Inside the Higgs a perspective on Higgs compositeness

Riccardo Rattazzi

Electroweak Precision Tests

Electroweak Precision Tests

Conformal Technicolor: Higgs sector ~ CFT above weak scale Luty-Okui 04

Interesting region is not attainable at weak coupling or large N

Is it at all compatible with prime principles?

 \diamond Unitarity + SO(4,2): $d_H = 1 \rightarrow d_{H^{\dagger}H} = 2$

 \diamond Can one derive a theoretical upper bound on $d_{H^{\dagger}H}$ as a function of d_H ?

 \diamond Standard proof for d=1 not extendable to $d=1+\epsilon$

Basic CFT question

What can one say on d_{ϕ^2} as a function of d_{ϕ} ?

 $\begin{array}{ll} & \bigstar & \text{A prime principle upper bound} & d_{\phi^2} < f(d_{\phi}) & \text{was found based on} \\ & & \text{RR, Rychkov,} \\ & & \text{I. Conformal block decomposition} & & & \text{Tonni, Vichi o8} \end{array}$

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle = \sum_{\mathcal{O}} |\lambda_{\mathcal{O}}|^2 = \frac{1}{x_{12}^{2d}x_{34}^{2d}} \left(1 + \sum_{\mathcal{O}} |\lambda_{\mathcal{O}}|^2 g_{\mathcal{O}}(u,v)\right)$$

 $\mathcal{O} \leftrightarrow (\Delta, \ell)$ = (dimension, spin)

Method can be extended to derive independent bounds in different isospin channels

Simplest case is CFT with O(N) global symmetry

RR, Rychkov, Vichi in progress

$$\phi_i imes \phi_j color S_{ij} \oplus T_{ij} \oplus A_{ij}$$

even spin ℓ odd spin ℓ

- ♦ 3 sum rules involving 3 set of fields (S,T,A)
- slower convergence: must improve numerical method until now relied on Linear Programming function in Mathematica

Probably more promising: Fermion masses by mixing to composites

 $d_\lambda \sim 0$: can decouple unwanted Flavor effets keeping λ fixed

♦ no obvious CFT obstacle to get $d_{\mathcal{O}} \sim 5/2$

Inicely implemented in Randall Sundrum scenario

- small differences in dimensions of λ^{ij} give plausible explanation of pattern of masses and mixings
- unwanted flavor violation at weak scale under control (some tension in $ε_κ$)
 Csaki et al 08

Electroweak Precision Tests

Electroweak Precision Tests

Minimal TC has no parameter to play with in order to reduce \widehat{S} Positivity of S is also a difficulty of 5D Higgsless models

Next to minimal TC: light Higgs = 4th pseudo-Goldstone boson Georgi, Kaplan '84 Banks '84 Arkani-Hamed, Cohen, Katz, Nelson '02 Agashe, Contino, Pomarol '04

Electroweak Precision tests are helped in two ways

• light Higgs screens IR contribution to \hat{S}, \hat{T}

$$\bigstar \hat{S}_{UV} \simeq \frac{g^2 N}{96\pi^2} \times \frac{v^2}{f^2} \qquad \begin{cases} \langle H \rangle \equiv v \\ f \equiv p \text{seudo-Goldstone decay const.} \end{cases}$$

 $\frac{v^2}{f^2}$ depends on extra parameters rameters can in principle be tuned to be a little bit smaller than 1 say ~ 0.1

Compositeness scale $4\pi f$ could still be as low as a few TeV

Strong sector H = Goldstone doubletEx.: H = SO(5)/SO(4)

Strong sector H = Goldstone doubletEx.: H = SO(5)/SO(4)

quarks, leptons & gauge bosons

Strong sector H = Goldstone doubletEx.: H = SO(5)/SO(4)

quarks, leptons & gauge bosons

 $m_
ho g_
ho$

mass of resonances coupling of resonances

Strong sector H = Goldstone doubletEx.: H = SO(5)/SO(4)

quarks, leptons & gauge bosons

 $rac{m_
ho}{g_
ho}$

$$\begin{array}{ll} & \textcircled{P} \mbox{ Technicolor type } & g_{\rho} \sim \frac{4\pi}{\sqrt{N_{TC}}} \\ & \textcircled{P} \mbox{ 5D models } & m_{\rho} \sim m_{KK} & g_{\rho} \sim g_{KK} \\ & \textcircled{P} \mbox{ Little Higgs } & (m_{\rho}, g_{\rho}) & \mbox{ mass and coupling of `regulators'} \end{array}$$

$$V(H) \sim \frac{m_{\rho}^4}{g_{\rho}^2} \frac{g_{SM}^2}{16\pi^2} \hat{V}(H/f)$$

$$v \sim \frac{m_{
ho}}{g_{
ho}} = f$$

Little Higgs

$$V(H) \sim \frac{m_{\rho}^4}{g_{\rho}^2} \frac{g_{SM}^2}{16\pi^2} \hat{V}(H/f)$$

$$v \sim \frac{m_{
ho}}{g_{
ho}} = f$$

$$V(H) \sim \frac{m_{\rho}^4}{g_{\rho}^2} \frac{g_{SM}^2}{16\pi^2} \hat{V}(H/f) + g_{SM}^2 H^4$$

$$v \sim \frac{m_{\rho}}{4\pi} = \frac{g_{\rho}}{4\pi}f$$

$$V(H) \sim \frac{m_{
ho}^4}{g_{
ho}^2} \frac{g_{SM}^2}{16\pi^2} \hat{V}(H/f)$$

$$v \sim \frac{m_{
ho}}{g_{
ho}} = f$$

$$V(H) \sim \frac{m_{\rho}^4}{g_{\rho}^2} \frac{g_{SM}^2}{16\pi^2} \hat{V}(H/f) + g_{SM}^2 H^4$$

$$v \sim \frac{m_{\rho}}{4\pi} = \frac{g_{\rho}}{4\pi}f$$

• $g_{
ho}$ preferred large • tune $\frac{v^2}{f^2}$ to ~ 0.2

$\hat{S} \sim \frac{m_W^2}{m_\rho^2} = \frac{g_W^2}{g_\rho^2} \frac{v^2}{f^2}$	not as it wor
--	------------------

not as good as it would seem

prefers $m_V \gg m_T$ $g_V \gg g_T \sim g_{SM}$

Little Higgs

Vectors favored heavy and strongly coupled

LH reduces a bit the tuning at the price of cleverness ...

Agashe, Contino, Pomarol 04

The top complex

$$\mathcal{L}_{\rm top} = \lambda_L q_L \mathcal{O}_R + \lambda_R t_R \mathcal{O}_L$$

$$q_L$$
 t_R

$$\lambda_t \sim rac{\lambda_L \lambda_R}{g_{
ho}}$$

• If
$$\lambda_L \sim \lambda_R$$
 \longrightarrow $\lambda_L \sim \sqrt{g_\rho \lambda_t} \lesssim 3$ sizeable !

•
$$V(H) \propto \lambda_{L,R}^2 \hat{V}(H/f)$$

in principle not so light a Higgs but no relief of fine tuning

 \star vectors are preferably

Solution for the second secon

increasingly harder to detect as $g_{
ho} \rightarrow 4\pi$

★ 'top parners' can be below 1 TeV (preferably so in LH)

Contino, Servant 08 - Mrazek, Wulzer 09

Conceivably

A 'precision' study of Higgs properties would in principle help understanding the origin of the weak scale

Effective Lagrangian for composite Higgs

$$\mathcal{L}_{eff} = \frac{c_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) - \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y}{f^2} H^{\dagger} H \bar{\psi}_L H \psi_R + \text{h.c.} \right)$$

$$+ \frac{c_\gamma g^2}{16\pi^2 m_\rho^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g y_t^2}{16\pi^2 m_\rho^2} H^{\dagger} H G_{\mu\nu}^a G^{a\mu\nu}$$

$$+ \frac{i c_W}{2m_\rho^2} \left(H^{\dagger} \sigma^i \overleftrightarrow{D^{\mu}} H \right) \left(D^{\nu} W_{\mu\nu} \right)^i + \frac{i c_B}{2m_\rho^2} \left(H^{\dagger} \overleftrightarrow{D^{\mu}} H \right) \left(\partial^{\nu} B_{\mu\nu} \right)$$

$$+ \frac{i c_{HW}}{16\pi^2 f^2} \left(D^{\mu} H \right)^{\dagger} \sigma^i \left(D^{\nu} H \right) W_{\mu\nu}^i + \frac{i c_{HB}}{16\pi^2 f^2} \left(D^{\mu} H \right)^{\dagger} \left(D^{\nu} H \right) B_{\mu\nu}$$

$$f = \frac{m_{\rho}}{g_{\rho}} \ll m_{\rho}$$

Giudice, Grojean, Pomarol, Rattazzi 07

$$\begin{split} \mathcal{L}_{eff} &= \frac{c_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) - \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y}{f^2} H^{\dagger} H \bar{\psi}_L H \psi_R + \text{h.c.} \right) \\ &+ \frac{c_\gamma g^2}{16\pi^2 m_{\rho}^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g y_t^2}{16\pi^2 m_{\rho}^2} H^{\dagger} H G_{\mu\nu}^a G^{a\mu\nu} \\ &+ \left(\frac{c_W}{4m_{\rho}^2} \left(H^{\dagger} \sigma^{*} D^{*} H \right) \left(D^{*} H \right) \sigma^{*} D^{*} H \right) \left(D^{*} H \right) \left(D^{*} B_{\mu\nu} \right) \\ &+ \left(\frac{c_W}{4m_{\rho}^2} \left(D^{*} H \right) \sigma^{*} D^{*} H \right) \sigma^{*} D^{*} H^{\dagger} G_{\mu\nu}^{a} \left(D^{*} H \right) \left(D^{*} H \right) B_{\mu\nu} \right) \\ &= \frac{m_{\rho}}{g_{\rho}} \ll m_{\rho} \end{split}$$
Giudice, Grojean, Pomarol, Rattazzi o7

Wednesday, October 28, 2009

f

$$\begin{split} \mathcal{L}_{eff} &= \frac{c_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) - \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y}{f^2} H^{\dagger} H \bar{\psi}_L H \psi_R + \text{h.c.} \right) \\ &+ \left(\frac{c_\gamma g^2}{16\pi^2 m_{\rho}^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g y_t^2}{16\pi^2 m_{\rho}^2} H^{\dagger} H G_{\mu\nu}^a G^{a\mu\nu} \right) \\ &+ \left(\frac{i c_W}{2m_{\rho}^2} \left(H^{\dagger} \sigma^i \overline{D^{\mu}} H \right) \left(D^{\nu} W_{\mu\nu} \right)^{\dagger} + \frac{i c_B}{2m_{\rho}^2} \left(H^{\dagger} \overline{D^{\mu}} H \right) \left(\partial^{\nu} B_{\mu\nu} \right) \right) \\ &+ \left(\frac{i c_W}{16\pi^2 f^2} \left(D^{\mu} H \right)^{\dagger} \sigma^i \left(D^{\nu} \frac{\text{irrelevant}}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} \left(D^{\nu} H \right) B_{\mu\nu} \right) \right) \\ &= \frac{m_{\rho}}{g_{\rho}} \ll m_{\rho} \end{split}$$
Giudice, Grojean, Pomarol, Rattazzi o7

f

$$\begin{split} \mathcal{L}_{eff} &= \frac{c_{H}}{2f^{2}}\partial^{\mu}\left(H^{\dagger}H\right)\partial_{\mu}\left(H^{\dagger}H\right) - \frac{c_{6}\lambda}{f^{2}}\left(H^{\dagger}H\right)^{3} + \left(\frac{c_{y}y}{f^{2}}H^{\dagger}H\,\bar{\psi}_{L}H\psi_{R} + \text{h.c.}\right) \\ &+ \left(\frac{c_{\gamma}g^{2}}{16\pi^{2}m_{\rho}^{2}}H^{\dagger}HB_{\mu\nu}B^{\mu\nu} + \frac{c_{g}y_{t}^{2}}{16\pi^{2}m_{\rho}^{2}}H^{\dagger}HG_{\mu\nu}^{a}G^{a\mu\nu} \right) \\ &+ \left(\frac{v_{CW}}{2m_{\rho}^{2}}\left(H^{\dagger}\sigma^{\dagger}D^{\mu}H\right)\left(D^{\nu}W_{\mu\nu}\right)^{i} + \frac{v_{CB}}{2m_{\rho}^{2}}\left(H^{\dagger}D^{\mu}H\right)\left(\partial^{\nu}B_{\mu\nu}\right) \\ &+ \left(\frac{v_{CHW}}{16\pi^{2}f^{2}}\left(D^{\mu}H\right)^{\dagger}\sigma^{\dagger}\left(D^{\nu}\right)\operatorname{irrelevant}\left(HB_{\mu\nu}\right)\left(D^{\mu}H\right)B_{\mu}\right) \\ f &= \frac{m_{\rho}}{g_{\rho}} \ll m_{\rho} \end{split}$$
 Giudice, Grojean, Pomarol, Rattazzi o7

$$\begin{split} \mathcal{L}_{eff} &= \frac{c_{H}}{2f^{2}}\partial^{\mu}\left(H^{\dagger}H\right)\partial_{\mu}\left(H^{\dagger}H\right) - \frac{c_{6}\lambda}{f^{2}}\left(H^{\dagger}H\right)^{3} + \left(\frac{c_{y}y}{f^{2}}H^{\dagger}H\,\bar{\psi}_{L}H\psi_{R} + \text{h.c.}\right) \\ &+ \left(\frac{c_{\gamma}g^{2}}{16\pi^{2}m_{\rho}^{2}}H^{\dagger}HB_{\mu\nu}B^{\mu\nu} + \frac{c_{g}y_{t}^{2}}{16\pi^{2}m_{\rho}^{2}}H^{\dagger}HG_{\mu\nu}^{a}G^{a\mu\nu} \right. \\ &+ \left(\frac{ic_{W}}{2m_{\rho}^{2}}\left(H^{\dagger}\sigma^{i}\bar{D}^{\mu}H\right)\left(D^{\nu}W_{\mu\nu}\right)^{i} + \frac{ic_{B}}{2m_{\rho}^{2}}\left(H^{\dagger}\bar{D}^{\mu}H\right)\left(\partial^{\nu}B_{\rho\nu}\right) \right. \\ &+ \left(\frac{ic_{HW}}{16\pi^{2}f^{2}}\left(D^{\mu}H\right)^{\dagger}\sigma^{i}\left(D^{\nu}\right)\operatorname{Irrelevant}_{\mu\nu}H^{B}_{i}\left(D^{\mu}H\right)^{\dagger}\left(D^{\nu}H\right)B_{\mu\nu}\right) \right. \\ f &= \frac{m_{\rho}}{g_{\rho}} \ll m_{\rho} \end{split}$$
Giudice, Grojean, Pomarol, Rattazzi 07

Higgs compositeness described by very limited set of parameters !

 $\bigstar \text{ most relevant} \qquad C_H,$

 $c_H, \quad c_y, \quad c_6$

 $\frac{\delta \mathcal{A}}{\mathcal{A}_{SM}} \sim \frac{v^2}{f^2}$

relevant when fermions are 'light'

 $c_{\gamma}, \quad c_g,$

Analogues of S and T for precision Higgs physics

'Theoretical' constraints on c_H, c_y

Low, RR, Vichi 09

Simple $t_{H}^{\text{pos}} \diamond c_{H}, c_{y} > 0$ in all known models $\rightarrow b$ couplings to SM reduced $\diamond c_{H} > 0$ follows from σ -model metric positivity $\diamond c_{H} > 0$ $t_{H}^{\text{output}} \diamond c_{H} = 0$ $t_{H}^{\text{output}} \diamond c_{H}^{\text{output}} \diamond c_{H}^{\text{o$

 $\bullet c_u > 0$ depends on quantum numbers of G-breaking parameters

♦ additional contributions $O(g_{SM}^2/g_{\rho}^2)$ by integrating out heavy scalars, vectors and fermions

Model remarkably remains it true that

$$c_H > 0$$

 $c_H + 2c_y > 0$

Effects in Higgs production & decay

all couplings rescaled by

Direct signal of Higgs compositeness

$$\sigma\left(pp \to V_L V_L' X\right)_{c_H} = \left(c_H \frac{v^2}{f^2}\right)^2 \sigma\left(pp \to V_L V_L' X\right)_{H}$$

sensitivity with 300 fb⁻¹

$$c_H \frac{v^2}{f^2} = 0.5 - 0.7$$

Bagger et al., '95

 $\swarrow h = 4$ th goldstone: $VV \rightarrow VV$ and $VV \rightarrow hh$ related by linearly realized SO(4) Higgs distinguished from a *random* light composite scalar in TC like model

General parametrization of *Higgslike* scalar

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} h)^{2} + \frac{M_{V}^{2}}{2} \operatorname{Tr} (V_{\mu} V^{\mu}) \left[1 + 2a \frac{h}{v} + b \frac{h^{2}}{v^{2}} + \dots \right] - m_{i} \bar{\psi}_{Li} \left(1 + c \frac{h}{v} \right) \psi_{Ri} + \text{h.c.}$$

• Standard Model: a = b = c = 1

$$\mathcal{A}(VV \to VV) \simeq \frac{s}{v^2}(1-a^2) \qquad \qquad \mathcal{A}(VV \to hh) \simeq \frac{s}{v^2}(b-a^2) \qquad \qquad \mathcal{A}(VV \to \psi\bar{\psi}) \simeq \frac{\sqrt{m_\psi s}}{v^2}(1-a^2)$$

General parametrization of *Higgslike* scalar

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} h)^{2} + \frac{M_{V}^{2}}{2} \operatorname{Tr} (V_{\mu} V^{\mu}) \left[1 + 2a \frac{h}{v} + b \frac{h^{2}}{v^{2}} + \dots \right] - m_{i} \bar{\psi}_{Li} \left(1 + c \frac{h}{v} \right) \psi_{Ri} + \text{h.c.}$$

• Standard Model: a = b = c = 1

$$\mathcal{A}(VV \to VV) \simeq \frac{s}{v^2}(1-a^2) \qquad \mathcal{A}(VV \to hh) \simeq \frac{s}{v^2}(b-a^2) \qquad \mathcal{A}(VV \to \psi\bar{\psi}) \simeq \frac{\sqrt{m_\psi s}}{v^2}(1-a^2)$$

♦ SILH
$$a = 1 - \frac{c_H}{2} \frac{v^2}{f^2} \qquad b = 1 - 2c_H \frac{v^2}{f^2} \qquad c = 1 - \left(\frac{c_H}{2} + c_y\right) \frac{v^2}{f^2}$$

$$SO(5)/SO(4) \quad a = \sqrt{1 - v^2/f^2} \qquad b = 1 - 2v^2/f^2 \qquad c = \sqrt{1 - v^2/f^2} \qquad \text{fermions in 4}$$

$$c = \frac{1 - 2v^2/f^2}{\sqrt{1 - v^2/f^2}} \qquad \text{fermions in 5}$$

 $\mathcal{A}(VV \to hh) \sim \text{const}$

• Dilaton + TC
$$a = \sqrt{b} = c = \frac{v}{f_D}$$

Goldberger, Grinstein, Skiba 07

$VV \rightarrow hh$ at the LHC

Contino, Grojean, Moretti, Piccinini, RR in preparation

• Notice that $h \rightarrow WW$ could also dominate for $m_h < 150 \,\mathrm{GeV}$

$$\propto \frac{1 - 2v^2/f^2}{\sqrt{1 - v^2/f^2}} \qquad \qquad h \Rightarrow bb \text{ suppressed around} \qquad \frac{v^2}{f^2} = \frac{1}{2}$$

4 W in central region due to s-wave

 $\blacklozenge \ \ell_1^+ \ell_2^- \ \sim \ {\rm aligned \ because \ of \ boost \ and \ helicity \ conservation}$

Signal:
$$\ell^+ \ell^- \ell^{\pm} + (j \ge 4)$$

In analysis
we define
 $\eta_{j_1}|$ largest
 $m_{j_1 j_2}$ largest
 $m_{\ell_1^+ \ell_2^-}$ smallest

 $m_h = 180 \,\mathrm{GeV} \qquad ab$

 $\xi \equiv \frac{v^2}{f^2}$

Channel	σ_1	σ_2	σ_3	σ_4^{CMS}	σ_4^{ATLAS}
$\mathcal{S}_3 \ (\xi = 1)$	48.3	43.8	25.4	25.3	24.8
$\mathcal{S}_3 \ (\xi = 0.8)$	32.8	29.7	17.2	17.1	16.8
$\mathcal{S}_3 \ (\xi = 0.5)$	14.6	13.4	7.77	7.74	7.60
$\mathcal{S}_3 \ (\xi = 0)$	1.73	1.34	0.75	0.75	0.73
Wl^+l^-jjjjj	12.0×10^{3}	658	4.07	3.35	2.47
Wl^+l^-5j	3.83×10^{3}	16.6	0.13	0.08	0.00
$hl^+l^-jj \rightarrow WWl^+l^-jj$	102	29.7	0.50	0.50	0.49
WWWjjjjj	86.2	3.47	0.35	0.28	0.23
$t\bar{t}Wjj$	408	11.3	0.66	0.55	0.37
$t\bar{t}Wjjj$	287	2.40	0.15	0.12	0.09
$t\bar{t}WW$	315	4.48	0.02	0.02	0.02
$t\bar{t}WWj$	817	28.1	1.40	1.16	0.89
$t\bar{t}hjj \rightarrow t\bar{t}WWjj$	610	8.89	0.65	0.52	0.38
$t\bar{t}hjjj \rightarrow t\bar{t}WWjjj$	329	0.84	0.05	0.04	0.03
$W\tau^+\tau^-jjjjj$	206	11.5	1.26	1.05	0.68
Total background	18.9×10^{3}	775	9.23	7.66	5.65

acceptance

master

 $\begin{aligned} |\eta_{j_1}| &\ge 1.8 \qquad m_{j_1 j_2} \ge 320 \text{ GeV} \qquad |\eta_{j_1} - \eta_{j_2}| \ge 2.9 \\ |m_{j_3 j_4} - m_W| &\le 40 \text{ GeV} \qquad m_{l_1 l_2}^h \le 110 \text{ GeV} \qquad m_{j_3 j_4 l_3}^h \le 210 \text{ GeV} \end{aligned}$

optimization

 $m_{SF-OS} \ge 20 \,\text{GeV} \qquad |m_{SF-OS} - M_Z| \ge 7\,\Gamma_Z$ $|\eta_{j_1} - \eta_{j_2}| \ge 4.5 \qquad m_{j_1j_2} \ge 700 \,\text{GeV} \qquad m_{j_3j_4l_3}^h \le 160 \,\text{GeV}$

Significance

cut on $ m_{JJ}^W - M_W $	ξ	$\sigma~(300~{\rm fb^{-1}})$	$\sigma~(3000~{ m fb}^{-1})$
	1.0	3.6	12
$< 30 { m GeV}$	0.8	2.5	8.4
	0.5	1.2	4.2
	1.0	3.9	13
$< 20 { m GeV}$	0.8	2.8	9.2
	0.5	1.3	4.7

trilepton

cut on $ m^W_{J^{W_1}_1 J^{W_1}_2} - M_W $	ξ	σ (300 fb ⁻¹)	$\sigma ~(3000 {\rm ~fb^{-1}})$	σ (3000 fb ⁻¹) w/o tau and <i>b</i> -jet veto
	1.0	3.9	13	10
$< 30 { m GeV}$	0.8	2.7	8.8	7.0
	0.5	1.3	4.3	3.3
	1.0	4.1	13	11
$< 20 { m GeV}$	0.8	2.9	9.2	7.3
	0.5	1.4	4.5	3.5

same sign dilepton

Summary

✦ Hierarchy problem still forcing us to explore QFT

- ✦ Refinement of ideas from the 80's
- pseudo-Goldstone Higgs
- fermion masses via fermion mixing

• freedom to tune mass scale up, like in SUSY

Ex $m_T < 1.5 \,\mathrm{TeV}$ discovery with 300 fb⁻¹

♦ Strong VV → VV and VV → hh genuine signal of Higgs compositeness
observable if $\frac{v^2}{f^2} > 0.3$...with luminosity upgrade

Study of indirect signals of Higgs compositeness ideal at ILC \sim Higgs factory

At ILC one would test $\frac{v^2}{f^2}$ at % level

Barger, Han, Langacker, McElrath, Zerwas 03

J.A. Aguilar Saavedra et al. [ECFA/DESY LC Physics WG]

Coupling	$M_H = 120{ m GeV}$	$140{ m GeV}$
g_{HWW}	± 0.012	± 0.020
g_{HZZ}	± 0.012	± 0.013
g_{Htt}	± 0.030	± 0.061
g_{Hbb}	± 0.022	± 0.022
g_{Hcc}	± 0.037	± 0.102
$g_{H au au}$	± 0.033	± 0.048
g_{HWW}/g_{HZZ}	± 0.017	± 0.024
g_{Htt}/g_{HWW}	± 0.029	± 0.052
g_{Hbb}/g_{HWW}	± 0.012	± 0.022
$g_{H au au}/g_{HWW}$	± 0.033	± 0.041
g_{Htt}/g_{Hbb}	± 0.026	± 0.057
g_{Hcc}/g_{Hbb}	± 0.041	± 0.100
$g_{H au au}/g_{Hbb}$	± 0.027	± 0.042

ILC can rule out Higgs compositeness scale $4\pi f$ below

 $30\,\mathrm{TeV}$