Beyond the Higgs

Markus Luty UC Davis

Introduction

Precision electroweak data \Rightarrow elementary Higgs?

This talk: argue that strong electroweak dynamics at TeV scale is very plausible

Tension in Model Building

Minimal Strong EW Breaking

Effective theory below TeV:

- No new states below TeV (no Higgs)
- Minimal flavor violation
- Custodial symmetry violated only by Z, t
- All allowed interactions strong at TeV ($\Rightarrow N \sim 1$)

"Little hierarchy problem" is "S < 0 problem"

$$\Delta \mathcal{L}_{\text{eff}} \sim S \, W_3^{\mu\nu} B_{\mu\nu}$$

Sign of S Parameter

Hints that S > 0:

- Data $\Rightarrow S > 0$ in QCD
- QCD theory:

Large N_c + vector meson dominance + $m_{\rho} < m_a$ $\Rightarrow S > 0$

- Holographic models $\Rightarrow S>0~$ when calculable

Nothing known about non-QCD-like theories with $N \sim 1$ Must explore experimentally (LHC, lattice?)

Phenomenology

No complete theory, use general physical arguments to deduce signatures (c.f. exploration of GeV scale)

- Strong $W_L W_L$ scattering
- Narrow spin 0 resonances (Evans, Luty 2009)

 $\sigma(gg \to \varphi) \sim \mathrm{pb}$ at LHC for $m_{\varphi} \sim \mathrm{TeV}$

2-body strong decays forbidden by isospin, parity, etc. \Rightarrow can be narrow

$$\Gamma(\varphi \to \bar{t}t) \sim m_{\varphi}/10$$

 $\Gamma(\varphi \to W_L W_L Z_L) \gtrsim m_{\varphi}/100$ plausible

Conformal Technicolor

(Luty, Okui 2004)

Biggest model-building challenge: top quark

$$\Delta \mathcal{L}_{\text{eff}} = \frac{1}{\Lambda_t^{d-1}} (Qt^c) \mathcal{H} \qquad d = \dim(\mathcal{H})$$

E.g. $\mathcal{H}=\psi\psi^c$

$$\Lambda_t \sim \begin{cases} 3 \text{ TeV} & d = 3\\ 10 \text{ TeV} & d = 2\\ 10^3 \text{ TeV} & d = 1.3 \end{cases}$$
 (c.f. "walking technicolor" 1980's)

General conformal field theory: $d \ge 1$ Hierarchy problem: $\Delta = \dim(\mathcal{H}^{\dagger}\mathcal{H}) > 4$ $\Delta \neq 2d$ in strongly-coupled theories

Constraints on Dimensions

• Large N:

 $\Delta = 2d + \mathcal{O}(1/N) \quad \text{(includes "holographic" 5D theories)}$

• $d \rightarrow 1$ is weak-coupling limit:

 $\Delta \to 2 + \mathcal{O}((d-1)^{1/2})$

• Rigorous bounds:

(Rattazzi, Rychkov, Tonni, Vichi 2008; Rychkov, Vichi 2009)

So far only bound $\Delta_{\min} = \min\{\dim(\mathcal{H}^{\dagger}\mathcal{H}), \dim(\mathcal{H}^{\dagger}\sigma_{3}\mathcal{H})\}$

• Lattice:

Measure *d* by dependence on mass $m\psi\psi^c$ (Luty 2008) First measurement: $d \simeq 2.5$ in QCD with 2 sextet fermions (DeGrand 2009)

Composite Higgs

What if strong dynamics cannot give S < 0? Higgs as composite pseudo Nambu-Goldstone boson

Precision Electroweak

General Phenomenology

Higgs with non-standard couplings
 Suppressed standard model couplings (c.f. 2 Higgs model)

• New (strong?) physics at scale

$$\Lambda \lesssim \frac{\text{TeV}}{\sin \theta}$$

Form of new physics depends on models...

Composite Top and Higgs

Composite fermions natural in "holographic" 5D models

$$\mathcal{L}_{4\,\mathrm{eff}} = \underbrace{\lambda_q q Q^c + \lambda_u u^c T}_{\mathsf{Preserves EW}} + \underbrace{Q^c \mathcal{H} T}_{\langle H \rangle \sim \sin \theta}$$
breaks EW

 $q, u^c =$ elementary

 $Q^c, T, \mathcal{H} = \text{composite}$

Note: not minimal flavor violation!

Precision Electroweak

(Agashe, Contino, Pomarol 2005)

Elementary Top Quark

Minimal conformal technicolor is composite Higgs! (Galloway, Evans, Luty, Tacchi, in preparation)

Breaks conformal invariance, triggers chiral symmetry breaking

Vacuum Alignment

$$\langle \Psi^a \Psi^b \rangle = \Lambda^d \Phi^{ab}$$

$$\Phi^{ab} = -\Phi^{ba} \Rightarrow SU(4) \to Sp(4)$$

General vacuum up to EW gauge transformations:

$$\Phi = \begin{pmatrix} \cos \theta \, \epsilon & \sin \theta \\ -\sin \theta & -\cos \theta \, \epsilon \end{pmatrix} \qquad 0 \le \theta \le \pi$$

Physical PNGB's: h^0, a

Minimal conformal technicolor is composite Higgs! (c.f. Katz, Nelson, Walker 2005)

Technifermion Mass

$$\Delta \mathcal{L} = \underbrace{\Psi^T m_{\psi} \Psi}_{m_{\psi} \sim m_{\chi}} + \chi^T m_{\chi} \chi$$

 m_{ψ} important at weak scale

$$V_m(\theta) = a_m \frac{\Lambda^3}{16\pi^2} \operatorname{tr}(m_\psi \Phi) + \text{h.c.}$$

 $\sim -\cos \theta$

Breaks degeneracy between $\theta = 0$ and π

Higgs mass completely determined by top loop

Pseudo Phenomenology

$$m_a^2 = \frac{m_h^2}{\sin^2 \theta}$$

Decay:

Production:

 $\Rightarrow \sigma(pp \to aa) \sim 10$ attobarn

Decays of heavy resonances?

Conclusions

• Strong dynamics at a TeV is a real possibility

• LHC phenomenology much less studied, needs work

I WANT YOU

for the

HIGH ENERGY FRONTIER

Backup Slides

QCD Conformal Window

Lattice studies $(N_c = 3)$

• Deconfinement transition (Braun, Gies 2007)

 Schrödinger functional (Appelquist, Fleming, Neil 2008)

Light Flavor?

Generate 4-fermion interactions with SUSY broken at $\gtrsim 10~{\rm TeV}$ (Dine, Kagan, 1990)

 \Rightarrow minimal flavor violation

Also solves SUSY flavor problem!

But: theory must be conformal at SUSY breaking scale

Model-building in progress... (with Galloway, Evans, Tacchi)