all 4d massless fields as two fields the Minkowski space-time

M4 has to be replaced by the ten dimensional space M4 of symmetric

matrices Xµν = Xνµ Fronsdal 1985

µ, ν = 1, 2, 3, 4 Majorana (real) spinor indices µ = (α, α̇)

Xµν =
(
xαβ̇, yαβ, ȳα̇β̇

)

xαβ̇: Minkowski coordinates

yαβ, ȳα̇β̇: six spinning coordinates
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From d = 4 to d = 10 via unfolded dynamics

Unfolded equations in the 4d flat Minkowski space

(dx + dxαβ̇
∂2

∂yα∂ȳα̇
)C(Y |x) = 0 , dx = dxαα̇

∂

∂xαα̇

Extend xαα̇ to Xµν

(dX + dXµν ∂2

∂Y µ∂Y ν
)C(Y |x) = 0 , dX = dXµν ∂

∂Xµν

There are only two dynamical fields in MM :

Scalar field C(X) in the hyperspace M4 = all massless bosons in 4d

Minkowski space.

Spinor field Cµ(X) in the hyperspace M4 = all massless fermions in 4d

Minkowski space.
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Field Equations

(2001)

bosons :

(
∂2

∂Xµν∂Xρσ
−

∂2

∂Xρν∂Xµσ

)
C(X) = 0

fermions :
(

∂

∂Xµν
Cρ(X)−

∂

∂Xρν
Cµ(X)

)
= 0

• No index contraction: no metric in ten dimensions

• The system is overdetermined

• Makes sense for MM with µ, ν = 1,2 . . .M

•The field equations are Sp(8) invariant

Sp(8) is an extension of the 4d conformal group SU(2,2).

Sp(8) unifies all massless bosons and fermions into just two multiplets.

Xµν are coordinates of the minimal Sp(8) invariant space M4.
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Fourier Transform

C(X) = C0 exp ikµνXµν

the field equation gives kµνkρσ = kµρkνσ , i.e.

kµν = kξµξν , k = ±1

ξµ is real. k = ±1 distinguishes between positive and negative energy

branches: particles and antiparticles

General solution

C(X) =
∫
dMξ

(
b+(ξ) exp iξµξνX

µν + b−(ξ) exp−iξµξνXµν
)

is parameterized by two functions of four real variables ξµ:

Initial data to be given on a M-dimensional surface E in MM .

E: local Cauchy bundle

For M = 4, E = R3 × S1:

R3 is space in Minkowski space-time, S1-modes describe helicity
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Time and Space

Let Tµν be a positive definite matrix.

Space coordinates xµν are various T− traceless matrices

Xµν ∈ Σt : Xµν = xµν + tTµν , xµνTµν = 0 , TµνT
νρ = δρµ .

MM has one time parameter t = 1
MX

µνTµν . Using the ambiguity in c±(ξ)

in the general solution

C(X) =
∫
dMξ

(
c+(ξ) exp iξµξνX

µν + c−(ξ) exp−iξµξνXµν
)

it is possible to localize solutions in M coordinates: physical events are

M-dimensional.

Whether there exist some d− 1 space-like coordinates xn:

Xµν = σµνn xn
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such that, using c±(ξ) it is possible to built solutions of the field equa-

tions proportional to (derivatives of)

δd−1(x− x0) at any x0 ∈ Rd−1?!

If yes, at given time we can switch on light at the point x0 of our space

Rd−1 ⊂ E.

This happens if there exists a map kn = σ
µν
n ξµξν onto Rd−1. By changing

integration variables from ξµ to kn plus some other variables in case

d− 1 < M, δd−1(x− x0) can be obtained from the integration over kn.

Usual space in MM is realized in terms of Clifford algebra:

γn
µ
ν = σµρn Tρν , {γn, γm} = 2ηnm ,

MM is visualized via Clifford algebras.

No metric tensor in the sp(8) invariant dynamical equations in MM.

Space metric ηnm appears via Clifford algebra along with the concept of

local event.
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Different Physical Dimensions in M4

Different sp(8) invariant equations visualize M4 as space-times of local

events of different dimensions

Rank two equations

∂3

∂X[µ1ν1∂Xµ2ν2∂Xµ3]µν3
C(X) = 0

describe 6d space-time with the SU(2) spin variable: E = R5 × SU(2).

Rank four equations describe 10d space-time with the S7 spin variable.

Delocalized branes of different dimensions in the same 10d space-time

M4?!

Rank two equations in MM ∼ rank one in M2M Gelfond, MV (2002)

M = 2,4,8,16 :

d = 3,4,6,10 Bandos, Lukierski, Sorokin (1999)
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Symmetries

Let some local Cauchy bundle E = Rd−1× S be chosen to visualize MM .

A transformation that maps Minkowski space-time to itself leaving the

fibers intact is a usual conformal transformation.

A symmetry that does not shift points of the Minkowski space-time, act-

ing on the coordinates of the fiber is the (generalized) electric-magnetic

duality transformation that acts on all spins.

Sp(2M) transformations that shift E in MM look as nongeometric sym-

metries from the Minkowski space-time perspective, extending su(2,2)⊕

u(1) to sp(8) which mixes fields of different spins.
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Riemann theta functions as solutions
of massless field equations

A surprising property of the unfolded massless field equations formulated

in MM (
∂

∂Zµν
+ i h

∂2

∂Y µ∂Y ν

)
C+(Y |Z) = 0 ,

is that Riemann theta functions form their natural solutions

Gelfond, MV 2008

C+(Y |Z) =
∑

nµ∈ZM
c+n exp i(hZµν(2πnµ)(2πnν) + 2πnρY

ρ)

MM is a boundary of Siegel space

cn = 1: C+(Y |Z) is Riemann theta function= D-function periodic in Y .

Space-time coordinates: period matrix?!
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Conclusions

Nonlinear HS gauge theories do exist in various dimensions.

Unbroken HS gauge symmetries require

Infinite HS multiplets + nonzero curvature=nonlocal theory

Free 4d HS theory admits concise formulation in the ten-dimensional

space.

Metric tensor appears after coordinates of local events are defined.

Higher rank systems visualize physical space-times of different dimension

as coexisting delocalized “branes” imbedded into MM

M : M = 8→ d = 6, M = 16→ d = 10, M = 32→ d = 11?!
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To do

Extend nonlinear HS theory to

Mixed symmetry fields

Matrix space-times MM

HS symmetry breaking mechanism

Low energy expansion parameter analogous to α′

Relation to String Theory

Exact solutions

So far very few exact solutions including

m 6= 0 matter in 3d

selfdual in 4d

Black hole in 4d
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Integrability?!

AdS/CFT!

•

•

•
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