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Particle production in AA collisions
in the Color Glass Condensate framework

François Gelis

CERN and CEA/Saclay
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Infrared and collinear divergences

■ Calculation of some process at LO :





(M⊥  , Y )
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{
x1 = M⊥ e+Y /

√
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x2 = M⊥ e−Y /
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Infrared and collinear divergences

■ Calculation of some process at LO :
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■ Radiation of an extra gluon :
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Infrared and collinear divergences

■ Large log(M⊥) when M⊥ is large
■ Large log(1/x1) when x1 ≪ 1

⊲ these logs can compensate the additional αs, and void the
naive application of perturbation theory
⊲ resummations are necessary

■ Logs of M⊥ =⇒ DGLAP. Important when :
◆ M⊥ ≫ Λ

QCD

◆ x1, x2 are rather large

■ Logs of 1/x =⇒ BFKL. Important when :
◆ M⊥ remains moderate
◆ x1 or x2 (or both) are small

■ Physical interpretation :
◆ The physical process can resolve the gluon splitting if M⊥ ≫ k⊥
◆ If x1 ≪ 1, the gluon that initiates the process is likely to result

from bremsstrahlung from another parent gluon
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Factorization

■ Logs of M⊥ can be resummed by :
◆ promoting f(x1) to f(x1,M

2
⊥)

◆ letting f(x1,M
2
⊥) evolve with M⊥ according to the DGLAP

equation

∂f(x,M2)

∂ ln(M2)
= αs(M

2)

Z 1

x

dz

z
P (x/z) ⊗ f(z,M2)

⊲ collinear factorization

■ Logs of x1 can be resummed by :
◆ promoting f(x1) to a non integrated distribution ϕ(x1, ~k⊥)

◆ letting ϕ(x1, ~k⊥) evolve with x1 according to the BFKL equation

∂ϕ(x, k⊥)

∂ ln(1/x)
= αs

Z
d2~p⊥
(2π)2

K(~k⊥, ~p⊥) ⊗ ϕ(x, ~p⊥)

⊲ k⊥-factorization
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Higher twist corrections

■ Leading twist :

⊲ 2-point function in the projectile ⊲ gluon number
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Higher twist corrections

■ Leading twist :

⊲ 2-point function in the projectile ⊲ gluon number

■ Higher twist contributions :

⊲ 4-point function in the projectile ⊲ higher correlation
⊲ multiple scattering in the projectile
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Higher twist corrections

■ Power counting : rescattering corrections are suppresssed
by inverse powers of the typical mass scale in the process :

»
µ2

M2
⊥

–n

■ The parameter µ2 has a factor of αs, and a factor
proportional to the gluon density ⊲ rescatterings are
important at high density

■ Relative order of magnitude :

twist 4
twist 2

∼ Q2
s

M2
⊥

with Q2
s ∼ αs

xG(x,Q2
s)

πR2

■ When this ratio becomes ∼ 1, all the rescattering corrections
become important

■ These effects are not accounted for in DGLAP or BFKL
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Higher twist corrections

■ 99% of the multiplicity below p⊥ ∼ 2 GeV
■ Q2

s might be as large as 5 GeV2 at the LHC (
√

s = 5.5 TeV)
⊲ rescatterings are important, and one should also resum
logs of 1/x
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Goals

■ The Color Glass Condensate framework provides the
technology for resumming all the [Qs/p⊥]n corrections

■ Generalize the concept of “parton distribution”

◆ Due to the high density of partons, observables depend on
higher correlations (beyond the usual parton distributions, which
are 2-point correlation functions)

■ If logs of 1/x show up in loop corrections, one should be able
to factor them out into the evolution of these distributions

■ These distributions should be universal, with
non-perturbative information relegated into the initial
condition for the evolution

■ There may possibly be extra divergences associated with the
evolution of the final state
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Initial Conditions

z  (beam axis)

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

■ calculate the initial production of semi-hard particles
■ prepare the stage for kinetic theory or hydrodynamics
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Outline

■ Basic principles and bookkeeping

■ Inclusive gluon spectrum at leading order

■ Loop corrections, factorization, instabilities

■ Less inclusive quantities

◆ FG, Venugopalan, hep-ph/0601209, 0605246

◆ Fukushima, FG, McLerran, hep-ph/0610416

+ work in progress with Lappi, Venugopalan
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Degrees of freedom and their interplay

McLerran, Venugopalan (1994), Iancu, Leonidov, McLerran (2001)

■ Soft modes have a large occupation number
⊲ they are described by a classical color field Aµ that obeys

Yang-Mills’s equation:

[Dν , F νµ]a = Jµ
a

■ The source term Jµ
a comes from the faster partons. The hard

modes, slowed down by time dilation, are described as
frozen color sources ρa. Hence :

Jµ
a = δµ+δ(x−)ρa(~x⊥) (x− ≡ (t− z)/

√
2)

■ The color sources ρa are random, and described by a
distribution functional W

Y
[ρ], with Y the rapidity that

separates “soft” and “hard”. Evolution equation (JIMWLK) :

∂W
Y

[ρ]

∂Y
= H[ρ] W

Y
[ρ]
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Description of hadronic collisions

■ Compute the observable O of interest for a configuration of
the sources ρ1, ρ2. Note : the sources are ∼ 1/g ⊲ weak
coupling but strong interactions

■ At LO, this requires to solve the classical Yang-Mills
equations in the presence of the following current :

Jµ ≡ δµ+δ(x−) ρ1(~x⊥) + δµ−δ(x+) ρ2(~x⊥)

(Note: the boundary condition depend on the observable)

■ Average over the sources ρ1, ρ2

〈O
Y
〉 =

Z ˆ
Dρ1

˜ ˆ
Dρ2

˜
W

Ybeam−Y
[ρ1

˜
W

Y +Ybeam

ˆ
ρ2

˜
O[ρ1, ρ2

˜

■ Can this procedure – and in particular the above
factorization formula – be justified ?
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Description of hadronic collisions
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Description of hadronic collisions
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Description of hadronic collisions
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Description of hadronic collisions
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Description of hadronic collisions
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Description of hadronic collisions

10 configurations
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Description of hadronic collisions

100 configurations
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Description of hadronic collisions

1000 configurations
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Main issues

■ Dilute regime : one source in each projectile interact
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Main issues

■ Dilute regime : one source in each projectile interact
■ Dense regime : non linearities are important
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Main issues

■ Dilute regime : one source in each projectile interact
■ Dense regime : non linearities are important
■ Many gluons can be produced from the same diagram
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Main issues

■ Dilute regime : one source in each projectile interact
■ Dense regime : non linearities are important
■ Many gluons can be produced from the same diagram
■ There can be many simultaneous disconnected diagrams
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Main issues

■ Dilute regime : one source in each projectile interact
■ Dense regime : non linearities are important
■ Many gluons can be produced from the same diagram
■ There can be many simultaneous disconnected diagrams
■ Some of them may not produce anything (vacuum diagrams)
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Main issues

■ Dilute regime : one source in each projectile interact
■ Dense regime : non linearities are important
■ Many gluons can be produced from the same diagram
■ There can be many simultaneous disconnected diagrams
■ Some of them may not produce anything (vacuum diagrams)
■ All these diagrams can have loops (not at LO though)
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Power counting

■ In the saturated regime, the sources are of order 1/g

■ The order of each disconnected diagram is given by :

1

g2
g# produced gluons g2(# loops)

■ The total order of a graph is the product of the orders of its
disconnected subdiagrams ⊲ quite messy...
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Bookkeeping
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Bookkeeping

■ Consider squared amplitudes (including interference terms)
rather than the amplitudes themselves
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Bookkeeping

■ Consider squared amplitudes (including interference terms)
rather than the amplitudes themselves

■ See them as cuts through vacuum diagrams
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Bookkeeping

■ Consider squared amplitudes (including interference terms)
rather than the amplitudes themselves

■ See them as cuts through vacuum diagrams

■ Consider only the simply connected ones, thanks to :

X „
all the vacuum

diagrams

«
= exp

X “ simply connected

vacuum diagrams

”ff

■ Simpler power counting for connected vacuum diagrams :

1

g2
g2(# loops)
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Bookkeeping

■ There is an operator D that acts on a pair of vacuum
diagrams by removing two sources and attaching a cut
propagator instead :
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Bookkeeping

■ There is an operator D that acts on a pair of vacuum
diagrams by removing two sources and attaching a cut
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Bookkeeping

■ There is an operator D that acts on a pair of vacuum
diagrams by removing two sources and attaching a cut
propagator instead :

■ D can also act directly on single diagram, if it is already cut
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Bookkeeping

■ There is an operator D that acts on a pair of vacuum
diagrams by removing two sources and attaching a cut
propagator instead :

■ D can also act directly on single diagram, if it is already cut
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Bookkeeping

■ There is an operator D that acts on a pair of vacuum
diagrams by removing two sources and attaching a cut
propagator instead :

■ D can also act directly on single diagram, if it is already cut
■ By repeated action of D, one generates all the diagrams with

an arbitrary number of cuts
■ Thanks to this operator, one can write :

Pn =
1

n!
Dn eiV e−iV ∗

, iV =
∑ (

connected uncut

vacuum diagrams

)

∑ (
all the cut

vacuum diagrams

)
= eD eiV e−iV ∗
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Inclusive gluon spectrum
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First moment of the distribution

■ It is easy to express the average multiplicity as :

N =
∑

n
n Pn = D

{
eD eiV e−iV ∗

}

■ N is obtained by the action of D on the sum of all the cut
vacuum diagrams. There are two kind of terms :
◆ D picks two sources in two distinct connected cut diagrams

◆ D picks two sources in the same connected cut diagram
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Gluon multiplicity at LO

■ At LO, only tree diagrams contribute ⊲ the second type of
topologies can be neglected (it starts at 1-loop)

■ In each blob, we must sum over all the tree diagrams, and
over all the possible cuts :

N
LO

=
∑

trees

∑

cuts

tree

tree

■ A major simplification comes from the following property :

+ = retarded propagator

■ The sum of all the tree diagrams constructed with retarded
propagators is the retarded solution of Yang-Mills equations :

[Dµ, F
µν ] = Jν with Aµ(x0 = −∞) = 0
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Gluon multiplicity at LO

Krasnitz, Nara, Venugopalan (1999 – 2001), Lappi (2003)

dN
LO

dY d2~p⊥
=

1

16π3

Z

x,y

eip·(x−y)
�x�y

X

λ

ǫµλǫ
ν
λ Aµ(x)Aν(y)

■ Aµ(x) = retarded solution of Yang-Mills equations

only tree diagrams at LO
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Gluon multiplicity at LO

Krasnitz, Nara, Venugopalan (1999 – 2001), Lappi (2003)

dN
LO

dY d2~p⊥
=

1

16π3

Z

x,y

eip·(x−y)
�x�y

X

λ

ǫµλǫ
ν
λ Aµ(x)Aν(y)

■ Aµ(x) = retarded solution of Yang-Mills equations
⊲ can be cast into an initial value problem on the light-cone

Ain−→
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Gluon multiplicity at LO

sΛ/Tk
0 1 2 3 4 5 6

T
k2

)d
N

/d
2

Rπ
1/

(

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

KNV I

KNV II

Lappi

■ Lattice artefacts at large momentum
(they do not affect much the overall number of gluons)

■ Important softening at small k⊥ compared to pQCD (saturation)
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Initial conditions and boost invariance

■ Gauge condition : x+A− + x−A+ = 0

⇒

8
<
:
Ai(x) = αi(τ, η, ~x⊥)

A±(x) = ± x± β(τ, η, ~x⊥)

η = const

τ = const

■ Initial values at τ = 0+ : αi(0+, η, ~x⊥) and β(0+, η, ~x⊥) do
not depend on the rapidity η

⊲ αi and β remain independent of η at all times
(invariance under boosts in the z direction)

⊲ numerical resolution performed in 1 + 2 dimensions
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Loop corrections



Introduction

Basic principles

Inclusive gluon spectrum

Loop corrections

● 1-loop corrections to N

● Initial state factorization

● Unstable modes

Less inclusive quantities

Summary

CERN

François Gelis – 2007 GGI, Florence, February 2007 - p. 27

1-loop corrections to N

■ 1-loop diagrams for N

tree

1-loop

tree
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1-loop corrections to N

■ 1-loop diagrams for N

tree

1-loop

tree

■ This can be seen as a perturbation of the initial value
problem encountered at LO, e.g. :
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1-loop corrections to N

■ 1-loop diagrams for N

tree

1-loop

tree

■ This can be seen as a perturbation of the initial value
problem encountered at LO, e.g. :
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1-loop corrections to N

■ The 1-loop correction to N can be written as a perturbation
of the initial value problem encountered at LO :
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1-loop corrections to N

■ The 1-loop correction to N can be written as a perturbation
of the initial value problem encountered at LO :

u

δN =

» Z

~u ∈ light cone

δAin(~u) T ~u

–
N

LO

◆ N
LO

is a functional of the initial fields Ain(~u) on the light-cone
◆ T ~u is the generator of shifts of the initial condition at the point ~u

on the light-cone, i.e. : T ~u ∼ δ/δAin(~u)
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1-loop corrections to N

■ The 1-loop correction to N can be written as a perturbation
of the initial value problem encountered at LO :

u u

v

δN =

» Z

~u ∈ light cone

δAin(~u) T ~u +

Z

~u,~v ∈ light cone

1

2
Σ(~u, ~v) T ~u T ~v

–
N

LO

◆ N
LO

is a functional of the initial fields Ain(~u) on the light-cone
◆ T ~u is the generator of shifts of the initial condition at the point ~u

on the light-cone, i.e. : T ~u ∼ δ/δAin(~u)

◆ δAin(~u) and Σ(~u, ~v) are in principle calculable analytically
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Sketch of a proof – I

■ The first two terms involve :

δA(x) ≡ g

2

Z
d4z

X

ǫ=±

ǫ G+ǫ(x, z)Gǫǫ(z, z)

■ The third term involves G+−(x, y)

■ The propagators G±± are propagators in the background A, in the
Schwinger-Keldysh formalism. They obey :

8
<
:

G+− = G
R
G0 −1

R
G0

+−G
0 −1
A

G
A

G±± =
1

2

ˆ
G

R
G0 −1

R
(G0

+− +G0
−+)G0 −1

A
G

A
± (G

R
+ G

A
)
˜

G
R,A

= retarded/advanced propagators in the background A
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Sketch of a proof – II

■ G++ and G−− are only needed with equal endpoints
⊲ they are both equal to

G++(z, z) = G−−(z, z) =
1

2

ˆ
G

R
G0 −1

R
(G0

+− +G0
−+)G0 −1

A
G

A

˜
(z, z)

⊲ thus, δA can be simplified into :

δA(x) =
g

2

Z
d4z

h
G++(x, z) − G+−(x, z)

i
G++(z, z)

=
g

2

Z
d4z G

R
(x, z)G++(z, z)

■ G
R
G0 −1

R
G0

+−G0 −1
A

G
A

can be written as :

ˆ
G

R
G0 −1

R
G0

+−G
0 −1
A

G
A

˜
(x, y) =

Z
d3~p

(2π)32Ep

ζ~p(x)ζ∗~p(y) ,

with
ˆ
�x +m2 + gA(x)

˜
ζ~p(x) = 0 and lim

x0→−∞
ζ~p(x) = eip·x
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Sketch of a proof – III

■ Green’s formulas :

A(x) =

Z

Ω

d4z G0
R
(x, z)

h
j(z) − g

2
A2(z)

i

+

Z

LC

d3~u G0
R
(x, u)

h
n·
→

∂ u −n·
←

∂ u

i
Ain(~u)

δA(x) =

Z

Ω

d4z G
R
(x, z)

g

2
G++(z, z)

+

Z

LC

d3~u G
R
(x, u)

h
n·
→

∂ u −n·
←

∂ u

i
δAin(~u)

ζ~p(x) =

Z

LC

d3~u G
R

(x, u)
h
n·
→

∂ u −n·
←

∂ u

i
ζ~p in(~u)

G
R

(x, y) = G0
R

(x, y) + g

Z

Ω

d4z G0
R
(x, z)A(z)G

R
(z, y)
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Sketch of a proof – IV

■ Thanks to the operator

ain(~u) · T ~u ≡ ain(~u)
δ

δAin(~u)
+

h
(n · ∂u)ain(~u)

i δ

δ(n · ∂u)Ain(~u)
,

we can write

ζ~p(x) =

Z

~u∈LC

h
ζ~p in(~u) · T ~u

i
A(x)

δA(x) =

Z

Ω

d4z G
R
(x, z)

g

2
G++(z, z) +

Z

~u∈LC

h
δAin(~u) · T ~u

i
A(x)

⊲ from the classical field A(x), the operator ain(~u) · T ~u builds the
fluctuation a(x) whose initial condition on the light-cone is ain(~u)

■ The 3rd diagram can directly be written as :
Z

d3~p

(2π)32Ep

Z

~u,~v∈LC

hh
ζ~p in(~u) · T ~u

i
A(x)

i hh
ζ∗~p in(~v) · T ~v

i
A(y)

i
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Sketch of a proof – V

■ One can finally prove that
Z

Ω

d4z G
R

(x, z)
g

2
G++(z, z) =

=
1

2

Z
d3~p

(2π)32Ep

Z

~u,~v∈LC

h
ζ~p in(~u) · T ~u

ih
ζ∗~p in(~v) · T ~v

i
A(x)

⊲ δA(x) =

" Z

~u∈LC

h
δAin(~u) · T ~u

i

+
1

2

Z
d3~p

(2π)32Ep

Z

~u,~v∈LC

h
ζ~p in(~u) · T ~u

ih
ζ∗~p in(~v) · T ~v

i#
A(x)

■ This leads to the announced formula for δN , with

Σ(~u, ~v) ≡
Z

d3~p

(2π)32Ep

ζ~p in(~u)ζ∗~p in(~v)
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Sketch of a proof – VI

■ Conjecture : this result can be generalized to any observable
that can be written in terms of the gauge field with retarded
boundary conditions, O ≡ O[A]:

δO =

» Z

~u ∈ light cone

δAin(~u) T ~u +

Z

~u,~v ∈ light cone

1

2
Σ(~u, ~v) T ~u T ~v

–
O

LO

⊲ whatever we conclude for the multiplicity from this
formula holds true for any such observable
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Divergences

■ If taken at face value, this 1-loop correction is plagued by
several divergences :

◆ The two coefficients δAin(~x) and Σ(~x, ~y) are infinite,
because of an unbounded integration over a rapidity
variable

◆ At late times, T ~xA(τ, ~y) diverges exponentially,

T ~xA(τ, ~y) ∼
τ→+∞

e
√

µτ

because of an instability of the classical solution of
Yang-Mills equations under rapidity dependent
perturbations (Romatschke, Venugopalan (2005))
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Initial state factorization

■ Anatomy of the full calculation :





WYbeam -Y[ρ1]





WYbeam +Y[ρ2]





N[ Ain(ρ1 , ρ2) ]
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Initial state factorization

■ Anatomy of the full calculation :





WYbeam -Y[ρ1]





WYbeam +Y[ρ2]





N[ Ain(ρ1 , ρ2) ] + δ N

■ When the observable N [Ain(ρ1, ρ2)] is corrected by an extra
gluon, one gets divergences of the form αs

∫
dY in δN

⊲ one would like to be able to absorb these divergences into
the Y dependence of the source densities W

Y
[ρ1,2]
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Initial state factorization

■ Anatomy of the full calculation :
Y
+ Ybeam

- Ybeam

 Y0

 Y ’
0





WYbeam -Y0

[ρ1]





WYbeam +Y ’

0
[ρ2]





N[ Ain(ρ1 , ρ2) ] + δ N

■ When the observable N [Ain(ρ1, ρ2)] is corrected by an extra
gluon, one gets divergences of the form αs

∫
dY in δN

⊲ one would like to be able to absorb these divergences into
the Y dependence of the source densities W

Y
[ρ1,2]

■ Equivalently, if one puts some arbitrary frontier Y0 between
the “observable” and the “source distributions”, the
dependence on Y0 should cancel between the various factors
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Initial state factorization

■ The two kind of divergences don’t mix, because the
divergent part of the coefficients is boost invariant.

Given their structure, the divergent coefficients seem related
to the evolution of the sources in the initial state

■ In order to prove the factorization of these divergences in the
initial state distributions of sources, one needs to establish :

h
δN

i
divergent

coefficients

=
h
(Y0 − Y )H†[ρ1] + (Y − Y ′0 )H†[ρ2]

i
N

LO

where H[ρ] is the Hamiltonian that governs the rapidity
dependence of the source distribution W

Y
[ρ] :

∂W
Y
[ρ]

∂Y
= H[ρ] W

Y
[ρ]

FG, Lappi, Venugopalan (work in progress)
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Initial state factorization

■ Why is it plausible ?

◆ Reminder :
[
δN

]
divergent

coefficients

=

{∫

~x

[
δAin(~x)

]

div
T ~x

+
1

2

∫

~x,~y

[
Σ(~x, ~y)

]

div
T ~xT ~y

}
N

LO

◆ Compare with the evolution Hamiltonian :

H[ρ] =

∫

~x⊥

σ(~x⊥)
δ

δρ(~x⊥)
+

1

2

∫

~x⊥,~y
⊥

χ(~x⊥, ~y⊥)
δ2

δρ(~x⊥)δρ(~y⊥)

■ The coefficients σ and χ in the Hamiltonian are well known.
There is a well defined calculation that will tell us if it works...
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Unstable modes

Romatschke, Venugopalan (2005)

■ Rapidity dependent perturbations to the classical fields grow
like exp(#

√
τ) until the non-linearities become important :

0 500 1000 1500 2000 2500 3000 3500
g

2 µ τ

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

m
ax

 τ
2  T

ηη
 / 

g4
 µ

3  L
2

c
0
+c

1
 Exp(0.427 Sqrt(g

2 µ τ))

c
0
+c

1
 Exp(0.00544 g

2 µ τ)
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Unstable modes

■ The coefficient δAin(~x) is boost invariant.
Hence, the divergences due to the unstable modes all come
from the quadratic term in δN :

h
δN

i
unstable
modes

=

8
><
>:

1

2

Z

~x,~y

Σ(~x, ~y) T ~xT ~y

9
>=
>;

N
LO

[Ain(ρ1, ρ2)]

■ When summed to all orders, this becomes a certain
functional Z[T ~x] :

h
δN

i
unstable
modes

= Z[T ~x ] N
LO

[Ain(ρ1, ρ2)]
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Unstable modes

■ This can be arranged in a more intuitive way :
h
δN

i
unstable
modes

=

Z ˆ
Da

˜ eZ[a(~x)] ei
R

~x
a(~x) T ~x N

LO
[Ain(ρ1, ρ2)]

=

Z ˆ
Da

˜ eZ[a(~x)] N
LO

[Ain(ρ1, ρ2)+a]

⊲ summing these divergences simply requires to add fluctuations
to the initial condition for the classical problem
⊲ the fact that δAin(~x) does not contribute implies that the
distribution of fluctuations is real

■ Interpretation :

Despite the fact that the fields are coupled to strong sources,
the classical approximation alone is not good enough,
because the classical solution has unstable modes that can
be triggered by the quantum fluctuations
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Unstable modes

Fukushima, FG, McLerran (2006)

■ By a different method, one obtains Gaussian fluctuations
characterized by :

〈
ai(η, ~x⊥) aj(η

′, ~x′
⊥)

〉
=

=
1

τ
√

−(∂η/τ)2 − ∂2
⊥

[
δij +

∂i∂j

(∂η/τ)2

]
δ(η−η′) δ(~x⊥−~x′

⊥)

〈
ei(η, ~x⊥) ej(η′, ~x′

⊥)
〉

=

= τ

√
−(∂η/τ)2 − ∂2

⊥

[
δij−

∂i∂j

(∂η/τ)2+∂2
⊥

]
δ(η−η′) δ(~x⊥−~x′

⊥)
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Unstable modes

Classical solution
in 2+1 dimensions
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Unstable modes

η
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Unstable modes

η
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Unstable modes

η

■ Combining everything, one should write

dN

dY d2~p⊥
=

∫ [
Dρ1] [Dρ2

]
W

Ybeam−Y
[ρ1] W

Ybeam+Y
[ρ2]

×
∫ [

Da
]

Z̃[a]
dN [Ain(ρ1, ρ2)+a]

dY d2~p⊥

⊲ This formula resums (all?) the divergences that occur at
one loop
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Unstable modes – Interpretation
■ Tree level :

p
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Unstable modes – Interpretation
■ Tree level :

p

■ One loop ⊲ gluon pairs (includes Schwinger pairs):

q

p

..

.

⊲ The momentum ~q is integrated out
⊲ If α−1

s .
˛̨
yp − yq

˛̨
, the correction is absorbed in W [ρ1,2]

⊲ If
˛̨
yp − yq

˛̨
. α−1

s : gluon splitting in the final state
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Unstable modes – Interpretation

■ After summing the fluctuations, things may look like this :

p

⊲ these splittings may help to fight against the expansion ?
Note : the timescale for this process is τ ∼ Q−1

s ln2(1/αs)
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Less inclusive quantities
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Definition

■ One can encode the information about all the probabilities
Pn in a generating function defined as :

F (z) ≡
∞∑

n=0

Pn zn

■ From the expression of Pn in terms of the operator D, we
can write :

F (z) = ezD eiV e−iV ∗

■ Reminder :

◆ eD eiV e−iV ∗

is the sum of all the cut vacuum diagrams
◆ The cuts are produced by the action of D

■ Therefore, F (z) is the sum of all the cut vacuum diagrams in
which each cut line is weighted by a factor z
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What would it be good for ?

■ Let us pretend that we know the generating function F (z).
We could get the probability distribution as follows :

Pn =
1

2π

Z 2π

0

dθ e−inθ F (eiθ)

Note : this is trivial to evaluate numerically by a FFT :

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0  500  1000  1500  2000  2500

P
n

n

F1(z)

F2(z)
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F(z) at Leading Order

■ We have : F ′(z) = D
{
ezD eiV e−iV ∗}

■ By the same arguments as in the case of N , we get :

F ′(z)

F (z)
= z +

z

■ The major difference is that the cut graphs that must be
evaluated have a factor z attached to each cut line

■ At tree level (LO), we can write F ′(z)/F (z) in terms of
solutions of the classical Yang-Mills equations, but these
solutions are not retarded anymore, because :

+  z 6= retarded propagator
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F(z) at Leading Order

■ The derivative F ′/F has an expression which is formally
identical to that of N ,

F ′(z)

F (z)
=

Z
d3~p

(2π)32Ep

Z

x,y

eip·(x−y)
�x�y

X

λ

ǫµλǫ
ν
λ A(+)

µ (x)A(−)
ν (y) ,

with A
(±)
µ (x) two solutions of the Yang-Mills equations

■ If one decomposes these fields into plane-waves,

A
(ε)
µ (x) ≡

Z
d3~p

(2π)32Ep

n
f

(ε)
+ (x0, ~p)e−ip·x + f

(ε)
− (x0, ~p)eip·x

o

the boundary conditions are :

f
(+)
+ (−∞, ~p) = f

(−)
− (−∞, ~p) = 0

f
(−)
+ (+∞, ~p) = z f

(+)
+ (+∞, ~p) , f

(+)
− (+∞, ~p) = z f

(−)
− (+∞, ~p)

■ There are boundary conditions both at x0 = −∞ and
x0 = +∞ ⊲ not an initial value problem ⊲ hard...
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Remarks on factorization

■ As we have seen, the fact that the calculation of the first
moment N can be formulated as an initial value problem
seems quite helpful for proving factorization

■ If the retarded nature of the fields is crucial, then
factorization does not hold for the generating function F (z),
or equivalently for the individual probabilities Pn

■ Note : by differentiating the result for F (z) with respect to z,
and then setting z = 1, we can obtain formulas for higher
moments of the distribution
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Exclusive processes

■ So far, we have considered only inclusive quantities – i.e. the
Pn are defined as probabilities of producing particles
anywhere in phase-space

■ What about events where a part of the phase-space remains
unoccupied ? e.g. rapidity gaps

Y
empty region
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Main issues

1. How do we calculate the probabilities P excl
n with an excluded

region in the phase-space ?
Can one calculate the total gap probability Pgap =

∑
n P excl

n ?

2. What is the appropriate distribution of sources W excl
Y

[ρ] to
describe a projectile that has not broken up ?

3. How does it evolve with rapidity ?

See : Hentschinski, Weigert, Schafer (2005)

4. Are there some factorization results, and for which quantities
do they hold ?
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Exclusive probabilities

■ The probabilities P excl
n [Ω], for producing n particles – only in

the region Ω – can also be constructed from the vacuum
diagrams, as follows :

P excl
n [Ω] =

1

n!
Dn

Ω
eiV e−iV ∗

where D
Ω

is an operator that removes two sources and links
the corresponding points by a cut (on-shell) line, for which
the integration is performed only in the region Ω

■ One can define a generating function,

F
Ω
(z) ≡

∑

n

P excl
n [Ω] zn ,

whose derivative is given by the same diagram topologies as
the derivative of the generating function for inclusive
probabilities
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Exclusive probabilities

■ Differences with the inclusive case :

◆ In the diagrams that contribute to F ′
Ω
(z)/F

Ω
(z), the cut

propagators are restricted to the region Ω of the
phase-space

⊲ at leading order, this only affects the boundary
conditions for the classical fields in terms of which one
can write F ′

Ω
(z)/F

Ω
(z)

⊲ not more difficult than the inclusive case

◆ Contrary to the inclusive case – where we know that
F (1) = 1 – the integration constant needed to go from
F ′

Ω
(z)/F

Ω
(z) to F

Ω
(z) is non-trivial. This is due to the fact

that the sum of all the exclusive probabilities is smaller
than unity

⊲ F
Ω
(1) is in fact the probability of not having particles in

the complement of Ω – i.e. the gap probability
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Survival probability

■ We can write :

F
Ω
(z) = F

Ω
(1) exp





z∫

1

dτ
F ′

Ω
(τ)

F
Ω
(τ)





⊲ the prefactor F
Ω
(1) will appear in all the exclusive

probabilities

■ This prefactor is nothing but the famous “survival probability”
for a rapidity gap

⊲ One can in principle calculate it by the general techniques
developed for calculating inclusive probabilities :

F
Ω
(1) = F incl

1−Ω
(0)

⊲ Note : it is incorrect to say that a certain process with a
gap can be calculated by multiplying the probability of this
process without the gap by the survival probability
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Factorization ?

■ In order to discuss factorization for exclusive quantities, one
must calculate their 1-loop corrections, and study the
structure of the divergences...

■ Except for the case of Deep Inelastic Scattering, nothing is
known regarding factorization for exclusive processes in a
high density environment

■ For the overall framework to be consistent, one should have
factorization between the gap probability, F

Ω
(1), and the

source density studied in Hentschinski, Weigert, Schafer
(2005) (and the ordinary W

Y
[ρ] on the other side)

■ The total gap probability is the “most inclusive” among the
exclusive quantities one may think of. For what quantities
– if any – does factorization work ?



Introduction

Basic principles

Inclusive gluon spectrum

Loop corrections

Less inclusive quantities

Summary

CERN

François Gelis – 2007 GGI, Florence, February 2007 - p. 58

Summary



Introduction

Basic principles

Inclusive gluon spectrum

Loop corrections

Less inclusive quantities

Summary

CERN

François Gelis – 2007 GGI, Florence, February 2007 - p. 59

Summary

■ When the parton densities in the projectiles are large, the
study of particle production becomes rather involved

⊲ non-perturbative techniques that resum all-twist
contributions are needed

■ At Leading Order, the inclusive gluon spectrum can be
calculated from the classical solution with retarded boundary
conditions on the light-cone

■ At Next-to-Leading Order, the gluonic corrections can be
seen as a perturbation of the initial value problem
encountered at LO

■ Resummation of the leading divergences to all orders :

⊲ Evolution with Y of the distribution of sources

⊲ Quantum fluctuations on top of initial condition for the
classical solution in the forward light-cone
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Parton evolution

⊲ assume that the projectile is big, e.g. a nucleus, and has
many valence quarks (only two are represented)

⊲ on the contrary, consider a small probe, with few partons

⊲ at low energy, only valence quarks are present in the hadron
wave function
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Parton evolution

⊲ when energy increases, new partons are emitted

⊲ the emission probability is αs

∫
dx
x ∼ αsln( 1

x ), with x the
longitudinal momentum fraction of the gluon

⊲ at small-x (i.e. high energy), these logs need to be
resummed
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Parton evolution

⊲ as long as the density of constituents remains small, the
evolution is linear: the number of partons produced at a given step
is proportional to the number of partons at the previous step (BFKL)
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Parton evolution

⊲ eventually, the partons start overlapping in phase-space

⊲ parton recombination becomes favorable

⊲ after this point, the evolution is non-linear:
the number of partons created at a given step depends non-linearly
on the number of partons present previously
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Saturation criterion

Gribov, Levin, Ryskin (1983)

■ Number of gluons per unit area:

ρ ∼ xG
A
(x,Q2)

πR2
A

■ Recombination cross-section:

σgg→g ∼ αs

Q2

■ Recombination happens if ρσgg→g & 1, i.e. Q2 . Q2
s, with:

Q2
s ∼ αsxG

A
(x,Q2

s)

πR2
A

∼ A1/3 1

x0.3

■ At saturation, the phase-space density is:

dNg

d2~x⊥d2~p⊥
∼ ρ

Q2
∼ 1

αs
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Saturation domain

log(Q 2)

log(x -1)

Λ
QCD
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Diagrammatic interpretation

■ One loop :
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Diagrammatic interpretation

■ One loop :

■ Two loops :
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Diagrammatic interpretation

■ One loop :

■ Two loops :

⊲ The sum of tree diagrams for fluctuations on top of the classical
field with initial condition Ain gives the classical field with a shifted
initial condition Ain + a

⊲ If we keep only the fastest growing terms, we need only the
leading two-point correlation of the initial fluctuation a
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Quark production

FG, Kajantie, Lappi (2004, 2005)

Ep

d
˙
nquarks

¸

d3~p
=

1

16π3

Z

x,y

eip·(x−y) /∂x/∂y

˙
ψ(x)ψ(y)

¸

■ Dirac equation in the classical color field :



Introduction

Basic principles

Inclusive gluon spectrum

Loop corrections

Less inclusive quantities

Summary

Extra bits

● Parton saturation

● Diagrammatic interpretation

● Quark production

● Longitudinal expansion

● AGK identities

CERN

François Gelis – 2007 GGI, Florence, February 2007 - p. 68

Quark production

FG, Kajantie, Lappi (2004, 2005)

Ep

d
˙
nquarks

¸

d3~p
=

1

16π3

Z

x,y

eip·(x−y) /∂x/∂y

˙
ψ(x)ψ(y)

¸

■ Dirac equation in the classical color field :
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Spectra for various quark masses
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Longitudinal expansion

■ For a system finite in the η direction, the gluons will have a
longitudinal velocity tied to their space-time rapidity
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Longitudinal expansion

■ For a system finite in the η direction, the gluons will have a
longitudinal velocity tied to their space-time rapidity
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Longitudinal expansion

■ For a system finite in the η direction, the gluons will have a
longitudinal velocity tied to their space-time rapidity

⊲ at late times : if particles fly freely, only one longitudinal
velocity can exist at a given η : vz = tanh (η)

⊲ the expansion of the system is the main obstacle to local
isotropy



Introduction

Basic principles

Inclusive gluon spectrum

Loop corrections

Less inclusive quantities

Summary

Extra bits

● Parton saturation

● Diagrammatic interpretation

● Quark production

● Longitudinal expansion

● AGK identities

CERN

François Gelis – 2007 GGI, Florence, February 2007 - p. 71

Generating function

■ Let Pn be the probability of producing n particles

■ Define the generating function :

F (z) ≡
∞X

n=0

Pn z
n

■ From unitarity, F (1) =
∑∞

n=0 Pn = 1. Thus, we can write

ln(F (z)) ≡
∞X

r=1

br (zr − 1)

■ At the moment, we need to know only very little about the br :
◆ F (z) is a sum of diagrams that may or may not be connected
◆ ln(F (z)) involves only connected diagrams. Hence, the br ’s are

given by certain sums of connected diagrams
◆ Every diagram in br produces r particles
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Generating function

■ Example : typical term in the coefficient of z11, with
contributions from b5 and b6 :
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Distribution of connected subdiagrams

■ From this form of the generating function, one gets :

Pn =

nX

p=0

e−
P

r br
1

p!

X

α1+···+αp=n

bα1 · · · bαn

| {z }
probability of producing n particles in p cut subdiagrams

■ Summing on n, we get the probability of p cut subdiagrams :

Rp =
1

p!

"
∞X

r=1

br

#p

e−
P

r br

Note : Poisson distribution of average
˙
Nsubdiagrams

¸
=

P
r br

■ By expanding the exponential, we get the probability of
having p cut subdiagrams out of a total of m :

Rp,m =
(−1)m−p

(m− p)! p!

"
∞X

r=1

br

#m
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AGK identities

■ The quantities Rp,m obey the following relations :

∀m ≥ 2 ,

mX

p=1

pRp,m = 0 ,

∀m ≥ 3 ,

mX

p=1

p(p− 1)Rp,m = 0 , · · ·

■ Interpretation : contributions with more than 1 subdiagram
cancel in the average number of cut subdiagrams, etc...

■ Correspondence with the original relations by
Abramovsky-Gribov-Kancheli :
◆ The original derivation is formulated in the framework of reggeon

effective theories
◆ Dictionary: reggeon −→ subdiagram

◆ These identities are more general than “reggeons”, and are valid
for any kind of subdiagrams
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Limitations

■ The AGK relations, obtained by “integrating out” the number
of produced particles, describe the combinatorics of
connected diagrams

⊲ by doing that, a lot of information has been discarded

■ For instance, to compute the average number of produced
particles, one would write :

˙
n

¸
=

D
Nsubdiagrams

E

| {z }
×

D
# of particles per diagram

E

| {z }
X

r

br requires a more detailed description
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